
 I A D V A N C E D SECURITY ESSENTIALS - ENTERPRISE DEFENDER

Packet Analysis

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Advanced Detection and
Packet Analysis

 Dr. Eric Cole, David Shackleford

All Rights Reserved

 2 02

 and Packet Analysis

This page intentionally left blank.

© Dr. Eric Cole and David Shackleford 1

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Course Outline

Advanced Packet Inspection for
Intrusion Detection
Packet Analysis Fundamentals for
Intrusion Analysis
Intrusion Prevention Systems
Open Source IPS and Network
Forensics
Appendix - Advanced Device
Testing

Advanced Detection and Analysis

Course Outline

This course is designed to present the intermediate to advanced intrusion detection system analyst with
information and skills on advanced topics in intrusion detection. The student should already be familiar with
basic IDS concepts including signatures, sensor placement, types of attacks, and defense in depth. This course
builds upon those topics to present the student with a look into advanced packet inspection, intrusion
prevention systems and active response, and advanced Intrusion Detection Systems (IDS) testing. The course
presents a balance of theory and real-world information that can be immediately applied.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction

• Attacks must be detected and prevented at the
perimeter

• To handle new types of attacks, firewalls, IDS,
and intrusion prevention systems (IPS) use
different methods of packet inspection and
attack detection

• Packet sizes have a major impact on network
parameters

 and Packet Analysis

Introduction

Today's material looks at advanced packet inspection for Intrusion Detection, explores both current and emerging
methods of inspecting packets. This section provides several examples of attacks that must be detected and
prevented at the perimeter. Because the lines between firewall, intrusion detection, and intrusion prevention are
blurred, we refer to a general "security device" when discussing the technology. This section also explores the
aspect of packet sizes on inspection. Lastly, a quick look at the evolution and future of the perimeter concludes this
section.

© Dr. Eric Cole and David Shackleford 3

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Inspecting Packets

• Routers, firewalls, IDS, sniffers
• New application layer attacks are evading

traditional perimeter defenses
• Weaknesses in packet inspection methods:

- Looking only at packet header information
- Weak signature matching on content
- Signatures do not yet exist
- Weak understanding of protocols

• Faster networks and smarter malware!
• APT - targeted attacks

 and Packet Analysis

There are various types of devices both for networking and security that perform packet inspection.
Traditionally, routers and firewalls look at headers and protocol information to make forwarding decisions,
whereas intrusion detection systems (IDS) look at the headers and content to match them against signatures,
and sniffers help to watch and analyze what packets are doing. Even with all these devices implemented in a
layered defense-in-depth architecture, new types of attacks are evading these traditional perimeter devices.
This is largely due to the deficiencies in the packet inspection methods used to detect attacks. Application-
based attacks are evading traditional perimeter defenses that mainly focus on packet header information,
protocols, and signature matching on packet content. More so, the abundance of zero day attacks for which
signatures and blocking methods do not exist, such as new worms, is wreaking havoc on our networks and
systems. To handle these new types of attacks, firewalls, IDS, and intrusion prevention systems (IPS) use
different methods of packet inspection and attack detection.

In the last few years, networks have grown dramatically with an exponential increase in speed. The increase in
network speed, along with the intelligence of new malware and application level attacks, places great strain on
legacy security devices. Today's security devices must inspect and analyze large quantities of data at a high
rate of speed. New technologies are needed to perform the necessary detailed packet inspection to defend
against today's threats. This section looks at some of the methods used by current security technologies to
perform detailed packet inspections to detect intrusions, including Application layer and zero day attacks.

4 © 2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Current Packet
Inspection Methods

Packet filters

Stateful filtering

Application proxies

 Detection and Packet Analysis

There are many ways of looking at the packets within network traffic. Packet inspection is a fundamental
element of any network device, such as routers, firewalls, sniffers, intrusion detection systems, and intrusion
prevention systems. Each of these systems performs packet inspection somewhat differently; however, new
packet inspection technologies are merging the best aspect of each into new methods. Before discussing the
new packet inspection methods, let's take a look at the current methods used on most networks.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Packet Filters

• Routers, Layer 3 switches, some
firewalls

• Use Access Control Lists (ACLs)
• Filtering decision based on small

subset of packet
• Allow or deny protocols based on

associated ports
• Payloads are not inspected

 Detection and Packet Analysis

Routers, Layer 3 switches, some firewalls, and other gateways are packet filter devices that use Access Control
Lists (ACLs) and perform packet inspection. This type of device uses a small subset of the packet to make filtering
decisions, such as source and destination IP address and protocol. These devices then allow or deny protocols
based on their associated ports. This type of packet inspection and access control is still highly susceptible to
malicious attacks because payloads and other areas of the packet are not inspected, for example, Application level
attacks that are tunneled over open ports such as HTTP (port 80) and HTTPS (port 443).

6 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Stateful Filtering

• Maintains a state table
• Looks at the header in more detail
• Allows for greater speeds and

throughput
• Requires more payload inspection

 Detection and Packet Analysis

A stateful packet filtering device maintains a state table for each valid connection that is established. It applies
rules by comparing them to the information in the packet header. It performs packet inspection in more detail
by looking at TCP flags, fragmentation, and other header data. Packets that are part of an existing connection
are already listed in the state table and have already been authorized; therefore, there is no need to authorize
the packet again. This technology allows for greater speeds and throughput than simple packet filters.
However, stateful packet filtering devices still require more awareness of payload content and the capability to
inspect it at wire speeds.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Application Proxies

• Inspect Application layer traffic
•
• Traditionally slower
• Application-specific

- Limited success

• More focused on Application level attacks
as adversary moves up the stack

 Detection and Packet Analysis

Application proxies provide the ability to inspect Application layer traffic. They are software applications that
run on dedicated servers between the external network and the internal application servers. For example, an
HTTP proxy would protect a web server from unauthorized incoming and outgoing web traffic. Performing as
a "server in the middle," it acts as a web server to external requests and acts as a web browser to the internal
server. Application proxies are traditionally slower than other types of gateway devices; thus, it is a difficult
task to provide wire speed application proxying capabilities. Application proxies are also

Therefore, a robust application proxy would need to run an instance of every application on the network,
including database applications, web, mail, and any custom applications that are used. With the multitude of
applications serving today's organizations, application proxies have had limited success in the market.

8 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Web Application Firewalls

• Similar to application proxies
-Focused on web app traffic only

• Primarily used to detect and block
common web app attacks
-XSS, SQL Injection, and so on

• Also good for traffic behavioral
monitoring for web apps

 and Packet Analysis

Web application firewalls (commonly called WAFs) are used to filter and monitor traffic to and from web
application infrastructure. These tools are similar to application proxies in many ways, focusing only on web
app traffic and applying application-layer filtering and rule sets to prevent attacks.

Most WAFs are used to detect and block common web app attacks like Cross Site Scripting (XSS), SQL
Injection, command injection, directory traversal, and others. Typical WAFs come with a starting ruleset that
includes standard blocking and detection rules for attacks of these types; although, most organizations will
want to modify these rules and add their own.

WAFs are used, more and more, to "fingerprint" application traffic and identify unusual behavior patterns. For
example, an unusual number of transaction attempts by a specific user could be considered odd or certain
users clicking links that they normally wouldn't could be out of character. When setting up WAFs to perform
this type of monitoring and filtering, it's critical to involve application developers so that false positives are
reduced and the monitoring effort is as accurate as possible.

Common vendors that sell WAF technology include Imperva (SecureSphere) and Trustwave (WebDefend).

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What is Anomaly Detection?

• Baseline or profile
• Behavioral:

- Characteristic
- User behavior

• Traffic:
- Statistical
- Network traffic patterns

• Protocol:
- Characteristic
- Protocol standards

 Detection and Packet Analysis

Many different types of anomaly detection exist. By definition, an anomaly is a deviation or departure from the
normal or common order, form, or rule. Anomaly systems are used to detect previously unknown, or zero-day attacks,
that signature-based systems are missing. Anomalies are detected based on a baseline or a profile of the normal
characteristics of the system. Deviations from this profile are alerted.

Following are descriptions of various anomalies:

• Behavioral-based anomaly detection often looks for deviations in user behavior. These systems are primarily
characteristic, rather than statistical. They may focus on the types of applications and protocols that are typically
used at certain times of the day, or more specific individual user characteristics, such as keystroke timing or the
number of database queries performed. Behavioral baselines are created by monitoring user behavior over time.

• Traffic-based anomaly detection looks for anomalies in network traffic patterns. These systems are primarily
statistical systems, rather than characteristics. They may focus on metrics such as traffic volume, types of
protocols, and distributions of various elements such as source and destination IP addresses. Traffic baselines are
created by monitoring network traffic over time. This requires the system to know all normal network traffic,
including any changes to the network.

• Protocol-based anomaly systems look for anomalies in protocols. These systems are primarily and
look for deviations from set protocol standards. Because protocol standards are restrictive and detailed in their
definition, models are created as a baseline to easily detect deviations. Unfortunately, because many vendors do
not comply with protocol standards, this type of detection can create false positives. Protocol anomaly detection
can also look for anomalies in usage of the protocols, regardless of whether they are compliant.

Many other types of anomaly detection techniques are used, such as detecting anomalies in system calls, or
application usage, and so on. Anomaly detection can create false positives; however, they have a low rate of false
negatives, making them proficient at detecting new attacks.

10 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

New Packet
Inspection Methods

• New Application layer attacks

• Necessary to incorporate
signature matching and
anomaly detection

• Web services
• Active response

 Detection and Packet Analysis

New Application layer attacks require perimeter devices, such as firewalls, to look at the content of the packet
stream and to incorporate features such as signature inspection, behavioral analysis, and anomaly detection.
Web services are becoming popular and present a new set of challenges for network and security
administrators. Organizations that are deploying web services need to ensure that their perimeter devices are
more aware of the traffic that is accessing the network via port 80, such as SOAP elements and XML
statements. Web services require high-speed full inspection of the packet payload of XML and SOAP objects.

Organizations must now ensure that their perimeter devices provide the ability to perform full packet analysis,
including payload, and maintain state at wire speed. Perimeter devices must also apply security policies based
on the application content, as well as the header content to block this new wave of attacks. New perimeter
devices must also take an action such as dropping a specific connection, dropping all connections from the
suspect IP address, sending an alert, and other customizable actions.

© Dr. Cole and David Shackleford 11

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Protocol Standards Compliance

•
• Examples:

-Nonstandard traffic
-Binary in HTTP header
-VoIP

• Some programs do not adhere to
protocol standards

Advanced Detection and Packet Analysis

All communications need to comply with relevant protocol standards, such as Request for Comments (RFCs).
Perimeter devices must determine whether communications adhere to relevant protocol standards because a
violation of standards may be indicative of malicious traffic.

An example of nonstandard traffic would be sending traffic through a firewall over UDP Port 53, the default
DNS port, because most firewalls are configured to pass DNS traffic. Traffic over standard ports needs to be
checked to ensure that it is not used to tunnel other nonstandard traffic. Trojans, backdoors, and other methods
of covert communications often tunnel over common protocols, such as

Another example is the binary executable code contained in an HTTP header. This type of traffic should be
detected and blocked at the perimeter.

Voice over IP (VoIP) is another application area that is now becoming widely deployed. VoIP uses the
complex H.323 and SIP protocols that perimeter devices need to validate for standards compliance.

The protocol standards compliance detection method will likely create some false positives because,
unfortunately, some software vendors do not adhere to proper protocol standards, for example, clients
that are not in compliance with RFC1725, the protocol specification. Many widely deployed mainstream
products deviate from the protocol specifications. Hopefully, new packet inspection devices that check for
protocol compliance force these vendors to update and correct any noncompliance with protocol standards.

12 ©2016 Dr. Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Protocol Anomaly Detection

• Protocol data adheres to expected
usage

• Examples:
- URL Directory traversal
- Tunneling through HTTP
- Malformed URLs, long URLs, and long

header lines

• Uses models to detect deviations

 Detection and Packet Analysis

In addition to standards compliance, protocol anomaly detection determines whether data within the protocol
adheres to expected usage. Even i f a communication stream complies with a protocol standard, the way in which
the protocol is used may be inconsistent with what is expected. For example, using the characters "../" in web
URLs would be an anomaly in the data portion of the packet. This isn't restricted per the RFC; however, it could
allow the attacker to view sensitive directories and files, an attack known as directory traversal. Another example
is the use of HTTP for P2P sharing, instant messaging, and other programs that are restricted per company
policy. These types of programs utilize TCP port 80, which is normally permitted for both inbound and outbound
traffic. In addition to being restricted per company policy, these types of applications may create critical security
risks, allowing viruses, Trojans, and other malware to enter the network. Other anomalies for HTTP include
malformed URLs, abnormally long URLs, and abnormally long header lines. Perimeter devices that perform
protocol anomaly detection contain in-depth knowledge of protocol standards and expected usage and can detect
traffic that does not comply with those guidelines. They often use strict models and detect deviations from the
model. These models are created from the protocol specifications, various implementations of the protocol, and
expected application usage requirements. Protocol anomaly detection can be implemented in a variety of ways. It
could be a simple system that detects a small number of known deviations by using pattern matching or an
extensive system that tracks and maintains state for complete transactions and evaluates all traffic for various
types of compliance and usage. The latter protocol anomaly detection can identify zero day attacks for which
signatures do not yet exist. It is also more resistant to evasion techniques, such as polymorphism.

© Dr. Eric Cole and David Shackleford 13

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

New Trends: NGFW

Next-Generation Firewalls (NGFWs)
are firewalls with more capabilities:
-Protocol anomaly detection
-Behavioral profiling of traffic
-User account correlation

May also include SSL decryption and
 signatures

Advanced and Packet Analysis

Around 2009, a new network security market started to emerge with products called Next Generation
Firewalls, or NGFW. Although many in the security community initially dismissed this as yet another vendor
hype cycle, the trend has continued and the products are proving to be enterprise-ready and much more
capable than traditional Layer 3 to 4 firewalls of the past.

The capabilities that differentiate a NGFW from a traditional firewall include protocol anomaly
detection, behavioral profiling of application traffic (think "normal" HTTP versus "abnormal" HTTP), and
varying degrees of correlation with user accounts initiating or receiving the application traffic in question.
Many NGFW products also include the capability to decrypt SSL traffic (a huge performance hit in many
cases) and classic intrusion prevention signatures (covered later today).

14 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Leading NGFW Vendors

- First to market this term
 J.

41 - ALL UNDER YOUR

• Check Point

-Advanced

• Juniper
• ixx

• Dell
'/

• Fortinet V

**From Palo Alto Networks site

 Detection and Packet Analysis

This slide simply depicts some of the leading NGFW vendors in the marketplace right now, which is useful to
know for enterprises evaluating security products in this category. Many different options are available for
these technologies, ranging from traditional firewall replacement to data center augmentation, branch office
protection, and more.

Picture found at

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

New Trends: Active Response

• Although active response is not a new concept,
new tools and tech are emerging

• Takes the honeypot in a different direction
• Example: Mykonos Web Security (now Juniper)

Type of

Mykonos Responses

 Detection and Packet Analysis

For some time now, IDS and firewall tools have incorporated the concept of Active Response where certain
detected events trigger other devices or tools (or even the same ones) to take additional actions. A classic
example of "active response" is the IDS rule triggering from an attack, which then signals a firewall to block
traffic from an offending IP address.

Honeypots have also played a role in active response, using both automated and manual triggering methods to
direct or block attacker behavior. With some recent technologies and tools, however, this concept is being
taken in some new directions. Mykonos software, acquired by Juniper, can modify web app code and behavior
to purposefully block or deceive attackers. The concept of "automated deception" in network and application
security has never traditionally been offered in commercial tools, and this could mark a new avenue for
defenders to leverage.

Picture taken from Mykonos site at

16 © 2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

New Trends: Full Packet
Capture and Network Forensics

 Some network security devices act as
traffic repositories for forensics and
security analysis
 Focus is on:
-Speed
-Storage
-Analytics

Leading players include
 Networks (Blue Coat)

 NetWitness

 Detection and Packet Analysis

Another new category of network security that has been steadily growing since 2008 is "full packet capture"
devices. These types of platforms are sometimes considered as "network VCR" or "network recorder"
platforms, allowing teams to record traffic over a period of time, store it, and then slice and dice it for analysis
later. Most security teams leverage these platforms for deep-dive network forensics and root cause analysis,
but in the last few years, these systems have steadily been offering more complex analytics for big data.

Platforms in this space are keenly focused on their analytics capabilities and forensics tools but must also have
robust speed and storage options for large, high-speed networks.

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Detecting Malicious Data

• Applications carrying malicious data or
commands

• Examples:
- Malicious scripts
- Cross-site scripting
- Malware in data
- Steganography

• Often involves inspecting large quantities of
data

Advanced Detection and Packet Analysis

There needs to be a means to detect when an application is carrying malicious data or commands. Even i f
Application layer communications adhere to protocols, they may still carry data that can attack the system.
Therefore, a perimeter device must limit or control an application's capability to include potentially dangerous
data or commands. An example of malicious data in an application stream often comes from malicious scripts
that are inadvertently executed by the user. These scripts can be disguised in URLs or within other
applications, such as games and jokes. It is a relatively simple task to create an HTTP compliant attack script.
In addition, cross site scripting attacks are embedded within HTTP requests to steal user information.
Attackers typically a script into a popular on a frequently accessed website that triggers an attack
on another web server. Another example of detecting malicious data is the capability to detect malware in the
data stream. Most viruses are spread via e-mail attachments. Examining and filtering these types of messages
as they enter or exit the network decreases the load on the mail server and optimizes its performance in
delivering legitimate mail. Steganography is another more difficult type of attack to detect. Although the
hidden data may not be malicious, it is prudent to know when covert communications are taking place. These
types of attacks should be detected; however, this involves inspecting the packet's full payload content on
sometimes large quantities of data.

18 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Application Control

• Unauthorized operations
• Access control and legitimate usage checks:

- Portable ACLs to track data that resides anywhere on
the network

- Mobile computing

• Awareness of subjects, objects, and permissions
• Currently distributed architecture

- Cloud computing

• Move to centralized security device

 and Packet Analysis

You need a means to restrict an application from performing unauthorized operations. Not only can
Application layer communications include malicious data, the application itself might perform unauthorized
operations. A perimeter device must perform "access control" and "legitimate usage" checks on application
level traffic to identify and control such operations at the network level. This type of packet inspection
requires the capability to distinguish application operations in great detail. It also involves an awareness of
such entities as subjects, objects, and permissions. Subjects can be a user, process, or program that performs
access. Objects can be files, programs, or services that are accessed by subjects. Permissions are access rights
that a subject has for a certain object. Today's security solutions distribute this type of access control over a
number of applications. This makes it more difficult to implement a global architecture that shares access
control information. It also increases the chances that an application and its access controls could be
improperly configured. Moving this type of packet inspection and control to centralized security devices can
mitigate these problems. However, some application control still needs to be performed at the system level as
well, such as memory protection, process protection, and system call access.

©2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Signature Matching

Content filtering on data
Large quantities of data to inspect
Regular expression pattern
matching:
-Hardware accelerators
-Multiprocessing

 Detection and Packet Analysis

There needs to be a means to perform data content filtering, based on pattern matching, to detect and block
attacks. Many worms and viruses are embedded deep within a packet payload. This could mean checking
content on Gigabytes worth of traffic entering and exiting a network. Regular expressions are used to describe
complex search patterns to match when searching through packet payload content. This is the most accurate
method of pattern matching; however, it is also the most resource-intensive. Currently, several companies are
developing hardware-accelerated regular expression pattern matching devices. Newer technology can perform
multiprocessing for faster pattern matching and improve accuracy through full content inspection and
statistical analysis.

20) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Decrypt Connections
for Inspection

• Typically at the host
• Network security devices must be endpoint

or reside behind a decryption device
• Content inspection and packet

encryption/decryption is TOO MUCH LOAD!
- Can be throughput loss!

• Web server-specific inspection devices
 SSL, PGP, and others

Advanced and Analysis

As mentioned in previous examples, inspecting traffic for malicious code is ineffective when the data is
encrypted. This functionality is typically performed at the host by using system-level protection methods.
However, to prevent the attacks from ever reaching the internal hosts, security devices need to have the
capability to decrypt, inspect, and re-encrypt SSL, and other encrypted sessions. This means that the
security device needs to be the end point for the VPN or other encryption mechanism, or it must reside behind
the decryption device. A best practice would be to deploy the security gateway behind the decryption device to
lessen the load on the device. Performing content inspection and packet reassembly alone demands high-speed
processors. Adding the encryption and decryption to the same device can cause too much processor load and
latency. In a Network World study in April devices tested that performed both decryption and
content assessment could experience up to throughput loss! The foil study can be found here at

Some current security devices can inspect encrypted SSL sessions. These products are usually deployed in
front of web server farms. They contain copies of the web server's private key to decrypt and inspect the data.
The data is intercepted, decrypted, and inspected before being forwarded to the web server. I f an attack is
detected, one or more actions may be taken, including dropping or altering the packet.

Besides SSL and TP sec, other encryption methods such as PGP may also have to be handled. Encryption such
as PGP complicates the detection of e-mail worms and viruses. Storing a copy of each user's private key on a
security device would be impractical and would violate privacy. Host-level inspection and prevention is better
suited in these situations.

© Dr. Eric Cole and David Shackleford 21

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Taps and Inline SSL Decryption

• Options for SSL decryption:
-Integrated into network monitoring

tools —
-Integrated in network proxies

-Taps for SSL brokering

• High-speed taps with
loaded certs for decryption can
broker to monitoring tools

 and Packet Analysis

For organizations looking to decrypt SSL traffic for security analysis, three options are available. First,
organizations can perform SSL decryption "on-box" on NGFW or other devices. As briefly discussed in the
last slide, this is less than optimal for a lot of reasons but can work in networks with less volume.

The second option is to leverage SSL decryption at the network proxy itself, which many organizations use
with load balancers and other performance control and monitoring tools. A third option that may be viable,
though, is the use of specialized network taps from companies such as and Monitoring. These
"intelligent" taps can actually store certificates and perform selective brokering of packets to monitoring
devices when decrypted. This can actually offer some real advantages to organizations that don't want to
redesign or re-architect their networks to handle SSL traffic analysis.

22 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Inline Network-Based
Malware Detection

• Network-based detection
• Inline to detect and

attacks
• Detect propagation

• Use multiple methods
for detection

 Detection and Packet Analysis

To keep up with the increasing number and rapid spread of sophisticated malware, network-based detection
must be deployed. We mentioned previously the need to detect e-mail-based malware by inspecting
attachments; however, numerous other types of malware spread without the assistance of e-mail. This type of
malware detection must be inline to detect and block attacks in real time. For example, when a host machine
becomes infected with a it may continue to propagate by scanning for other vulnerable systems. The
security device must detect and suppress the worms' scanning and propagating to prevent further infection.
Security devices must use a combination of detection methods, including signature matching, anomaly
detection, and behavioral detection to prevent known and unknown attacks.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Virtual Appliances

Many network security devices are offered as
specialized virtual machines, or virtual
appliances
These can integrate with leading virtualization
hypervisors from VMware, Microsoft, and Citrix
Examples include Sourcefire IPS, Juniper, and
Cisco virtual firewalls
- Also new offerings from vendors like HyTrust and

Advanced Detection and Packet Analysis

More and more network security appliances are offered in virtual models. These are essentially the same kinds
of tools, just offered in a different format that integrates with virtualization platforms and allows for traffic
monitoring in the virtual environment.

New platforms and technologies are also cropping up all the time in the virtualization space! Companies such
as HyTrust have built tools for privileged user management and monitoring in virtual environments, along
with compliance and configuration assessments. StrataCloud has tools for traffic monitoring, security, and
virtualization operations, and so on.

24 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next Generation Security
Hardware (1)

• ASIC:
-Software burned on to dedicated circuits
-High cost
-Need for in-house developer
-Slow time to market
-Inflexibility
-Changes required redesign

 Detection and Packet Analysis

To handle the increase in speed, we have seen architectures move from software-based, to ASIC hardware,
and now to network processors. ASIC hardware uses algorithms that were previously performed in software
and burns them on to dedicated circuits. ASIC technologies addressed the issue for increased speed; however,
they had several disadvantages including high cost, the need for an in-house developer, slow time to market,
and inflexibility for changes. Any discovered bugs, additional features, or standard changes required the ASIC
to be redesigned and replaced. Rapid changes in security require quicker turnaround times on technology.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next Generation Security
Hardware (2)

Network processors:
- High speed of ASIC

- Flexibility of a programmable processor

- Parallel architecture

- Single, specific repetitive task

- Access to fast memory for signatures

- Access to larger memory for state
information and heuristics

- Reprogramming

Advanced Detection and Packet Analysis

Network processors were introduced to leverage the best features of both software-based and ASIC-based
technologies. They allow the high speed of ASICs with the flexibility of a programmable processor. Formally
defined by Douglas Comer, a network processor "is a special-purpose, programmable hardware device that
combines the low cost and flexibility of a RISC processor with the speed and scalability of custom silicon (i.e.,
ASIC chips). Network processors are building blocks used to construct network systems."

Network processors can be deployed in various architectures, including parallel, where each processor handles
 of the total load; and pipeline, where as a packet is moving through the pipeline, each processor is

handling an individual function. Each processor typically handles a single specific repetitive task. The network
processor was originally targeted to the routing market, but it is easy to see how it can be applied to the
increased demands of packet inspection in network security. For example, one processor could handle the
pattern matching for known worm signatures, another could analyze for protocol standards compliance, and
yet another could look for protocol or usage anomalies. The network processor would have direct access to
fast memory that stores policies and signatures, whereas slower larger memory would store state information
and heuristic information. New attacks could be mitigated by adding new code to the network processor. A
separate processor can handle management functions, such as logging and policy management. Network
processors also offer the ability to scale, much like CPUs on computer systems.

This new technology offers both quick reprogramming when new attacks appear and faster performance than
the previous ASIC-based hardware. It also extends the lifetime of security devices by allowing vendors to
easily add new features. Security can now be designed into the architecture at wire speed instead of being
avoided and regarded as a bottleneck.

