
A Complete
Guide to DevOps
with AWS

Deploy, Build, and Scale Services with
AWS Tools and Techniques
—
Osama Mustafa

A Complete Guide to
DevOps with AWS

Deploy, Build, and Scale Services
with AWS Tools and Techniques

Osama Mustafa

A Complete Guide to DevOps with AWS: Deploy, Build, and Scale Services with AWS
Tools and Techniques

ISBN-13 (pbk): 978-1-4842-9302-7		 ISBN-13 (electronic): 978-1-4842-9303-4
https://doi.org/10.1007/978-1-4842-9303-4

Copyright © 2023 by Osama Mustafa

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Shannon Potter on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit www.apress.
com/source-code.

Printed on acid-free paper

Osama Mustafa
Amman, Jordan

https://doi.org/10.1007/978-1-4842-9303-4
it
Typewritten text
www.networkuser.ir

I dedicate this book to my mother for her support and constantly
encouraging me to work extra hard, and to my family for moral

support and encouragement throughout the project.

v

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Chapter 1: �Overview of Amazon Web Services�� 1

Cloud Services at a Glance�� 1

Types of Cloud Computing�� 2

Cloud Service Models��� 3

AWS Cloud Computing’s Key Characteristics��� 8

AWS Regions�� 11

Availability Zones�� 13

Global Edge Services��� 18

Route 53��� 18

Web Application Firewall�� 19

CloudFront�� 19

Lambda@Edge��� 20

AWS Shield��� 20

AWS Operational Benefits�� 20

AWS Data Best Practices��� 24

AWS Network Best Practices��� 25

AWS Application Best Practices��� 28

The Well-Architected Framework��� 29

The Well-Architected Tool��� 32

Conclusion��� 34

Table of Contents

it
Typewritten text
www.networkuser.ir

vi

Chapter 2: �Understanding DevOps Concepts��� 37

DevOps Primer��� 37

The DevOps Process�� 39

DevOps Goals��� 41

Shared Goal�� 41

Collaboration (No Silos Between Teams)�� 42

Speed��� 43

Innovation��� 43

Satisfaction of Customers�� 44

Agile vs. DevOps�� 46

Continuous Integration and Continuous Delivery��� 48

Infrastructure as Code�� 50

Automation Testing��� 62

Version Control��� 72

Summary��� 78

Chapter 3: �AWS Services for Continuous Integration�� 79

Continuous Integration and Continuous Deployment��� 79

CI/CD and DevOps��� 81

Continuous Integration��� 84

AWS CodeCommit��� 84

Creating a CodeCommit Repository on AWS��� 86

Configuring Notifications for AWS CodeCommit��� 100

AWS CodeBuild�� 102

How CodeBuild works�� 103

Using CodeBuild via the Console�� 106

Using CodeBuild via the AWS CLI�� 110

CodeArtifact�� 124

Summary��� 133

Table of Contents

vii

Chapter 4: �AWS Services for Continuous Deployment��� 135

Introduction to Continuous Deployment��� 135

Continuous Delivery��� 136

AWS CodeDeploy�� 138

AWS CodePipline�� 158

Project: Create an Essential Pipeline Using AWS CodePipeline�� 161

Step 1: Create the S3 Bucket�� 162

Grant Access to EC2��� 163

Step 2: Launch the EC2 Instance�� 166

Step 3: Install the CodeDeploy Agent on EC2��� 166

Step 4: Create the Pipeline��� 170

Integrate CodePipeline CI/CD with GitHub��� 172

Summary��� 181

Chapter 5: �AWS Deployment Strategies��� 183

What Is a Deployment Strategy?�� 183

Blue/Green Deployments�� 184

Canary Deployments�� 185

A/B Testing Methodologies��� 186

Re-create Deployments�� 187

Ramped Deployments (Rolling Upgrades)�� 188

Shadow Deployments��� 190

Amazon AWS Deployment Strategies��� 191

In-Place Deployments�� 191

Prebaking vs. Bootstrapping AMIs�� 192

Linear Deployments�� 193

All-at-Once Deployments��� 193

Blue/Green Deployments for MySQL RDS��� 194

Summary��� 196

Table of Contents

it
Typewritten text
www.networkuser.ir

viii

Chapter 6: �Infrastructure as Code��� 197

What Is Infrastructure as Code?��� 197

Why Do You Need IaC?��� 200

IaC Types�� 203

Scripts�� 204

Configuration Management�� 204

Provisioning�� 204

Containers and Templating��� 204

Tool Examples��� 204

How to Choose an IaC Tool��� 206

Provision vs. Configuration Management��� 206

Agent vs. Agentless�� 208

Integration with Other Tools��� 209

Mutable Infrastructure vs. Immutable Infrastructure��� 210

General IaC Language vs. Specifically Designed Language��� 211

Paid Version vs. Free Version�� 211

Comparison of Tools��� 212

Terraform��� 212

Terraform Concepts�� 215

Terraform Module�� 232

VPC Code�� 234

EC2��� 235

EC2 Security Group��� 237

RDS��� 238

RDS Security Group�� 240

Terraform Tips and Tricks��� 242

Loops�� 242

Conditionals�� 244

AWS CloudFormation��� 246

Table of Contents

ix

Pulumi�� 254

Pulumi Concepts��� 256

Resources��� 257

State and Back Ends�� 257

Inputs and Outputs��� 257

Ansible��� 260

RHEL/CentOS Linux�� 263

Debian/Ubuntu Linux�� 263

Summary��� 268

Chapter 7: �AWS Monitoring and Observability Tools��� 269

Monitoring�� 269

White-Box Monitoring��� 270

Black-Box Monitoring��� 271

Resource Dashboard�� 273

AWS CloudTrail��� 276

Using CloudTrail�� 277

AWS CloudWatch�� 284

CloudWatch Metrics Concepts�� 300

AWS X-Ray��� 307

Summary��� 315

Chapter 8: �DevOps Security (DevSecOps)�� 317

Why Is Security Crucial for DevOps?�� 318

Security and the Cloud��� 319

Weak Identity and Credentials�� 321

Application Vulnerabilities�� 321

Malicious Insider�� 322

Denial-of-Service Attacks��� 322

External Sharing of Data��� 322

Insecure APIs�� 323

Hijacking the Accounts��� 323

Table of Contents

x

Advanced Persistent Threats�� 323

Lack of Visibility�� 324

An Abundance of Available Tools�� 324

AWS Artifact��� 326

AWS Certificate Manager��� 327

Request a Public Certificate Using the Console�� 328

Web Application Firewall�� 330

Web ACLs�� 331

Rules��� 331

Rules Group�� 331

Security Hub�� 339

Enabling Security Hub�� 340

Trusted Advisor�� 342

Policy as Code�� 344

CloudFormation Guard�� 347

How to Install CloudFormation Guard��� 347

Amazon AWS Service Catalog�� 350

Static Code Analysis��� 362

Checkov�� 363

SonarQube�� 365

SonarCloud��� 369

Amazon CodeGuru�� 373

Summary��� 377

Chapter 9: �Microservices vs. Monolithic��� 379

Monolithic�� 379

Modular Monolith��� 381

The Challenge��� 382

Coupling and Cohesion��� 382

Monolithic Advantages and Disadvantages�� 383

Table of Contents

xi

Microservices��� 384

Microservices Advantages and Disadvantages�� 388

Which Architecture Is the Best for You?��� 390

Containerization��� 390

Docker�� 393

Images�� 398

Containers�� 400

Dockerfile��� 401

Amazon Elastic Container Service�� 407

Summary��� 431

Chapter 10: �Kubernetes��� 433

What Is Kubernetes?�� 433

Kubernetes Benefits��� 434

Kubernetes Components�� 437

Building a Kubernetes Cluster�� 444

Diving into Kubernetes��� 459

Pods�� 460

Labels and Annotations�� 464

Namespaces��� 468

Jobs�� 470

Kubernetes and CronJob�� 475

Kubernetes Trick and Tips�� 477

Liveness Probe��� 478

Replication Controllers��� 479

Replica Set��� 482

DaemonSets��� 483

Logs�� 485

Services�� 497

Deployment�� 505

Table of Contents

xii

Kubernetes and Helm��� 510

Kubernetes Dashboard��� 514

Elasticsearch with Kibana�� 515

Prometheus with Grafana��� 516

RBAC in Kubernetes��� 517

Kubenetes CI/CD Tools�� 521

Summary��� 526

Chapter 11: �DevOps Projects��� 527

Cloning a GitHub Repository�� 528

SSH��� 528

HTTPS��� 530

Project 1: Creating an AWS Endpoint��� 531

Repository Structure�� 532

How Do You to Use the Solution?��� 533

How to Deploy the Solution to AWS�� 536

Project 2: Creating an EKS Instance and Deploying an Application to the Cluster via
Terraform��� 541

How to Run the Code�� 542

Delete the Resource��� 542

Project 3: Creating AWS Resources Using Terraform��� 544

How to Run the Code�� 547

Project 4: Creating a CloudFormation Project�� 548

Project Architecture�� 550

Application Setup��� 550

Summary��� 551

�Index�� 553

Table of Contents

xiii

About the Author

Osama Mustafa The first Oracle ACE in the Middle East.

As the first Alibaba MVP, an AWS community builder, the

creator/director of the Jordan Amman Oracle User Group

(the first group in Jordan related to Oracle technology),

and the author of two technology books, Osama is an

authority on cloud technology who works with vendors

such as AWS, Microsoft, Google, and Oracle. He has

experience in automation, has implemented various

global projects, and has extensive knowledge of multiple

databases. 

In addition, Osama is a speaker and author of more than 100 articles published in

magazines such as IOUG and UKOUG. He is the author of the book Oracle Database

Application Security, published by Apress, and has presented at more than 45

conferences around the world.

xv

About the Technical Reviewer

Uchit Vyas is an IT industry veteran, a cloud technologist at

heart, and a hands-on enterprise architect and DevSecOps/SRE

leader at Accenture Australia. Through his speaking, writing,

and analysis, he helps businesses take advantage of emerging

technologies. Currently, Uchit works on SRE and DevSecOps

practices in the APAC region with presales, delivery, and

consulting responsibilities. Uchit loves to play chess and Age

of Empires, which helps him to clearly see the impact of ideas,

research, and automation empowering economies of IT.

Uchit works with large IT organizations to automate

traditional datacenter flow, explores new-age tools and

technologies, and defines solutions and best practices for small and large enterprises

with DevSecOps and enterprise architecture (EA) practices. He has worked at world-

class product and service companies such as KPMG, Infosys, and Oracle, during which

time he analyzed various cloud platforms, enterprise architecture, infrastructure

automation, containers, DevSecOps, and continuous delivery.