26 > Dr. Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

• Need for multilayer detection
• Protection against network and

application attacks
• Provide access control
• Anomaly detection
• New packet inspection methods
• Need for network processing

 Detection and Packet Analysis

The most-damaging malware in recent years has taken advantage of the application vulnerabilities in
environments in which stateful inspection or similar perimeter devices were utilized. Thus, a dire need for
multilayer detection can protect against both network and Application layer attacks while providing access
control. Application proxies do little to defend systems against attacks by the worms mentioned previously. A
glaring need has developed for perimeter devices that look deeper into the packet stream and perform more
comprehensive analysis. Furthermore, the next generation of perimeter devices must include anomaly
detection techniques.

Several new packet inspection techniques are incorporated into intrusion detection and prevention systems.
Current web services are pushing perimeter defenses to be more aware of the types of traffic they allow to
access the network via port 80, such as SOAP elements and XML statements. Even i f all the packet inspection
methods can be accomplished, the analysis must be done at wire speed with no increase in latency. A well-
built security device must use multiple detection mechanisms, each covering a different aspect of packet
inspection and detection in parallel for faster processing. Security devices that use these new types of packet
inspection methods are emerging in the market and are expected to gain steam in the next few years.

Packet sizes have a major impact on network parameters such as throughput and latency, as well as packet
inspection, pattern matching, and other intrusion detection and prevention methods. Larger packet sizes mean
more inspection, parsing, and detection per packet. Unless significant improvements are made in current
hardware and algorithms, security devices may not keep up with high-speed network demands. Network
processors are heading in the right direction by providing high-speed, multiprocessing, programmable devices.
Security product vendors must utilize this technology and create function-specific processors to handle the
necessary packet inspection for today's security needs, such as protocol compliance checking, anomaly
detection, inline antivirus solutions, and high-speed pattern matching. The solutions must be scalable to future
network bandwidth and flexible enough to accommodate the ever-changing demands of security.

© Dr. Eric Cole and David Shackleford 27

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Course Outline

• Advanced Packet Inspection for
Intrusion Detection

• Packet Analysis Fundamentals for
Intrusion Analysis

• Intrusion Prevention Systems
• Open Source IPS and Network

Forensics
• Appendix - Advanced Device Testing

 Detection and Packet Analysis

This section builds on the first section discussing the need for more deep-dive packet inspection and delves
into the fundamentals you need for successful packet analysis as an intrusion analyst.

28 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Section Overview

A Refresher on TCP/IP and Packets
 Tutorial

Packet Analysis for Intrusion Analysis
Packet Analysis with Wireshark

Advanced Detection and Packet Analysis

In this section, we delve into packets and explore the key fundamentals for examining them for intrusion
analysis. This section is meant to be a "hit the ground running" area that can help you prepare for more
advanced courses in packet analysis for intrusion detection and analysis, in particular the SANS Security 503
class.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Packets: Key Things to Know

A security analyst needs a solid grasp
of packet/frame headers
You should know the following:
-How to acquire and assess packet

capture files properly
-How to analyze packets and flows for

signs of intrusion or anomalies

Advanced Detection and Packet Analysis

Any seasoned security analyst should have a good understanding of how packets can reveal details about
intrusion attempts or successful hacking scenarios.

All security analysts should have the ability, at a minimum, to acquire and assess packet capture files in a
standard format. Gathering packets can be done in a number of ways, as discussed so far in class. However,
ensuring that the files are compatible with a variety of tools, and can be interpreted properly, is a skill unto
itself.

Secondly, analysts should know the basics of what to look for in packets and flow data, searching for the
major indicators of malicious activity.

In this section, we explore the types of details you need to focus on, as well as the tools that may help you in
your investigations.

30 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ethernet Header

 Q

r
2 2

Priofily
(3 Silt)

Protocol

Priofily
(3 Silt)

Priofily
(3 Silt)

Indicator
0x8100

Priofily
(3 Silt)

0

• Layer 2 data in an internal network
• Focus on MAC addresses and VLANs

Advanced Detection and Packet Analysis

This slide shows the Ethernet header. Many packet captures don't focus on Layer 2, but there's a lot of
interesting data we can glean, including source and destination MAC addresses and virtual LAN (VLAN) tags
that isolate broadcast domains. Focus on these in your intrusion analysis efforts! You may detect unusual
Man-in-the-Middle (MITM) attacks using tools such as Cain or Ettercap, or unusual traffic fiom one particular
switch port.

The header image is taken from

© Dr. Eric Cole and David Shackleford 31

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

IPv4 Header

Offsets Octet 0 1 2 3

Octet

0

Bit

0 j S 6 7 9 10 11 12 13 14

Version DSCP

 23 24 25 26 27 29 31

Total Length

4

8

32

64

Identification Flags | Fragment Offset 4

8

32

64 To Protocol Header Checksum

12 96 Source IP Address

 Destination IP Address

20 5)

• Focus on length, IP ID, flags and
fragmentation, and addresses

Advanced and Packet Analysis

The IP header has a lot to offer security analysts. Focus on the following:

• IHL (Internet Header Length): Look to see from 20 bytes, which indicates
the presence of options or some other anomaly.

• Total length: This is the total length of the packet, which includes IP header length, encapsulated
header length, and data.

• Identification (IP ID): This number keeps fragmented packets connected, so make sure it is
legitimate.

• Flags and Fragment Offset: Check fragmentation details because they may reveal unusual attack
and patterns.

• Source/destination IP addresses: Look for patterns in traffic from sources or to destinations.

The header image is taken from

32 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IPv6 Header

Offsets Octet 1 2 3

Octet Bit 0 [1 2 j 3 4 at

 9 10 11
12 13 14 16 17 19 20 21 22 24 25 27 29 31

0 D Version Traffic Class ! Flow Label

4 32 Payload Length | Next Header Hop Limit

8 64

12

16

06

 160

24

 224
Destination Address

32
Destination Address

36

• Focus on addresses and the "Next
Header" space!

 Detection and Packet Analysis

The IPv6 header is actually much simpler than the IPv4 header! However, you still need to pay attention to it.
The following fields may be interesting:

• Payload length: This is the length of the actual payload of the packet. Check to see that it is
properly reported and aligns with the actual packet data.

• Next header: This is likely the most important IPv6 header for security analysts in many ways.
Numerous secondary embedded headers can be included in the IPv6 packets and can contain
tunneled data and unusual protocols. Ensure you check all headers and the data that follows!

• Source/destination addresses: Much like IPv4, source and destination addresses may indicate
unusual patterns of traffic.

The header image is taken from

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TCP Header

27 28 29 30 31

Window Size

 K T N | H

Checksum Urgent pointer (if set)

Options data offset>5. Padded at the end with "0" bytes it necessary.)

Lots of details to focus
carefully!

 and Packet Analysis

The TCP header has a staggering amount of data included in it. It's key to understand the following:

• Source/destination ports: Indicate services communicating.

• numbers: Check to see whether these align in a single session. Look
for the Initial Sequence Number (set with the SYN flag alone). The following ACK should have
the Acknowledgment number equal to this ISN plus one. Check the packets in a session and make
sure the SEQ and ACK numbers match up. I f the numbers are unusual and don't match, this could
be a strong sign of malicious tools or behavior.

• TCP flags: Check the normal protocol behavior for these flags, and make sure the proper flags are
in place for the packet payload.

The header image is taken from

34 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

UDP Header

Offsets Octet) 1

Octet

0

B i t 0 1 2 3 4 5 6 7 15

0 Source port

32 I Length

16 17 18 19)20 21 22 23 24

Destination port

27 29 30)31

Checksum

UDP headers are much simpler

Look for unusual lengths
Check source and destination ports,

 Detection and Packet Analysis

The UDP header is a simple one. UDP packets are generally intended to be single "request/response"
interactions between systems and services, and security analysts should be looking primarily for anomalous
behavior in the protocols and services themselves. Large UDP packets may signal embedded data or DoS
attacks, and source/destination ports may indicate unusual behaviors. Generally, the most important things to
look for in UDP packets are how the source and destination are communicating.

The header image is taken from

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 p

Popular packet analysis and capture
tools
Great for:
-Initial capture
-Filtering of traffic for capture
-Fundamental analysis

Easy to acquire, learn, and use

 Detection and Packet Analysis

TCPdump and its Windows counterpart, Windump, have long been mainstays of both network and security
teams. The reason for this is simple: These tools work. Learning to use TCPdump and Windump is not that
difficult, and both of these tools can be put to good use quickly for traffic capture and analysis.

In this next section, we cover some of the fundamentals and focal areas security analysts should pay attention
to for incident detection and response.

36 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Basic Options (1)

• -i <interface>
• -n: Don't resolve
• -nn: Don't resolve names or ports
• -e: Grab Ethernet headers
• -X: Show packet contents in hex and

ASCII
• -XX: Hex and ASCII content + Ethernet

headers

Advanced Detection and Analysis

This slide depicts some of the basic TCPdumpAVindump options you need to know:

• -i <interface>: Select the interface to capture on, ethO or for example.

• -n: Don't resolve hostnames.

• -nn: Don't resolve names or ports.

• -e: Grab Ethernet headers as well as the Layers 3 and 4 information.

• -X: Show packet contents in hex and ASCII. This is incredibly useful for security analysts who
need to look at Application layer details!

• -XX: Hex and ASCII content + Ethernet headers. This grabs a lot of header data, which may be
useful for a single command.

© Dr. Eric Cole and David Shackleford 37

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Basic Options (2)

• -v / -vv / Increase verbosity

• -c <#> : Get # of packets and quit

• -s <#> : Define snaplength of capture in
bytes

• -S: Print absolute sequence numbers

• -q: Get less protocol information

• -r / -w : Read from a file or write to one

 and Packet Analysis

This slide depicts more options:

• -v / -vv / -vw: Increase verbosity, usually - w is enough, but experiment to find the right balance
for your needs.

• -c <#>: Get # of packets and quit - useful for scripting!

• -s <#>: Define snaplength of capture in bytes. This defines how much of the packet to grab. A full
Ethernet frame is 1514 bytes - get it all! A simple way to grab all data is to use the -sO (zero) flag.

• -S: TCPdump abbreviates sequence numbers with a 1 for a (+1) value to save space. This is handy,
but inconvenient for analysts who need the entire string of digits. The -S flag will print the
string, regardless.

• -q: Get less protocol information. This abbreviates the protocol info listed in the output, which may
come in handy.

• -r / -w: Read from a or write to one. Include a name after the -r or -w, and you can read or
write to a standard PCAP file.

38) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Usage Examples

• tcpdump -nS
- Basic traffic analysis, no name resolution

• tcpdump -nnvvS
- No port resolution, more verbose output + traffic

• tcpdump
- Above + hex and ASCII output

• tcpdump
- Above + full snaplength (-sO)

 and Packet Analysis

This slide shows a set of basic TCPdump usage examples, where you can progressively increase the amount of
detail and output by using the -n, -v, and - X flags. Note that all output has absolute sequence numbers
represented. The final example also captures the entire contents of the packets with the full snaplength (-sO).

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Syntax for Security Pros (1)

• host <IP address>
-Grab traffic to/from a host

• / dst <IP address>
-Grab traffic to from src/dst address

• net <subnet>
-Grab traffic to/from a subnet

• proto >
-Grab only traffic of a certain protocol type

 Detection and Packet Analysis

This slide shows some of the key filtering options you'll want to use when capturing or analyzing traffic.
They're generally pretty self-explanatory:

• host <IP address>: Grab traffic to/from a particular host. This is a great way to see all traffic to
and fiom a suspect IP address.

• / dst <IP address>: Grab traffic to fiom an src/dst address. This filter allows a little more
granularity, where you can choose to see ONLY the traffic fiom an IP as the source OR
destination.

• net <subnet>: Grab traffic to/from a subnet only.

• proto <protocol>: Only grab traffic of a certain protocol type.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Syntax Security

• port <port>
• src port/ dst port <port>
• portrange
• less / greater <size in
 and / &&

• o r / | |
• !

More filtering syntax that you should get familiar with:

• port <port>: Specify a certain port (useful with the "proto" filter, too).

• src port/ dst port <port>: Specify a port as either source or destination, for example choosing src
port 80 to see HTTP responses only.

• portrange <port-port>: Choosing a range of ports to observe, such as portrange 80-88.

• less / greater <size in bytes>: This is useful to look for traffic of only a certain size. You can also
substitute less than/greater than brackets (< and >).

• and / &&: Either of these can be used to include more filter content together. (An example would
be proto udp && port 53.)

• or Either of these can be used to include one filter option or another. (An example would be
 88.)

• not /!: Either of these can filter out traffic you don't want. Extremely useful!

 Dr. Cole and David Shackleford 41

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example: Layer 2

 tcpdump l e s s 64
tcpdump: verbose output suppressed, use -v or -vv for f u l l protocol decode
l i s t e n i n g on link-type (Ethernet), capture s i z e 65535 bytes

 length 38
 cccc 5adf d895 aaaa 2 . .
 0100 0100 0500 0002 0005

0x0020: 0400 0545 0004 000a 0017 5adf d895 . E 2...
 0000 0000 0000
 ARP, t e l l length
 5422 cfeb <.T"

0X0010: 0800 0001 3c07 5422 cfeb C0a8 014c
 0000 0000 0000 C0a8 0133 0000 0000 0000 3
 0000 0000 0000
 ARP. i s - a t length 28
 5422 cfeb b8f6 b l l 9 0417 0001 <.T"

0x0010: 0800 0002 b l l 9 0417 C0a8 0133 3
0x0020: 3c07 5422 cfeb C0a8 014c ,L

• Uses the -XX flag and 64" for size
• Captured ARP and DTP frames

 Detection and Packet Analysis

This slide shows an example of the "-XX" flag used to grab Layer 2 traffic of 64 byte frames and less. We
grabbed a Dynamic Trunking Protocol (DTP) frame sent by a switch and also a simple ARP request and reply.

This kind of filter can be usefiil to detect things such as ARP cache poisoning attacks and other MitM
scenarios.

42 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example: Getting More Specific

• Port and protocol combination
-#tcpdump 192.168.1.51 and (dst

port 22 or 23)'
 root* and (dst port 22 or

tcpdump: verbose output suppressed, use -v or -vv for f u l l protocol decode
li s t e n i n g on enB, link-type (Ethernet), capture s i z e 65535 bytes

 IP 192.168.1.51.57396 > Flags I S] , seq 2407439553, win 65535, opt
ions v a l 493612246 ecr length 0

 IP > Flags (.), ack 1661934704, win opti
 v a l 493612253 ecr length

23:19:13.736344 IP > Flags (.] , ack 20, win options
,nop,TS val ecr 254635377], length 0
23:19:13.741067 IP > Flags ack 22, win 8234, options (nop
,nop,TS val ecr length
23:19:13.741279 IP > Flags [P.], seq 0:21, ack 22, win o
ptions v a l 493612486 ecr length 21

 IP 192.168.1.51.57396 > Flags [P .] , seq 21:1053, ack 22, win
 options v a l ecr length

Advanced Detection and Packet Analysis

This example gets a bit more specific in terms of filtering. Here, we're looking for traffic to TCP destination
ports 22 or 23 coming from the source IP We see some results, where the IP has generated SSH
sessions to a system identified as

© Dr. Eric Cole and David Shackleford 43

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced: TCP Flags

You can get more granular and look at
offsets in packets with TCPdump
TCP flags at offset 13 have bit values:

-ACK=16

- RST=4
-SYN=2
-FIN=1

Use filters with TCPdump to get these!

#tcpdump 'tcp[13] &

 tcpdump 'tcp[13] 8!=0'
tcpdump: verbose output suppressed, use -v or -vv for protocol decode
listening on link-type (Ethernet), capture size 65535 bytes

 IP > Flags [P .] ,
th 137

 IP > Flags I P .] , s.

Advanced Detection and Packet Analysis

A more advanced type of filtering with TCPdump is to filter for specific TCP flags. TCP flags are found at
byte offset in the TCP header, and each flag is assigned a specific bit value. By filtering for these values,
you can look for only certain types of TCP traffic easily.

The bit values for the most common TCP flags are as follows:

URG=32

PSH=8

RST=4

SYN=2

FIN=1

Running tcpdump with the filter and a specific value can identify one or more types of traffic. For
example, the following will show only packets with the PSH flag set:

44) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example:
Advanced TCP Flags Filtering

 tcpdump 'tcp[13]=18'
tcpdump: verbose output suppressed, use -v or -vv for f u l l protocol decode
l i s t e n i n g on enB, link-type (Ethernet), capture s i z e 65535 bytes

 IP 209.107.220.41.http > Flags I S .] , seq 2923023372, ack 118415
ale 1] , length 0
14:25:25.543571 IP > Flags seq ack

 length 0
14:25:25.543577 IP > Flags 4014225925, ack 1

 length 0
14:25:25.544314 IP 192.168.1.6.epmap > 192.168.1.76.58705: Flags seq 3612334938, ack 52289841
K], length 0
14:25:25.544317 IP 192.168.1.6.netbios-ssn > 192.168.1.76.58706: Flags [S .] , seq 1847726670, ack 26

 length
14:25:25.544320 IP > Flags seq 3034390288, ack 8563
ackOKJ, length 0
14:25:25.546572 IP > Flags seq 3620262320, ack 734317468,
, length 0

• Combine flag bit values, too!
- Above example is SYN (2) + ACK (16) = 18

 Detection and Packet Analysis

You can also combine values of different flags. Here, we have both the SYN (2) and ACK (16) flags selected
 a total of 18:

 Dr. Eric Cole and David Shackleford 45

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Look for
Source/Destination IP

 offset 8, Hags (none), proto TCP length
 Flags 8x54b5 (correct), seq 6, ack length 6

 mm
 eaf5 8888 3C51 b81b ,..L
 54b5 ffff ffff ffff P...T
 IP (tos 128, 28868, offset flags proto TCP (6) , length

192.168.1.6.199 Flags cksum (correct), seq 8, ack win length
 8828 6da4 4989 E.,
 C8a8 eaf5 3c51 <0..
 5814 P.. ,T
 IP (tos t t l 128, id offset flags [none), proto TCP (6), length

192.168.1.6.8888 > Flags (R.l, cksum 8x3213 (correct), ack win 8, length 8
 4588 6da5 8886 8186 E..(m I
 C8a8 814c 22b8 eaf5 3c51 ,..L"
 3213 f f f f ffff ffff P...2
 IP (tos 8x8, 128, id 28878, offset 8, flags 1DF1, proto TCP (6) , length 44)

 > Flags [S.], (correct), seq 3375177468, ack win 17528
, options length

 6da6 8983 8186
 C8a8 eaf5 C92d lef4 3c51 ...L
 ffff

• Source and destination addresses are
some of the most common filters

 Detection and Packet Analysis

Source and destination addresses are some of the most common filters to employ when looking for certain
traffic. The source will be first in the packet listing, with a ">" sign indicating the direction of traffic. This will
then be followed with the destination address, as shown in this slide.

46 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Look for
Source/Destination Ports

 t t l 28867, offset flags (none!, proto TCP length
 Flags 8x54b5 (correct), seq ack win 8, 8
 6da3 498a I

 C8a8 eaf5 3C51
 5814 54b5 ffff ffff ffff P...T
 IP (tos t t l 128, 28868, offset flags proto TCP (6), length

 > Flags [R.l, cksum (correct), seq 8, ack length
 6da4 4989 E..(m I
 C8a8 98c7 3cSl ...L
 ffff ffff ffff
 IP (tos t t l 128, id 28869, offset flags (none), proto TCP (6), length

 > 192.168.1.76.68149: Flags 8x3213 (correct), seq ack 8, length
 4588 6da5 4988 C8a8 E..(m I
 c8a8 22b8 eof5 3c51 bBlb ,..L"
 5814 3213 f f f f ffff ffff
 IP (tos t t l 128, id 28878, offset flags [DPI, proto TCP (6), length 44)

192.168.1.6.135 > Flags cksum (correct), seq ack 1811986459, 17528
, options length

 6da6
 eafS C92d lef4 3c51 bBlb ...L
 85b4 ffff

• Port numbers are another simple way
to filter traffic of certain types

 and Packet Analysis

Along with the source and destination IP addresses, analysts often turn to port numbers that are in use or
suspected. This can often yield excellent initial results, especially when unusual ports are in use.

© Dr. Eric Cole and David Shackleford 47

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Look for
Protocols

 IP (tos t t l 128, 28867, offset flags (6)| length
 > Flags (R.l, 8x54b5 0, 8, length

 6da3 498a C8a8 8186
 eaf5 3c51 b81b
 54bS ffff ffff ffff

14:47:82.558178 IP (tos t t l id offset 8, flags (none), proto TCP (6), length
 > Flags (correct), seq 8, ack 1811986459, length 8

 6da4 4989 c8a8 E..(m I
 C9a8 88c7 eaf5 3C51 bBlb ...L
 5814 P.. ,T
 IP (tos t t l id offset flags proto TCP (6), length

 IP (tos 8x0, t t l 128, i d 57945, o f f s e t 0, f l a g s UDP (17)] length 229)
 > sum ok)

• TCP and UDP are the most common
 may also be helpful

Advanced Detection and

Looking for specific protocols can be helpful, although not as often as IP addresses and ports.

48 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Look for
Protocol Behavior

 IP (tos t t l 128, id 28867, flags proto (6), length
 > Flags (R.l, cksum 8x54b5 (correct), seq ack 8, length 8

8x8888: 6da3 498a C8a8 E..(m I
8x8818: C8a8 eaf5 3C51 b81b

 5814 ffff ffff ffff
14:47:82.558178 IP (tos t t l 128, flags (none), proto TCP (6), length

 |R.]| cksum (correct), seq 8, ack 1811986459, win length 8
 8828 6da4 E..(m I
 C8a8 eaf5 3c51 b81b <Q..
 5814 8888 f f f f ffff ffff
 IP (tos t t l 128, id offset 8, flags (none), proto TCP (6), length 48)

 > Flags [R.J, cksum 8x3213 (correct), seq ack 1811986459, 8, length
 6da5 4988 8186

 c8a8 814c eafS b91b
 5814 3213 ffff ffff ffff
 (tos t t l id nffrft

 >
options 14681, length

.

 r

proto (6), length 44)
rrect), seq 3375177468, ack win 17528

 6da6 c9a8
 eaf5 c92d lef4 3c51 -..<Q.

6812 ffff

• Protocol behavior can reveal a lot
• Anomalies may be difficult to spot initially

Advanced Detection and Packet Analysis

Looking for protocol behavior patterns can be incredibly useful in investigating malicious behaviors but may
take more time and experience than other indicators.

For example, do you see standard TCP three-way handshakes? Are you seeing unusual patterns of RST
packets being sent? Are fragmentation flags set properly?

©2016 Dr. Cole and David Shackleford 49

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Look for
Obvious Attacks (Content)

09:00:43.425137 I P (tos 0x0, t t l 48, i d 43385, o f f s e t 0, f l a g s proto T
 > Flags [P .] , cksum 0xe8el (correc

49, win 1460, options v a l 3300951383 ecr 1450427], length 14
0x0000: 4500 0042 a979 4000 3006 el66 d398 2a90
0X0010: C0a8 0105 8549 0015 3bc9 ba46 55de 83al
0x0020: 8018 05b4 e8el 0000 0101 080a c4c0 8557
0X0030: 0016 21bb 5553 4552 2073 6572 7669 6365
0x0040: 0d0a

09:00:43.425368 IP (tos 0x0, t t l 128, i d 32078, o f f s e t 0, f l a g s [DF], proto
 > 211.152.42.144.34121: Flags [P .] , cksum 0x795e (correc

op,nop,TS v a l 1450429 ecr 3300951383], length 36
0x0000: 4500 0058 7d4e 4000 8006 bd7b C0a8 0105 {
0x0010: d398 2a90 0015 8549 55de 83al 3bc9 ba54 ..*
0x0020: 8018 fe9e 795e 0000 0101 0016 21bd !.
0x0030: C4c0 8557 3333 3120 5061 7373 776f 7264 |
0x0040: 2072 6571 7569 7265 6420 666f 7220 7365 .required.tor.se
0x0050: 7276 6963 652e r v i c e . . .

• By looking at ASCII/Hex content, you
may see "obvious" attack patterns

 and Packet Analysis

Sometimes, you may discern what is going on simply by looking at the packet content going across the
wire.

For example, i f you have a lot of traffic hitting a service but can't see what it is, grabbing full packet details
may solve the issue. In the slide, this looks like and passwords for logins.

50 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Look for
Anomalies

 I P (tos t t l 64, id 242, n f f s p t frljns proto UDP (17), length 56)
10.1.1.1.31915 > 129.111.30.27.20197: length |

0X0000: 4500 0038 00f2 2000 4011 0101
0x0010: 816f 7cab 4ee5 0024 0000 0000 0000
0X0020: 0000 0000 0000 0000 0000 0000 0000 0000
0X0030: 0000 0000 0000 0000

23:11:26.616445 I P (tos 0X0, t t l 64, i d 242, o f f s e t 24, f l a g s proto UDP (17), length 24)
 > 129.111.30.27: udp ? ?

0x0000: 4500 0018 0003 4011 0a01 0101' 'E
0X0010: 816f l e l b 7cab 4ee5 .o..|.N.

• General anomalies in traffic may be
hard to spot, like protocol anomalies

• Experience counts here!

Advanced Detection and Packet Analysis

By looking for other unusual patterns or indicators in traffic, you can uncover some of the more advanced
intrusions. However, this can be tough to spot, and you need to get comfortable looking at traffic in your
environment before you start noticing a lot of these issues.

 Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lab 1

Analyzing PCAPs with
TCPdump

 Detection and Packet Analysis

This lab explores the basics of TCPdump traffic analysis.