He has also written various books about the AWS cloud platform and enterprise

service bus including Mule ESB Cookbook, AWS Development Essentials, Mastering

AWS Development, DynamoDB Applied Design Patterns, and OpenStack Applied Design

Patterns.

xvii

Acknowledgments

Writing this book was more complicated than I thought and more rewarding than

I could ever imagine; it took a long journey to finish. The book focuses on the tools,

principles, and more that DevOps teams use.

I would not have been able to get my work done without the continual support

and vision of my editor; I want to thank the Apress team and the technical reviewer for

working on this book and for the push and support they gave me during this project.

Finally, to the readers who chose this book to be part of their library and support me,

thank you, all.

xix

Introduction

This book is a comprehensive reference for anyone wanting to learn more about Amazon

AWS, including AWS services, through real-life examples.

The first two chapters focus on Amazon AWS services; these chapters also cover the

Agile methodology and DevOps concepts.

We’ll then delve into various aspects of CI/CD, from third-party tools to AWS

services, that can create a complete pipeline with real-life examples and projects.

When explaining the test automation process, I offer insight into most of the

standard tools used in DevOps.

Infrastructure as code is covered and explained using different tools such as

Terraform, CloudFormation, and Pulumi, providing a variety of examples for each and

their use cases.

Next, I will help you gain the ability to predict and troubleshoot issues to avoid any

downtime. I’ll also explain monitoring and observability tools.

In addition, we’ll cover security under DevOps, namely, DevSecOps. I’ll give an

overview and examples that include using third-party tools and AWS tools to create an

entire secure pipeline for the company and show how to integrate the solution with the

daily pipeline.

Kubernetes plays a significant role in this book and is the standard tool for any

DevOps professional. We’ll discuss the tool’s history, basics, and concepts through a

complete solution. Throughout the book, offer incremental examples that allow you to

understand how to use and integrate the tools.

Finally, I dedicate a chapter to completing four projects using different DevOps

strategies, AWS services, and infrastructure as code; I’ll also show how to deploy the

solution using CI/CD tools.

it
Typewritten text
www.networkuser.ir

xx

�Source Code
All the code used in this book can be downloaded from https://github.com/apress/

complete-guide-devops-aws or from the author’s personal repo, at https://github.com/

OsamaOracle.

Introduction

https://github.com/apress/complete-guide-devops-aws
https://github.com/apress/complete-guide-devops-aws
https://github.com/OsamaOracle
https://github.com/OsamaOracle

1
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_1

CHAPTER 1

Overview of Amazon Web
Services
With today’s technological boom, the demand for cloud computing services is increasing

day by day. Individuals, companies, and multinational businesses are shifting from

self-owned web services to cloud services. Among cloud services providers, the most

prominent are Amazon Web Services (AWS), Google Cloud Platform (GCP), IBM, and

Oracle Cloud.

In this chapter, we’ll take a look at cloud services in general and then focus our

attention on AWS specifically.

�Cloud Services at a Glance
Why is there a need for online cloud services? The principal function of a cloud service is

to provide IT services through the Internet. These services include data storage centers,

computing power, and databases. The most prominent feature of cloud services is that

the user can place orders and use the services without needing any infrastructure or

maintenance.

With the use of cloud providers, IT has seen a rapid shift from costly databases and

power units among all major organizations and individuals, regardless of their field of

work. The trend toward using cloud services is due to several factors.

•	 Cost: The most significant advantage of opting for cloud services is

that it reduces the overall cost for organizations because it allows

them to pay only for the resources they use. They no longer have to

pay for the hefty infrastructure costs of the powerhouse servers and

data centers that were needed earlier, or for the IT experts needed for

data management.

https://doi.org/10.1007/978-1-4842-9303-4_1
it
Typewritten text
www.networkuser.ir

2

•	 Speed: When businesses rely on third-party computing resources,

the road from idea to execution takes a matter of minutes. Since

planning, management, and maintenance are covered by the on-

demand cloud provider, businesses are in a position to deliver faster

services to their clients. Similarly, industries can develop innovative

ideas that can be transformed quickly with the help of cloud services.

•	 Reliability: As authentic cloud computing companies such as

Amazon are fully equipped with the latest configurations to offer the

best computing services, they tend to be more reliable. Moreover,

the network of cloud services for data backup and retrieval is more

reliable than individual databases.

•	 Scale: Another benefit of cloud computing is that both horizontal

scaling and vertical scaling are easily possible. For instance,

companies can add instances or nodes by adding more space to the

existing hard drive in horizontal scaling and can speed up or create

wider spaces through adding more machines in vertical scaling easily

through cloud computing.

•	 Security: Another highlight of cloud computing is that it provides

cyber and data security to its users by protecting the databases

from hackers, unauthorized access, and other security breaches.

Hence, with reliable cloud computing services such as Amazon

Web Services, companies get the most optimal risk management

techniques.

�Types of Cloud Computing
Cloud computing is an umbrella term used for multiple types of services that cloud

providers offer. Organizations use cloud computing not just for databases and servers

but for numerous instances, including virtual assistance, software applications, user

customizations, and other technological requirements. For this reason, cloud services

vary according to the needs of their users, but there is no limitation to the services

cloud providers offer. Each cloud computing provider delivers solutions for the specific

requirements of the customers.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

3

The first step toward using cloud services is selecting the cloud classification, or

type, of deployment. There are three types of cloud computing: public, private, and

hybrid cloud.

•	 Public cloud: As the name suggests, public cloud services are

provided by third parties such as Amazon Web Services. In the public

domain, individuals and firms can use cloud services by logging into

their accounts simply through web browsers. The hardware, software,

and database systems are not owned by any specific user. These

services are accessible to all users as they are controlled and operated

by the cloud service provider.

•	 Private cloud: The private cloud environment is accessible only to a

specific individual or organization. For example, some organizations

require data servers within proximity onsite, while others may opt for

third-party hosting. Nevertheless, a private cloud always maintains

an exclusive network that caters to the customer’s specific business

needs. In addition, the privacy of this type of cloud service provides

more control and security to its users.

•	 Hybrid cloud: The combination of public and private cloud

environments results in hybrid cloud services. Organizations usually

choose this type of deployment to conveniently scale up their

services during excessive workloads without compromising the

privacy and security of their database. Organizations that do not want

the cost and maintenance of owning their data centers but require

a private network to ensure a controlled environment prefer hybrid

cloud services.

�Cloud Service Models
Cloud services can be categorized into three models: infrastructure as a service (IaaS),

platform as a service (PaaS), and software as a service (SaaS). In addition, a fourth type of

cloud service, serverless computing, is sometimes offered by cloud service providers. All

models differ from the others in terms of data management, scaling, control, and overall

provisioning of cloud services.

Chapter 1 Overview of Amazon Web Services

4

•	 Infrastructure as a service: IaaS is the simplest model of cloud

services. Through IaaS, individuals, firms, and organizations can

become IT tenants of the cloud service providers by hiring the entire

IT infrastructure. This includes renting the hardware and software for

network services and virtual machines for storage centers and data

management. IaaS provides total control over an organization’s IT

resources, similar to having an onsite data center.

•	 Platform as a service: PaaS is the opposite of the IaaS model. This

model requires the clients to focus only on their service provisions

and applications rather than worrying about the infrastructure

space and costs. Therefore, the computing environment of PaaS is

ideal for those individuals and industries that need to concentrate

on their product innovations rather than on maintenance, space

management, and availability of hardware, software, and network

data servers.

•	 Software as a service: The SaaS model delivers the overall structural

design and ideas through a software service to its users. As a

result, the complete IT process from planning to management to

maintenance is covered by the SaaS provider. In addition, SaaS can

provide software applications as an end product that can be accessed

or downloaded from a website.

•	 Serverless computing: Serverless computing services assist clients

by managing and maintaining all their IT requirements, including

hardware infrastructure, software applications, and data services.

All this is done idly during their subscription tenure and activated

only on demand. Usually serverless cloud services are used by

clients who want a passive cloud system and then are activated

whenever a specific operation occurs. This cloud model environment

is cost-effective for small-scale business owners or industries with

fluctuating workflow.

Figure 1-1 illustrates the shared responsibility of each cloud category and what you

will manage in each model; remember, choosing the suitable model will save a lot of

time and money for you and the company.

Chapter 1 Overview of Amazon Web Services

5

Figure 1-1.  IaaS, PaaS, and SaaS

My personal experience as a computer engineer has taught me more about cloud

computing services than any other resource. Almost every company I have worked at

used a cloud service provider to ensure their data was encrypted and secured during my

tenure. In addition, the companies preferred to opt for these services as they are cost-

efficient compared to owning and maintaining data centers.

Constructing and installing a data center can cost millions of dollars for a company.

In addition, the maintenance of virtual machines and servers requires a big expenditure.

Therefore, cloud computing services are an ideal choice for all businesses that need IT

services but want to save money.

Another downside of having your own data center is that the workflow is not

constant. There are times when many computing services are not required. The expense

of maintaining data centers 24/7 can lead to monetary losses.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

6

With cloud services, organizations have various options for expenses (opex) for the

services they use. By contrast, a company must bear a data center’s capital expenditure

(capex). The operational costs are high regardless of the type, as shown in Figure 1-2.

Figure 1-2.  Capex versus opex

The benefits of cloud services are clear for organizations that want to run and host

their software applications and data operations through the cloud. However, it is equally

essential for these organizations to structure their computing needs appropriately. For

instance, if organizations do not properly scale, they will be charged for the data space

and speed, even if it is not used.

Similarly, switching the apps, notifications, and services on and off is an option in

the cloud. When services are not in use, they can be turned off to avoid unnecessary

expenses. These power and cost-saving methods are known as automated techniques. In

short, an automated system allows companies to customize their cloud services so that

they pay only for the services they use.

We’ll focus on public cloud services in this chapter as they are the most commonly

used cloud service type. Public cloud services are simply a group of data centers. Cloud

service providers own these data centers and rent them to companies for profit. Even in

public cloud services, the same hardware or data servers are shared by all the tenants of

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

7

the cloud service provider. If someone needs a bare-metal server for individual use and

data privacy, for instance, Amazon Web Services would host private cloud services for

organizations and individuals.

In this case, a specific computer functions as a separate server for a particular

tenant or consumer. Additionally, AWS provides various virtual services with different

capacities and designs.

Another significant cloud services company and competitor of Amazon is Microsoft

Azure, which provides similar services to its users. Microsoft Azure sells a copy of its

cloud operating system so that individuals or organizations can use the services by

downloading them to their data centers. In addition to Amazon and Microsoft, many

renowned companies and tech giants offer cloud computing services. However, the

common aspect among all companies is that they all provide a massive data server

setup for database storage and other networking and IT-related operations through the

Internet or other private connections.

In another scenario, companies that are operating thousands of virtual machines

through hardware such as routers and switches can achieve the same results by using

AWS automated services without any hardware devices. The storage, system organization,

load distribution, and automated scaling services are provided by AWS with the help of

virtual computing (Elastic Cloud Compute [EC2] instances) with massive CPU and RAM

resources running in substantial server networks with need-based systems.

This book discusses Amazon AWS inside out and how you can make the switch.

The first step is to decide to switch from traditional databases to cloud services. Next,

the switch requires awareness and knowledge from the users and IT experts. Finally,

shifting from traditional to the latest cloud settings must be done within a specified

time. Specifically, the cloud service user organizations should support the AWS virtual

resources and help users understand AWS’s relevance in the IT world.

The advantages of using cloud services are clear. The next part is choosing a cloud

environment and deploying the cloud computing model that best serves users’ needs.

Generally, the needs of cloud users can be broadly categorized into four cases.

•	 An organization has all the infrastructural resources, including

data centers and IT management, the constantly increasing

workflow is leading to more maintenance expenses. In such a

case, the organization will look to shift to public cloud services to

minimize costs.

Chapter 1 Overview of Amazon Web Services

8

•	 There is no onsite infrastructure when a group of developers is

creating a startup. In such a case with no local data centers, cloud

services are the best option to start their business immediately.

•	 Another similar scenario is that of a low-budget startup that cannot

afford to set up an onsite data center. Cloud services are the best

option for them to start their business.

•	 Many organizations deal with sensitive databases that require a

private network. However, they also need other services such as data

analysis, backup, or retrieval. In such a scenario, the hybrid model of

cloud services is the best option available for such organizations.

There can be many other situations where the requirements of each user are

different from the others. That is why it is vital to understand. A complete service-level

agreement (SLA) subscription allows users to customize all the data, applications,

and networking services according to their needs. The SLA enables users to design an

environment for their IT needs and completely control it.

Note I f you are new to AWS, you can get a free account for 1500$ credit by
signing up at https://aws.amazon.com/startups/. This account will also
allow you to test the labs and projects in this book.

�AWS Cloud Computing’s Key Characteristics
Amazon AWS has more services than any other cloud service on the market. Integrating

the services with each other will provide a powerful solution.

•	 Self-service on-demand: The self-service on-demand feature in

Amazon AWS allows users to order online services at any given time.

The users can order through the website, where there is an option for

on-demand cloud self-service via a control panel. Figure 1-3 below

shows the main page for the AWS portal and some of the services you

could use.

Chapter 1 Overview of Amazon Web Services

https://aws.amazon.com/startups/
it
Typewritten text
www.networkuser.ir

9

Figure 1-3.  AWS Portal

•	 Broad network access: The most significant advantage of cloud

services is that they are available anytime and anywhere through the

Internet.

•	 Resource pooling: The public cloud infrastructure, including the data

centers, is distributed across the globe and is installed wherever the

cloud services are in high demand. For example, a need-based onsite

cloud service would pool its systems, computing resources, storage,

and networking applications in the data centers and would provide

restricted machination from its pool. All public cloud providers have

many resources to meet diverse demands. For example, AWS features

data center clusters (known as availability zones, or AZs) with

thousands of bare-metal servers accessible and online, empowering

clients to operate their computing systems with maximum speed and

minimum obstruction.

•	 Rapid elasticity: Almost all cloud services require elasticity in the

public cloud. This means users can increase the capacity and

optimize performance in accordance with their needs. This process

is referred as scaling. With AWS, automated scaling is provided

to its customers for both storage and computing resources. AWS

automatically tracks and regulates the applications and services to

maintain the better performance of its computing services.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

10

•	 Measured service: You are charged only for what you use in the cloud; this

is a metered, or measured, service. Cloud service companies make money

by selling their services to customers through their data centers. Inbound

packet flow, or traffic between subnets housed in different data centers,

usually is free; outbound packet flow, or traffic between subnets hosted

in various data centers, generally costs an outbound data transfer fee.

Charges are calculated per second or minute for computer services such as

AWS EC2 compute instances or per gigabyte per month for storage services

such as S3 or virtual hard drives, referred to as Elastic Block Storage (EBS) at

AWS. AWS Billing Dashboard is one of the primary services that allow the

cloud engineer to follow up about the services and take action if it crosses.

Where are you thinking about putting your cloud resources? Before working with

AWS, you need to understand the following concepts:

•	 Regions

•	 Availability zones

•	 Edge location

•	 Location factors

•	 Compliance factors

•	 SLA factors

•	 Costs

Figure 1-4.  AWS Billing Dashboard

Chapter 1 Overview of Amazon Web Services

11

�AWS Regions
Amazon Web Services is in more than 240 countries and territories. Millions of active

users worldwide are affiliated with AWS, and the number is increasing daily. To exceed

the expectations of its clients, the AWS team is constantly working to improve their

services and widen their reach among users. In addition, AWS is focused on reducing

latency and speeding up its services. Furthermore, AWS is also obligated to store

data in the chosen AWS region. See https://aws.amazon.com/about-aws/global-

infrastructure/regions_az/ for more information.

Each of AWS’s regions is sizable and located in a different part of the world.

Individual Availability Zones within a given AWS Region are designed to be fault-tolerant

in an outage in another Availability Zone, check Figure 1-5.

Figure 1-5.  AWS regions

Chapter 1 Overview of Amazon Web Services

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
it
Typewritten text
www.networkuser.ir

12

If you want to explore the region’s location more, the AWS website will allow you to

do this quickly, as shown in Figure 1-6.

The reach of Amazon Web Services is tremendous, with more than 20 regions

worldwide. The regions where AWS is available are known as the AWS availability

zones. Presently, AWS operates in more than 80 availability zones and aims to double

this number in the future. These availability zones are the foundation of the entire AWS

structure. Each zone is a geographical location with one or more data centers, making

AWS accessible to millions of active users. These data centers are equipped with extra

power machines, networks, and connectivity resources. As a result, users can get cloud

services with risk-free and latency-free databases, and customers have the option of

scaling, which is impossible with any local data center.

The AWS availability zones in each region operate as separate physical entities and

are not connected. Even if a region has more than one availability zone, the data centers

are located far from each other. This distance ensures that any fault or issue with one

data center does not affect the data in any other zone. Moreover, with each AWS as a

separate zone, the databases are not shared and remain secure from other zones.

Figure 1-6.  AWS website showing regions

Chapter 1 Overview of Amazon Web Services

13

The separate availability zones of AWS provide functional adherence and data

security to users. Moreover, stand-alone zones ensure the privacy and protection of user

data. Similarly, it conveys to the customers that data protection is taken as a strict rule,

which is not compromised at any cost. Hence, AWS guarantees that the user data will not

be hijacked or transferred unless the user asks for that.

�Availability Zones
The availability zones of Amazon Web Services are data centers located within a region

in one or more location. Each zone is a distinct network and is linked with the other only

through a low-latency connection. These isolated networks support data security and

speed and are not prone to threats from other networks. Moreover, the separate data

centers minimize the workload, resulting in operational stability. In addition, the data

centers are carefully located in low-risk areas where data centers can avoid any kind of

physical or virtual risks. For instance, the geographical locations for data centers are

specifically selected for low risk. However, users are not restricted and can access any

regional data center through AWS.

Data centers in each availability zone have power supplies from separate

power substations. The intention of having individual power units is to provide an

uninterrupted power supply (UPS) to all the data centers. Moreover, different power

substations ensure that a power failure in one data center does not affect the power grids

in any other availability zones.

Table 1-1 shows some examples of regions and AZs; the list is not definitive. Each

AZ is connected to the other within the same region through a customized, excessive,

low-remission synthetic network. The inner AWS private cloud network has speeds of up

to 40 Gbps. AWS owns and maintains redundant private network lines that connect all

AZs within a region.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

14

Table 1-1.  AWS Regions and AZ

Region Region Name Availability Zones

us-east-1 N. Virginia us-east-1a

us-east-1b

us-east-1c

us-east-1d

us-east-1e

us-east-1f

us-east-2 Ohio us-east-2a

us-east-2b

us-east-2c

us-west-1 N. California us-west-1a

us-west-1b

us-west-1c

us-west-2 Oregon us-west-2a

us-west-2b

us-west-2c

us-gov-west-1 US GovCloud West us-gov-west-1a

us-gov-west-1b

us-gov-west-1c

ca-central-1 Canada ca-central-1a

ca-central-1b

EU-west-1 Ireland EU-west-1a

EU-west-1b

EU-west-1c

EU-west-2 London EU-west-2a

EU-west-2b

EU-west-2c

EU-west-3 Paris EU-west-3a

EU-west-3b

EU-west-3c

(continued)

Chapter 1 Overview of Amazon Web Services

15

Region Region Name Availability Zones

EU-west-4 Stockholm EU-west-4a

EU-west-4b

EU-west-4c

EU-central-1 Frankfurt EU-central-1a

EU-central-1b

EU-central-1c

ap-northeast-1 Tokyo ap-northeast-1a

ap-northeast-1b

ap-northeast-1c

ap-northeast-1d

ap-northeast-2 Seoul ap-northeast-2a

ap-northeast-2c

ap-south-1 Mumbai ap-south-1a

ap-south-1b

ap-southeast-2 Sydney ap-southeast-2a

ap-southeast-2b

ap-southeast-2c

sa-east-1 Sao Paulo sa-east-1a

sa-east-1b

sa-east-1c

Table 1-1.  (continued)

Amazon Web Services customers are given an option to choose from any of the listed

regions to subscribe to cloud services for data storage or backup, virtual networking,

or any other IT services. However, some online cloud services do not require users

to choose a specific region or availability zone, such as Amazon Web Services or

Amazon EC2.

In contrast, most of the services in AWS are region specific. This means users

will have to choose a particular region or can be operational from only a specific

availability zone.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

16

Similarly, AWS makes it possible for users to choose a region that is not in proximity

to their geographical location. Some customers select a far-off region as it may cost

less than the closer ones. The cost of services in each region at AWS depends upon the

pricing of the country.