52 ©2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab Goal

• The goal of this lab is to explore
some basics of TCPdump

• We'll look at several packet capture
files (PCAPs) of known attacks or
malicious traffic

• Your job is to look for signs of EVIL

 Detection and Packet Analysis

This lab gets us working with TCPdump, looking at packet captures of various malicious traffic types, ranging
fiom malware to attack attempts.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 Kali

• To get started, start up your Kali VM
and log In (root/toor)

• Open a terminal window
• Type cd /home/501
• Run Is and ensure you have a list of

files ending in

Advanced Detection and Packet Analysis

Our first goal is to log in to the Kali virtual machine you used on Day Start the VM and log in with the
 root and password toor. After the system is up and running, click the terminal icon, and then type cd

/home/501. When in the 501 directory, type to see that you have approximately 20 PCAP files in the
directory.

54 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 pcap
 tcpdump -r -nnX

reading from file link-type (Ethernet)
 IP > 65.165.167.86.1434: UDP, length 376

 C543 7111
 41a5 a756 4ee7
 8181 8181

 8181 8181

 8181
 42eb
 9898
6x88a8 8181 8131
 89e5 5168 2e64 6c6c 6865
6x89c9 726e 5168 6f75 6e74 6869
 7454 66b9 6C6C 5168 3332
 5f66 b965 7451 6873 6f63
 6873 656e 64be 1818 ae42

 428b le8b 833d 558b
 42ff 16ff d631 C951
 8181 518d 45CC
 166a 116a dose
 ffl6 89C6 81f3
 b48d 8dl4 88cl
 8945 b46a
 6681 8d45
 ffd6 ebca

f8b6 d54c

 76ae
 b642

6C33 3268 6b65
636b 4368 4765
2e64 6877 7332
6b66 b974 6f51
8d45
 18ae
7485

588b
8d45 8b45

 Cle2
 5831
 8b45

B.

hsend B.E.P.
P.E.P.E.P..P...
B
B

j.j.j...P.E.P,E
P <a...E

E.j..E.Pl

Of.

r.
 Detection and Packet Analysis

Run the following command:

 -r -nnX

This command reads an existing PCAP (the -r option) and prints it out with no DNS or port resolution and
ASCII representation.

Notice the details of the packet trace. This is a capture of the SQL Slammer worm attempting to compromise a
SQL Server system on port 1434. Identify the following elements in the trace:

Source IP Address:

Destination IP Address:

Protocol in use:

Source port(s):

Destination port(s):

© Dr. Eric Cole and David Shackleford 55

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

DNS Remote Shell (1)
 tcpdump - r -nnX | more

reading from f i l e l i n k - t y p e (E t h e r n e t)

 ARP, Request who-has t e l l length 46

0X0000: 0800 0604 000e 3578 C0a8 5X

0X0010: 0103 0000 0000 0000 0101 0000 0000

0X0020: 0000 0000 0000 0000 0000 0000 0000

 I P > 192.168.1.1.53: 1+ PTR?

0X0000: 4500 0046 1507 8011 a24b C0a8 K

0X0010: C0a8 0101 0571 0035 0032 e a l 2 0001 0100 q.5.2

0X0020: 0001 0000 0000 0000 0131 0131.0331 3638 1.1.168

 0331 3932 0769 6e2d 6164 64720461 7270 .192.in-addr.arp

0X0040: 6100 000C 0001 a

20:50:16.501497 ARP, Reply 00:90:d0:eb:46:e7, length 28

0x0000: 0090 d0eb 46e7

 3578 0C02 C0a8 0103 5x

20:50:16.504144 I P 192.168.1.1.53 > 1* 1/0/0 PTR SpeedTouch.lan. (70)

0X0000: 0062 20ab 4011 d68b c0a8 @

0X0010: C0a8 0103 0035 0571 004e b8da 0001 8580 5.q.N

0X0020: 0001 0001 0000 0000 0131 0131 0331 3638

 0331 3932 0769 6e2d 6164 6472 0461 7270 .192.in-addr.arp

 c00c a

0X0050: 0010 0a53 7065 6564 546f 7563 6803 6c61

0x0060: n.

Advanced Detection and Packet Analysis

(42)

Let's try another attack example. Run the following command:

 -r dns-remoteshell.pcap -nnX | more

Look at the output of the command, some of which is shown in this slide. This looks to be DNS traffic of some
sort. However, we may need a bit more filtering to determine what is going on in the packet capture.

56 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

DNS Remote Shell (2)
20:50:41.981746
ss

0x0000:
0x0010:
0x0020:

20:50:42.040365
%

0X0010:
0X0020:
0X0030:
0X0040:
0X0050:
0X0060:
0X0070:

20:50:42.182595
0X0000
0X0010
0X0020

20:50:44.334418
0X0000:
0x0010:

192.168.1.3.1396: Flags [S .] , seq 3171889

.0.

...5.t../.#.3.

IP
 length 0

 0030 07cc 4000 4006 afa6 C0a8 0102
C0a8 0035 0574 2fec 23c5 33c0

 f f f f b597 0204 05ac 0101 0402 p
IP 192.168.1.2.53 > 192.168.1.3.1396: Flags [P .] , seq 1:89,
[29728a] [28518q] [22377n]
4500 0080 07cd 4000 4006 af55 C0a8 0102 E
C0a8 0103 0035 0574 bdGf 2fed 23C5 33C0
5018 f f f f 4el4 0000 4d69 6372
7420 5769 6e64 6f77 7320 5850 205b 5665
7273 696f 6e20 352e 312e 3236 3030 5d0d
0a28 4329 2043 6f70 7972 6967 6874 2031
3938 352d 3230 3031 204d 6963 726f 736f
6674 2043 6f72 702e 0d0a 0d0a 433a 5c3e _

IP 192.168.1.3.1396 > 192.168.1.2.53: Flags
4500 0028 150c 4000 8006 626e C0a8 0103 E
C0a8 0102 0574 0035 23C5 33C0 bdOf 3045 .

 43b8 9e43 0000 0000 P
IP 192.168.1.3.1396 > 192.168.1.2.53: Flags
4500 002C 150d 8006 6269 C0a8 0103 E
C0a8 0102 0574 0035 23c5 33C0 bdOf 3045 .

 Detection and Packet Analysis

 C:\>

[.] , ack 89, win

[P .] , seq 1:5, ac

. .

Now try to filter a bit more to get only the port 53 (presumably DNS) traffic:

#tcpdump -r dns-remoteshell.pcap -nnX port 53

The port 53 filter should limit the output to only traces including that as a source or destination port.

Examine the output from this packet trace. Look at the ASCII details and see i f anything stands out as unusual.
What type of event or incident is happening in this output? Peruse the results and see i f anything stands out.

You should notice some traffic that is unusual, to say the not typical DNS traffic!

As shown in the slide, there is a Windows command shell transmitted over DNS ports. A backdoor channel!

© Dr. Eric Cole and David Shackleford 57

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Teardrop (1)

• Let's look at a packet capture of the
classic Teardrop attack

• Run the following command:
 -r -vvX

| more
• What do you see?

-Might be hard to discern

Advanced Detection and Packet Analysis

Let's examine another packet trace. This one represents a well-known attack called Teardrop, which caused
systems to crash by sending overlapping packet fragments to a system. Type the following:

#tcpdump -r teardrop.pcap | more

This looks like a jumble of traffic, including DNS queries, Cisco Discovery Protocol (CDP), and more. We
need to refine our examination a bit.

58 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Teardrop (2)

 tcpdump - r teardrop.pcap -vvnnX 'udp and not port 53'

reading from f i l e teardrop.pcap, l i n k - t y p e (Ethernet)

23:11:26.616090 I P (tos 0x0, t t l 64, i d 242, o f f s e t 0, f l a g s [+], proto UDP (17), length 56)

10.1.1.1.31915 > 129.111.30.27.20197: UDP, length 28

0X0000: 4500 0038 00f2 2000 4011 af37 0a01 0101 E..8 @..7

0X0010: 816f l e l b 7cab 4ee5 0024 0000 0000 0000 .o..|.N..$

0X0020: 0000 0000 0000 0000 0000 0000 0000

0X0030: 0000 0000 0000 0000

23:11:26.616445 (tos 0x0, t t l 64, i d o f f s e t 24, f l a g s [none], proto UDP (17), length 24)

10.1.1.1 > 129.111.30.27: udp

0X0000: 4500 0018 00f2 0003 4011 0a01 0101 E

0x0010: 816f l e l b 7cab 4ee5

• Run the following:
#tcpdump -r teardrop.pcap -vvnnX
and not port 53'

Advanced and Packet Analysis

Let's cut out a lot of the junk traffic and focus on UDP packets but without the DNS. Run the following
command:

#tcpdump -r teardrop.pcap 'udp and not port 53'

With this filter, we're looking for UDP traffic, but NOT port 53 (assume DNS).

Look carefully at the details of the packet trace. The option should provide enough details to allow you to
determine where the problem in this packet is. Can you see it?

© Dr. Eric Cole and David Shackleford 59

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Teardrop:
Answer

 tcpdump - r teardrop.pcap -vvnnX and not port 53'

reading from f i l e teardrop.pcap, l i n k - t y p e (Ethernet)

23:11:26.616090 I P (tos 0X0, t t l 64, i d

 > 129,111.30.27.20197:

4500 0038 00f2 2000 4011 af37 0a01

0X0010

0X0020

o f f s e t f l a g s [+], proto UDP (1 7) , length 56)
length

f l a g s [none], proto UDP length 24)

816f l e l b 7cab 4ee5 0024 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000

23:11:26.616445 I P (tos 0X0, t t l 64, i d 242, o f f s e t

 >

0X0000: 4500 0018 00f2 0003 4011 Cf54 0101 E

0x0010: 816f l e l b 7cab 4ee5 .o..|.N.

• Teardrop is an overlapping fragment
- Packet 1 is a 28-byte fragment
- Packet 2 starts at byte 24, overlap of 4

 Detection and Packet Analysis

The Teardrop attack consists of overlapping fragments that could crash systems. Note that the first packet has
a length of 28 bytes starting at offset 0 (so fiom 0-28).

The second has a starting offset of 24, which actually overlap the first by 4 bytes when reconstructed by the
OS TCP/IP stack. Ouch!

This particular attack could often crash Windows systems at the time of its release.

60 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

An Obvious Attack?

• Let's wrap up with a simple
 is it?

• At the command prompt, type the
following:

 -r -
vvnnX | more

• What kind of attack is happening?

 and Packet Analysis

Let's finish the first lab with a simple attack example.. is it this obvious?

Run the following command:

#tcpdump -r ftp-attack.pcap -vvnnX | more

What do you see? The next slide has a screen shot.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FTP What Kind?

 - r ftp-attack.pcap -vvnnX | more
reading from f i l e ftp-attack.pcap, link-type (Ethernet)

 IP (tos t t l 48, id 43385, offset 0, flags [DF], proto TCP (6),
 > Flags [P.], cksum 0xe8el (correct), seq 100:

49, win 1460, options val 3300951383 ecr 1450427], length 14
0x0000: 4500 0042 a979 4000 3006 el66 d398 E. .*.

 8549 0015 3bc9 ba46 55de 83al
0X0020: 8018 05b4 e8el 0000 0101 080a C4C0 8557 W
0X0030: 21bb 5553 4552 2073 6572 7669 6365

09:00:43.425368 IP (tos 0X0, t t l i d 32078, offset 0, flags [DF], proto TCP (6), l(

192.168.1.5.21 > 211.152.42.144.34121: Flags [P.], cksum (correct), seq
op,nop,TS val 1450429 ecr length 36

 7d4e 4000 bd7b
0X0010: d398 2a90 0015 8549 55de 83al 3bc9 ba54
0x0020: 8018 fe9e 795e 0000 0101 080a 0016 21bd

 C4c0 8557 3333 3120 5061 7373 776f 7264
 2072 6571 7569 7265 666f 7220 7365

0X0050: 7276 6963 652e 0d0a

,T

, .*
 , . , ,

rvice...

Advanced Detection and Packet Analysis

You may see the TCP port 21 in use.. looks like FTP. The attack that's happening may not be obvious,
though.

What kind of attack is this? Let's explore a bit more.

62 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FTP Attack:
In Wireshark

• Let's use Wireshark to look at this
(and get a preview of our next
section!)

• At the command prompt, run the
following:

• Click File Open and choose the
ftp-attack.pcap file

 Detection and Packet Analysis

Let's use Wireshark to check out this PCAP and see i f the attack is a bit more readily discerned with that
tool. This gives us a preview of our next section, too!

Type the following command at the terminal prompt:

#wireshark&

When Wireshark opens, click "File" and then "Open", and browse to the (it should be in
/home/501). Open it.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Aha! Is it More Clear Now?

J L

FTP Response: 331 Password required for service.

FTP Request: PASS

FTP Response: 530 User service cannot log i n .

FTP Request: USER service

FTP Response: 331 Password required for service.

FTP Request: PASS japan

FTP Response: 530 User service cannot log

FTP Request: USER service

FTP Response: 331 Password required fo r service.

FTP Request: PASS jared

FTP Response: 530 User service cannot log i n .
c m

 Detection and Packet Analysis

Wireshark does a great job of making the successive packets a bit more clear, at least for content display.
What kind of attack is happening here? Looks like and passwords, and usemames and passwords,
and usemames and passwords...

Exactly! A force attack against FTP usemames and passwords!

64 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab 1:
Conclusion

• In this exercise, we looked at several
common attacks with TCPdump

• We used some simple filters to focus
on certain traffic types

• We finished with a glimpse into
Wireshark... and now we'll look at it
in more detail!

 Detection and Packet Analysis

This wraps up our first lab. Let's keep going!

© Dr. Eric Cole and David Shackleford 65

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Packet Analysis with
Wireshark

Advanced Detection and Packet Analysis

This page intentionally left blank.

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The Wireshark Tool (1)

• What is Wireshark?
-Formerly known as Ethereal
-World's most popular network protocol

analyzer
-Runs on most computing platforms

including Windows, OS X, and Linux

 and Packet Analysis

What Is Wireshark?

I f you don't recognize the name Wireshark, you may recognize it by its former name, Ethereal. Ethereal
protocol analyzer has been around for a long time. In 2006, Ethereal joined forces with CACE technologies
and the product was renamed Wireshark. EtherealAVireshark has a graphical user interface (GUI) and TShark
is the command-line interface version, much like TCPdump.

Wireshark/Ethereal is one of the oldest and free protocol analyzers and is well known in the network
community. It is also one the most popular network protocol analyzers and has been ported to most operating
systems such as Windows, Linux, and Mac OS X.

It can be downloaded here: http://www.wireshark.org/download.html

© Dr. Eric Cole and David Shackleford 67

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Wireshark Tool (2)

• Wireshark is also...
• A network packet analyzer
• A measuring device used to examine

what's going on inside a network cable
• One of the best open source packet

analyzers available today

 Detection and Packet Analysis

 Is Wireshark?

So Wireshark is a network protocol and packet analyzer, which means that it can sniff the network traffic and
dissect the protocols and packets in a way that allows you to go through the packets and understand the entire
scene.

It also supports a large number of protocols and, to be honest, I don't remember seeing one protocol that it
couldn't recognize. This makes it one of the best open source packet analyzers available today.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Why Packet/Network Traces?

• Why should we learn about network
traces?
• Almost all malware uses some kind of

network communications to:
• Download additional malware
• Send information to a remote host
• Contact a remote host for instructions
• Get configuration files

 Detection and Analysis

Why Should We Learn About Network Traces?

In some modules we have been dealing with malware on the machine. But sometimes we have to answer
some additional questions:

• Is there something wrong with the machine?

• Is a process really malicious?

• Is a rootkit hiding the malware activities?

That is when the network tools come into the game! Malware can hide its activities on the machine but
cannot hide its communications traffic over the network!

So capturing network traffic is a great step forward in trying to identify malicious activities because almost
all malware uses the network in some way to:

• Download additional malware

• Send information to a remote host

• Contact a remote host for instruction

• Get a configuration based on some machine information

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark Basics

• Understanding Wireshark toolbar:
 toew fioafyze

M » ' 1
 Enter the filter expression here j

• Icons of interest:
• Start a new live capture
• Stop the running live capture
• Save this capture file
• Enter the filtering expressions

 Detection and Analysis

Understanding the Wireshark Toolbar

We will not learn all the features of Wireshark. Instead, we focus on the features that are most important
for us at this time. We start by looking at and understanding the Wireshark interface and the icons and
features that we mostly use:

The third icon on the toolbar is the one that allows you to start a new live packet capture on the already
selected network interface. This means "start to sniff this network now."

The fourth icon is the one to stop the live capture.

The floppy icon enables you to save the results in PCAP format, which enables you to run it again later in
Wireshark or in other protocol analyzers like TCPdump.

The Filter box is the place where you include the filtering expressions.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Selecting the Interfaces (1)

• Before we begin the traffic capture,
we need to select which interface to
use

 firwlyic Statistics

 %

 a

B Start
 | j |

 Detection and Packet Analysis

Getting started

We already know what Wireshark is and what it is used for, so now it is time to get real packets. The first

step is to select the communications interface you want to use to sniff the traffic.

You may be on a machine with multiple interfaces, such as an IDS (Intrusion Detection System), for
example, so it may have an interface connected on a switch mirror port. The mirror port receives all of the
traffic from the switch and is used for switch management. In this case, you have to select the interface that
is plugged into the mirror port so that you can watch all the traffic.

On Wireshark, the path is Capture->Interfaces. This opens another box and enables you to select which
interface you want.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Selecting the Interfaces (2)

Select the Interface:

Wireshark: Capture Interfaces

Description Packets Packets/s

 • -0

 Accelerated AMD PCNat (Microsoft's Scheduler)

 Accelerated Adapter (Microsoft's Packet Scheduler)

Capture Prepare

Capture Prepare

Capture Prepare Detals

Cbse

 and Packet Analysis

Getting Started

Going to the Capture menu and selecting the interface allows us to select the proper interface to use for
sniffing. That is exactly what this slide displays; a list of interfaces fiom which to select the one you want
to sniff the network.

72 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Getting the Traffic

• Traffic is
flowing
through
Wireshark:
- No filter
- All traffic

 flft*r**

 •
|

| —

 0.
3

 0. S

7

1?
13

 ..

 -

. ~

Who
 1s

 query

~ "

 1 bytes

 SrCi t

•j
 (Server teeisigs

 ff f r ff to 14
 00 19 00 11
 f f 00 00

to30 00 CO 00 CO
 41 41 41
 41 4 1 41 4 1 41 4 1
 4ft 41 10

 00 CO 00 OS

 to 45
b7 00

 SO 07
 45 43 fcHSECCO

41 41 41 41 4 1
 00 20 46 A.
 «3 41 43 41 43
 42 00 f f 42

00 00 00 00 i t . . . ,

 Detection and Packet Analysis

The Traffic Is

As soon you press the capture button, the traffic starts to flow to Wireshark. Because no rule or filter was
defined, you can see all the traffic, including all protocols, all IP addresses, and all port numbers.

© Dr. Eric Cole and David Shackleford 73

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
The Interface

The interface: The interface: The interface:

 •

 - - -

1. The packets
2. Drill-down

protocol tree
3. Packets in HEX

and ASCII
format

2 rfw

 fe&«i

6

 MP T»11 1?),;
 5«
 "" 4.2.2.? - - *

_. IS
..

1. The packets
2. Drill-down

protocol tree
3. Packets in HEX

and ASCII
format

i-; 1 216 ftytts

 src

1. The packets
2. Drill-down

protocol tree
3. Packets in HEX

and ASCII
format

riM f t f f t f f f to i5 to to
 90 90 to 09 80
 00 f f 00 90 Si 00 Si ft? eft ft . . .
 to 64 90 90 to CO 39
 41 41 41 41 41 41
 41 41 41 41 41 41 41 41 to 29 46 41 44 A.

 46 41 45 41 41 41 * l 41 *1 4}
 41 41 41 41 41 41 41 4t 00 f f SMS

 - - - - . . -

Advanced Detection and Packet Analysis

Understanding the Wireshark Interface
Before we go through Wireshark filters, we need to understand the various windows within Wireshark.

• We have the Packets window at the top. In this window, you can see a summary line of each packet with the
fields:

• Number: Order the packet arrived in Wireshark
• Time: UNIX time format
• Source: Source IP
• Destination: Destination IP
• Protocol: The protocol used; DNS, TCP, ARP, and so on.
• Information about the packet: I f it is ICMP, it can indicate whether it is an echo request/reply. I f it is

DNS it can indicate i f it is a query....

• The second part of the window is where we find a protocol tree in a drill down format. This allows us to go
deeper into the Network layers and dissect the protocol and all its fields. For example, for a Microsoft Windows
Browser Protocol packet, you would have:

• Frame
• Ethernet I I
• Internet Protocol Version 4
• User Datagram Protocol
• NetBIOS Datagram Service
• SMB (Server Message Block Protocol)
• SMB MailSlot Protocol
• Microsoft Windows Browser Protocol

Each one drills down into further sublevels.
• The third window at the bottom is the one that shows the selected packet in both HEX (hexadecimal) and in

ASCII.

74 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Traffic Filters

The Wireshark filters:
• Very intuitive
• Similar to TCPdump format
• The syntax is also displayed by

Wireshark on the drill-down protocol
tree window

 Detection and Packet Analysis

The Wireshark Filters

We already know how to get the traffic for sniffing but because we may be seeing too much traffic, it is
time to learn how we can select the specific traffic of interest to us. To narrow down the information
displayed, Wireshark provides an interesting feature, the filters! Wireshark offers a nice way to filter the
specific traffic to select only the traffic that you want to see. It is intuitive and close to the format used by
TCPdump BPF filters.

Also, it provides an educational way to learn about new filters just by selecting the specific protocols on the
drill-down protocol tree.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Basic Traffic Filters (1)

Wireshark's basic filters:
• Comparative expressions:

- Eq, or ==, means equal to

• Choose by protocol:
- IP: Type ip in the filter box
- UDP: Type udp in the filter box
- TCP: Type tcp in the filter
- HTTP: Type in the filter box

 and Packet Analysis

Wireshark's Basic Filters

Wireshark provides complete online help documentation explaining all its features:

We take a look at the basics and how it works. First, we look at the comparative expressions. Much like any
script language, the comparative expressions can be expressed as follows:

• eq (==): Equal

• ne (!=): Not equal

• gt (>): Greater than

• (<): Less than

• ge (>=): Greater than or equal to

• (<=): Less than or equal to

In our examples, we use the eq two equal symbols ==) that means equal. In the basic filter, we select
just the protocol we want to see, which is IP. Therefore, we the Filter box with the word ip. The same
goes for the following examples:

• For UDP, type udp in the filter box.

• For TCP, type tcp in the filter box.

• For HTTP, type http in the filter box.

• For DNS, type dm in the filter box.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Basic Traffic Filters (2)

• Choose by IP:
• For source IP: ip.src == <ip>
• For destination IP: ip.dst == <ip>

• A little more complex example:
• For ip + port: ip.addr eq <ip> and

 port eq <port>

 Detection and Packet Analysis

Wireshark Basic Filters

The Wireshark filters can also be more complex. To start with, we can select just source and destination
IPs. For source IP enter ip.src eq in the filter box. This shows just the packets that have the
source IP equal to 192.168.0.1. For destination IP enter ip.dst eq 192.168.0.35 in the filter box. This shows
just the packets that have the destination IP equal to 192.168.0.35.

We can also combine different filters. For example, we want all traffic with source IP 192.168.0.35 and the
destination port on any remote host that is not port 80 (http):

ip.src == 192.168.0.35 and (tcp.dstport 80)

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
How to Build Filters

• What about
applications like
filtering only
http POST ?

• Wireshark gives
the answer:

od

 (0x06) *

8 Header 0x7301 [correct]

Source: (192.168.0.35)

Destination: (64.233.185.83)

S Transnission Control 3608 (3608), Dst Port: ht tp Sep:

a TCP bytes):

 Hypertext Transfer

8 POST

Request

Request version:

Host:

user-Agent: (window:; window rv:1 .8 .1 .6)

Accept:

-9030
.9040

 20 2f 6d 61 69 6c 2f 63
65 6t 2f 62 69 6e 64
62 33 66 64 66 38 34 34
36 30 37 34 65 63 26
44 3d 43 46 33 33 30 34

61 6e 6e
61 74 3d 63 39 35 32 34
64 34 30 2d 31 31 34 64
56 45 52 3d 32 26 53 49
33 33 46 35 32 33 43 31

el/bind?
b3fdf844
6074

 and Packet Analysis

Wireshark Basic Filters

While playing with filters can be sometimes you may want to use more complex filtering expressions.
That's when Wireshark can help! When you have a packet and want to how to create a filter for it,
Wireshark shows you!

In the slide, we can see on the HTTP part of the protocol tree drill-down that the request method is POST.
I f we click there, it leads to that part on the HEX/ASCII window and shows on the status bar how to use it
as a filter expression on Wireshark. In this example: http.request.method.

I f we want to use it to filter all packets that have the method POST, we can just type in the filter box:

http. method = = "POST "

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Filter by UDP Port

Our learning example:
m

 Stew

port S3

 0

 Protocol * |
1 0
3 6
3 7 3 . 0 9 0 7 2 6
3 8 3 . 1 0 3 1 9 3

4 7
4 8

5 0

5 1

5 2
6 7
6 9

4 . 2 . 2 . 2

4 . 2 . 2 . 2

1 9 2 . 1 6 0 . 0 . 1 0 2

4 . 2 . 2 . 2
4 . 2 . 2 . 3

1 9 2 . 1 6 8 . 0 . 1 0 2

4 . 2 . 2 . 2

4 . 2 . 2 . 3

4 . 2 . 2 . 2

ONS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS
DNS

standard

standard
standard

standard
standard

standard

query A

query N O such name
query response A 7 2 . 8 . 1 3 4 . 1 6 9
query response A 7 2 . 8 , 1 3 4 . 1 6 9
query
query P T R
query

 P T R
 crew.xbox-crev.net
 A 7 2 .

query P T R

Filter: udp.port = 53 (all DNS queries)

• Interesting domain names

• IP: 72.8.134.169

 Detection and Packet Analysis

Our Example

In our example, we start filtering the DNS packets from our packet capture. There are several ways to
accomplish this. For now, we look at two different ways:

Using a filter for UDP port 53. As we know, UDP port 53 is the port used by DNS for its transactions (except
for some zone transfers that can use TCP port 53):

udp.port ==53

The other method would be to just type dns on the filter box.