However, price is not the only factor to consider when choosing different availability

zones; security and latency are also driving forces for region selections. After analyzing

and evaluating the AWS region selection data, we can say that many multinational

companies with global outreach prefer multiple region services. For instance, media

and entertainment companies such as Netflix prefer cloud services in several regions

simultaneously. Similarly, some users favor selecting a pool of regional databases for

data recovery and disaster recovery.

Moreover, businesses with customers of multiple ethnicities also use multiregional

cloud services to connect with all their customers globally. Lastly, the rules and

regulations of various countries regarding data and information laws are yet another

reason to select a specific region. For instance, information is governed differently

in some nations and areas, such as the EU, than in other countries. The rules and

regulations of a particular region influence how the data moves from one region to

another.

We know that AZs are a collection of data centers. When built, they take floodplains

and fault lines into account, place each AZ on its own power grid, and link them with

private fiber. So, let’s take a look at the Oregon region, also known as us-west-2, as shown

in Figure 1-7.

Figure 1-7.  Examples of AZ and region

Chapter 1 Overview of Amazon Web Services

17

Figure 1-7 shows three availability zones in the United States (west 2a, 2b, and 2c)

in a particular geographical region. This is a basic system of AWS, and as we analyze

Amazon Web Services, we will observe similar patterns of infrastructure. Almost all

regions have more than one availability zone; however, as we discussed, these zones

are separate entities from each other. For instance, in the United States, there are many

states with two availability zones, such as Oregon and Ohio. There are also states that

have more than two AZs. Availability zones are integral to high accessibility and risk

tolerance, even when regions are the most important infrastructural step.

As there is always a possibility of faults, errors, power shutdowns, malware, hacking,

and other threats, customers of cloud services are always looking for reassurance from

the service provider when selecting IT services. Therefore, the clients of AWS want to use

most of the availability zones within their region so that they can minimize their risk of

data loss.

Similarly, clients prefer AWS as it offers not just a powerful computer but also a

rigorous data backup system. When shopping around, you want answers to these

fundamental issues: “What happens if a data center goes down?” and “What happens if

a data center can’t be reached?” Well, “We have many data centers,” is a decent response

to that query. So, suppose we were using the Oregon region. In that case, we’d take

advantage of all three availability zones, A, B, and C, and distribute our application

across multiple machines, as well as our databases, storage, and content, across all three

availability zones, to ensure high availability, fault tolerance, and durability. Again,

availability zones are a group of data centers linked by private fiber critical to Amazon

Web Services’ high availability and fault tolerance.

Is it Amazon’s responsibility if your hosted application isn’t available? No. It’s the

customer’s problem if the hosted apps don’t follow suitable cloud design standards.

Failing to design your apps to work effectively in various AZs would void your AWS

service-level agreement. Similarly, there is also the option of earning credit on your

account for hours of downtime if your app was but you had correctly built it. However,

there is a catch: you must show that your program was down by submitting the

appropriate network traces.

Chapter 1 Overview of Amazon Web Services

18

�Global Edge Services
Customers who want to subscribe to Amazon Web Services must send an online request

to Amazon Resource Centers for subscriptions. Users around the world can reach AWS

through its edge location service. Edge locations (EVs) are data centers like AZs and are

present in various regions worldwide. In 2021, more than 225 edge locations were spread

across 47 different countries.

Every edge website is virtually linked with the telecommunication transit network of

the specific location. Edge services are spread across the globe like the Internet. Amazon

Edge is connected through telecom networks so that they can reach customers worldwide

at the lowest cost possible. Accessing Amazon Edge through the Internet is also the slowest

way to reach it. However, this has the lowest latency. Moreover, users sometimes use VPN

connections or a direct connection from the local data center to connect to the edge site.

Generally, at each edge site, there are three data connection options:

•	 Internet connections

•	 Direct Connect connections

•	 AWS private networks

Various vital services are available at each edge site; some are offered at no cost,

while others may be bought and used at each edge location as needed, based on your

current and future requirements. The services provided at each edge are covered next.

�Route 53
Route 53 is Amazon’s hosted DNS service, named after the standard DNS port number.

Route 53 features a public side that receives inbound client queries and then resolves

each question to the required AWS resource on the private side.

Let’s imagine there’s a single DNS server at the edge with complete knowledge of

all AWS resources for simplicity. This isn’t a highly fault-tolerant design. It would be

preferable to have redundant DNS services wired across the globe and have complete

awareness of all AWS resources. The Anycast DNS routing techniques were used to

create Route 53. All Anycast DNS servers throughout the AWS regions know each target

service location in this arrangement. Route 53 will guide you to an edge location based

on your site. Once an application request reaches the edge location, it is sent to the

selected AWS service location through Amazon’s proprietary high-speed network.

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

19

The following Figure 1-8 shows the simple architecture of the edge that connected to

Route 53.

Figure 1-8.  Route 53 at an AWS edge location

�Web Application Firewall
Web Application Firewall (WAF) is a website protection firewall that helps to monitor

and guard the user’s web applications. WAF functions by filtering the Hypertext Transfer

Protocol (HTTP) or website traffic. Hence, it is a protective layer between the potential

threats and web applications of the users. These virtual threats include cross-site forgery,

cross-site scripting (XSS), file inclusion, and SQL injection. Moreover, there are three

types of WAF deployment: network-based, host-based, and cloud-based. However, WAF

is not the ultimate solution to all kinds of virtual threats, such as mitigation, etc., as other

sophisticated technologies deal with these security hazards.

�CloudFront
CloudFront is another Amazon service that provides high-speed static and dynamic

web traffic, including HTML, CSS, JS, and image files. CloudFront is connected to the

global edge connections and distributes web data to users. AWS provides the fastest

web services through its edge services. For instance, if a customer orders CloudFront

web content, the charge is linked up with the low-latency networks through the edge

Chapter 1 Overview of Amazon Web Services

it
Typewritten text
www.networkuser.ir

20

data center and executed without delay to the client. In addition, there is also AWS

documentation, which has the following functions:

•	 As speedy performance is the aim of AWS, the CloudFront services

provide immediate content allocation when it is available at the

lowest-latency edge location.

•	 If the web content is unavailable at the edge location, then

CloudFront retrieves the data from its source. The user provides the

source to get access to the authentic web source.

�Lambda@Edge
Lambda is a SaaS platform that allows user data resource management, such as system

maintenance, automated scaling, database provision, etc. More important, Lambda

runs on specific code that the user writes; based on that code, Lambda performs

multiple automated computing tasks. For instance, the users can launch some code for

a Python function to select a particular region for the data center. Later the code will be

automatically executed through an edge data center network in the user’s proximity.

From a few queries per day to thousands per second, Lambda@Edge processes them

automatically. Requests are processed in AWS locations closer to the viewer than on

origin servers, decreasing latency and enhancing the user experience.

�AWS Shield
AWS Shield provides baseline security to all AWS customers, but AWS does not safeguard

each client individually. Instead, it is protecting its edge infrastructure for all clients.

What if you want a more tailored DDoS defense? Get your wallet out and contact the

AWS Shield Advanced team if you don’t know how to handle your security challenges

and want AWS professionals to help you with real-time tailored protection.

�AWS Operational Benefits
There are certain advantages to using the public cloud. First, there are unrestricted

connections to network and databases. Second, there are various administration options

that make operating in the cloud simpler than you probably anticipated. Table 1-1

Chapter 1 Overview of Amazon Web Services

21

lists the AWS managed services that might change or supplement your current onsite

services and operations.

•	 Servers: It’s costly to manage and maintain underutilized servers

in your data center. Your on-premise data center will shrink as you

move apps to the public cloud. Your overall hosting expenditure will

be reduced since you won’t be hosting as many physical servers. You

won’t have to spend as much for software licensing at the processor

level since you won’t be responsible for operating hypervisor

services; Amazon will do that. You might think that switching to the

AWS cloud entails merely virtualized resources, but AWS offers a

complete range of computing solutions with computing resources

of any proportion and capacity, from a single-core CPU with 512MB

of RAM to hundreds of times of RAM. You can also purchase a bare-

metal server and use it in any way.

•	 Storage: Cloud storage offers many advantages since cloud providers

guarantee a limitless quantity of storage. Amazon provides a variety

of storage alternatives that are comparable to, but not identical to,

your on-premise solutions. Amazon offers shareable file solutions

for storage area networks, including the Elastic File System (EFS) for

Linux applications and FSx, a shared file service tailored to Windows

File Server workloads. EBS allows you to create virtual hard drives.

S3 and S3 Glacier provide unlimited storage as well as longer-term

archival storage.

•	 Managed services: AWS offers multiple controlled services, as

indicated in Table 1-2. These services have the capacity to take the

place of the bulky onsite infrastructure after you migrate to the cloud.

Chapter 1 Overview of Amazon Web Services

22

Table 1-2.  On-Premise vs. AWS

Managing IT On-Premise Amazon AWS

Servers/

compute

Rack, networking, hardware

servers, switches, routers.

EC2 with different types, plus complete networking

tools.

Storage SAN storage. EBS, EFS, S3.

Monitoring Different tools, Nagios and

SolarWinds.

CloudWatch and X-Ray.

Scale Costly, and usually you can’t

decrease the resources later.

Provide scale up/down depending on your needs.

Identity

management

Active Directory, third-party

tools if you need to set up

SSO.

You can extend your on-premises Active Directory

to the AWS cloud with hosted Directory Services.

Manage access to popular business apps hosted by

third-party cloud providers using AWS single sign-on

services (SSO).

Backup It would be best if you used

a third-party solution.

AWS manages this part for you for your database or

server with snapshots or automatically.

VPN Routers could do this. AWS provides different services for this such as

OpenVPN, Site2Site VPN, and Direct Connect.

All cloud service providers have a published service level agreement (SLA) that

dictates the particulars of what resources are being offered and at which functional level.

Moreover, it is the responsibility of the public cloud providers to make a commitment

to their clients regarding the data security, standards, and assistance and how other

procedures will be reflected in the company’s SLA. The service providers are bound

to act in accordance with the SLA. Additionally, specifications regarding the allowed

duration of technical interruptions and the provider’s checks and balances during the

interruptions are covered in the SLA. There will also be disclaimers emphasizing the

cloud provider’s inability to be held liable for situations outside its control.