Both would lead to the same result and show all DNS packets. Now we are interested in seeing i f we can spot
anything from the DNS queries. And we are lucky. Some interesting domain names are requested such as:

• irc.xbox-crew.net

•

Both queries return the IP 72.8.134.169.

© Dr. Eric Cole and David Shackleford 79

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Filter by IP Source

ft
ft
(3.

X

) ' | [

68
72 15.313152 72.8 .134.169
73
76 72.8.134.169
77
79 15.676316

 i

192.168.0.102

192.168.0.102

 o

9001 > 1032 ACK] '
 1

 > ACK]
 of reassembled
 [TCP segment of a reassembled
 [tcp of a reassembled

Filter: ip.src == 72.8.134.169
Lots of traffic
Events to notice: Traffic on port 80 (HTTP) and port 9001

 Detection and Packet Analysis

Our Example

When filtering by DNS, we got some strange domain names that were resolving to the same IP address:
72.8.134.169. Our next step is to identify all packets that have this IP address as a source IP. A simple filter
ip.src == 72.8.134.169 can do the trick.

As a result of this filter, we see that it results in a lot of traffic, but two interesting patterns appear:

• There is traffic involving this IP and port 80, used by HTTP.

• There is traffic involving this IP and port 9001, an unknown port.

But what is generating that traffic? How can we go deeper into those packets to discover more information?
The traffic to port 80 doesn't mean anything malicious because it could be legitimate web traffic. But what
about the traffic on port 9001?

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Following the TCP Stream (1)

• Wireshark provides an excellent way
to follow the conversation between
two hosts by reconstructing the
traffic

• This feature is called Follow TCP
Stream

 Detection and Packet Analysis

Following the TCP Stream (1)
Wireshark is a real Swiss Army knife for working with network related traffic. Among its features, it offers
an interesting one called Follow TCP Stream. This feature allows you to see the TCP conversation in the
same way the application sees it.

In other words, if you have HTTP traffic between two hosts, you can select any packet from this
conversation and ask Wireshark to Follow TCP stream. It reconstructs all the conversation and shows it to
you in the same way the application sees it, both client-side and server-side:

Host: www.cnn.com

User-Agent: Mozilla/5.0 (Windows; U; Windows pt-BR; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6

Accept:

Accept-Language:

Accept-Encoding:

Keep-Alive: 300

Connection: keep-alive

Cookie: \ 469D50E900001A

6vn%253D5%7CU87306947812%3B%20s_invisit%3Dtrue%7C1186402341203%3B;
27037-1186400555-904
HTTP/1.1 OK

© Dr. Eric Cole and David Shackleford 81

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Date: Sat, 08 Sep 2007 02:50:56 GMT

Server: Apache

Accept-Ranges: bytes

Cache-Control: max-age=60, private

Expires: Sat, 08 Sep 2007 02:51:55 GMT

Vary: Accept-Encoding, User-Agent

Content-Encoding: gzip

Content-Length: 30032

Content-Type: text/html

Keep-Alive: timeout=5, max=64

Connection: Keep-Alive

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Following the TCP Stream (2)

 fio

 «
i | | flow | flppty |

[| Info

68 15.167150
72 15,313152
73 15.448451
76 15.670154
77
79 15.676316

 fiftun?

72,8 .134.169

72.8.134.169

 8

192.168.0.102
192.168.0.102
192.168.0.102
192,168.0.102

192.168.0.102

 ft

TCP
TCP
TCP
TCP
TCP
TCP
T C P

• Select the
click, and

 A?,..

 Window

 PDU] ,

packet of interest, right-
select Follow TCP Stream

 Detection and Packet Analysis

Following the TCP Stream (2)

The usage of the feature Follow TCP Stream is quite easy, as shown on this slide. You just have to select, click
one packet of the traffic of interest, and then right-click to select the option Follow TCP Stream.

© Dr. Eric Cole and David Shackleford 83

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Following the TCP Stream (3)

What interesting
traffic!
This is a typical
IRC server!
Strings to
notice:
• Nick

• User

• Server

• Users and
Channel info

 0

 AUTH
 AUTH

 with

 t o the

 up

Couldn't reso lve your

 server created
 UTC

 net

 005

 supported by server
 005

feTWJRK-V3K0H.Ketwtrk.net

 ,

 4
 3

 forced
 0 servers

 257
 1s

: C C

 Detection and Packet Analysis

Following the TCP Stream (3)

When selecting the feature Follow TCP Stream, it opens another window and shows the entire conversation
between the hosts selected using port

Here is the reproduction of the window fiom the slide:

 BRA[XP]7516663

USER wtaaivi 0 0

 NOTICE AUTH :*** Looking up your hostname...

 NOTICE AUTH :*** Checking ident...

 NOTICE AUTH :*** Couldn't resolve your hostname; using your IP address instead

 NOTICE AUTH :*** No ident response; username prefixed with ~

:IRC!IRC@V3N0M.Network.net PRIVMSG

:V3N0M.Network.net 001 :Welcome to the IRC Network

 002 :Your host is V3N0M.Network.net, running version
Unreal3.2.6

 003 :This server was created Wed Jul 2007 at 21:46:06 UTC

 004 Unreal3.2.6

 005 NAMESX
 HCN CHANLIMIT=#:10 MAXLIST=b:60,e:60,I:60 NICKLEN=30

CHANNELLEN=32 TOPICLEN=307 KICKLEN=307 07

84 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

MAXTARGETS=20 :are supported by this server

:V3N0M.Network.net 005 WALLCHOPS WATCH=128 SILENCE=15 MODES=12
CHANTYPES=# PREFIX=(ohv)@%+

 CASEMAPPING=ascii ELIST=MNUCT
STATUSMSG=@%+ EXCEPTS :are supported by this server

 005 :are supported by this server

 :There are 36 users and 221 invisible on 1 servers

:V3N0M.Network.net 252 4 :operator(s) online

 253 3 :unknown connection(s)

 254 11 formed

:V3N0M.Network.net 255 : I have 257 clients and 0 servers

 Local Users: 257 Max: 483

:V3N0M.Network.net 266 :Current Global Users: 257 Max: 265

 422 File is missing

In bold are some strings that we can define as strings of interest:

NICK

USER

Version Unreal3.2.6

In addition, you can see some data about users and channels. This is typical IRC traffic and means that we
have a BOT connecting to a remote server. A botnet!

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Learning to Filter the Traffic

 * * • Filter:
 == "GET"

• One GET request
from our machine
that same remote

server:
- GET /rampa.exe

Another binary?

toto to to to' to
 83 to to OS
 to 0?

 74 5a 4d 6f 7* to
toto to i f 2e 30 28 61

 to 20 43 73 74
 77 74 to

 ff.

 Detection and Packet Analysis

More Wireshark Filters

In the summary, we could see that there was a connection from the host that is the IRC server, but on port
80. It is time to create a specific filter for HTTP to see i f we can capture any information about HTTP
traffic and the remote server to determine what was going on after connecting to the remote server.

For this, we could check all the HTTP GET methods used in the conversation. To filter it, we can use:

 "GET"

This filter generated one result with a GET to the remote server to retrieve /rampa.exe. So right now, we
know that our machine tried to retrieve a file called rampa.exe, but we don't know if it is a binary or just
another file with an extension.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Following the TCP Stream (4)

F o l l o w i n g t h e

T C P S t r e a m o n

t h e G E T r e t u r n s

i n t e r e s t i n g

i n f o r m a t i o n

I t i s d o w n l o a d i n g

a n o t h e r b i n a r y

f r o m t h e I R C

s e r v e r

M a y b e a n

u p d a t e d

m a l w a r e ?

 • — —
oats: 29
Server:

 24 Aug 2007
r a g :

 be under

 •

- " X .
 A..

 ..3

. . . a A 1 . s . . - aA..t.. . .aA i , i

 Detection and Packet Analysis

Following the TCP Stream (4)

Using our Follow TCP Stream, we reconstructed the HTTP conversation as shown here:

GET /rampa.exe HTTP/1.1

User-Agent: (compatible)

Host:

HTTP/1.1 OK

Date: Wed, 29 Aug 2007 18:44:05 GMT

Server: Apache/2

Last-Modified: Fri, 24 Aug 2007 23:18:10 GMT

ETag:

 bytes

Content-Length: 893217

Content-Type: application/octet-stream

MZP @ !..L.!..This program must be run under
Win32$7

<SNIPPED for readability>

Here we notice that our computer was doing a GET command to the remote host to
retrieve the rampa.exe. And it is indeed a binary because we can see at the beginning of the text
representation of the being retrieved. It is a typical Windows binary header!

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
Filtering the Traffic

-

 finatyae

 • [[m
 | i p , s r c = = .: j | flpply |

N o . I I D e s t i n a t i o n P r o t o c o l AOA, 1 3 4
1 2 2 6 2 0 2 . 7 2 . 8 . 1 3 4 . 1 6 9

 7 2 . 8 . 1 3 4 . 1 6 9
 7 2 . 8 . 1 3 4 . 1 6 9

1 2 2 4 9 .
1 2 3 9 3 5 0 . 3 5 3 2 0 :

T C P
T C P 9 0 0 1 > 1 0 3 2
T C P S O O l > 5
T C P S O O l 1 0 3 5
T C P 9 0 0 1 > 1 0 3 2
T C P

 J
C P S H ,
C P S H .

C P S H ,

5 e q - 4
A C K] s e q - 4 ; ;
A C K]
s e q - 2 4
A C K]
A C K]

 3 3 6 0 0 4
1 2 4 5 2 9
1 2 4 7 3 6 6 . 2 2
1 2 4 3 9 5
1 2 5 1 7 2 . 8 . 1 3 4 . 1 6 9

1 2 6 2 4 6 6 . 0 6 8 4 4 :

 4 6
1 2 6 7

<l

T C P 9 0 0 1 > 1 0 3 2
T C P 9 0 0 1 1 0 3 2
T C P 9 0 0 1 1 0 3 2
T C P 9 0 0 1 > 1 0 3 2
T C P 9 0 0 1 > 1 0 3 2
T C P 9 0 0 1
T C P 9 0 0 1 1 0 3 2

T C P 9 0 0 1 > 1 0 3 2
T C P 9 0 0 1 1 0 3 2

C P S H ,

C P S H ,

C P S H .
C A C K]

C P S H .

A C K] s e q - 5 ;
A C K] s e q - 5 * 1

S e q - 5 5 9 5
A C K] s e q - 5
A C K]
A C K]
A C K] s e q - 5 * : \

• Filtering again for the same IP
• Ip.src == 72-8.134.169
• Also shows port 8001!

 and Packet Analysis

Are We Done?

After doing all the preceding steps and getting all the information, we would assume that we are finished,
correct? Wrong! When we first issued the filter to look for source IP 72.8.134.169, we didn't go through all
the filtered traffic. The only thing we saw was the traffic on ports and 80. We then concentrated our
effort to get more information about the traffic on these two ports fiom that IP. However, are we sure that
this was the only strange traffic with that IP? No.

That's why we need to run the filter again to check for more anomalies.

Filter: ip.src eq 72.8.134.169

Going through the results generated, we have another surprise! In addition to ports 80 and we can
also notice tcp port 8001 being used! It is time to go after this traffic and see what it is.

88 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
Following the TCP Stream (5)

• Following the
TCP stream on
port 8001 also
shows IRC
traffic

• Instructions are
sent by the
to download the
rampa.exe
binary

- URL.

 232 I -
 t o :

 872.3 to 6

 .

 t o :

 77.7

 482 operator

 '

 fttbUK :

 tot
fcltT5"T*5iSiH>Njt net

 !

 Detection and Packet Analysis

Following the TCP Stream (5)

We found that in addition to port and port 80, our computer was also communicating using port

Using Follow TCP Stream, we can notice that it is also IRC traffic, as we can see from the excerpt below:

PONG :V3N0M.Network.net

topic

MODE #xbox +mnst

 482 #xbox You're not channel operator

 482 #xbox not channel operator

 QUIT

:BRA[XP]7234223!~uwnrnhi@189.12.241.232 QUIT

:USA[XP]2188499!~dtkdpsvov@80.87.80.9 JOIN :#xbox

:USA[XP]2188499!~dtkdpsvov@80.87.80.9 PRIVMSG #xbox « Downloading URL:
 to: jfbfbfvslf.exe »

PING :V3N0M.Network.net

The interesting event to notice here is that the Bot running on our computer is receiving a message to
download the binary rampa.exe and save it with a random name

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark:
More Filters (1)

Some additional filtering could be
done to select this same IP and the
ports 8001 and 9001, which looks like
two IRC servers!

ip.addr eq and eq 8001 or tcp.port
eq 9001)

 Detection and Analysis

Wireshark: More Filters (1)

We could see that the remote server is providing IRC service on ports and as well as providing
a web server on port 80 to distribute more malware, such as an updated version of the Bot software. To get
the IP of the remote server and look at the IRC traffic, we would use a simple filter:

Ip.addr eq 72.8.134.169 and (tcp.port eq 8001 or tcp.port eq 9001)

90 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark:
More Filters (2)

Filter: eq 72.8.134.169 and (tcp.port eq 8001
or tcp.port eq 9001)

 Help

s a E 3
 eq and eq flew

 :
1 0 3 5 >
8 0 0 1 > 1 0 3 5
0 0 0 1 > 1 0 3 2 CPSH, A C K] A c k - 7 4 5
1 0 3 2 C A C K]

 > 8 0 0 1 A C K]

1 2 2 9
1 2 3 0
1 2 3 1 7 2 . 8 . 1 3 4 . 1 6 9
1 2 3 2
1 2 3 6 3

1 2 4 0
1 2 4 1
1 2 4 2

 3
1 2 4 4
1 2 4
1 2 4 6
1 2 4 7
1 2 4 8
1 2 4 9

3 0 . 54 6 9 1 :
 7 2 . 1

3 5 5 . 9 5 4 4 7'
3 6 2 . 2 6 0 0 4
3 6 2 . 1 9 2 .
3 6 4 . 2 9 5 0 2 7 2 . 1

 1 9 2 ,

3 6 6 . 3 6 8 9 1 ' 1 9 2 ,

1 6 8 . 0 . 1 0 2

1 6 8 . 0 . 1 0 2

1 9 2 . 1 6 8 . 0 . 1 0 2
1 9 2 . 1 6 8 . 0 . 1 0 2
7 2 . 8 . 1 3 4 . 1 6 9

7 2 . 8 . 1 3 4 . 1 6 9

7 2 . 8 . 1 3 4 . 1 6 9

1 9 2 . 1 6 8 . 0 . 1 0 2

7 2 . 8 . 1 3 4 . 1 6 9
1 9 2 . 1 6 8 . 0 . 1 0 2

T C P

T C P

T C P

T C P

T C P

T C P
T C P
T C P
T C P
T C P
T C P
T C P

1 0 3 5 > 8 0 0 1
9 0 0 1 > 1 0 3 2
1 0 3 2 > 9 0 0 1

 >
1 0 3 2 9 0 0 1
9 0 0 1 1 0 3 2
1 0 3 2 > 9 0 0 1
9 0 0 1 >
1 0 3 2 > 9 0 0 1
9 0 0 1 > 1 0 3 2

C P S H ,
C A C K]

C A C K]

L A C K]

A C K] A c k - 7 4 5

A C K] A c k - 7 4 5
s e q - 7 4 5
A C K] 5

A C K] A C k - 7 4 5
S e q - 7 4 5 A c k - 5 5 7 0
A C K] A c k - 7 4 5

Advanced Detection and Packet Analysis

Wireshark: More Filters (2)

The result of the filter i displays on this slide. Here we see all the IRC traffic between our host(s) and the
remote server on the selected ports. It's the same remote server, serving IRC traffic on two different ports,
which leads us to the conclusion that they are serving as IRC servers!

© Dr. Eric Cole and David Shackleford 91

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 2

Attack Analysis with Wireshark

 Detection and Packet Analysis

This page intentionally left blank.

92 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab Goal

• In this lab, we dig a little deeper into
Wireshark as a useful analysis tool for
security pros

• We look at a few more attack
examples that can help us get
comfortable with Wireshark, too

 Detection and Packet Analysis

This lab is all about exploring Wireshark! Many great features can help us analyze packets and protocols, both
in live captures and other PCAP dumps we've collected. Let's take a look at a few more attack examples that
will get us using Wireshark in more depth.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

MS08-067 (CVE-2008-4250)

 Summary for CVE-2008-4250
Original release date;

Last

Source;

 Overview
 Server service in Microsoft Windows 2000 XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Go! d and SP1, Server 2008, and 7 allows remote to

j execute arbitrary code via a crafted RPC request that triggers the overflow during path as exploited in the wild by in October 2008, "Server
 Service Vulnerability."

Impact
CVSS Severity (version 2.03:

 10.0

 10.0

 Metrics;
Access Vector; exploitable

Access Complexity; Low

Authentication: Not required to exploit

Impact Provides administrator access, Allows complete confidentiality, integrity, and availability vitiation; Allows red disclosure of information; Allows
disruption of service

 Detection and Packet Analysis

We'll follow up our last lab in the directory on the Kali virtual machine. Make sure the VM is up
and running, and you are logged in and in the /home/501 directory (in a terminal window, type cd /home/501
i f needed). In this directory, the first PCAP to open is named cve-2008-4250_base.pcap. The vulnerability
represented here affects the Windows Server service and is well known as MS08-067.

94 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireshark and Packet #8

9 0.111363 10.0.200.8 Protocol Response

 10.0.200.13 Session Setup AndX Request, User: anonymous

11 Session Setup Response

12 0.118666 10.0.200.8 10.0.200.13 TCP > microsoft-ds Seq=129 Ack=222

 Tree Connect AndX Request, Path:

14 0.121321 10.0.200.13 Tree Connect AndX Response

15 10.0.200.8 10.0.200.13 as Iff Create AndX Request, 0x4000, Path:

 SMB Create AndX Response,

17 0.128484 TCP > microsoft-ds

 10.0.200.8 10.0.200.13 Bind: 0

19 0.132316 10.0.200.13 10.0.200.8 Write Response, FID; 72 bytes

> 8; bytes on wire (840 bits), 105 bytes captured (840 bits)

 Ethernet II , Src: (de:ad:01:00:00:a9), Dst:

> Internet Protocol, Src; Ost: 10.0,200.13

• Transmission Control Protocol, Src Port: Dst Port; microsoft-ds (445), Seq: Ack: 1, Len: 51

> NetBIOS Session Service

> (Server Message Block Protocol)

 Detection and Packet Analysis

Open the PCAP named cve-2008-4250_base.pcap in Wireshark (Choose File, Open, and then browse to
this in the directory). This is the MS08-067 attack in its "normal" form, without any custom
modifications. Highlight packet number 8 (SMB), as shown here.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Follow the Stream!
Stream --

5](T 8

 - LAN

 -
 -

 -....*

 -
 H I

 ;.SM3
B 0.< E . P D E...)

 5MB/ - ?

 .0).
 0 0.. 06

!f3.

 - / - 8 |

Advanced and Packet Analysis

Now select Analyze Follow TCP Stream. You should see output similar to the screen shot in the slide.

Spend a moment looking at the ASCII-formatted output of this attack, which makes InterProcess
Communications (IPC) connections and sends a variety of characters and strings via the SMB protocol. Also
note the presence of the SMB filename \BROWSER. This is a named pipe that facilitates anonymous
connections using SMB.

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A Different Example

 10.0.225.12 Protocol Response
 9 8 Session Setup AndX Request, User:
 9 8 Session Setup AndX Response

 TCP 22959 >
11 0,104995 Tree Connect Request, Path: \\\IPC$
 10.0.225.12 9 8 Tree Connect AndX Response
 10,0.225.23 9 8 NT Create AndX Request, FIO: 0x4000, Path:
 10.0.225,12 10.0.23.23 NT Create Response,
 TCP > acrosoft-ds [ACK}
 OCEPPC Bind: 0 V3.0
 Write AndX Response, FID: 72 bytes

 bytes on bits), 105 bytes captured bits]
> Ethernet I I , Src: (de;ad:01:fb:54:el), Dst:
> Internet Protocol, Src: Dst: (10,0.225.12)
> Transmission Control Protocol, Src Port; 2359 (22959), Dst Port: (445), Seq: 1, kk: 1, Len: 51
 NetBIOS Session Service

> (Server Message Block Protocol!

Advanced Detection and Packet Analysis

Close this Next, open the named smb_filename_change.pcap. Highlight SMB packet #6
(immediately following the TCP 3-way handshake), as shown in the slide.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Follow the

 , , ,

 ?????
 ,

 r

\ SMB
r u n

 Detection and Packet Analysis

Again, select Analyze Follow TCP Stream. Look for the SMB filename again. Does it look somewhat
different?

This is a simple and well-known IDS evasion technique, although not often seen with SMB services and
connection establishment as shown here. To fool IDS, the attacker has purposefully crafted the attack to enter
a "fake" directory, then go up a level and use the original name intended (which has also had the case
altered for several characters). The final result sent by the attacker is Kedky3Uyz\..VBRoWser.

The effect, depending on services parsing the request, is the same as that of sending the original "BROWSER"
SMB request seen in the previous MS08-067 attack PCAP.

98 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

28 10.0.222.12

Overlap Attacks

 length: 20

 (ACK)

 size: 32768

 disabled)

 analysis]

 of bytes in flight:

v Analysis Flags)

(TCP of a

 F 1

TCP (ACK)

 Info Out-of-order segment)

 level: Warn]

 26]

TCP data bytes)

Advanced Detection and Packet Analysis

Now open the tcp_8byte_segments_10byte_oldoverlap.pcap. Notice a number of flagged packets within
the Wireshark display. This particular modification of the attack code has TCP segments with 8 bytes of
payload. Each non-first TCP segment overlaps with the previous segment, with the later segment containing
random data in the overlapping part, as shown in the slide.

Examine this file thoroughly and make note of what you see.

© Dr. Eric Cole and David Shackleford 99

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TCP Time Wait Attack (1)

30 10.0 225 225,12 TCP
 TCP l i m i t > (SIN, tfty*

50,101130 TCP 29522 >

 10,0,225,2 TCP tal

 12 TCP 2952 > [FIN,

 23 TCP >

 10,0,225,2 10,0,225,12 TCP 2952 >

 Detection and Packet Analysis

Now, open the PCAP file tcp_time_wait.pcap. With this attack, the attacker has taken some unusual steps.
Look through the capture data. What kind of communication do you see? Look for standard TCP 3-way
handshake connections, any data following this, and then a session close (FIN-ACK). What kind of packets
and alerts do you see after this?

100 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TCP Time Wait Attack (2)
Stream Content-

 NT

 X.. S.I.Windows 2000 LAN

 . 0

 0
 ,

39

 H.. H H)

 0......./.H ;.SMB 0 0
 0 ..D.< E.

 ,D. 7... . . .]

+ SMB/ 0 0 ?

 1...

 I....f?..4,...B..jSY...t$.[.s....v .03..

 0 0.. 06 ..'

 [H, .H>.,. ' I] .

j\.A.

 /-SMB/ 0 / ;.SMB 0 (i

Advanced Detection and Packet Analysis

Click to highlight packet Then click Analyze Follow TCP Stream. This should look familiar by now
(as shown in slide). We need some more detail, though, to determine exactly what may be happening.

Fortunately, Wireshark can help us!

© Dr. Eric Cole and David Shackleford 101

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wireshark's Expert Info Tool

Errors: 0 Warnings: 0 Notes: 2 Chats: 11 Severity filter; Error+Warn+Note+Chat

No I Severit I Group I I Summary

3 Chat Sequence TCP
4 Chat Sequence TCP
8 Chat Sequence TCP
9 Chat Sequence TCP

 Chat Sequence TCP
 Note Sequence TCP

12 Chat Sequence TCP
33 Chat Sequence TCP
34 Chat Sequence TCP
37 Note Sequence TCP

 Chat Sequence TCP
44 Chat Sequence TCP
46 Chat Sequence TCP

Connection establish request server
Connection establish acknowledge
Connection finish (FIN)
Connection finish (FIN)
Connection establish request (SYN): server port
TCP reused for new session
Connection establish acknowledge (SYN+ACK):
Connection establish request (SYN): server port
Connection establish acknowledge (SYN+ACK):
Duplicate (#1)
Connection reset (RST)
Connection finish (FIN)
Connection finish (FIN)

 and

This variation of the attack is done in a somewhat unusual way.

Let's use another awesome Wireshark tool, the Expert Info feature. Click Analyze Expert Info. You
should see a Wireshark display similar to the slide.

What does this mean? In this attack, the attacker has created an odd communication process with the victim.
First, a "decoy" TCP connection is opened to the server, random bytes are written, and then the connection is
closed. Although the decoy socket should be in the TIME WAIT state, a new TCP connection is opened from
the same client port, and the exploit is performed. This attack is focused on bypassing stateful inspection tools
and intrusion detection rules.

102 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IPv4 Options (1)

 (Source

 Session Setup kit topoiM
 1

 | •

180.106312 10,0,225.23

 ' ' t ,

 10,0,225,12 S B HI Create Response, RO:

 '

 Src: Ost: (1

 Detection and Packet Analysis

Let's look at one more odd variation of this same attack. Open the PCAP ipv4_options.pcap. This capture
has some unusual attributes. First, take a general look through the capture You should see some unusual
errors Wireshark displayed, shown highlighted in black with red lettering.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

IPv4 Options (2)
6 Mote

7 Note

 Warn

Sequence TCP

Sequence TCP

Sequence TCP

Keep-Alive

Keep-Alive

 " > ,

I ."• . • M I

 Warn

 Warn

Sequence TCP

Sequence TCP

 segment

Out-Of-Order segment

 i : •
 | • | | 1

 Warn

 Note

15 Note

16

Sequence TCP

Sequence TCP

Sequence TCP

Sequence TCP

Out-Of-Order segment

Keep-Alive

Keep-Alive

Out-Of-Order segment

 i t |

17 Warn

19 Warn

Sequence TCP

Sequence TCP

Out-Of-Order segment

Out-Of-Order

 D e t e c t i o n a n d P a c k e t A n a l y s i s

Now, click Analyze Expert Info again to get Wireshark's assessment of the errors. Wireshark shows you
that you have some strange malformed packets.