Chapter 1 Overview of Amazon Web Services

23

The cloud provider is answerable for the entire system and arrangement of

computing services, resource management, the general administration of the cloud,

the protection of data and network services, and the preservation of client privacy,

regardless of whatever cloud model is used. The SLA will also include a description of

the responsibilities of each client, referred to as the cloud consumer, in terms of how

they are expected to do business with the cloud provider. Each cloud customer must be

completely aware of the features and benefits provided by each cloud service provider;

Table 1-3 shows examples of the Amazon AWS SLA, and you can read the SLA agreement

at https://aws.amazon.com/legal/service-level-agreements/.

Table 1-3.  AWS SLA Examples

AWS Service SLA Service Credit Percentage

Amazon Compute (including EC2,

EBS, ECS and AWS Fargate)

Less than 99.99% but equal to or

greater than 99%

30%

Amazon Database, RDS Less than 99% but equal to or

greater than 95%

25%

Security and compliance Less than 99% but equal to or

greater than 95%

25%

Networking and content delivery Less than 99% but equal to or

greater than 95%

25%

Amazon Storage Less than 99% but equal to or

greater than 95%

25%

Amazon Serverless Less than 99% but equal to or

greater than 95%

25%

Amazon IoT Less than 99% but equal to or

greater than 95%

25%

Chapter 1 Overview of Amazon Web Services

https://aws.amazon.com/legal/service-level-agreements/

24

�AWS Data Best Practices
Amazon AWS provides different ways to secure your data; you can’t ignore security when

moving to the cloud. The AWS cloud is not solely responsible for the overall protection

of the computing services; customers share this responsibility. The user controls their

own data privacy and must take appropriate measures to protect their data, platform,

applications, systems, and networks. Hence, users of cloud services should be just as

cautious as they would be when managing their own private onsite data center.

When connected to the AWS public cloud environment, the user can be assured

that their data will be in secured hands and will be saved for the longest time possible.

Moreover, it is rare to encrypt data from the AWS storage system, except for a few cases

like S3 Glacier. Other data cannot be ciphered by default. EBS volumes, on the other

hand, use either AWS customer master keys or keys provided by the customer, and both

boot and data volumes may be encrypted at rest and in transit, ensuring that the data is

protected. Shared storage systems like EFS and DynamoDB tables may also be encrypted

while in transit. AWS S3 buckets can be encrypted using keys provided by AWS or keys

supplied by the client (if applicable).

Data durability offers special protection; all data saved in the cloud is duplicated

across several data centers. EBS volumes are replicated inside the data center in which

they are housed. It is possible to achieve high durability by copying S3 items across

three sites within the designated Amazon Web Services region. It is amusingly said that

for every 1,000 things kept in an S3 bucket, you will lose one of those objects once per

10 million years, according to Amazon’s degree of S3 durability. We will be unable to

replicate this degree of durability and security on-premises.

The following factors are concerns when moving to the public cloud:

•	 Privacy: The most significant feature of a public cloud service is that

the data is stored in a shared data center. This element makes the

public cloud different from the private cloud model because there are

many tenants of a public cloud service. Nevertheless, genuine cloud

service providers like AWS guarantee that the data of each user is

protected and segregated from one another.

Chapter 1 Overview of Amazon Web Services

25

•	 Controlling the data: Clients have complete control over the

storage and retrieval of their data saved on Amazon Web Services.

The default setting for all AWS data storage is private unless the

clients choose to make it public for some reason; it is the user’s

responsibility to establish the protection and provision of any data

archives kept in AWS.

•	 Security: Data security is one of the most challenging aspects of cloud

services. As data encryption threats always exist for public cloud data,

reliable cloud service providers like AWS provide the best possible

data security policies to their users. AWS provides secured data

through shared storage resources. In addition, it offers IAM, which

allows users to create permission protocols for their AWS account.

�AWS Network Best Practices
The networking infrastructure of Amazon Web Services is handled at the subgrid

level, and all subgrids are formed as personal subnetworks that are inaccessible to the

general public. These subgrids are broadband addresses, which are located on the user’s

personal network, referred to as a virtual private cloud (VPC) on Amazon Web Services.

Access to subgrids via either the public Internet or any private VPN connection from an

onsite system is possible only when a VPC has been configured with a gateway service.

Please keep in mind that it’s up to the client to choose a public or private connection,

not Amazon AWS. The following Figure 1-9, showing the virtual private network (VPC)

creation page.

Chapter 1 Overview of Amazon Web Services

26

Figure 1-9.  Creating a VPC in AWS

•	 A type of subnet firewall called a network ACL can control each

subnet’s ingress and egress traffic, without any previous interaction

for the outgoing and incoming packet flow.

•	 An additional firewall called a security group further protects each

EC2 instance hosted on a subnet. This firewall specifically dictates

which traffic flow will be allowed and where the outgoing traffic

will be channelized. Part of creating the VPC is creating the subnet;

Figure 1-10 shows the creation of subnets.

Chapter 1 Overview of Amazon Web Services

27

Figure 1-10.  Creating a subnet for a VPC

Chapter 1 Overview of Amazon Web Services

28

Another extra layer of network security from AWS consists of VPC flow logs that can

be enabled to capture network traffic for the entire VPC, a single subnet, or a network

interface.

�AWS Application Best Practices
It is recommended that web and network servers operated by AWS be situated on

personal subgrids. It is not possible to connect to a private subnet from the Internet

directly, so you need to set up a VPN such as OpenVPN. A question might arise

regarding a public-oriented application that does not have a direct public entry point

to the program. It is a best practice at AWS to answer this issue in the following way: for

web servers that clients from all over the world access, installing the load distribution

system on a public subnetwork next to the web servers gives the optimal configuration

option. Users who are looking to get past the system will be routed to the load balancer’s

DNS name, shown on their computer’s screen. When incoming traffic from the public

subnet arrives, the load balancer routes it to the targeted web servers located in the

personal subgrids. The application load distributor is one of the load balancer types

supplied by AWS. It is capable of performing authentication and SSL offload services.

Several encryptions and decryption points can be used to construct a three-tier web

application’s end-to-end flow of communication.

Figure 1-11 shows the most straightforward architecture for an application

deployed on AWS.

Figure 1-11.  Simple application deployed on AWS

AWS is accessible in numerous geographical locations and is subject to the laws and

rules imposed by states and industry compliance requirements. These regulations rely

on the type of company that is being operated. For this reason, there may be various

degrees of compliance while using the AWS cloud for your operations. For example,

Chapter 1 Overview of Amazon Web Services

29

clients of financial, health, and government organizations must adhere to a tight set of

rules and regulations. In addition, your organization may have its own set of internal

laws and rules to abide by.

In most developed countries, new rules and regulations are implemented regarding

the security and protection of databases and virtual information of the corporate sector.

Even when there are cybersecurity protection units active, still more restrictions are

applied to safeguard user data to protect it from threats of encryption. It is the main

responsibility of the service providers to make sure that their client’s data is protected

effectively.

Cloud service providers have contractual duties to guarantee that such information

is kept safe and secure when companies have data records housed in their cloud. They

support different compliance standards like the following:

•	 PCI DSS for payment cards to prevent fraud.

•	 GDPR is applied in Europe for personal information.

•	 SOX for Publicly traded companies to protect shareholders.

•	 GLBA is used by the financial industry to protect personal

information.

•	 HIPPA is usually used for healthcare to protect personal information.

�The Well-Architected Framework
AWS published the Well-Architected Framework a few years ago to assist clients in

making informed decisions about transitioning to the AWS cloud. The framework is a

set of acknowledged best practices that cloud architects can use to design safe, robust,

and decently performing infrastructure for hosting their applications. The best approach

should not be mindlessly implemented without comprehending why it has been

designated as a best practice; each best practice must still be reviewed to see whether it

satisfies your requirements. The latest version of the documentation can be found here:

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html.

Amazon AWS highly recommends the following for each application that will be

deployed on AWS:

Chapter 1 Overview of Amazon Web Services

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

30

•	 Operational excellence: When it comes to AWS application

execution, deployment, and monitoring, automatically positioned

tracking methods, constant progress, and self-assisted analysis

for data retrieval are the best practices. CloudWatch events and

alerts, CloudTrail, EC2 Auto Scaling, AWS Config, and the Trusted

Advisor are some of the most important AWS services. Successfully

supporting the development and operation workloads, exploring

their networks, and continually enhancing assistance in operations

to generate monetary value are all essential. Always ask yourself

questions like the following before implementing anything:

•	 What are the best methods to deal with application interruptions?

Is it better to do it manually or automatically?

•	 How can we keep track of the efficiency of apps and infrastructure

components hosted on AWS?

•	 Security: Developing networks that are dependable and safe

while preserving client data privacy at the highest possible level is

important. Also, it is crucial to use cloud services to secure databases

and all computing resources in such a way that it strengthens the

protective firewalls, so one could ask themselves questions like these:

•	 How do we manage credentials/authentication on AWS?

•	 How do we automate things for security?

•	 Reliability: How can the computing services and networks operated

by AWS be restored from an outage within the minimum time?

Similarly, how can apps fulfill the client’s rising demands and

perform a task efficiently so that it achieves its target accurately and

persistently? The questions to ask include these:

•	 How can we keep track of the applications operated by AWS?

•	 How can applications hosted on AWS respond to variations in

customer requirements?

Chapter 1 Overview of Amazon Web Services

31

•	 Performance efficiency: What are the strategies that can fulfill

requirements for the cost? Key AWS features include Cost Explorer,

Budgets, EC2 Auto Scaling, Trusted Advisor, and the Simple Monthly

Calculator. For performance efficiency, you can ask the following:

•	 What type of database will this application use?

•	 What kind of instance type will we use for this application?

•	 Cost optimization: How do you develop solutions that satisfy your

requirements at the lowest cost? Key AWS features include Cost

Explorer, Budgets, EC2 Auto Scaling, Trusted Advisor, and the Simple

Monthly Calculator. Cost optimization issues to consider are as

follows:

•	 How can we manage consumption and cost?

•	 How are the price goals achieved?

•	 Are we up-to-date with current data transfer prices depending on

our AWS designs?

•	 Sustainability: You should try to consistently enhance sustainability

effects by minimizing the power usage and boosting competency

over all elements of a task by adding up the benefits from the given

resources and limiting the overall resources needed.

In the case of the AWS Well-Architected Framework, we utilize these terms:

•	 A component is a symbol, grouping, and AWS service that collectively

provide a complete unit of technical ownership within a workload in

opposition to the demand.

•	 The workload is a segment of elements that collectively creates its

monetary worth. A workload is generally the number of features that

executives speak about.

•	 Milestones identify significant changes in your architecture as it

progresses during the product life cycle (design, execution, trial and

error, and application and reproduction).

Chapter 1 Overview of Amazon Web Services

32

The Well-Architected Framework provides a group of structurally integrated

principles that may help produce a successful cloud architecture.

•	 If you make a terrible capacity selection while deploying a

workload, you risk sitting on costly idle resources or coping with the

performance consequences of low capacity. These issues can be

resolved using cloud services. You can have the system automatically

scale up and down.

•	 You can establish a production-scale test environment on demand

in the cloud, perform your testing, and then decommission the

resources. You can imitate your natural environment for a fraction

of the expense of testing on-premises since you pay for the test

environment only while it’s operating.

•	 Automation helps you quickly build and reproduce your workloads

while avoiding physical labor costs. Anyone can keep an eye on

the automated processes, assess their effect, and restore to earlier

settings as needed.

•	 AWS can analyze the ways to improve performance and assist in

developing organizational experience to deal with events.

The AWS Well-Architected Framework presents infrastructural examples for

designing and supporting cloud computing networks that are reliable, protective,

competent, economical, and sustainable. The framework raises many relevant and

important points for analyzing any present or future infrastructure. This framework

is the sum of all AWS best practices. When you use the framework in designing your

operational structure, you’ll be able to create faster and better systems, while making

provisions for the required virtual resources.

�The Well-Architected Tool
The AWS Well-Architected Tool is found in the AWS management dashboard under

Management and Governance, as illustrated in Figure 1-12.

Chapter 1 Overview of Amazon Web Services

33

Figure 1-12.  The Well-Architected Tool

As stated in the Well-Architected Tool documentation, it offers a framework for

keeping records and archives of workloads using AWS best practices (see Figure 1-13).

Before deploying your application in each of the six pillars, consider several questions.

As you examine each question, you can use landmarks to track changes in your design

Chapter 1 Overview of Amazon Web Services

34

as it progresses through the organization and development life cycle. Using the Well-

Architected Tool, you’ll get suggestions and assistance following AWS’s suggested best

practices while doing a comprehensive architectural analysis of a workload you’re

preparing to deploy on AWS. It is undoubtedly worth your time and effort.

Figure 1-13.  Using the Well-Architected Tool

When you are choosing where the application will be located, the first stage

is identifying the workflow, choosing the industry, and determining whether the

application has reached its desired level. Based on the responses to the questions during

the workload assessment, the Well-Architected Tool will highlight possible medium and

high-risk areas throughout the review process. The plan will also incorporate the six

pillars of design success and proposed changes to your original design selections.

�Conclusion
In this chapter, you looked at what a cloud service is and how Amazon fits into the public

cloud domain in terms of infrastructural development, particularly IaaS and PaaS. The

cloud is indeed a data center. In addition, I covered the cloud models and the usage of

each of them, plus the cloud use cases. I highly recommend creating an AWS account

and looking for ways to use the free tier before moving to the following chapters (you do

need a valid credit card).

Chapter 1 Overview of Amazon Web Services

35

Also, review the AWS acknowledgment website to see how your conformity

requirements align with what AWS has to offer. Of course, you should thoroughly review

the Well-Architectured Framework documentation; I consider this documentation pretty

helpful in understanding how AWS works.

We’ll move on to the actual implementation of DevOps in the following chapter.

Chapter 1 Overview of Amazon Web Services

37
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_2

CHAPTER 2

Understanding DevOps
Concepts
Before we start talking about Amazon AWS and DevOps, you need to have a good

understanding of DevOps and why the demand of it is increasing every day.

�DevOps Primer
DevOps refers to the departments of development and operations joining together.

DevOps can be thought of as the extension of the Agile approach. On the technical

side, it will speed up the transition from continuous (Agile) development to integration

and deployment and improve the working environment for both the development and

operations teams. As you can see from Figure 2-1, there is a gap between the two teams

when they are not sharing anything; when implementing DevOps in a company, the gap

will disappear, as you can see in Figure 2-2.

https://doi.org/10.1007/978-1-4842-9303-4_2

38

Figure 2-1.  Collaboration without DevOps

Figure 2-2.  Collaboration with DevOps

DevOps itself is not a technology. Instead, DevOps tries to apply different

methodologies within the company.

Usually, people mix up DevOps and Agile, but they are different from each other, and

we will cover this in this chapter’s “Agile vs. DevOps” section.

Chapter 2 Understanding DevOps Concepts

39

�The DevOps Process
The DevOps methodology is meant to focus on and improve the software development

life cycle. You can consider this process an infinite loop.

DevOps often employs specific DevOps-friendly technologies. These solutions aim

to improve the software delivery process (or pipeline) by streamlining, shortening, and

automating the different steps. These technologies also support DevOps principles,

including automation, communication, and interaction, between the development and

operations teams. Figure 2-3 shows the different phases of the DevOps life cycle.

Figure 2-3.  DevOps process

Let’s break the process down and talk about the tools used in each phase:

	 1.	 Plan: This stage aids in identifying company values and needs.

Jira and Git are examples of programs that can monitor known

problems and manage projects.

	 2.	 Code: This stage involves generating software code and software

design. GitHub, GitLab, Bitbucket, and Stash are some examples

of the tools used.

	 3.	 Build: In this stage, you manage the software builds and versions

and utilize automated tools to compile and package code for

eventual production release. You use source code or package

repositories to “package” the infrastructure required for product

delivery. Docker, Ansible, Puppet, Chef, Gradle, Maven, and JFrog

Artifactory are some examples of tools.

Chapter 2 Understanding DevOps Concepts

40

	 4.	 Test: Continuous testing (human or automated) is performed

throughout this phase to guarantee the highest possible code

quality. JUnit, Codeception, Selenium, Vagrant, and TestNG are

examples of test tools.

	 5.	 Deploy: In this stage, DevOps coordinates, plans, and automates

product releases into production. Puppet, Chef, Ansible, Jenkins,

Kubernetes, OpenShift, OpenStack, Docker, and Jira are some

examples of the tools used.

	 6.	 Operate: Throughout this phase, the software is managed during

the manufacturing process with Ansible, Puppet, PowerShell,

Chef, or Salt.

	 7.	 Monitor: Identifying and gathering information about problems

from a particular software release in production is part of this step.

New Relic, Datadog, and Grafana are examples of tools used.

To simplify, DevOps means that an IT development team will write code that works

perfectly and meets the company standard to do some job. This code will then need

a review and will be deployed on one of the environments such as production. This

happens without any waiting or downtime. The good thing is that this code will be tested

before being deployed to any of the environments.

To achieve this purpose, businesses employ a combination of culture and

technology. The Ops team and developers work on the project, and developers work

on minor upgrades that go live independently of each other to align the software to the

expectations. Plus, to avoid wasting time, Ops configures a CI/CD pipeline that will be

run automatically once the developer uploads new code to version control that needs to

be reviewed to ensure it’s meeting the company’s standards.

This permits a business to create a secure piece of work. Small groups can quickly

and independently develop, test, and install code and release fast, safely, securely, and

reliably to customers. This lets businesses maximize developer productivity, permit

organizational learning, create excessive worker satisfaction, and win within the

marketplace.

These are the outputs that DevOps produces. However, this is not the world we live

in for the majority of us. Our system is frequently dysfunctional, resulting in dreadful

outcomes short of our full potential. Testing and infosec operations occur only after a

project, which is too late to address any flaws detected. Every necessary action needs too

Chapter 2 Understanding DevOps Concepts

41

much human labor and too many handoffs, leaving us continually waiting. Not only does

this result in incredibly long lead times for getting anything done, but the quality of our

work, particularly production deployments, is also troublesome and chaotic, harming

our customers.

Consequently, we fall well short of our objectives, and the whole business is unhappy

with IT’s performance, leading to budget cuts and disgruntled staff who feel helpless to

influence the process and its outcomes. What is the solution? We need to transform how

we work, and DevOps tells us how.

Let’s look at the main elements of a DevOps ecosystem.

�DevOps Goals
The following sections provide a succession of commonly recognized definitions,

elaborated on with personal viewpoints.

�Shared Goal
Most businesses can’t implement production changes in minutes or hours; it takes

weeks or months. Nor can they deploy hundreds or thousands of changes into

production daily; instead, they struggle to deploy monthly or quarterly. Production

deployments are not routine, instead involving outages, chronic firefighting, and heroics.

These companies are at a substantial competitive disadvantage in an age where

competitive advantage means quick time to market, excellent service standards, and

constant innovation. This is primarily due to their failure to address a long-standing

issue in their technology department.

So, aligning efforts around enhancing system performance and stability, lowering

deployment time, and improving overall product quality will result in happy customers

and proud engineers; the objective must be reiterated, clarified, and simplified until it is

thoroughly understood, defended, and finally adopted by everyone.

DevOps redirects attention away from self-interest and toward that objective. It

emphasizes collective accomplishments above individual accomplishments, allowing

other teams to see beyond the confines of their cubicle. Have faith in them.

Chapter 2 Understanding DevOps Concepts

42

�Collaboration (No Silos Between Teams)
The software approaches that DevOps replaced were missing the benefits that

coexisting Dev, Ops, and QA teams can deliver. They did not place a premium on team

communication. Thus, it wasn’t until DevOps was implemented that solid support

for cross-departmental cooperation fundamentally altered how departments operate

as a unit.

DevOps extends the Lean and Agile software development approaches since it

emphasizes operations. DevOps fosters an atmosphere where diverse teams collaborate

to accomplish similar company goals. This implies that your organization’s teams will

no longer be separated and will no longer strive toward department-specific objectives.

However, influential organizations may continue to employ various technologies to do

their tasks. DevOps fosters cooperation by dismantling barriers between development,

operations, and quality assurance teams and encouraging them to work collaboratively

toward a common goal: increasing value for your business. This will eventually help you

give more value to your customers.

Collaborative work provides several advantages. Engineers are no longer concerned

with the efficiency with which their team completes tasks—because they are all liable for

the final result. Also, collaborative work encourages workers from disparate departments

to explore ways to enhance a product’s operational procedure. This kind of cooperation

cross-trains your personnel by allowing them to broaden and update their technical

experience in areas not precisely inside their area of competence. As a result, it’s a win-

win situation for your firm and your workers.

Sometimes there is an organizational silo: One person in the company who

is the bottleneck. It is hard for others to fix any bugs because there isn’t enough

documentation to explain this person’s work.

Some people get stuck in a silo because of bad luck. Many engineers had to deal with

old systems when they started working; hats off to these engineers because I know how

much effort is needed to understand other people’s work.

DevOps can solve these issues with concepts such as cross-functional teams. The

visibility of what these developers are doing is apparent to all the other groups, and

everything is uploaded under one version control repo.