104 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IPv4 Options (3)
 Internet Protocol, Src: 10.0.225.23 (10.0.225.23), Dst: 10.0.225.12

Version: 4

Header length: 24 bytes

 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

Total Length: 123

Ident i f icat ion: 0xe590 (58768)

 Flags: 0x00

Fragment offset: 0

Time to l i ve : 64

Protocol: TCP (6)

 Header checksum: 0xbdc5 [correct]

Source: 10.0.225.23

Destination: (10.0.225.12)
 v

 83 8b .0 n . . {

 Detection and Analysis

Now select packet and expand the Internet Protocol info in the middle frame of the display. Open the
Options tab and highlight it, as shown in the slide.

Do the same for packets and 19. Do you see a pattern?

The IP Options field should be incrementing by 1 for each successive packet. This is unusual behavior. For
this attack, every IPv4 packet to send is duplicated, filled with random payload, and the IPv4 option field is set
to contain an incrementing integer (0x00000001 in the first packet, 0x00000002 in the second, and so on).
This is simply another effort to avoid detection or create anomalous packets that pass by an IDS.

© Dr. Eric Cole and David Shackleford 105

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lab Conclusion

• In this lab, we explored more aspects
of Wireshark as a protocol analyzer

• Some of the display features make
malicious activity more obvious

• Expert Info features can help us
identify anomalies as well!

 Detection and Packet Analysis

In this lab, we explored more features of the Wireshark protocol analyzer. I f you finish early, explore some
the display features now that you know what you're looking for!

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Course Outline

• Advanced Packet Inspection for
Intrusion Detection

• Packet Analysis Fundamentals for
Intrusion Analysis

• Intrusion Prevention Systems
• Open Source IPS and Network

Forensics
• Appendix - Advanced Device Testing

 Detection and Packet Analysis

This section explores the uncertain area of intrusion prevention, including various technologies and
deployment considerations.

© Dr. Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Intrusion Prevention Systems

• Combines firewall and IDS
• Differs from active response
• Inline
• Inspect packets and make decisions before forwarding
• Perform packet analysis at wire speed
• Detect Application layer and zero day attacks
• Incorporate behavioral analysis, anomaly detection,

and automatic response
• System and host

- Inline at the operating system

 Detection and Packet Analysis

Intrusion prevention systems (IPS) combine the best features of a firewall and IDS to not only detect attacks, but
also, more important, to prevent them. One important distinction to make is the difference between intrusion
prevention and active response.

An active response device dynamically reconfigures or alters network or system access controls, session
streams, or individual packets based on triggers from packet inspection and other detection devices. Active
response happens after the event has occurred, thus a single packet attack will be successful on the first attempt
and blocked in future attempts. Although active response devices are beneficial, this one aspect makes them
unsuitable for an overall solution.

Network intrusion prevention devices are typically inline devices on the network that inspect packets and make
decisions before forwarding them on to the destination. This type of device has the capability to defend against
single packet attacks on the first attempt by blocking or modifying the attack inline. Most important, an IPS must
perform packet inspection and analysis at wire speed. Intrusion prevention systems should perform detailed
packet inspections to detect intrusions, including Application layer and zero day attacks. IPSs are incorporating
all these technologies, including packet analysis, behavioral analysis, anomaly detection, and automatic
response capabilities.

System or host intrusion prevention devices are also inline at the operating system level. They have the
capability to intercept system calls, access, memory access, processes, and other system functions to prevent
attacks.

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

Anthony
Highlight

https://technet24.ir
https://technet24.ir

Methods of Intrusion Prevention

• System memory and process
protection

• Session sniping
• Gateway interaction devices
• Inline network devices

Advanced Detection and Packet Analysis

Several methods of intrusion prevention and active response technologies are available, including the
following:

• System memory and process protection: This type of intrusion prevention strategy resides at the
system level. Memory protection consists of a mechanism to prevent a process from corrupting the
memory of another process running on the same system. Process protection consists of a mechanism for
monitoring process execution, with the capability to kill processes that are suspect attacks.

• Session sniping: This type of intrusion prevention strategy terminates a TCP session by sending a TCP
RST packet to both ends of the connection. When an attempted attack is detected, the TCP RST is sent
and the attempted exploit is flushed from the buffers and thus prevented. Note that the TCP RST
packets must have the correct sequence and acknowledge numbers to be effective.

• Gateway interaction devices: This type of intrusion prevention strategy allows a detection device to
dynamically interact with network gateway devices such as a router or firewall. When an attempted
attack is detected, the detection device can direct the router or firewall to block the attack.

• Inline network devices: This type of intrusion prevention strategy places a network device directly in
the path of network communications, which has the capability to modify and block attack packets as
they traverse the device's interfaces. This acts much like a router or firewall, combined with the
signature matching capabilities of an IDS. The detection and response happens in real time before the
packet is passed on to the destination network.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Deployment Risks

• False positives
-DoS on legitimate traffic

• Whitelist/Exclude list
• System identification and network

profiling
• Gateway interaction timing

• Race conditions
Advanced and Analysis

Several risks can occur when deploying intrusion prevention and active response technologies. Most notable
is the recurring issue of false positives in today's intrusion detection systems. On some occasions, legitimate
traffic displays some similar attack characteristics of malicious traffic. This could be anything from
inadvertently matching signatures to uncharacteristically high traffic volume. Even a fine-tuned IDS can
present false positives when this occurs. When intrusion prevention and active response is involved, false
positives can create a denial of service (DoS) condition for legitimate traffic. In addition, attackers who
discover or suspect the use of intrusion prevention methods can purposely create a DoS attack against
legitimate networks and sources by sending attacks with spoofed source IP addresses. A simple mitigation to
some DoS conditions is the use of an exclude list, also called a whitelist. A contains a list of the
network sources that should never be blocked. It is important to include systems such as DNS, mail, routers,
and firewalls in the whitelist.

Session sniping system identification is another concern when deploying IPSs. When systems terminate
sessions with RST packets, an attacker may discover not only that an IPS is involved, but also the type of
underlying system. Readily available passive operating system identification tools, such as pOf, analyze
packets to determine the underlying operating system. This type of information enables an attacker to
potentially evade the IPS or direct an attack at the IPS.

Another risk with IPSs involves gateway interaction timing and race conditions. In this scenario, a detection
device directs a router or firewall to block the attempted attack. However, due to network latency, the attack
has already passed the gateway device before it received this direction from the detection device. A similar
situation could occur with a scenario that creates a race condition, on the gateway device, between the attack
and the response. In either case, the attack has a high chance of succeeding.

110 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

• Asking a lot of a perimeter device:
- Detect inline
- Prevent attacks
- In-depth packet inspection
- Wire speed
- Behavioral analysis
- Anomaly detection

• Use a combination of methods
• Carefully monitor and tune during deployment

 Detection and Packet Analysis

Intrusion prevention systems have a lot of responsibility. Not only do they need to detect attacks inline and
prevent them, but they also need to accomplish in-depth methods of packet inspection on large quantities of
data at wire speed. In addition to all this, they also need to incorporate other technologies, such as behavioral
analysis and anomaly detection. Is it possible for a single perimeter device to accomplish all this, or are we
asking too much?

Although there are many methods of intrusion prevention and active response, using a combination of methods
to build a strong defense in-depth strategy is still the best approach.

When deploying an IPS, you should monitor and tune your systems and be aware of the risks
involved. You should also have an in-depth understanding of your network, its traffic, and both its normal and
abnormal characteristics. It is always recommended to run IPS and active response technologies in test mode
for a while to thoroughly understand their behavior.

© Dr. Eric Cole and David Shackleford 11

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Course Outline

• Advanced Packet Inspection for Intrusion
Detection

• Packet Analysis Fundamentals for
Intrusion Analysis

• Intrusion Prevention Systems

• Open Source IPS and Network Forensics

• Appendix - Advanced Device Testing

 Detection and Analysis

This section explores free, open source alternatives for implementing intrusion prevention and network
forensics. It covers network methods, as well as system and application methods.

112 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Open Source IPS and
Network Forensics

• Commercial intrusion prevention and network
forensics products:
- Technologically diverse
- Rich feature set

- Hefty price tag

• Need for free, open source alternatives and

• Defense in depth approach, including not only
network methods, but system and application
methods as well

 and Packet Analysis

Commercial intrasion prevention and network forensics products are often technologically diverse and
contain a rich feature set. However, they also often come with a hefty price tag. This section provides
information on free, open source alternatives for implementing intrasion prevention and network
forensics. It looks at these areas of network security from a defense in depth approach, including not only
network methods, but system and application methods as well.

© Dr. Eric Cole and David Shackleford 113

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Open Source Network Security

• Snort:
-Snort Flexible Response
- Fwsnort
-Snort Inline
-Writing Snort Rules

•
• TCPtrace and
• Ngrep
• NetworkMiner
• Security Onion + ELSA/Snorby + CapMe

 Detection and Packet Analysis

This slide shows the six open source intrusion prevention and active response solutions covered in this
section. These options can be used for specific purposes or to augment your existing solution.

114 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Snort Flexible Response (1)

• Performs session sniping with new rule
keywords

• Response
- Sends TCP RST or ICMP unreachable message

• React
- Blocks access to specific websites and sends a

warning notice to the user's browser

• Quick, simple, lightweight method for
augmenting current solutions

 and Packet Analysis

Snort can perform session sniping through its flexible response rules. This plug-in adds the response and react
keywords to rule creation. When a rule is triggered, the appropriate action is taken based on the keywords. I f you
use Snort in stealth mode, you need an additional interface to send the responses. Also, make sure that the libnet
library is installed because bit is used to create and send packets on the network.

Snort flexible response is a quick and simple solution that uses session sniping. Although not an overall enterprise
solution, it is a lightweight method to use in simple environments.

© Dr. Eric Cole and David Shackleford 115

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Snort Flexible Response (2)

• -enable-flexresp3
• < res

 >]...]:
- rst_snd (or reset_source)
- rst_rcv (or reset_dest)
- rst_all (or reset_both)
- icmp_net
- icmp_host
- icmp_port
- icmp_all

• alert tcp any any -> any 23 (msg:"Attempted Telnet";
flags:S; resp:rst_all;)

Advanced Detection Packet Analysis

To configure Snort with the flexible response rules, use the option when building
Snort. Next, add the new response and react keywords to the rules you want to take an action on when
triggered. The response keyword uses the following format:

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mechanism>]...];

where resp_mechanism can be one or more of the following:

• rst_snd: Sends a TCP RST packet to the sender of the packet

• rst_rcv: Sends a TCP RST packet to the receiver of the packet

• rst_all: Sends a TCP RST packet to both the sender and receiver

• icmp_net: Sends an ICMP_NET_UNREACH message to the sender

• Sends an ICMP message to the sender

• icmp_port: Sends an message to the sender

• Sends all three ICMP messages to the sender

The following example attempts to block Telnet by resetting any TCP connection to port 23:

alert tcp any any -> any 23 Telnet"; flags:S; resp:rst_all;)

116 © 2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FWSnort (1)

• Deployed directly within the
IPTables firewall

• Translates Snort rules into
IPTables rulesets to be logged or
blocked

• Simple solution used to augment
your defense in depth strategy

 Detection and Packet Analysis

Fwsnort, functions as a Transport layer inline IPS because it is deployed
directly within the IPtables firewall. It works by translating Snort signatures into their equivalent IPtables
rulesets; hence, it stops only attacks for which there are Snort signatures. Not all Snort rules are easily
translated; however, Fwsnort does a good job at translating approximately 70% of them. Fwsnort also accepts
Snort rules by the SID value, so you can add specific rules to your IPtables ruleset. IPtahles can then either log
or block the attacks.

 Dr. Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FWSnort (2)

• IPtables string match kernel patch
• /etc/fwsnort/fwsnort.conf

• fwsnort --ipt-reject

• fwsnort 301
• /etc/fwsnort/fwsnort.sh

 Detection and Packet Analysis

Before installing Fwsnort, you must install the IPtables string match kernel patch and then recompile the
kernel. When Fwsnort is installed, it references the configuration file You must
make some initial changes to this file to assign the appropriate firewall interfaces. The configuration file also
contains areas for whiteiists where you can exclude hosts and networks fiom being blocked. Use the following
command to run Fwsnort with active response:

fwsnort —ipt-reject

This command parses the Snort rales files and create the appropriate IPtables ruleset that logs and resets
connections with a TCP RST (or ICMP port unreachable for UDP attacks) based on the Snort signatures. The -
-ipt-drop option can be used instead to drop packets without sending a reset. For an optimal policy, it is better
to choose the specific Snort rules that apply to your network and add those rales to your policy instead of
applying all of them. This keeps your firewall ruleset smaller and more efficient. To add a firewall rale based
on a specific snort signature, use the following command:

fwsnort —snort-sid 301

After the rulesets are created, the fwsnort command also creates the shell script that
actually adds the rales to the firewall. You must ran the shell script to activate the new ruleset.

Because Fwsnort uses string matching, it can easily be evaded with evasion techniques such as fragmentation,
URL encoding, and session splicing. However, it is still a good tool to use as part of your defense in depth
strategy.

118 © Dr. Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Snort Inline (1)

• IPS deployed between network
segments to alter or drop packets in
real time as they flow through the
system

• IPtables packet queuing
• Stealth mode
• Can alter application data

 Detection and Packet Analysis

Snort Inline is a true IPS, which is deployed between network
segments, having the capability to alter or drop packets in real time as they flow through the system. It runs on a
Linux system and uses IPtables packet queuing to collect and make decisions about packets as they traverse the
system's interfaces. It can also be used in stealth mode, as a bridge between network segments, keeping it from
being detected as a hop in the network. One of the best features of Snort Inline is its capability to mitigate
attacks by altering application layer data as the packet traverses the system.

 Dr. Eric Cole and David Shackleford 119

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Snort Inline (2)

• Three new rule actions:
-drop
- reject
- sdrop

• One new rule option:
- replace

 Detection and Packet Analysis

Snort Inline installation requires several specific versions of utilities and a kernel patch. After it is installed,
several configuration steps must be made, including configuring IPtables and Snort. Snort Inline adds three new
rule actions for rules:

• drop: Drops the packet using IPtables and logs via Snort.

• reject: The communication is closed by either a TCP RST for TCP sessions or an ICMP port-
unreachable message for UDP and dropped by IPtables and logged.

• sdrop: Drops the packet using IPtables but does not log it.

Snort Inline also adds a new rule option:

• replace: Substitutes text matched by the content keyword with text specified by the replace
keyword. (The new data must be the same length as the original data.)

Use these new keywords to modify Snort rules accordingly.

120 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Snort Inline (3)

• No whitelist functionality
• AL_NET variable

-var
• Used by the Honeynet Project and

incorporated into Honeywall CDROM
- More extensive and scalable enterprise

solution

Advanced Detection and Packet Analysis

Snort Inline does not include whitelist functionality. However, you can achieve the same thing by configuring
the EXTERNAL_NET variable in the snort.eonf For example, i f your network has hosts, such as DNS and
mail, with external addresses on that you never want blocked, use the following:

var EXTERNALNET

The Honeynet has been using Snort Inline extensively and has incorporated it into its Honeywall
CDROM, Some of the Snort Inline functionality has been incorporated into the
Snort 2.3 release.

©2016 Dr. Eric Cole and David Shackleford 121

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing Snort Rules

Advanced Detection and Packet Analysis

This page intentionally left blank.

 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

How to Create Snort
Detection Rules

• Each rule has two logical sections:
- Rule header:

• Action to take
• Protocol to match
• Source and destination IP, ports, and

- Rule options:
• Detection of keywords
• How to inspect packets
• What to display when triggered

• Syntax: Rule header (Rule Options)

 Detection and Packet Analysis

Snort rules consist of two parts, the rule header and the rule options, or as some refer to it, the rule body.

The rule header is usually considered the main portion of the signature because it identifies the action to
take when triggered and the main packet level information such as the protocol, and source and destination
information.

Rule options are also important when creating detailed signatures. This is because rule options can inspect
the data inside the packet payload, and also other fine-grain packet information such as TCP flags, IP
fragmentation information, and TCP sequence and acknowledgment numbers. The rule options can also
trigger events post-detection and define metadata for the rules.

The syntax for the rules is simple. The Rule header is defined first, followed by the rule options in
parentheses. We examine the syntax in greater detail in the following slides.

© Dr. Eric Cole and David Shackleford 123

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Rule Header Structure (1)

• action> <protocol> IP> port> <directional
operator> IP> port>
- Ex. alert tcp any any -> 192.168.0.1 8080

• Rule actions available:
- pass: Ignores packet
- alert: Alert is generated and packet is logged
- log: Packet is logged only, no alert
- activate: Alerts and then turns on a dynamic rule
- dynamic: Remains dormant until triggered by an active rule; acts like a

log rule
- drop: Packet is not allowed to pass through to destination
- reject: Packet dropped by iptables and logged. TCP "reset" or ICMP

"port unreachable" returned if TCP or UDP respectively
- sdrop: Silently drops the packet without logging it

 Detection and Packet Analysis

The rule header is divided into four main parts: each of which must be defined for the rule to work properly.
Those parts are the rule actions, protocol, source and destination information, and the directional operator. The
syntax in the slide describes how each part fits into the rule header.

The rale action is the first piece of data defined in the rule header. It describes what Snort should do when a
valid match has been made for the signature. By default, you can choose five actions : pass, alert, log, activate,
and dynamic. The actions pass, alert, and log are self-explanatory after reading the slide descriptions, but some
may be confused as to why there is a pass rule. The pass action is defined because sometimes the class of data
that you want to ignore is more easily summarized than the data you want to see. It can be used to cut down the
number of false positives that occur and will cut down on the size of log data.

The activate and dynamic rules can also be a little confusing. The activate works like an alert rale for the most
part but requires a rale option called "activates" to be defined to a number. This number tells Snort which
dynamic rale to activate. Dynamic rales have the rale options by" and "count" that must be defined.
The "activated_by" option defines which activate number activates the rule, and the "count" option specifies
how many packets to leave the rale enabled for after it is activated. Generally, activate and dynamic rales are
used to log additional information on a session.

Example Syntax: activate tcp any any -> any 143 (content: "/bin "; activates: 1;)

dynamic tcp any any -> any 143 (activated by: 1; count: 5;)

The rale actions, drop, reject, and sdrop, are available. None of these three options allow packets through to
their destination; their differences are explained on the slide. You can also define your own rale actions in the
Snort file i f another action is needed that is not present.

124 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Rule Header Structure (2)

• Protocols: TCP, UDP, IP, ICMP
• IP address:

- Any IP address
- A.B.C.D/netmask
- !A.B,C,D/netmask: Match any IP outside range
- Multiple addresses: [A.B.C.D, A.B.C.D]

• Ports:
- any: All ports
- 22: Match static port 22
- 8000:9000: Match ports 8000 to 9000
- !22: Match all ports except port 22

• Directional operator:
- <>: Trigger on traffic flowing from either direction
- ->: Traffic flowing from IP and port on the left to the IP and port on the

right

Advanced Detection and Packet Analysis

The next part of the rule header is the protocol field. When Snort grabs the Ethernet frame off the wire, it
inspects the frame for the following protocols: TCP, UDP, IP, and ICMP. In the future, Snort is looking to
extend the protocols to include ARP, and HTTP.

When deciding the source and destination address information, you can use a number of different formats. For
IP addresses, the term "any" can be used to match any IP address. Otherwise, IP addresses are specified in
Classless Inter-Domain Routing notation In notation, IP addresses are defined in the notation
A.B.C.D/netmask. The "!" operator can be used in front of the IP address to negate the selection. This means
that any IP address outside of A.B.C.D/netmask triggers the rule. Also, to include multiple IP addresses, a
comma delimited list enclosed in square brackets is used.

For ports, a similar rule set is used. Ports can be specified by using a specific number or range of numbers
separated by colons. The "any" keyword can also be used to reference any port. Similar to IP address, the "!"
operator can be used to negate the selection. Ports can also be defined in greater than or less than syntax by
using a colon on the right side of the number to specify greater than and a colon on the left side of the number
to specify less than.

The directional operator can be only two possible choices. Either bidirectional "<>" or directional "->". When
the directional operator is used, that means the network on the left should be regarded as the source, and the
network on the right should be the destination. A "<-" operator is not needed because the networks can be
reversed to get the same results. The bidirectional operator triggers upon traffic flowing in either direction. The
bidirectional operator is used less frequently because it is too broad, which causes larger snort logs and burdens
the Snort processing engine.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Examples of Rule Header

alert tcp any any -> 192.168.0.1/24 80
log udp any any ->
[192.168.1.1,192.168.2.1] 21974
alert tcp EXTERNAL any -> $INTERNAL 79
- EXTERNAL and $INTERNAL are variables
- Variables are used in place of IP addresses and networks
- Syntax: var <variable_name> <variable_value>

• E.g. var DNS_SERVER 10.1.1.2

• E.g. var DMZ [10.1.1.1, 10.1.1.2, 10.1.1.3]

 Detection and Packet Analysis

Now consider some easy rule header examples that have no rale options attached. As shown in the slide,
variables can be used for IP addresses and ports. They help to make the rule more readable and can help save
time when dealing with a large network and a large number of rales. Just define the variables in the Snort

 file and they can be used throughout the rales.

126 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Rule Options Structure

• Enclosed in parenthesis ()
• Semicolon delimited list (;)
• Four main classifications:

- general: Provides info related to the rule, no effect
on detection

- payload: Looks for data inside the payload of a
packet

- Data not in the payload
- post-detection: Events that happen after a rule is

triggered

 and Packet Analysis

As previously stated, the rule options are enclosed in parentheses after the rule header section. Each option
included in the parentheses must be followed by a semicolon, even if it is the last option to be included. It
should be stated that rule options are not necessary to make a Snort rule: However, rale options are important
when trying to make more specific rules that go beyond just logging and alerting based on packet source and
destination. you define a rule option, it is always followed by the desired options value.

The four different types of rale options are provided in the slide. They are: metadata, payload, non-payload,
and post-detection. In the following slides, we will see in more detail the types of option values that are
available for each.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

General (1)

• sid : unique identifier for Snort rules
- sid:<rule id number>;

• rev: provides a unique version number
- rev:<revision number>;

• specifies string text printed with rule
- msg:"<Message

• reference: direct user to relevant information
- reference: <id >;
- Reference ID system: URL, Cve, Bugtraq, Nessus,

 Arachnids

 Detection and Packet Analysis

The general options in Snort are used to further identify and categorize the rules. They are used to enhance the
reporting and configuration features within Snort and have no effect on the rule detection processing. Below, the
metadata options are syntaxes that the option would use i f implemented.

The Sid and Rev options are straightforward and provide a way for you to uniquely identify a Snort rule. The
Msg option is fairly common and is printed along with an alert or packet log. The reference option is used to
provide additional relevant information about a rule. With the URL option for "id system," any corresponding
URL can be used to provide more information. The other possible "id system" options append the "id"
option to URLs that Snort has already defined.

In this example, Snort appends to the URL . It
works the same way for the other "id system" options provided in Snort, except the "id" is attached to different
URLs.

log tcp any any -> any 12345 CAN-2002-1010;)

128 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

General (2)

• Classtype: used to classify results
 classtype:<class name>;

- Some example default classifications:
• attempted-admin, shellcode-detect, trojan-activity,

web-application-attack,
network-scan

• See Snort manual for complete list

• Priority: Gives the rule a priority
- number>;

 Detection and Packet Analysis

The classtype general option permits you to set an attack type or meaningful categorization to your Snort rule.
Each classtype that is defined has a priority associated with it. Those priorities can be either low, medium, or
high. The priority option is used to overwrite the default priority assigned via the classtype option. The
"elassname" list for default classifications is fairly large, and a complete listing can be referenced in the Snort
manual.

E.g. Executable code was High system-call-detect: A system call was
Medium Generic ICMP Low

 Dr. Eric Cole and David Shackleford 129

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Payload (1)

• Content: Used to search a packet's contents for a particular
pattern. Pattern can be either ASCII or binary data (or
both).
-

- To match binary data the values must be specified in hexadecimal
format and enclosed between two pipe (|) separators

- E.g. content: "|de ad be ef|";

- E.g. content: ee| test";

- The following payload options modify the behavior of content
• offset, depth, distance, within, nocase, rawbytes

• Offset: Tells the rule how many bytes into the payload to
start the content match
- offset: <number>;

 and Packet Analysis

The payload rule options are used to inspect the data within a packet. One of the most important options is the
content option. It is used to search a packet's contents, looking for the particular pattern specified in the
content string. The content option uses a Boyer-Moore algorithm to implement the packet searching, requiring
a relatively large computational load. Content value is and can be ASCII or binary data (or
both). When searching for binary data, the values must be specified in hexadecimal and be enclosed in two
pipes as shown in the slide. There are six options, as shown in the slide, which work with the content option to
modify its behavior.

For example, the offset option is a modifier for the content option. Its job is to tell the processing engine how
many bytes into the payload to start the content matching. If the value were given to the offset option, it
would cause the content option to match any patterns that are after the first 100 bytes of the payload.

130 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Payload (2)

• depth: Content search stops at the number of bytes specified
- depth: <number>;

• distance: Specifies the minimum distance that must exist
between two content searches
- distance: <number>;

• within: Specifies the maximum distance that must exist
between two content searches
- within: <number>;

• nocase: Content option should match pattern regardless of the
case
- nocase;

 Detection and Packet Analysis

Depth is another option that modifies the previous content option. With the depth option, the search begins at the
start of the payload and keeps searching for the content pattern until the number of bytes specified is hit.

The distance option is used when more than one content option is specified. The distance option basically says
that the two content searches have to be at least the specified distance apart. For example, i f a distance of 10 is
specified and the first content pattern is matched, it counts bytes of data from the previous match and then
start the second content matching process.

The within option is closely related to the distance option. It specifies the maximum distance apart that the two
content patterns can match. This means that the two content patterns must exist within that distance from one
another.