Chapter 2 Understanding DevOps Concepts

43

�Speed
One of the main advantages of DevOps is that it speeds up how quickly your business

works. For example, let’s assume the development team creates new feature branches.

They want to deploy manually; this will probably take months, depending on the

availability and the risk these features will provide to the system. Assume they deploy

this code and after two days find a bug in this new release. What will happen?

Applying the DevOps methodology will solve these issues; the faster you make great

software, the sooner you can see how it can help your business. The time it takes to test a

product depends on whether there is a place to try it. Updates and upgrades in software

usually don’t take very long to test if you have a test environment. However, trying a new

product takes a lot of time because the operations team must set up a test environment.

DevOps makes getting new features and changes into your software easier because it

does automated testing and integration, which speeds up the process.

DevOps makes your developer watch your product all the time to ensure it is running

smoothly without any issues. This means it takes less time to monitor, find, and fix

bugs, which speeds up your time to market. Plus, it will help you find bottlenecks in

production and processes that don’t add value. Because you can work on fixing them,

you’ll be able to make money faster.

�Innovation
DevOps is the key to unlocking new ideas in software development. We’ve seen how

DevOps can quickly help you get your software products out. Such quick software

delivery frees up some of your developers’ time so they can try new features or improve

the effectiveness of the ones they already have. Developers can test the feasibility of

these ideas by performing a proof of concept and then going on with the project as

planned, with little impact on the current project.

A set of rigid rules doesn’t bind the developers; a project can permanently be

changed if its goals are met. It might not be possible to use an idea one of your

employees comes up with for an application with that product, but it might work well

with another. When people work together, they develop new ideas and quickly test them.

This helps DevOps be more innovative. Thus, DevOps allows for this environment and

gives your software delivery the space to work well.

Chapter 2 Understanding DevOps Concepts

44

�Satisfaction of Customers
Customer happiness is one of those aspects of the company that may make or ruin

it. One of the primary advantages of DevOps is improved customer experience and,

ultimately, customer happiness.

Over time, DevOps has shown its capacity to revolutionize and accelerate the

software development life cycle (SDLC) process via more flexibility, increased

automation, rapid deployment, decreased time to market, and increased productivity.

Figure 2-4 illuminates how businesses attain consumer happiness through six key factors.

Figure 2-4.  DevOps benefits

•	 Customer response time is reduced: Any delay in responding to

client comments or complaints increases consumers’ likelihood of

moving to another provider or a close rival. This ultimately harms the

customer base.

•	 It accelerates delivery cycles: The delayed process was caused by

infrastructure problems and resulted in a long time for delivery.

In the DevOps environment, releases and innovation occur

quicker, with the ultimate business purpose of reaching out to

customers early.

Chapter 2 Understanding DevOps Concepts

45

Automating repetitive jobs, eliminating routine duties, and

streamlining procedures all contribute to the continuous operation

of the software delivery chain. This results in a higher pace of

innovation and the delivery of more products in shorter time

frames. DevOps makes it simpler to achieve faster delivery cycles!

•	 It allows for low-priced products: Because of the shorter periods

necessary for minor product launches, the cost aspect should not be

a significant source of worry for these businesses. DevOps is precisely

what makes this possible. As a result of the shorter manufacturing,

operation, delivery, and feedback cycles, less money is spent on

product development, reducing the total amount paid. As a result

of the decreased development expenses, the customer’s price is

also lower. This ultimately results in the client being satisfied and

interested in future versions.

•	 It allows a CI/CD environment: I will cover more about DevOps

continuous integration/continuous development (CI/CD) cycles

later in this chapter. CI/CD promises to stabilize the operational

environment and respond quickly to production needs. CI/CD cycles

reduce lead times and mean recovery time and permit more frequent

releases, leading to customer satisfaction.

•	 Tests can be automated: When it comes to DevOps, automation

helps to speed up the testing process from integration to staging.

Automated testing promotes excellent product testing by preventing

bugs from entering production early. Ultimately, this decreases the

expenses associated with the launching of new products.

•	 Costs are reduced: Cost and value considerations influence DevOps’

return on investment (ROI). One of the most significant advantages of

the DevOps approach is the capacity to find and deliver to customers

more quickly. This ultimately saves expenses, time, and resources

that may be repurposed to identify new consumers and concentrate

on providing more excellent value to current customers, among

other things.

Before progressing and getting more technical, you should understand the difference

between DevOps and Agile, which are connected.

Chapter 2 Understanding DevOps Concepts

46

�Agile vs. DevOps
Agile is a way to manage projects and make software based on collaboration, customer

feedback, and quick releases. It came from the software development industry in the

early 2000s and helped development teams adapt to the market and customer needs.

Agile development is a way to break down a project into smaller parts and assemble

them for testing at the end. It can be used in many ways, like Scrum, Kanban, and more.

When it comes to the stakeholders, the two concepts are different. Figure 2-5

explains who the Agile and DevOps stakeholders are.

Figure 2-5.  Agile stakeholders vs. DevOps stakeholders

Chapter 2 Understanding DevOps Concepts

47

Table 2-1 highlights Agile and DevOps’s different factors to ensure you understand

more about these two concepts.

Table 2-1.  Key Differences Between Agile and DevOps

Factor Agile DevOps

Definition Agile is a way of working that focuses

on collaboration, customer feedback,

and minor, quick releases.

DevOps is a way to bring development

and operations teams together.

Purpose Agile is a project management method

that helps people work on big projects.

DevOps’s main idea is to control all

engineering processes from start to

finish.

Task In the Agile process, changes happen

all the time.

DevOps focuses on testing and

delivering things all the time.

Implementation It can be done using Scrum or

Kanboard.

It can be implemented using different

software; we will discuss tools later in

the chapter.

Feedback Feedback is given to clients or

customers.

Feedback is presented to the internal

team.

Goal There is a big gap between what

the customer wants and what the

development and testing teams can do

to meet the goals.

There is a gap between development

plus testing and Ops.

Advantage There is a shorter development time

and better defect detection.

It supports Agile’s release cycle.

Tools Jira and Kanboard are tools. Puppet, Chef, TeamCity OpenStack,

and AWS are popular DevOps tools.

Automation There is no automation built in. This is the primary goal of DevOps.

Speed vs. Risk It supports change and application

change.

It should make sure any risk will not

affect the application or functionality.

Quality It produces better applications that

meet the needs of the people who use

them.

There is a focus on automation, which

reduces human errors.

Chapter 2 Understanding DevOps Concepts

48

There are some new DevOps terms in the previous table, so we will define them in

the following sections.

•	 Continuous integration and continuous delivery

•	 Infrastructure as code

•	 Containerization

•	 Automation testing

•	 Version control

The person dealing with the software is the DevOps engineer; from coding and

deployment through maintenance and upgrades, a DevOps engineer offers methods,

tools, and approaches to balance the demands across the software development

life cycle.

�Continuous Integration and Continuous Delivery
Continuous integration is the process of developers merging changes as often as

possible into the code base in the main branch. Developers create a build and then

run automated tests against these changes. If these tests fail, the improvements aren’t

merged, and developers avoid any potential integration issues.

�Continuous Integration’s Advantages

These are the advantages:

•	 Early feedback and build/test automation reduce the time it takes

from committing work to properly running it in production.

•	 Frequent deployment, automated tests, and builds are required for

automated deployment.

•	 Time to restore service and automated pipelines allow for the

speedier deployment of patches to production, lowering mean time

to resolution.

•	 Early automated testing significantly decreases the number of

problems that reach production.

Chapter 2 Understanding DevOps Concepts

49

�Continuous Delivery

Continuous delivery is an extension of continuous integration. It automates the

deployment of all code changes to a target environment (dev, QA, stage, prod, etc.) after

they’ve been merged. Because the source of truth (your repository) is dependable given

your CI process, the artifact may be created as part of CI or this process. This implies

an automatic release process on top of the automated testing process. Developers may

deploy their changes at any time by simply hitting a button or when CI is complete.

�Continuous Delivery Advantages

These are the advantages:

•	 Makes the software release process more automated.

•	 Boosts developer efficiency.

•	 Enhances the code quality.

•	 Updates are sent more quickly.

�Continuous Deployment

Continuous deployment is the last step of a sophisticated CI/CD workflow. It is an

extension of continuous delivery, which automates the release of a production-ready

build to a code repository. It also automates the release of an app to production.

Continuous deployment depends significantly on well-designed test automation since

there is no human gate at the pipeline point before production.

�Roundup of Concepts

Figure 2-6 shows the process for each concept and what the difference is between

the stages.

Figure 2-6.  CI/CD stages

Chapter 2 Understanding DevOps Concepts

50

�CI/CD Tools

The following are some standard CI/CD tools:

•	 Jenkins is an open-source automation server that allows developers

to create, test, and deploy their applications with confidence.

•	 Spinnaker is a cloud-based CD platform for multicloud scenarios.

•	 CircleCI is a continuous integration and delivery platform that

enables development teams to release code quickly and automate

build, test, and deployment processes. With caching, Docker layer

caching, resource classes, and other features, CircleCI can execute

even the most complicated pipelines effectively.

•	 Concourse is an open-source CI pipeline tool that leverages YAML

files for pipeline configuration and configuration-free startup; it has

just released version 1.1.

•	 TeamCity is a general-purpose CI/CD solution that provides

maximum flexibility for many workflows and development

techniques. You can quickly check the status of your builds, learn

what caused them, get the newest build artifacts, and do even more

using the Projects Overview feature.

•	 Screwdriver is a build platform for large-scale continuous delivery.

Because it is not bound to any computing platform, it supports an

ever-growing variety of source code services, execution engines,

and databases. Screwdriver is an open-source project with a well-

documented API and a growing community.

�Infrastructure as Code
To explain infrastructure as code, I will give you an example. Before DevOps, if

the system administrator wanted to create and deploy two environments, such as

development and production, with an average of 12 servers each, the developer needed

to repeat the steps for both environments by making the servers, installing the operating

system, setting up the network, preparing the tech stack inside the server, configuring

everything, and testing it. Usually, these steps would take a month at a minimum, and

don’t forget the error timeline.

Chapter 2 Understanding DevOps Concepts

51

Infrastructure as code (IaC) will solve this issue. IaC is about managing and supplying

infrastructure using code rather than doing it manually.

Configuration files containing your infrastructure requirements are produced using

IaC, making changing and sharing settings easy. This also assures that an identical

environment is created every time. IaC supports configuration management and

helps prevent undocumented, ad hoc configuration modifications by codifying and

documenting your configuration standards.