The nocase option is simple and has no value to be input. It just tells Snort to match the content pattern regardless
of case.

You can see with some of these options that you can speed up some of the computational time by specifying
specific regions to perform the content search. But to do this, you must know a lot about the packet you are
expecting to see to make the rule work correctly.

© Dr. Eric Cole and David Shackleford 131

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Payload (3)

• rawbytes: Match the raw bytes of the packet without
additional decoding provided by the pre-processors
- rawbytes;

• Performs a content match against a
normalized URL
- uricontent: <pattern>;

• isdataat: Used to verify that data exists at a particular
location of the payload
- Isdataat: <int> [,relative];

Advanced and Packet Analysis

The rawbytes option is similar to nocase in that there is no value for the user to specify. This is the last
option that modifies the content option; it tells the pre-processors to match the raw bytes of the packet
without the additional decoding that is usually provided.

The uricontent option takes a pattern as a value and searches the normalized URL looking for a content
match. The URL is normalized and converted to ASCII before the match is made because of the many
different ways that they can be written. This means that directory traversals (../) and encoded values will be
converted to ASCII text before performing the match. This option is another popular one that is also useful.

The payload option, Isdataat, checks i f data exists at a specific location in the payload. The optional
keyword "relative" can be added to the end of the option. If this is present, it starts the check for the data
relative to the end of the previous content match. This option is useful i f the data you are checking for is
always at a fixed position in the payload or is a fixed position away from a certain content match.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 (1)

• flags: Used to determine status of TCP flags
- flags: [! | * | +]<flags> [, <ignore>];

• Flags: S - SYN, A - ACK, R - RST, P- PSH, F - FIN, U - URG, 1 - Reserved bit 1, 2 -
Reserved bit 2, 0 - No flag set

• Modifiers: [+] : match all specified bits, [*] ; match any specified bit, [!] : matches if
none of the specified bits set

• fragoffset: Check IP fragment offset field. The < and > operators
can determine less than or greater
- Fragoffset: [<|>] <number>;

• fragbits: Test for presence of the fragmentation and reserved bits
- Fragbits: [+-!] <[MDR]>

- [M]: More fragments, [D]: Don't fragment, Reserved bit

- [+]: Match if provided bits set, [-]: Match if any bits set, [!]: Match if
bits are not set

 Detection and Packet Analysis

The first non-payload rule option listed is the flags option. This option is a comprehensive option for TCP
flags that determines what flags are set or unset and in what combinations. Because of the vast possibilities,
this option can be a little more confusing than the rest. Nine possible values can be used in the flags field of
the option.

After specifying the flags value, you need to determine what modifier to use. The modifiers are the special
characters: addition, asterisk, and exclamation mark. These modifiers determine how the flag values are
matched. There is also an optional value that can be used that, i f set, ignores certain flags. The completed
syntax looks like this: [! |*| +] <FSRPAU120> [, <FSRPAU120>];.

The fragoffset option is quite basic. If the option is set, Snort determines i f the fragoffset value is less than
or greater than the decimal value provided.

The fragbits option is another option that can have multiple bits set. It checks the payload for the status of
fragmentation or reserved bits. In this option, there are up to 3bits that can be set and also three modifiers to
choose from. Like the flags options, you need to specify the bits and the modifier that determines what kind
of checking to do. The information for the bits and the modifiers are in the slides.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 (2)

• fn r nr
 •
— ID number or

 te^* •

• ttl: Tests value in the time to live field
- t t l : [> < =] <number>; t t l : <range>-<range>;

• tos: Used to match the TOS field in the IP header
- tos:<number>;

• id: Matches the ip-id field of the IP header
- id:<number>;

• ipopts: Tests for specific IP option
- <rr | | nop | ts | sec [| ssrr | satid | any>;

• ack: Checks for a given number in the TCP ack field
- ack:<number>;

 Detection and Packet Analysis

The option checks for a particular protocol name and number. For a list of protocols that can be
specified here, see /etc/protocols.

The ttl option tests for the value in the Time To Live (TTL) field of the IP header. Its usage is self-
explanatory; you can specify a single value, greater than or less than a value, or a range of values to check
against the TTL field.

The tos option is used to match the type of service (TOS) field in the IP header. No modifiers or ranges
exist for specifying this value in the rule option.

The id option is similar to the tos option in that it matches only a single value. The value specified will be
checked against the ip-id field of the IP header.

The ipopts option enables you to specify the IP options to be matched within a packet. But due to a
development flaw in Snort, you can include only one option in the rule. But this oversight is not critical
because these IP options are not commonly used by most networking products or applications. The values
that can go into this option are listed on the slide. For more information on the descriptions for the values,
you can consult the Snort manual.

The ack option checks for a given value in the ACK field in the TCP header. Only a single value can be
specified, not a range.

134 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 (3)

• seq: Tests for specific TCP sequence number
- seq:<number>;

• Tests if size of payload falls in a given range
- dsize: [<>] <number> [<><number>];

• window: Tests the TCP window size
- window: [!]<number>;

• itype: Tests the ICMP type field for a specific value
- itype: [<>] <number> [<> <number>];

• Tests the icode field in the ICMP header
- icode:[<>] <number> [<> <number>];

• i cmpjd: Tests the ID field of the ICMP header
- icmpjd:<number>;

• icmp_seq: Checks the ICMP sequence number field
- icmp_seq:<number>;

• Checks to determine if source and destination IP is the same
- sameip;

 Detection and Packet Analysis

The rule options listed on this slide are easy to use. Most of them just check a specific value in the TCP or
ICMP header against the user supplied information. For some of them, ranges can be specified with the
greater than or less than sign in front of the numerical value. Also, ranges are specified a little differently
by using the syntax : <> The sameip option doesn't take a value from the user and is
a defense against the LAND packet that would crash computers some years ago.

 Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Resp: Respond to the alert in various ways in an attempt to close the session
- resp:<resp_mechanism> [, <resp_mechanism>];
- rst_rcv: TCP RST sent to sender, rst_rcv: sent to receiver, both
- icmp_net: ICMP net unreachable sent to sender

• icmpjiost, icmp_all

• Provides a method of flexible response
- <react_basic_modifier>;

- See manual for more information

• Logto: Specifies a separate output file for Snort to log packets triggering alert
- logto: <filename>;

• Session: Capture TCP stream after an alert
- session: [printable | all];

• Tag: Logs additional packets after packet triggering alert
- tag: <type>, <count>, <metric>;

• type - session | host
• count - number
« metric - packets | seconds

 Detection and Analysis

The last of the rule options are the post-detection rules. These rules specify some additional action to take after
the rule has been triggered by the Snort engine.

The resp option is used as a way to respond to an alert in various ways that will attempt to close the
connection. The Snort team refers to this feature as flexible response. Multiple flexible responses can be
defined for a single alert. To enable the flexible response, aspects of Snort should he compiled in when
running the script. The responses are detailed here:

rst A spoofed TCP RST packet is sent to both the client and server.

rst_rcv : A spoofed TCP RST packet is sent to the socket that is receiving the packet that triggered the
alert.

rst snd : A spoofed TCP RST is sent to the sender of the packet that triggered the alert.

 Three ICMP packets are sent to the sender of the packet that triggered the alert. These are a
combination of the icmpnet,

 and host methods.

icmp An ICMP NET UNREACH is sent to the sender of the packet that triggered the alert.

 An ICMP_PORT_UNREACH is sent to the

 An packet is sent to the sender.

The react option is another method that can be used to provide a flexible response. It should be noted that
some of the features of the react option are not functional at this point in time. The syntax is similar to that of
the previous resp option. Right now block is the only value that is currently implemented. Block will block
access to HTTP websites by sending TCP FIN packets to both the client and the server. The modifier can
also be used to include text in the blocking notice. Note that react should be the last option in the list.

136 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The logto option enables the user to specify a separate output to log just the packets that triggered the
alert. As a side note, this option does not work when Snort runs in binary mode.

The session option captures all traffic from a TCP stream after an alert has been triggered. It is often used
with the logto option so that this information can be placed in its own file for later review. The two options
that are available with the session command are printable and all. The printable option outputs only the
printable ASCII characters, and the all option outputs all characters.

The tag option is yet another option to log packets after triggering an alert. This option requires three
arguments: type, count, and metric. The type argument can be either a session or a host. I f you specify
session, packets from that session will be logged. I f host is specified independently of the session,
individual host packets will be logged. The count argument will take a number. And the metric argument
can be defined as either packets or seconds, as the unit the count argument will be defined.

 Dr. Eric Cole and David Shackleford 137

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Anatomy of a Snort Rule

action protocol src_port direction dst_port (rule options)

Y

J

Here, we look at the anatomy of a snort rale. Snort is a signature or rale-based Intrasion Detection System,
which means that each detection must be configured within Snort based on simple pattern matching analysis of
packets captured by Snort.

Network traffic is represented in a machine readable format, primarily binary or hexadecimal. Snort reads the
binary and hexadecimal data and determines i f there exists an identified pattern in the hexadecimal data
representing suspicious activities, as defined by the Snort administrator's rales. Over time, administrators will
look at known malicious activity and identify common hexadecimal patterns or string text in the network ip
packets that could be programmed as an IDS, in this case, a Snort rale.

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Primary Sources of Existing
Snort Rules

• Snort (http://www.snort.org)

• Sourcefire VRT
(http://www.sourcefire.com/solutions/rese
arch/) and (http://www.snort.org/vrt)

• Emerging Threats
(http://www.emergingthreats.net)

Advanced Detection and Packet Analysis

Several sources are available for obtaining Snort rules. These include the following:

• Snort (http://www.snort.org)

• Sourcefire VRT (http://www.sourcefire.com/solutions/research/) and
(http://www.snort.org/vrt)

• Emerging threats (http://www.emergingthreats.net)

These are also the references used to prepare this lecture and the following examples.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Examples List

Example 1
Example 2
Example 3
Example 4
Exploit
Example 5 - Detecting Inappropriate
Content

Checking for ICMP Packets
Detecting Telnet Use
Detecting HTTP Requests
Detect Adobe Acrobat Reader

Example 6
Example 7
Exploit
Example 8
Addresses

Detecting a Worm
• Detecting a Microsoft Outlook

Logging Suspicious IP

Detect an Buffer

Example 10 - Detecting Sessions

Example 9
Overflow

Example - Detect a Potential
Attack

Example 12 - Detecting a Zipped DOC
Example 13 - Detecting the Word
"password"

Example 14 - Detecting a DNS Re-
Binding Attack

Example 15 - Detecting P2P Software
Example 16 - Detecting HTTP Within
a SMB Session

Example 17 - Detecting a VoIP
Connection

Advanced and Packet Analysis

Now, we explore several examples to get a sense of how the Snort rules engine works and ways to accomplish
several objectives; denoted in the slide are the example titles. This is a small subset of the capabilities of the
Snort rales engine; however, it is an attempt to provide assistance in developing basic Snort rules, which can
be expanded to be more complex.

140 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 1:
Checking for ICMP Packets

Let's explore writing a rule detecting ping, or ICMP Echo messages.
Ping messages are sometimes used in a denial of service type of
attack.

In this rule, we are developing a simple alert to detect messages
from any host in the 192.168.1.100/24 subnet to 192.168.1.1, a
default network gateway. In this case, TCP ports are not relevant, so
we can use any. Ping messages use the ICMP network protocol.
Following the rule template, we have the following rule:

 192.168.1.100/24 any -> 192.168.1.1 any
(msg:"ICMP traffic"; sid:100;rev:l;)

 Detection and Packet Analysis

Let's explore writing a rule detecting ping, or ICMP Echo messages. Ping messages are sometimes used in a
denial of service type of attack.

 this rule, we develop a simple alert to detect 'ping' messages from any host the 192.168.1.100/24 subnet to
192.168.1.1, a default network gateway. In this case, TCP ports are not relevant, so we can use any. Ping
messages use the ICMP network protocol. In this situation, Snort checks all scanned and parsed network traffic
for the ICMP protocol. I f a network flow that matches the pattern described here exists, it is flagged by Snort.
Snort then notifies the Snort administrator that a specific pattern has been detected. In this case, a message is
sent to the administrator that says, "ICMP attack," which is denoted in the msg:"ICMP traffic" portion of the
rule. The msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort administrator of the
nature of the detected packet, answering the question, "What did Snort detect?" There also exists additional
metadata that is typically used to track, internally to Snort, the rule. Internal tracking is done by sid, which is a
unique integer for the Snort rule. The rev metadata is an integer that describes the revision of the rule. An
optional metadata classtype rule option is described here. Several predefined classtype values can be supplied to
provide a short categorization of the attack.

© Dr. Eric Cole and David Shackleford 141

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 2:
Detecting Telnet Use

Let's explore writing a rule detecting use of the telnet service.
Telnet is unsecure protocol that can be easily sniffed for

 and passwords.

In this rule, we develop a simple alert to detect telnet
messages between any host in the 192.168.1.100/24 subnet
and any other host in 192.168.1.100/24. In this case, the
Telnet service uses the TCP protocol and port 23. Following
the rule template, we have the following rule:

alert tcp 192.168.1.100/24 23 <> 192.168.1.100/24 23
(msg:"Using Telnet"; sid:100;rev:l;)

 and Packet Analysis

Let's explore writing a rale detecting use of the telnet service. Telnet is not a secure protocol and can be easily
sniffed for and passwords.

In this rule, we develop a simple alert to detect telnet messages between any host in the 192.168.1.100/24 subnet
and any other host in 192.168.1.100/24. this case, the Telnet service uses the TCP protocol port 23. The
msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort administrator of the nature of
the detected packet, answering the question: What did Snort detect? Also additional metadata exists that is
typically used to track, internally to Snort, the rule. Internal tracking is done by sid, which is a unique integer for
the Snort rale. The rev metadata is an integer that describes the revision of the rule.

142 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 3:
Detecting HTTP Requests

Let's explore writing a rule detecting use of the web or HTTP service. In
some cases, it will be helpful to log all initial requests to the web
server. In most cases, web browsers initially go to the index.htm page
on the web server.

In this rule, we develop a simple log to detect HTTP messages from
any host on the network to the web server at 192.168.1.100. In this
case, the HTTP service uses the TCP protocol and port 80 on the
server. Following the rule template, we have the following rule:

log tcp any any -> 192.168.1.100 80 (msg:"HTTP
Request";content:
attack;sid:101;rev:l;)

Advanced and Packet Analysis

Let's explore writing a rule detecting use of the web or HTTP service. In some cases, it is helpful to log all
initial requests to the web server. In most cases, web browsers initially go to the index.htm page on the web
server.

In this rule, we develop a simple log to detect HTTP messages fiom any host on the network to the
 at 192.168.1.100. In this case, the HTTP service uses the TCP protocol and port 80 on the

server. The msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort administrator
of the nature of the detected packet, answering the question: What did Snort detect? Also additional
metadata exists that is typically used to track, internally to Snort, the rule. Internal tracking is done by sid,
which is a unique integer for the Snort rule. The rev metadata is an integer that describes the revision of the
rule.

© Dr. Eric Cole and David Shackleford 143

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 4:
Detect Adobe Acrobat Reader Exploit

Let's explore a rule detecting a known exploit In Adobe Acrobat
Reader v6.0.2. In this tailored Bleeding Edge rule, we develop a simple
alert to detect the null byte, denoted as 0x00, and %00 in the web
browser, located after the URL requesting a PDF file, such as

 submitted from any
host on the network to the web server at 192.168.1.2. The exploit
leverages the null byte after the PDF file for the web server to execute
the malicious code, as seen in the example 'bin/sh.' The HTTP service
uses the TCP protocol and port 80 on the server. Following the rule
template, we have the following rule:

alert tcp 192.168.1.1/24 any -> 192.168.1.2 80 (msg: "Adobe Acrobat Reader
Malicious URL Null Byte"; flow: uricontent:".pdf |00|";
nocase; reference:url,idefense.com/application/poi/display?id=126&type

 reference:cve,2004-0629; classtype:attempted-admin;
sid:2001217; rev:7;)

 Detection and Analysis

Let's explore writing a rule detecting a known exploit in Adobe Acrobat Reader v6.0.2, as described at the website

In this tailored Bleeding Edge rale, we can develop a simple alert to detect the null byte, denoted as 0x00, and %00
in the web browser, located after the URL requesting a PDF file, such as

 submitted fiom any host on the network to the web server at
192.168.1.2. The exploit leverages the null byte after the PDF file for the web server to execute the malicious code,
as shown in the example The HTTP service uses the TCP protocol and port 80 on the server.

The msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort administrator of the nature of
the detected packet, answering the question, "What did Snort detect?" There also exists additional metadata that is
typically used to track, internally to Snort, the rale. Internal tracking is done by sid, which is a unique integer for
the Snort rule. The rev metadata is an integer that describes the revision of the rale.

In this example, we introduce several additional attributes of the Snort rale options. The content rale option is the
rich power of the Snort rule engine. The content rule option searches the network IP packet for specific text or
hexadecimal patterns in the packet. Hexadecimal patterns are preceded and ended with '|' for easy processing of the
Snort rule's engine. The uricontent rale option tells Snort to look at the portion of the network packet that describes
the Uniform Resource Indicator commonly known as a website address. The nocase rule option tells the
Snort rale engine to disregard any distinguished characters between uppercase or lowercase. The flow rule option
defines clearly to the Snort rule's parser the flow of the network traffic and i f an established TCP connection exists.

Reference tags are also included in this example that provide the Snort administrator additional information about
the rationale behind the rule and potential exploit.

144 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 5:
Detecting Inappropriate Content

Let's explore writing a rule detecting inappropriate uses of web
searches. In this case, we look for the word "hacking" in HTTP
requests. In this rule, we develop a simple alert to detect HTTP
messages that contain the word "hacking" from any host on the
network to the web server at 192.168.1.100. In this case, the HTTP
service uses the TCP protocol and port 80 on the server. Following the
rule template, we have the following rule:

alert tcp any any -> 192.168.1.100 80 (msg:"HTTP Bad Word
Request"; flow: from_server,established; "hacking";
nocase; classtype:policy-violation;sid:101;rev:l;)

Advanced and Packet Analysis

Let's explore writing a rule detecting inappropriate uses of web searches. In this case, we look for the word
"hacking" in HTTP requests. In this rule, we develop a simple alert to detect HTTP messages that contain
the word hacking from any host on the network to the web server at 192.168.1.100. In this case, the HTTP
service uses the TCP protocol and port 80 on the server. The msg tag is a user-defined tag that is meant to
clearly and quickly notify the Snort administrator of the nature of the detected packet, answering the
question: What did Snort detect? There also exists additional metadata that is typically used to track,
internally to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort rule.
The rev metadata is an integer that describes the revision of the rule.

© Dr. Eric Cole and David Shackleford 145

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 6:
Detecting a Worm

Let's explore writing an alert rule detecting a worm, namely the
BugBear@MM worm. In this case, we look for the identifying worm
network signature defined by the hexadecimal string: 77 00 69 00 6B 00
2E 00 65 00 78 00 65 00 00 00 that is transmitted from any host on the
192.168.1.100 subnet to any other host. In this case, we are monitoring
the TCP protocol and port 139, a common Microsoft Windows port on the
machine. The website URL http://www.symantec.com/avcenter/venc/data/
w32.bugbear@mm.html allows us to understand more about the worm.
Following the rule template, we have the following rule:

alert tcp 192.168.1.100/24 any -> any 139 (msg: "BugBear@MM Worm
Copied to Startup Folder"; flow: established; content:" 00 69 00 6B 00
2E 00 65 00 78 00 65 00 00

 classtype: misc-activity; sid: 2001766; rev:4;)

 Detection and Packet Analysis

Let's explore writing an alert rule detecting a worm, namely the BugBear@MM worm. In this case, we
look for the identifying worm network signature defined by the hexadecimal string 77 00 69 00 6B 00 2E
00 65 00 78 00 65 00 00 00, which is transmitted from any host on the subnet to any other
host. In this case, we monitor the TCP protocol and port a common Microsoft Windows port on the
machine. The website URL allows
us to understand more about the worm. The msg tag is a user-defined tag that is meant to clearly and
quickly notify the Snort administrator of the nature of the detected packet, answering the question, "What
did Snort detect?" Also, additional metadata exists that is typically used to track internally to Snort the rule.
Internal tracking is done by sid, which is a unique integer for the Snort rule. The rev metadata is an integer
that describes the revision of the rule.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 7:
Detecting a Microsoft Outlook Exploit

Let's explore writing an alert rule detecting a Microsoft
Outlook exploit, namely a malformatted mailto tag. In this
case, we look for "mailto:" in the message text and the

 text in the same message from any host on the
192.168.1.100 subnet to any web server containing the
exploit text on one of their web pages. In this case, we are
monitoring the TCP protocol port 80, a port on the
machine. Following the rule template, we have the following
rule:

alert tcp 192.168.1.100/24 any -> any 80 (msg:
Exploit Detected"; flow: from_server,established; content:
"mailto:') content: ""e"; nocase;

 Detection and Packet Analysis

Let's explore writing an alert rule detecting a Microsoft Outlook exploit, namely a malformatted mailto tag.
In this case, we look for mailto: in the message text and the "e text in the same message from any host

 the 192.168.1.100 subnet to any web server containing the exploit text on one of its web pages. this
case, we monitor the TCP protocol and port 80, a port on the machine. The msg tag is a user-defined tag
that is meant to clearly and quickly notify the Snort administrator of the nature of the detected packet,
answering the question: What did Snort detect? Also additional metadata exists that is typically used to
track, internally to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort
rule. The rev metadata is an integer that describes the revision of the rale.

© Dr. Eric Cole and David Shackleford 147

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 8:
Logging Suspicious IP Addresses

Let's explore writing a log rule detecting a
specific, known bad host with two known IP
addresses to any host on our network. In this
case, we monitor the IP protocol on the
machine. Following the rule template, we have
the following rule:

log ip any ->
192.168.1.1/24 any (msg:" Detected a known bad
host"; sid:100; rev:l;)

 Detection and Packet Analysis

Let's explore writing a log rule detecting a specific, known bad host with two known IP addresses to any
host on our network. In this case, we monitor the IP protocol on the machine. The msg tag is a user-defined
tag that is meant to clearly and quickly notify the Snort administrator of the nature of the detected packet,
answering the question: What did Snort detect? There also exists additional metadata that is typically used
to track, internally to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort
rule. The rev metadata is an integer that describes the revision of the rule.

148 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 9:
Detect an IMAP Buffer Overflow
Let's explore writing activate and dynamic rules that detect an IMAP
buffer overflow and collect the next 64 packets on port 143. If the
buffer overflow was successful, the next set of packets will be the
exploit script commands to be executed after the buffer overflow. In
this case, we captured the next 64 packets. The captured packet will
be from any host on the 192.168.1.100 subnet to any other host. In
this case, we are monitoring the TCP protocol and port 143, the IMAP
port. Following the rule template, we have the following rule:

activate tcp 192.168.1.100/24 any - > 192.168.1.100/24 143
(msg: "IMAP buffer overflow"; flags: PA; content:
" | E8C0FFFFFF | / b i n " ; activates: 1 ;

dynamic tcp 192.168.1.100/24 any - > 192.168.1.100/24 143
(activated_by: 1; count: 64;)

Advanced Detection and Packet Analysis

Let's explore writing activate and dynamic rules detecting an IMAP buffer overflow and collect the next 64
packets on port I f the buffer overflow is successful, the next set of packets will be the exploit script
commands to be executed after the buffer overflow. In this case, we captured the next 64 packets. The
captured packet will be from any host the 192.168.1.100 subnet to any other host. In this case, we
monitor the TCP protocol and port the IMAP port. The msg tag is a user-defined tag that is meant to
clearly and quickly notify the Snort administrator of the nature of the detected packet, answering the
question, "What did Snort detect?" Also, additional metadata exists that is typically used to track, internally
to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort rule. The rev
metadata is an integer that describes the revision of the rule.

© Dr. Eric Cole and David Shackleford 149

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 10:
Detecting Sessions

Let's explore writing an alert rule detecting X-Windows
sessions from any host on the 192.168.1.100 subnet to
any other host. In this case, we are monitoring the TCP
protocol and the ports at and beyond 6000 X-Windows
sessions. Following the rule template, we have the
following rule:

alert tcp 192.168.1.100/24 any -> any 6000: (msg: "X-
Windows sessions"; flow:
nocase;

 Detection and Packet Analysis

Let's explore writing an alert rule detecting X-Windows sessions from any host on the 192.168.1.100
subnet to any other host. Here, we monitor the TCP protocol and the ports at and beyond 6000 X-Windows
sessions. The msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort
administrator of the nature of the detected packet, answering the question, "What did Snort detect?" Also,
additional metadata exists that is typically used to track, internally to Snort, the rule. Internal tracking is
done by sid, which is a unique integer for the Snort rale. The rev metadata is an integer that describes the
revision of the rule.

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 11:
Detect a Potential Attack

Let's explore writing an alert rule detecting a possible
attack from any host to any host on the 192.168.1.100
subnet. In this case, we are monitoring the protocol and
port 110, which is used for mail. Following the rule
template, we have the following rule:

alert tcp any any -> 192.168.1.100/24 110 (msg:
"Rapid Connections - Possible Brute Force
Attack"; flags: threshold: type both, track
by_src, count 10, seconds 120; classtype:
activity; sid: 2002992; 2;)

Advanced Detection and Packet Analysis

Let's explore writing an alert rale detecting a possible attack from any host to any host on the
192.168.1.100 subnet. this case, we monitor the TCP protocol port 110, which is used for mail.
The msg tag is a user-defined tag that is meant to clearly and quickly notify the Snort administrator of the
nature of the detected packet, answering the question, "What did Snort detect?" Also, additional metadata
exists that is typically used to track, internally to Snort, the rale. Internal tracking is done by sid, which is a
unique integer for the Snort rale. The rev metadata is an integer that describes the revision of the rale. The
track by_src rale options tells the Snort rales engine to track the number of network ip packets that have
this signature. The count rule option tells the Snort rules engine how many instances of the signature must
be captured by Snort in a period. In this case, the answer is 10.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 12:
Detecting a Zipped DOC

Let's explore writing an alert rule detecting a zipped MS
Word document from any host to any other host. In this
case, we are monitoring the TCP protocol on any port.
Specifically, we are looking for the hexadecimal pattern
denoted by 50 4B 03 04, hexadecimal 00, and the
extension. Following the rule template, we have the
following rule:

alert tcp any any -> any any (msg: "ZIPPED DOC in
transit"; flow: established; content:" 4B 03
content:" nocase; classtype:
not-suspicious; sid: 2001402;)

Advanced Detection and Packet Analysis

Let's explore writing an alert rule detecting a zipped MS Word document from any host to any other host.
In this case, we monitor the TCP protocol on any port. Specifically, we look for the hexadecimal pattern
denoted by 50 4B 03 04, hexadecimal 00, and the extension. The msg tag is a user-defined tag that is
meant to clearly and quickly notify the Snort administrator of the nature of the detected packet, answering
the question, "What did Snort detect?" Also, additional metadata exists that is typically used to track,
internally to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort rule.
The rev metadata is an integer that describes the revision of the rule.

) Dr. Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 13:
Detecting the Word

Let's explore writing an alert rule detecting the word
from any host to any other host. In this case, we are monitoring
the TCP protocol on any ports. Specifically, we are looking for
the regular expression denoted by

 Following the
rule template, we have the following rule:

alert tcp any any -> any any (msg:"HTTP - Password";
flow:to_server,established;

classtype:policy-violation; sid:2002567;

 and Packet Analysis

Let's explore writing an alert rule detecting the word "password" from any host to any other host. In this
case, we monitor the TCP protocol on any ports. Specifically, we look for the regular expression denoted
by The msg tag is a user-defined tag that is meant to
clearly and quickly notify the Snort administrator of the nature of the detected packet, answering the
question, "What did Snort detect?" Also, additional metadata exists that is typically used to track, internally
to Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort rule. The rev
metadata is an integer that describes the revision of the rule.

© Dr. Eric Cole and David Shackleford 153

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 14:
Detecting a DNS Re-binding Attack

Let's explore writing an alert rule detecting a DNS Re-Binding
Attack from any host to any other host. In this case, we are
monitoring the TCP protocol on the DNS port 53. Specifically, we
are looking for the hexadecimal expression denoted by cO Oc 00 01
00 01 and 00 04 cO a8. These two patterns must be within 4 bytes
of each other. Additional details about the attack can be found at
http://crypto.Stanford.edu/dns. Following the rule template, we
have the following rule:

alert tcp any 53 -> any any (msg:"DNS-Rebinding Attack
192.168.x.x/16 (local IP from remote DNS Server)";

 content: " | cO Oc 00 01 OO
content:" 04 cO within:4;
reference:url,crypto.stanford.edu/dns/; classtype:misc-attack;
sid:2006917; rev:5;)

 Detection and Packet Analysis

Let's explore writing an alert rule detecting a DNS Re-Binding Attack from any host to any other host. In
this case, we monitor the TCP protocol on the DNS port 53. Specifically, we look for the hexadecimal
expression denoted by cO 00 01 00 01 and 00 04 cO a8. These two patterns must be within 4 bytes of
each other. Additional details about the attack can be found at The msg tag
a user-defined tag that is meant to clearly and quickly notify the Snort administrator of the nature of the
detected packet, answering the question: What did Snort detect? Also additional metadata exists that is
typically used to track, internally to Snort, the rule. Internal tracking is done by sid, which is a unique
integer for the Snort rule. The rev metadata is an integer that describes the revision of the rule.

154 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 15:
Detecting P2P Software

Let's explore writing an alert rule detecting P2P software,
namely LimeWire, from any host to any other host. In this
case, we are monitoring the TCP protocol on any port.
Specifically, we are looking for the text content denoted by
"User-Agent\: LimeWire." Additional details about the
signature can be found at http://www.limewire.com.
Following the rule template, we have the following rule:

alert tcp any any - > any any (m s g : " P2P LimeWire P2P Traffic"; f low:
established; LimeWire"; nocase; classtype:
policy-violat ion; reference:url ,www.limewire.com; sid: 2001808;
r ev :3 ;)

 Detection and Packet Analysis

Let's explore writing an alert rule detecting P2P software, namely LimeWire, from any host to any other
host. In this case, we monitor the TCP protocol on any port. Specifically, we look for the text content
denoted by "User-Agent\: LimeWire." Additional details about the signature can be found at

 The msg tag is a user-defined tag that is meant to clearly and quickly notify the
Snort administrator of the nature of the detected packet, answering the question, "What did Snort detect?"
Also, additional metadata exists that is typically used to track, internally to Snort, the rule. Internal tracking
is done by sid, which is a unique integer for the Snort rule. The rev metadata is an integer that describes the
revision of the rule.

© 2016 Dr. Eric Cole and David Shackleford 155

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Example 16:
Detecting HTTP within a SMB Session

Let's explore writing a log rule detecting a HTTP request within a SMB
connection, a possible worm download from any host to any other
host. In this case, the we are monitoring the TCP protocol on port
445, the Microsoft Windows SMB port. Specifically, we are looking for
the content denoted by "HTTP" and a hexadecimal signature denoted
by FF 53 4D 42 72. Additional details about possible SMB attacks can
be found at http://www.linklogger.com/TCP445Scan3.htm. Following
the rule template, we have the following rule:

log tcp any any - > any 445 (msg: "HTTP download over a SMB
connection"; f low: established; content:" | FF 53 4D 42

 ";content:"HTTP"; nocase; classtype: policy-violation;

sid:10000; r e v : l ;)

 Detection and Packet Analysis

Let's explore writing an alert rule detecting HTTP request within a SMB connection, a possible worm
download from any host to any other host. In this case, we monitor the TCP protocol on port 445. the
Microsoft Windows SMB port. Specifically, we look for the content denoted by HTTP and a hexadecimal
signature denoted by FF 53 4D 42 72. Additional details about possible SMB attacks can be found at

 The msg tag is a user-defined tag that is meant to clearly
and quickly notify the Snort administrator of the nature of the detected packet, answering the question:
What did Snort detect? There also exists additional metadata that is typically used to track, internally to
Snort, the rule. Internal tracking is done by sid, which is a unique integer for the Snort rule. The rev
metadata is an integer that describes the revision of the rule.

© Dr. Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Example 17:
Detecting a VoIP Connection

Let's explore writing a rule detecting a Voice over IP
(VoIP) request from any host to any other host. In this
case, we are monitoring the UDP protocol on port 5060,
the VoIP port. Following the rule template, we have the
following rule:

log udp any any -> any 5060 (msg:" VOIP Messages
 rev:l;)

 Detection and Packet Analysis

Let's explore writing a log rule detecting a Voice over IP (VoIP) request from any host to any other host. In
this case, we monitor the UDP protocol on port the VoIP port. In this situation, Snort checks all
scanned and parsed network traffic transmitting over port 5060. I f a network flow that matches the pattern
described here exists, it is flagged by Snort. The msg tag is a user-defined tag that is meant to clearly and
quickly notify the Snort administrator of the nature of the detected packet, answering the question, "What
did Snort detect?" Additional metadata that is typically used to track also exists, internally to Snort, the rale.
Internal tracking is done by sid, which is a unique integer for the Snort rale. The rev metadata is an integer
that describes the revision of the rale.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 3

Snort Basics

Advanced Detection and Packet Analysis

This page intentionally left blank.

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Housekeeping

• Log in to the Kali VM
• Execute the following:

#nano conf
• In the file, scroll down to the

bottom where all rules are
• Place a "# " in front all

 lines with
"community" rules

• Hit Enter.
Then, to quit.

 Detection and Packet Analysis

Let's play with Snort a bit! First, you need to edit the Snort configuration because some of the rules in it
have errors in the Kali image.

Log in to Kali (unless it's already open), open a terminal, and then execute the command nano
 This should open the Snort master configuration within the nano editor.

Page down to the bottom of the (using the down arrow or the Page Down key) and you see a number of
lines starting with include, followed by $RULE_PATH and some rule filenames. We need to comment out all
the lines with community rules. Place a "#" in front of every community line. There should be approximately

 to 15 of these. When finished, hit Enter. Then, press Ctrl-X to quit.

Ask your instructor for help i f you get confused here!

include rules
include rules
include
include
include rules

include
include

 f t p . rules
include SRULE
ffintlude SRULE
include SRULE

include SRULE rules
include

include
 SRULE

include SRULE

 Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Snort Analysis #1

• Let's analyze some traffic!
• In the /home/501 directory, run the

following:
#snort -r -c
/etc/snort/snort.conf -I /home/501

• This should analyze the Slammer
PCAP file

 Detection and Packet Analysis

Navigate to the /home/501 directory within the terminal window by typing cd /home/501. When there, run the
following command:

#snort -r slammer.pcap -c

If your Snort config is properly set up, you should see a huge amount of analysis performed.

160 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Snort Analysis #1 :
Alert

Snort 1 packets.

Breakdown by protocol (includes rebuilt
ETH: 1

VLAN: 0 (0.000%)
IPV6:

IP6 0
 0

 0
 1

 0
TCP 6:
UOP 6: 0 (0.000%)
 9

 0
TCP: 0
 I

 (0.000%)

FRAG: 0
FRAG

ARP:
 a

IPX:

OTHER; e (0.006%)
DISCARD:

 0
S5 G e
S5 2: 0 (6.606%)
Total:

 Stats:
ALERTS: 2
LOGGED: 2

 0

 MS-SQL propagation attempt
 Attack] (Priority: 2]

 213.76.212.22:26199 -> 65.165.167.86:1434
UDP

 376
[Xref htm] [Xref

 Worm propagation attempt
 Attack] 2]

 ->
 TTL:113

iLen: 376
[Xref

Advanced and Packet Analysis

When the Snort engine finishes running, scroll back up and take a look at all the statistics and details
presented. Snort breaks down the number of packets, flows, protocols, and much more!

As you can see in the slide, the Slammer PCAP should yield only a single packet and two alerts. The alert
should now be present in the directory. Type less alert and see what is in there.

You should have two alerts that correspond to this malicious worm, one that designates it specifically as an
outbound propagation attempt to spread and find new victims.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Snort Analysis #2 (1)

• Let's do another analysis of known attack
traffic

• In the /home/501 directory, type:
#rm alert

• Now run the following:
#snort -r teardrop.pcap -c
/etc/snort/snort.conf -I /home/501

• This should analyze the Teardrop PCAP
file

 Detection and Packet Analysis

Let's do some more Snort analysis! Type rm alert in the directory to remove the alert file from the
last example.

Let's look at the Teardrop attack, which allows us to leverage Snort's fragmentation preprocessor. Run the
following command:

#snort -r teardrop.pcap -c /home/501

Allow Snort to run through its analysis.

162 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TCP: D
UDP: 3

ICMP: 2

 (0.000%)
 (0.000%)

FRAG: 2 (11.765%)
FRAG

ARP: 5 (29.412%)
 e

ETHLOOP: 5 (29.412%)
IPX:

OTHER: 1
DISCARD: e (0.000%)

 e
 1:

S5 G 2:
Total: 17

Action Stats:
 3

LOGGED:
PASSED:

Frag3 stat ist ics:
Total 2

Frags
Discards:

 Faults;

Overlaps: 1
 2

Alerts: 2
Drops:

 Added: 1

FragTrackers Auto Freed:
Frag Modes 1
Frag Deleted:

Snort Analysis #2 (2)

 [123:3:1] fragment, possible OoS attempt [*
 3]

 16.1.1.1 ->
UDP MF
Frag Frag

 DOS Teardrop attack
[C l a s s i f i c a t i o n : Attempted Denial of Service) [P r i o r i t y : 2]

 16.1.1.1 ->
UDP DgmLen:56 MF
Frag Frag

 Zero-byte fragment packet [**]
[P r i o r i t y : 3]

UDP ID:242
Frag Frag

Advanced and Packet Analysis

Again, after Snort finishes, take a look at the analysis stats and packet information. We have more traffic in
this PCAP file, including two fragments that show anomalies.

You can specifically see in the Frag3 Statistics section where a single overlap is listed. Now take a look at the
alert again. You should see some specific alerts for Teardrop and anomalous fragments; this is a well-
known attack.

© Dr. Eric Cole and David Shackleford 1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Snort Analysis #3 (1)

• Let's do one more Snort analysis
• In the /home/501 directory, type:

#rm alert
• Now run the following:

#snort -r ftp-attack.pcap -c
/etc/snort/snort.conf -I /home/501

• This should analyze the FTP Attack
PCAP file

Advanced Detection and Packet Analysis

Let's do one more analysis with Snort. Again, remove the alert from the f directory.

Let's look at the FTP brute force attack we saw earlier. Run the following command:

#snort -r ftp-attack.pcap -c /home/501

Let the Snort engine work its magic.

164 ©2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Snort Analysis #3 (2)
Snort processed packets.

Breakdown by protocol (includes rebuilt packets):
ETH: SOB

IPV6:

 e
IP6di5c:

1P4: (100.080%)
 0

TCP 6: (0.000%)
UOP 6:

TCP:
 33 (0,008%)

 1 (0.288%)
TCPdisc; (0.000%)
 0

FRAG:

ARP:

(0.080%)
(0.000%)

ETHLOOP:

IPX: e
OTHER;

DISCARD:

S5 G
S3 0 2: 4
Total:

Action Stats:
ALERTS:
LOGGED: 12
PASSED:

 [1:1384:81 M1SC malformed advertisement [»»1
 [Priority:

 ->
UDP

 364
[Xref

 MISC UPnP malformed advertisement [**]
 Misc Attack] [Priority: 2)

 •>
UOP TTL:1 T0S:6x8 ID:14182 IpLen:28
Len: 293
IXref

[*•] MISC UPnP
(Classification: Misc Attack] [Priority: 2]

 ->
UDP TTL:1
Len: 352

 ->

 the FTP brute force attacks?

Advanced Detection and Packet Analysis

Following the same process as before, take a look at the packet stats and alerts. You should notice shortly that
something is off.

Where's the alerting on our FTP brute force attempts? We have some other odd alerts in here but not what we
expected. Let's investigate.

© Dr. Eric Cole and David Shackleford 165

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Check the FTP Rules File

 directories
alert tcp WET NET 21 -root

 distance:!:

alert tcp -> 21

alert tcp NET -> - f

 classtype

S against of ftp
alert tcp any serv directory transversal":

alert ttp any 21 bad attempt

alert tcp any -> NET 21 bad attempt

c-attatk; rev:15;)
alert tcp any -> 21
" racase; rev:5;)
alert tcp any overflow

alert tcp EXTERNAL NET any LIST directory traversal attempt"; f

 distance;]; referent
 sid: 1992;

 FILES
alert any
9;

 Detection and Packet Analysis

First, check the FTP rales that Snort currently uses. I f you revisit your snort.eonf (no need here), you see
that it's calling the ftp.rules file, which is in /etc/snort/rales/.

Type the following:

#less

Scroll down and look through the rules. There are a lot of rales, ranging from protocol anomalies to buffer
overflows to weird command execution, and so on.

But no real brute force rales!

• Run the command:
#less
/etc/snort/rules/ftp.
rules

• Look through
them... see any
brute force rules?

166 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We Need a New Rule!

• First, review the output of TCPdump
and/or Wireshark for this attack

FTP Response: 331 Password required for service.

FTP Request: PASS jan

FTP 530 User service cannot log in.

RP Request: USER service.

RP Response: Password required for service.

RP Request: PASS japan

RP Response: 530 User service cannot log in.

RP Request: USER service

RP Response: 331 Password required for service.

RP Request: PASS

RP Response: 530 User service cannot log in.
 o n

We can trigger on:
-"User"

-Thresholds

 and Packet Analysis

Looks like we need a new Snort rale. Revisit the output of our TCPdump or Wireshark analysis to see what
traffic we can hone in on for the rale. We have the following options:

We can trigger on:

--"User"

--"Pass"

-"530"

—Thresholds

We should easily build a rule from this.

© Dr. Eric Cole and David Shackleford 167

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Add a Rule

• Let's add a rule in the local.rules file:
#nano

• Add the following (all one line):

alert tcp any 21 -> any any (msg:"Potential FTP Brute-
Force attempt"; flow:from_server,established;

 100; content:"530 "; depth:4;
pcre:"/530\s+(Login | User | Failed | Not)/smi";

 threshold: type threshold,
track by_dst, count 5, seconds 300; sid:9999999; rev:l)

Advanced Detection and Packet Analysis

So.. do this! Lots of analysts use the local.rules file to add their own custom rules, and that's what we'll do.

Using the nano text editor, open the Now add the following, all in one line:

alert tcp any 21 -> any any (msg: "Potential FTP Brute-Force attempt"; flow:fiom_server,established;
dsize:<100; content:"530 "; depth:4; pcre:"/530\s+(Login|User|Failed|Not)/smi";
threshold: type threshold, by_dst, count 5, seconds 300; sid:9999999; rev:l)

On the next slide, break down the various components of the rule.

168 © 2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's Break This Down

• alert tcp any 21 -> any any
- Alert on FTP responses on any subnets

•
- Established TCP connection from server

• 100
- Datagram of less than 100 bytes

• content:"530 "; depth:4
- Look for the keyword 4 bytes in

• | User | Failed |
- Do a regex match on 530,space,then a keyword

• threshold: type threshold, track by_dst, count 5, seconds 300
- Trigger on 5 "hits" in 300 seconds (5 minutes)

• sid:9999999; rev:l
- Snort ID 9999999, revision 1 (just a made-up number!)

 Detection and Packet Analysis

Here's the breakdown of our major fields!

alert tcp any 21 -> any : Alert on FTP responses on any subnets

flow:from_server,established: Established TCP connection from server

dsize:<100: Datagram of less than 100 bytes

content:"530 "; depth:4: Look for the keyword "530" 4 bytes in

pcre:"/530\s+(Login|User|Failed|Not)/smi": Do a regex match on 530,space and then a keyword

threshold: type threshold, track by dst, count 5, seconds 300: Trigger on 5 "hits" in 300 seconds (5
minutes)

sid:9999999; rev:l: Snort ID 9999999, revision 1 (just a made-up number!)

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Analysis Redux

Hit Enter. Then Ctrl-X to quit.
Let's try again!
In the /home/501 directory, type:
#rm alert
Now, run the following:
#snort -r -c
/etc/snort/snort.conf -I /home/501

Advanced Detection and Packet Analysis

After you have the rule in place (check it twice for typos or syntax errors!); then save the file by pressing
 and Enter to keep the name Type Ctrl-X to quit.

Let's run that analysis again! Type the following:

#snort -r ftp-attack.pcap -c /home/501

Again, Snort should run through its evaluation.

170) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What Happens This Time?

 Potential FTP Brute-Force [»*]
 Unsuccessful User Privilege Gain] (Priority: 1]

 192.168.1.5:21 -> 211.152.42.144:34121
TCP TTL:128 IpLen:28 OF

 Seq: Ack: Win: TcpLen: 32
TCP Options NOP NOP TS:

 Potential FTP Brute-Force
[Classification: User Privilege 1]

 192.168.1.5:21 -> 211.152.42.144:34121
TCP TTL:128 Iplen:28 OF

 Seq: Ack: Win: TcpLen: 32
TCP Options NOP NOP

 (1:9999999:1] FTP Brute-Force attempt (•»]
(Classification: Unsuccessful User Privilege Gain] [Priority:

 192.168.1.5:21 -> 211.152.42.144:34121
TCP 1D:32177 IpUn:28 DF

 Seq: Ack: Win: 6xF026 TcpLen: 32
TCP Options NOP NOP TS:

wOOt! Caught it this time!

 Analysis

When the Snort engine finishes running, take another look. What do we have now?

You should notice a lot more alerts! Check the alert to see what's in there now, and you should have a
number of hits with our new rule. Awesome.

© 2016 Dr. Eric Cole and David Shackleford

Breakdown by protocol (includes rebuilt packets):
ETH:

ETHdisc:
VLAN:
IPV6: 8

IP6 EXT: 8

IP6disc:

1P4:
lP4disc:

 J

UOP 6:

TCP:
UOP:
 1

TCPdisc:

 0
FRAG 6: 8

ARP:

ETHLOOP: 8
IPX:

OTHER:
DISCARD: 8

S5 1: 1
S5 2: 4
 588

Action Stats:
 31

vanccd

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lab Conclusion

• In this lab, we explored how Snort can:
- Break down packet stats in a capture
-Analyze traffic for malicious events
- Be extended with own

• This is just the tip of the iceberg; Snort
is a powerful IDS
- Consider the SANS SEC503 class for more

in-depth treatment!
Advanced Detection and Packet Analysis

We've now scratched the surface of Snort, using it for analysis and detection. If you finish early, play around
and create some additional rules and You can easily generate some ICMP pings, or even run the
NMAP scanning tool and generate more alerts with existing and custom rules.

If this made you realize your love of packets, you should consider the SANS SEC503 class, which goes into
incredible detail on Snort and packets in general. Highly recommended!

172 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Modsecurity (1)

• Apache web server module that acts as
an IDS/IPS for web applications

• Sits in line between the web client and
server to detect and block attacks

• Built-in active responses
• HTTP/web server specific, augments

current DID strategy

 and Packet Analysis

Modsecurity, is an Apache web server module that acts as an intrusion detection
and prevention engine for web applications. It increases web application security by protecting applications
from both known and unknown attacks. Modsecurity sits inline between the web client and server to detect
attacks. I f it identifies a potential attack, it can reject the request or perform any number of built-in active
responses. Modsecurity is a great tool to use as part of your defense in-depth strategy. It is best coupled with
an IDS that is monitoring at the network level. Modsecurity fills the gap between the web server and the
application, providing a great open source solution for web application security.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Modsecurity (2)

• Features:
- Request filtering
- Anti-evasion techniques
- Understanding of the HTTP protocol
- POST payload analysis
- Audit logging
- HTTPS filtering
- URL encoding validation
- Unicode encoding validation
- Byte range verification to detect and reject shellcode
- Works with Snort rules

Advanced Detection and Packet Analysis

Modsecurity integrates with the web server and provides the following features:

• Request filtering: Incoming web requests are analyzed inline before being passed to the web
server or other modules.

• Anti-evasion techniques: Paths and parameters are normalized before analysis takes place. This
includes removing multiple forward slash characters {II), treating backslash and forward slash
characters equally (Windows only), removing directory (./), removing null
characters (%00), and decoding URL encoded characters.

• Understanding of the HTTP protocol: The engine has complete understanding of the HTTP
protocol, allowing it to perform specific and granulated filtering.

• POST payload analysis: The engine intercepts and analyzes POST method contents.

• Audit logging: All requests are logged in full detail for later analysis.

, filtering: The engine can operate with encrypted sessions because it has access to the
request data after decryption occurs.

• Built-in checks: Other special built-in checks include URL encoding validation, Unicode encoding
validation, and byte range verification to detect and reject shellcode.

• Rule support: Modsecurity also supports any number of custom rules for attack detection and
prevention. These rules are formed using regular expressions. Negated rales are also supported.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Modsecurity (3)

 keyword [action]

 "variable list

separated with keyword [action]

Advanced Detection and Packet Analysis

Modsecurity rales can analyze headers, cookies, environment variables, server variables, page variables, POST
payload, and script output. Rules are configured in the following two formats:

SecFilter keyword [action]

SecFilterSeleetive "variable list separated with |" keyword [action]

SecFilter applies the regular expression keyword to the first line of the incoming request and to the POST
payload i f it exists and applies an optional action. Because this is a broad and general rale, it is better to use
SecFilterSeleetive. This rale format allows better control over the data analyzed. Modsecurity rales can also
intercept files that are uploaded to the web server, store uploaded files on a disk, and execute an external binary
to approve or reject files.

© Dr. Eric Cole and David Shackleford 175

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Modsecurity (4)

• deny
• allow
•
•
•

• log
•
• pass
• nnn
• chain
•

 Detection and Packet Analysis

When rules are triggered, several actions can be taken:

• deny: Deny the request.

• allow: Stop the rule processing and allow the request.

• status:/*/***: Respond with an HTTP status nnn.

• Redirect the request to the absolute

• Execute the script

• log: Log the request to the error log.

• nolog: Do not log the request.

• pass: Ignore the current rule match and go on to the next rule.

• Pause the request for nnn milliseconds.

• chain: Evaluate the next rule in the chain.

• skipnext:**: Skip the next n rules.

176 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Modsecurity (5)

• http.conf
• Perl script to convert Snort rules:

WEB-ATTACKS ps command attempt
 THE_REQUEST "/bin/ps"

WEB-ATTACKS -a command attempt
SecFilter
testcgi access

 THE_REQUEST "/testcgi" log,pass
/iisadmpwd/aexp2.htr access
SecFilterSeleetive THE_REQUEST "/iisadmpwd/aexp2\.htr" log,pass
http directory traversal
SecFilter "\.\A\"

 Detection and Packet Analysis

Modsecurity is configured by modifying the apache http.conf with the appropriate settings and rules.
Modsecurity also includes a Perl script to convert Snort rules to Modsecurity rules. Snort classifies rules into
web attacks, which are converted to reject incoming requests, and web activities, which are converted to log
only the activity. The following is an example of converted Snort rules:

WEB-ATTACKS ps command attempt

SecFilterSeleetive THE_REQUEST

WEB-ATTACKS uname -a command attempt

SecFilter "uname\x20-a"

WEB-CGI testcgi access

SecFilterSeleetive THE REQUEST "/testcgi" log,pass

WEB-IIS /iisadmpwd/aexp2.htr access

SecFilterSeleetive THE_REQUEST 7iisadmpwd/aexp2\.htr" log,pass

WEB-MISC http directory traversal

SecFilter "\.\.\\"

When converting Snort rules, you must scan the results and remove any converted rules that are incorrect, or
rules that do not apply to your environment.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Modsecurity (6)

 Parse the request
 rerrorm canonization ana anti-

evasion actions
3. Perform special built-in checks
4. Execute input rules
5. Execute output rules
6. Log the request

 and Packet Analysis

Following is an example of the process that Modsecurity uses when handling a request to detect and prevent
web attacks:

1. Parse the request. Modsecurity starts by parsing the request.

2. Perform canonization and anti-evasion actions. Modsecurity performs a series of transformations on the
input to make it suitable for analysis. This mitigates various evasive techniques such as null byte attacks,
self-referencing directories, multiple slash characters, using backslash characters on Windows, and so on.

3. Perform special built-in checks. It performs more complicated validations such as URL encoding
validation, Unicode encoding validation, and byte range verification to detect and reject shellcode.

4. Execute input rales. Modsecurity executes custom rales that you have created using regular expressions.
In addition, several rales can be combined for more complex analysis.

5. Execute output rules. Now the request is transferred to the handler where output rules are applied to the
response body. They are usefiil to prevent information leaks.

6. Log the request. Modsecurity logs the complete request consisting of input and output headers and the
request body, Modsecurity can be configured to log specific requests and responses to prevent excessive
logging.

178 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TCPtrace and TCPflow (1)

• We need flow data! Assessing flows
is easy and useful

• There are lots of tools that can do
simple PCAP flow analysis

• TCPflow installed in Kali by default
-TCPtrace is easily added

• These will help you determine who is
talking to

Advanced and Packet Analysis

One of the first things you can do when beginning a network forensics investigation is to analyze network
flow information. This can help you to analyze which systems are communicating, which systems had
completed sessions, and even reconstruct data quickly (similar to Wireshark's Follow TCP Stream
functionality).

Two tools that can be incredibly useful for accomplishing these goals are TCPtrace TCPflow. TCPtrace
pulls fundamental flow and session data out of PCAP files and displays it. TCPflow, however, yanks any
meaningful content and session data out of files and deposits it in separate text files for easy perusal.

To make your life even easier, the default Kali distribution includes TCPflow, and TCPtrace can easily be
installed.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TCPtrace and TCPflow (2)

 tcptrace
 arg starting with 'ftp-attack.pcap'

 tcptrace -- version 6.6.7 -- Nov 4,

495 packets seen, 461 TCP packets traced
elapsed pkts/sec analyzed
trace elapsed time:

 connection
1: 211.152.42.144:34121 - 268>
2: 192.168.1.115:1836 - 192.168.1.5:139 (c2d) (complete)
3: 192.168.1.5:1848 - (e2f) 4> 3<
4: 192.168.1.5:1841 - (g2h) 5> 5<
5: 192.168.1.5:1842 - 7>
6: 192.168.1.5:1843 - 6> (complete)

 tcptrace
 arg starting with 'ftp-attack.pcap'

 tcptrace -- version 6.6.7 -- Nov 4,

495 packets seen, 461 TCP packets traced
elapsed pkts/sec analyzed
trace elapsed time:

 connection
1: 211.152.42.144:34121 - 268>
2: 192.168.1.115:1836 - 192.168.1.5:139 (c2d) (complete)
3: 192.168.1.5:1848 - (e2f) 4> 3<
4: 192.168.1.5:1841 - (g2h) 5> 5<
5: 192.168.1.5:1842 - 7>
6: 192.168.1.5:1843 - 6> (complete)

 J)

 tcptrace
 arg starting with 'ftp-attack.pcap'

 tcptrace -- version 6.6.7 -- Nov 4,

495 packets seen, 461 TCP packets traced
elapsed pkts/sec analyzed
trace elapsed time:

 connection
1: 211.152.42.144:34121 - 268>
2: 192.168.1.115:1836 - 192.168.1.5:139 (c2d) (complete)
3: 192.168.1.5:1848 - (e2f) 4> 3<
4: 192.168.1.5:1841 - (g2h) 5> 5<
5: 192.168.1.5:1842 - 7>
6: 192.168.1.5:1843 - 6> (complete)

 Ml . . !

 tcptrace
 arg starting with 'ftp-attack.pcap'

 tcptrace -- version 6.6.7 -- Nov 4,

495 packets seen, 461 TCP packets traced
elapsed pkts/sec analyzed
trace elapsed time:

 connection
1: 211.152.42.144:34121 - 268>
2: 192.168.1.115:1836 - 192.168.1.5:139 (c2d) (complete)
3: 192.168.1.5:1848 - (e2f) 4> 3<
4: 192.168.1.5:1841 - (g2h) 5> 5<
5: 192.168.1.5:1842 - 7>
6: 192.168.1.5:1843 - 6> (complete)

 00021

 tcptrace
 arg starting with 'ftp-attack.pcap'

 tcptrace -- version 6.6.7 -- Nov 4,

495 packets seen, 461 TCP packets traced
elapsed pkts/sec analyzed
trace elapsed time:

 connection
1: 211.152.42.144:34121 - 268>
2: 192.168.1.115:1836 - 192.168.1.5:139 (c2d) (complete)
3: 192.168.1.5:1848 - (e2f) 4> 3<
4: 192.168.1.5:1841 - (g2h) 5> 5<
5: 192.168.1.5:1842 - 7>
6: 192.168.1.5:1843 - 6> (complete)

tcptrace ftp-attack.pcap

tcpflow -r ftp-attack.pcap

PASS

"PASS

 service

 service
 fyjo
 service

 service

Advanced and Packet Analysis

This slide depicts examples of both TCPtrace and TCPflow in action. Don't worry, you'll get to use them
soon enough.

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ngrep

Ngrep looks for
pattern matches in
network traffic
Incredibly useful

 network
investigations
Looks for sensitive
data leakage,
passwords, or known
malicious traffic

 ngrep -I PASS
input:

 PASS

T ->

PASS Jan..

T (AP]
PASS

T -> 192.168.1.5:21 (API

PASS

:T -> 192.168.1.5:21
PASS jazz..

T 211.152.42.144:34121 ->

T

 Detection and Analysis

Ngrep is awesome! This tool has been around forever and keeps getting updated. What does it do? Simple! It
allows for content searches in network traffic. And boy, does it do a good job. Simple to use and flexible to
boot. Any pattern you can come up with, you can search for easily. This elevates our traditional layer 3/4 tools
for network forensic analysis a bit, digging into the actual content, which is where the real attack trends tend to
occur today.

 Dr. Eric Cole and David Shackleford 181

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NetworkMiner (1)

• NetworkMiner is an open project that
combines a broad range of network
forensic functionality into one tool
-Only runs on Windows

• Analyzes sessions, credentials,
cleartext info, DNS, hosts involved,
and more!
-And it even supports DRAG AND DROP!

Advanced Detection and Analysis

NetworkMiner incorporates a number of features into one Windows tool for network traffic analysis. By
simply dragging and dropping a PCAP into the tool, you can immediately analyze a vast array of traffic
captured in a PCAP file. Capabilities include:

• Host communication and OS information

• Frame breakdowns of Layers 2-4 sessions

• Files sent

• Images included

• Messaging protocols and data

• Credentials transmitted

• Session data

• DNS information

• Keywords in the traffic

• Anomalies

And even more!

182 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NetworkMiner (2)

 j "

 as

 MOO

 115
• Peels
. ?1

.- 0
 •> CO

 •> 777 0 rt?<rtfcj (0 (1

: -S fcvVnl
 114 OTtCafrtOO)^n4>-Ml.15)t^*lllTJ370*.=101»l:cSe*!eJF)=i00^Ti

TCP. •>

TCP.
TCP

 3:

IP.

 0)

:
:

 11 111
 1

 and Packet Analysis

This slide depicts a screen shot of NetworkMiner in action. You can download the tool at

© Dr. Eric Cole and David Shackleford 183

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Security Onion + ELSA/Snorby
+ CapMe (1)

• Richard Bejtlich posted a positive note
about the latest SecurityOnion release

• This network
distribution is the

• Incorporates ELSA/Snorby for IDS sensor
log monitoring and CapMe for TCP
transcripts from Snorby/ELSA alerts

Advanced Detection and Packet Analysis

Richard Bejtlich, a noted network security analyst, wrote a positive post about Doug Burks'
SecurityOnion release in January 2013. (And the project has just kept progressing from there.) In short: it's
awesome. Doug has outdone himself and incorporated a vast array of network security monitoring tools that
can help analysts do their jobs better.

ELSA and Snorby are IDS/IPS monitoring and analysis tools.

CapMe is a TCP session analyzer that takes alerts directly from ELSA and Snorby.

Together, this package may give analysts everything they need to do serious network analysis.

Check out Richard's original post at
capme.html.

184 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Security Onion + ELSA/Snorby
+ CapMe (2)

This slide depicts a screen shot from Richard's post, showing multiple tools in SecurityOnion working in
tandem.

Post is found at

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 4

Miscellaneous Network
Forensics Tools

 Detection and Packet Analysis

Let's quickly play with some of the network forensics tools we just covered.

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TCPtrace/TCPflow (3)

In the SEC501 Kali image, navigate to

Run the following TCPtrace
commands:
-tcptrace

- tcptrace pcap
-tcptrace

 Detection and Analysis

To start, let's run TCPtrace against a few of our PCAP files. Run the following commands:

• tcptrace

• tcptrace ../smb_32byte_segments.pcap

• tcptrace

What kind of interactions do you see? You should see some like the following:

97 packets seen, 97 TCP packets traced

 time: analyzed

trace elapsed time: 0:00:07.104053

TCP connection info:

1: 10.0.225.23:31603 - 10.0.225.12:445 (a2b) 51> 33< (reset)

2: 10.0.225.23:31604- (c2d) 7> 6< (complete)

© Dr. Eric Cole and David Shackleford 187

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

TCPtrace/TCPflow (4)

• In the /home/501/netforensics directory, run the
following TCPflow command:
- tcpflow -r

• Now, look in the directory and peruse the text files
• What do you see?

» -

!
 i

t

8

1_5

 Detection and Packet Analysis

Let's turn our attention to TCPflow now. In the same directory, execute the following:

#tcpflow -r

A number of files will be generated in the directory, some of which are text files containing session data. Open
the File Browser by clicking the Places menu item at the top of the Kali screen, and then navigating to

 Double-click any of the text files to open them easily.

What do you find there? You should see the FTP attempts in a few files, as well as some
other browser content.

188 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ngrep

• In the directory,
run the following Ngrep command:
- ngrep -I -I

• This shows a case-insensitive search for the
 attacks in the PCAP file

• Try this one:
- ngrep -I ../cve-2008-

 -i system
- What do you get?

Advanced Detection and Packet Analysis

Let's ran a few Ngrep commands! In the directory, try the following:

ngrep - I - i "user|pass"

AND

ngrep - I - i system

What kinds of content do you see? What other commands could you come up with?

©2016 Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

NetworkMiner

• On your Windows system, open your
3 USB and open the Day2 folder

• Copy the NetworkMiner_l-4-l.zip file to
your system and unzip

• Execute the file
• Drag the attack-trace.pcap file into

NetworkMiner
• Look through each tab. What data do you

see?

Advanced Detection and Packet Analysis

Do the following to get NetworkMiner set up:

 On your Windows system, open your -3 USB and open the Day2 folder.

2. Copy the NetworkMiner_l-4-l file to your system and unzip.

3. Execute the NetworkMiner.exe file.

4. Drag the attack-trace.pcap into NetworkMiner.

Look through each tab. What kinds of useful data do you see? Just explore: There's a lot here!

Incidentally, this PCAP came from a Honeynet Project challenge that is fun. Check it out at
http://www.honeynet.org/node/504.

190 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lab Summary

• This lab was essentially just for you
to play with some tools!

• There are a huge number of great
network forensics tools out there

• You should explore those in both Kali
and SecurityOnion

Advanced and Packet Analysis

This lab was focused on playing with some cool tools! Network forensics is a big area, and SANS has a
course on this topic as well.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Open Source Summary

• IDS/IPS are often Snort-centric (BRO is also
common):
- UNIX/Linux centric, too
- Most still focused on signature matching/string

matching
- Little anomaly or behavioral detection
- Good solutions for simple environments; none are

equipped for full enterprise protection
• Network forensics tools have come a long way!

- Both Linux and Windows tools available
- Flexible and robust, too

Advanced Detection and Analysis

This section presented several free, open source tools for implementing intrusion prevention and network
forensics at the network, system, and application level. These tools were discovered via web searches and
from the authors' own experiences with the tools. Open source tools tend to vary in terms of features,
documentation, support, and maintenance. However, they are often adaptable to your specific needs and offer
a low-cost means of testing and utilizing technology.

When examining the tools presented in this chapter note several key points. First, most of the tools are
UNIX/Linux-based. Open source Windows-based IPS tools were not discovered. Another point that stands out
is that several of the tools work with the Snort IDS. This should be of no surprise because Snort is an
advanced, community-supported open source effort. The tools discovered are mostly still focused on signature
matching and string matching. They also do not utilize many of the advanced packet inspection methods, such
as awareness of protocol standards compliance and usage, discussed in earlier chapters. There was also no
open source anomaly or behavioral based detection tools discovered.

Although all the tools discussed can integrate and augment commercial solutions, only one solution actually
"interacts" with commercial products. Lastly, all the tools offer minimal active response choices. Most just
perform session disconnects or create firewall rules. All the tools discussed in this section offer some level of
use for simple environments; however, none offer enterprise protection. Some of the tools that have a
large developer support base have the potential to continue to grow into more advanced, scalable solutions.
Using a combination of methods to build a strong defense in depth strategy is still the best approach.

In the realm of network forensics, though, some great advancements are being made. With tools such as
NetworkMiner and SecurityOnion being developed and maintained, a network security analyst can actually do
quite a bit without spending any money at all!

 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Appendix

• Device Testing

Advanced Detection and Packet Analysis

This section presents a foundation for an IDS testing methodology. It also presents several tools and resources
to use for testing.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Device Testing

• functionality

• DPI

• Network and Application layer attacks

• Active response

• Standardized testing methods

 Detection and Packet Analysis

Intrasion detection systems (IDS) and intrasion prevention systems (IPS) have received a lot of attention over
the past few years due to the increase in malicious activity that utilizes application level vulnerabilities and
advanced worm technology. In response, the advance in firewall, IDS, and IPS technology has spawned a new
concept called deep packet inspection (DPI), which performs full packet analysis, including payload, in terms
of protocol compliance, content checking, pattern matching, and more.

The new IDS and IPS devices that are now available must protect against both network and Application layer
attacks and have the ability to assemble and inspect packet payloads at wire speeds. Intrasion prevention
systems can also take an action, such as dropping a specific connection, dropping all connections from the
suspect IP address, sending an alert, and other customizable actions. Deep packet inspection is blurring the
lines between firewalls, IDS, and IPS.

Due to the varying features and capabilities of the devices on the market today, a standardized method of
comparison and testing must be used. This section describes the process and procedures for testing and
evaluating technology. It also provides a list of testing tools.

 © 2016 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scope of Testing

• What type of device are we testing?
-
- IDS with reactive technology
- Firewalls with DPI technology

• What feature are we testing?
- Rule/Signature based
- Anomaly detection
- Behavioral detection

• What aspect are we testing?
- Performance
- Functionality
- Security
- Triggering of rules

 Detection and Analysis

 the traditional differences between firewalls, IDS, and IPS becoming blurred, it is necessary to define the
type of device that will be tested. This is essential when "bakeoffs" or comparisons between devices are made
Three classes of devices can perform some of the same types of actions: IPS, IDS with new reactive technology
and firewalls with new deep packet inspection technology. An IPS sits inline on the network. Traffic comes into
the device and the total packet is inspected. I f the traffic matches a signature, the connection may be immediately
dropped so that never reaches the internal network. Other actions can also be taken, as appropriate. An IDS sits
on a network in passive mode and monitors traffic. These are typically not inline devices. However, newer
can respond" to potential attacks (traffic that matches a signature or generates an anomaly) by sending a TCP
reset or integrating with a firewall to dynamically create a rule. Depending on how this technology is used an
attack may have already penetrated the network before the IDS communicates to the firewall or sends the reset to
stop the attack. This is because the device is not in line. Newer firewall technology has the capability to inspect
the entire packet, including the payload, to determine i f any of its contents match a signature, violate a policy
and so on. Because this is in line, the packet is rejected before it enters the network. The firewall is also using a
standard ruleset to provide access control, as always.

In addition, you must define the particular feature of the device that is tested. The signature or rule-based device
matches traffic to signatures of known attacks. An anomaly-based device focuses on detecting unknown, or zero-
day attacks, by profiling the normal characteristics of a system and detecting deviations from the
Anomaly-based devices often detect anomalies in network traffic or protocol usage. Behavioral-based devices
detect deviations in user or system behavior.

Lastly, you must define the aspect of the device that is tested, such as performance, functionality, security or the
triggering of rales.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Device Under Test

Definition

 inline device that performs full packet
inspection, including payload, and can react to
the traffic in real time, before it enters the
protected network. In addition, the device
must be able to interpret Application layer
traffic and maintain state of the connection."

 and Packet Analysis

Due to these varying types of devices, it is best to define the DUT as the following:

An inline device that perforins full packet inspection, including payload, and can react to the traffic in real
time, before it enters the protected network. In addition, the device must be able to interpret application
layer traffic and maintain state of the connection.

196 ©2016 Dr. and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Testing Methodology (1)

• Performance testing:
- Phase 1: Simple Performance Test

- Phase 2: Baseline Attack Test

- Phase 3: Infinite Loop Test

 Detection and Analysis

The testing methodology is broken up into three primary sections: performance testing, functional testing, and
informational evaluation.

Performance testing tests the device's capability to detect attacks while under varying loads of traffic. This testing
should be performed in the following three phases:

• Phase 1 - Simple Performance Test: This test uses packet generation devices to test the vendor
datasheet claims for throughput, latency, maximum simultaneous sessions, and maximum connections per
second.

• Phase 2 - Baseline Attack Test: This tests the device's capability to detect attacks. A standard set of X
number of attacks are used for all devices that are tested. These are common, simple, and easy to detect
attacks that should be included in the device's default signatures. The device is tested using its default
enabled signatures and then tested again with all its signatures enabled.

• Phase 3 - Infinite Loop Test: This test determines the threshold of the sensor and collection engine. It
uses a packet generation device and various DoS attacks to generate traffic on the network. First, the
baseline attacks are generated to determine i f they are still detected. Then stealth attacks are generated to
test the device's capability to alert under these conditions. The result is the maximum load that a device
can handle before packets are dropped and attacks are not detected.

© Dr. Eric Cole and David Shackleford 197

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing Methodology (2)

Functional testing:
- Ease of installation
- Ease of use
- Management console
- Logging
- Use of cutting-edge technology
- Ability to detect test attacks
- Ability to respond to attacks
- High-availability
- Integration with other products
- Features

Advanced Detection and Packet Analysis

The functional testing validates the usage and security mechanisms of the device under test
(DUT) by testing the various device features and detection capabilities.

198) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Testing Methodology (3)

• Informational evaluation:
- Company stability
- Price
- Documentation
- Support

Advanced Detection and Packet Analysis

The informational evaluation assesses the device under test by researching the company stability
and device pricing as well as evaluating documentation and support for the device.

© Dr. Eric Cole and David Shackleford 199

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing Tools:
Traffic Generators

•
- Features test applications for xDSL, cable modem, IPQoS, VoIP,

MPLS, IP Multicast, TCP/IP, IPv6, MPLS, routing, SANs, and
VPNs

• Spirent Avalanche
- Emulates web clients and issues a variety of client responses

• TCPReplay
- A tool to replay saved TCPdump files at arbitrary speeds

• Network Traffic Generator
- Generates TCP/UDP traffic from clients to servers to stress test

routers/firewalls under heavy network load

 Detection and Packet Analysis

This slide lists the traffic generation tools to use for testing.

200 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Testing Tools:
Attack Tools (1)

•
- Nmap uses raw Internet Protocol (IP) packets to identify the available

hosts on a network, services, or ports that are open, type of operating
system and version that hosts are running, type of packet filters and
firewalls in use, and other characteristics

- Most IDS/IPS devices should recognize an Nmap scan, so this may be used
as a baseline attack

• Wireshark:
- Network protocol analyzer used on UNIX and Windows workstations allows

users to capture data from a live network. This may be used to monitor the
testing and to create packet capture files for later playback.

• Netcat:
- Utility that reads and writes data across network connections, using TCP or

UDP, that simulates a backdoor. Netcat may be used as a baseline attack
to connect to open ports or a stealth backdoor attempt.

 Detection and Packet Analysis

This slide lists the traffic attack tools to use for testing.

© Dr. Eric Cole and David Shackleford

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing Tools:
Attack Tools (2)

• Nessus:
- A vulnerability scanner used to identify security holes remotely on

network hosts. Nessus uses Nmap as its port scanning engine and
should be easily detected by most IDS/IPS.

• Scapy:
- A Python-based network packet creation and injection library and

program. With Scapy, it is possible to generate and transmit packets
from the command line or from within a Python or shell script.

• Hping3:
- A fully scriptable utility that allows packets to be received and sent via

a binary or string representation describing the packets. Examples are
automated security tests with printed report generation, TCP/IP test
suites, many kinds of attacks, NAT-ing, prototypes of firewalls,
implementation of routing protocols, and so on.

 Detection and Packet Analysis

This slide lists the traffic attack tools to use for testing.

© Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Testing Tools:
Attack Tools (3)

• (legacy):
- IP Stack Integrity Checker is a suite of utilities to exercise the stability

of an IP Stack and its component stacks (TCP, UDP, ICMP, and more).
It generates large quantities of pseudo random packets of the target
protocol. The packets are then sent to the target machine to penetrate
firewall rules, find bugs in the IP stack, or for IDS/IPS testing.

• Fragroute:
- Fragroute intercepts, modifies, and rewrites egress traffic destined for

a specified host. It features a simple ruleset language to delay,
duplicate, drop, fragment, overlap, print, reorder, segment, source-
route, or otherwise modify all outbound packets destined for a target
host. This tool was written to aid in the testing of network intrusion
detection systems, firewalls, and basic TCP/IP stack behavior.

 and Packet Analysis

This slide lists the traffic attack tools to use for testing.

© Dr. Eric Cole and David Shackleford 203

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing Tools:
Attack Tools (4)

Stick (legacy):
- An IDS stress tool used to evaluate the bottleneck point in an

IDS in an operational environment

Snot (legacy):
- Triggers snort alerts by using a snort rules file as input

 (legacy):
- A toolkit for testing network intrusion detection systems. The

goal of the nidsbench project is to provide better tools for
evaluating NIDS products and to help standardize a testing
methodology for the purpose of objective comparison.

 Detection and Packet Analysis

This slide lists the traffic attack tools to use for testing.

204) Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

NetDude

 | l|| |

 Protocols Debugging

 > F i n

 > K k 1040353307

 >

15:51:03.315274 >

 >

 >

 5141.44 > 4 41 40:

. K k 1 54320 (DF)

. K k 1 15000

r K k 1 k i l l 320 (OF)

, K k 1 F i l l

P K k 1 54320 (DF)

. K k 55

 1

| 0 ASCII only

 packets. bytes, captured:

Advanced Detection and Packet Analysis

One last tool that can help you enormously in your testing efforts is NetDude, found at

NetDude enables you to open PCAP files and then manipulate them as much as you want to for creating robust
attack strategies and scenarios. Another great one to have in the arsenal!

© Dr. Eric Cole and David Shackleford 205

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing Tools:
Exploits

Metasploit Framework:
- The Metasploit Framework is an advanced open-source platform

for developing, testing, and using exploit code. This project
initially started as a portable network game and has evolved into
a powerful tool for penetration testing, exploit development, and
vulnerability research.

Other exploits:
- DoS, evasion, fragmentation, etc.

 Detection and Packet Analysis

This slide lists exploits the use for testing.

206 © Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Developing, Testing, and
Securing Applications (1)

• Open Web Application Security
Project (OWASP)

• Top 10:
-Most critical web application security

flaws
-https://www.owasp.org/index.php/Cate

gory:OWASP_Top_Ten_Project

 Detection and Packet Analysis

The Open Web Application Security Project (OWASP) provides free whitepapers, tools, and standards for
securing applications. It is an all-volunteer, non-profit group with local chapters and national conferences. One
important resource is the OWASP Top Ten that outlines ten significant classes of application vulnerabilities.
The Top Ten is a consensus from security experts around the world on the most critical web application
security flaws. It can be found at
Organizations are urged to audit their web applications to ensure that their web applications do not contain
these security flaws. Adopting this standard is an important step toward intrusion prevention.

© 2016 Dr. Eric Cole and David Shackleford 207

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Developing, Testing, and
Securing Applications (2)

Z.

 ana application 3. Does it the infrastructure and users?
 | | | | | | | | | I

4. Does it defeat zero-day attacks?
5. Does it cloak application infrastructure elements?
6. Does it prevent the leakage of sensitive corporate or

customer data?
7. Does it block benign traffic?
8. Does it rationalize the web infrastructure?
9. Can it deploy consistent security for all applications?
10. Does it adapt policies for dynamic application

environments?

 and Packet Analysis

Another good OWASP resource is a checklist to evaluate security products called "Ten questions to ask about
application security systems" by Abhishek Chauhan. It can be located at

 and contains the following
questions to ask about your security product:

 Does it inspect application communications or just packets?

2. Does it detect and defeat encrypted application attacks?

3. Does it protect the application infrastructure and users?

4. Does it defeat zero-day attacks?

5. Does it cloak application infrastructure elements?

6. Does it prevent the leakage of sensitive corporate or customer data?

7. Does it block benign traffic?

8. Does it rationalize the web infrastructure?

9. Can it deploy consistent security for all applications?

 Does it adapt policies for dynamic application environments?

This checklist can be used to evaluate the features of an IPS. Make sure to select the appropriate system
according to your requirements and resources.

208 Dr. Eric Cole and David Shackleford

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary

Test for performance and
functionality
Use available tools
Use available resources

The network security community is in need of a standardized testing methodology. This section provides a
foundation to build this methodology by taking performance, functional, and information aspects into
consideration. Defining the scope of the testing is the most important phase of the testing methodology,
especially for bakeoffs between similar security devices. Several tools are available, most for free, to assist in
testing. Make use of these tools and the various testing white papers as much as possible. Lastly, ask the ten
basic questions when evaluating and purchasing a security product.

© Dr. Eric Cole and David Shackleford 209

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