Version control is a crucial aspect of IaC, and your configuration files, like any other

software source code file, should be under source control. Deploying your infrastructure

as code also allows you to break it down into modular components that can be

combined using automation.

Figure 2-7 illustrates the power of IaC; with a single code base, you can deploy into

different environments.

Figure 2-7.  IaC power

System administrators don’t have to manually supply and maintain servers,

operating systems, storage, and other infrastructure components each time they

create or deploy an application since infrastructure provisioning is automated using

IaC. Coding your infrastructure establishes a template for provisioning. Although this

may still be done manually, automation solutions can handle it.

Chapter 2 Understanding DevOps Concepts

52

�How Infrastructure as Code Works

This is how IaC works:

	 1.	 The developer/system administrator writes, uploads, and uploads

the code to version control.

	 2.	 After other developers review the code and ensure it meets the

company standard, it will be approved.

	 3.	 Their integration with other tools, such as GitHub actions, AWS

pipelines, etc., allows the version control to deploy this code

automatically.

	 4.	 Depending on the tools, the code can be deployed to the cloud or

on-premises to create the infrastructure.

Figure 2-8 shows a small example of how IaC works. The developer pushes the code

into version control, which could be GitHub, GitLab, or Bitbucket; depending on the

company, the code will be deployed automatically after the team reviews and approves

the code.

The code author could be working on comments that the team gives to improve the

code quality.

Chapter 2 Understanding DevOps Concepts

53

Figure 2-8.  How IaC works

Regarding how IaC tools function, we may split them into two categories: those that

follow an imperative approach and those that follow a declarative approach; you’re

correct if you believe the previous categories have anything to do with programming

language paradigms.

The imperative approach specifies a set of commands or instructions the

infrastructure must follow to achieve the desired outcome. By contrast, the declarative

method “declares” the intended conclusion. The declarative approach illustrates the

result instead of explicitly detailing the sequence of actions the infrastructure requires to

obtain the outcome. I will explain more about these two approaches in Chapter 6.

Chapter 2 Understanding DevOps Concepts

54

�IaC Types

There are different types of IaC, each of which can be used for a specific purpose:

•	 Scripting: The most straightforward way to implement IaC is to write

scripts. Ad hoc scripts are ideal for performing basic, quick, or one-

time actions. However, it’s recommended to choose a more specialist

option for more complicated configurations.

•	 Configuration management tools: These specialized tools, often

known as configuration as code, manage software. Typically, they

concentrate on setting up and configuring servers. Chef, Puppet, and

Ansible are examples of these tools.

•	 Provisioning tools: Infrastructure creation is the focus of provisioning

tools. Developers may describe accurate infrastructure components

using these tools. Terraform, AWS CloudFormation, and OpenStack

Heat are examples.

•	 Containers and tools for templating: I will cover containers in

Chapter 9, but what you need to know about this IaC type is that

you can build preloaded templates or images with all of the libraries

and components required to launch an application. Containerized

workloads are simple to distribute and have a fraction of the

overhead of a full-size server. Docker, Vagrant, and Packer are some

examples.

�Standard IaC Tools

Each of the following tools has advantages and disadvantages. I will not go deep into

each tool since there is a complete chapter on IaC with real-life examples and complete

projects that allow you to understand more about this powerful DevOps category. Still, I

will introduce these tools so you can get a brief look at them now.

Terraform

I consider Terraform one of my favorite tools; it is the most widely used open-

source infrastructure automation technology. It assists with infrastructure-as-code

configuration, provisioning, and management.

Chapter 2 Understanding DevOps Concepts

55

Terraform makes it simple to design and deploy IaC across numerous infrastructure

providers using a single procedure. The needed infrastructure is defined as code using

a declarative approach. Before upgrading or provisioning infrastructure, Terraform

enables users to do a pre-execution check to see whether the settings fulfill the expected

outcome. Customers may have their chosen architecture across numerous cloud

providers through a single and uniform CLI procedure. You can swiftly create various

environments with the same configuration and manage the whole life span of your

desired infrastructure, eliminating human mistakes and enhancing automation in the

provisioning and administration process.

Ansible

Ansible is often the most straightforward method for automating the provisioning, setup,

and administration of applications and IT infrastructure. Users can use Ansible to run

playbooks to generate and manage the infrastructure resources. It can connect to servers

and conduct commands through SSH without using agents. Its code is written in YAML

as Ansible playbooks, making the configurations simple to comprehend and deploy. You

can even extend Ansible’s capabilities by developing your modules and plugins.

Red Hat acquired Ansible to promote simplicity. It contributes to IT modernization

and aids DevOps teams in deploying applications quicker, more reliably, and with more

coordination. You can easily create several identical setups with security baselines

without worrying about meeting compliance standards. Ansible provides a competitive

edge in business by freeing up time for the company to implement innovation and

strategy and align IT with business requirements.

Chef

Chef is one of the most well-known IaC tools in the business. Chef employs a procedural-

style language, in which the user must write code and define how to attain the desired

state step-by-step. It is up to the user to select the best deployment method. Chef enables

you to build recipes and cookbooks using its Ruby-based DSL. These recipes and

cookbooks detail the processes necessary to configure your apps and utilities on existing

servers to your liking.

Chapter 2 Understanding DevOps Concepts

56

This infrastructure management solution is designed to help you implement and

model a scalable and secure infrastructure automation process in any environment.

Chef allows DevOps teams to supply and deploy on-demand infrastructure quickly. Chef

is a configuration management technology many businesses utilize in their continuous

integration and delivery operations.

Puppet

Puppet is another open-source configuration management solution widely used to

manage several application servers simultaneously. It also employs a Ruby-based DSL,

like Chef, to define the intended end state of your infrastructure. Puppet differs from

Chef in that it utilizes a declarative approach, in which you must first determine how you

want your settings to appear, and then Puppet will figure out how to get there.

Puppet is a collection of IaC tools for delivering infrastructures rapidly and securely.

It has a large community of developers who have created modules to enhance the

software’s capabilities. Puppet connects with almost every major cloud infrastructure

as a code platform, including AWS, Azure, Google Cloud, and VMware, allowing for

multicloud automation.

SaltStack

SaltStack is a Python-based open-source configuration management application

that provides a simple solution for quickly provisioning, deploying, and configuring

infrastructure on any platform.

SaltStack focuses on automating an organization’s infrastructure, security, and

network. It’s a simple IaC tool that comes in handy to mitigate and resolve typical

infrastructure problems. It’s a safe and cost-effective IaC system that automates and

orchestrates processes while reducing human work. It can automatically identify issues

with event triggers and restore the appropriate state if necessary. Salt also provides SSH

support, which allows for agentless mode. It contains a scheduler that allows you to

define how frequently your code should be performed on the managed servers.

Vagrant

Vagrant is another excellent IaC tool built by HashiCorp. Vagrant focuses on creating

computing environments with a few virtual machines rather than enormous cloud

infrastructure settings with hundreds or thousands of servers spread across several cloud

providers.

Chapter 2 Understanding DevOps Concepts

57

Vagrant is a simple yet effective tool for creating development environments. It

encourages the use of unified workflows by using declarative configuration files that

include all of the necessary setup information. It ensures state consistency across

environments and integrates with popular configuration management technologies such

as Puppet, Chef, SaltStack, Ansible, etc.

Now, let’s talk about the built-in tools of each cloud provider; you need to

understand that each cloud provider has its own IaC tools that allow the system

administrators, SRE, or DevOps to work on it; some cloud providers provide more than

one in the same cloud, for example, Amazon AWS.

AWS CloudFormation

AWS CloudFormation is an integrated IaC solution inside the AWS cloud platform that

allows you to rapidly and easily deploy and manage a group of connected AWS and

third-party resources using infrastructure as code. It enables you to apply all needed

DevOps and GitOps best practices. By connecting CloudFormation with other essential

AWS resources, you can manage the scalability of your resources and even automate

additional resource management. AWS CloudFormation also lets you develop resource

providers using its open-source CLI to provision and manage third-party application

resources alongside native AWS resources.

CloudFormation is written in YAML or JSON format. All you have to do is create your

desired infrastructure from scratch using the appropriate template language and then

utilize AWS CloudFormation to provide and manage the stack and resources indicated in

the template. CloudFormation also uses rollback triggers to restore infrastructure stacks

to a previously deployed state if errors are observed to ensure that deployment and

upgrading of infrastructure are controlled.

Azure Resource Manager

The Azure Resource Manager service allows you to install and manage Azure resources.

Instead of deploying, maintaining, and tracking resources separately, an Azure-

specific IaC solution enables them to be deployed, maintained, and followed in a

single collective operation. Role-based access control (RBAC) is built into the resource

management system, allowing users to apply access control to all resources within a

resource category.

Chapter 2 Understanding DevOps Concepts

58

Resource Manager lets you utilize declarative templates instead of scripts to manage

your infrastructure. You may reinstall your infrastructure solution several times during

the application development life cycle using Azure resource management while

maintaining state consistency.

Google Cloud Deployment Manager

Google Cloud Deployment Manager is a solution that automates resource creation,

setup, provisioning, and administration for Google Cloud. You can create a group

of Google cloud services and manage them as a single entity. You may develop

models using YAML or Python, preview changes before deploying, and examine your

deployments through a console user interface.

Choosing the right tool depends on your expertise and why you need to use this tool.

Tool Roundup

Table 2-2 lists several tools and briefly explains how they work; you either need to

configure an agent to make them work or install the tools on the server.

Table 2-2.  Tools

Tools How It Works Focus

Terraform Agentless Admin focused, IaC

Ansible Agentless Admin-focused configuration management

Jenkins Agentless Dev focused and can work for admin also,

CI/CD

Puppet Agent-based Dev focused

Chef Agent-based Dev/admin focused

Saltstack Agent, agentless Admin focused

�Benefits of Infrastructure as Code

IaC creates a standardized, repeatable infrastructure definition. Why is it necessary to be

repeatable? Because with infrastructure as code, you can be confident that you’ll always

have the same infrastructure. Developing and maintaining an infrastructure specified as

code is more efficient than manually maintaining it.

Chapter 2 Understanding DevOps Concepts

59

Changes can be tracked, versions compared, security ensured, and rules enforced

using IaC. The following are the advantages of IaC:

•	 Speed: Organizations that adopt IaC spend less time on manual

procedures, allowing them to accomplish more in less time. Iteration

is quicker since there is no need for an IT administrator to finish

manual activities.

•	 Consistency: Every stage of the process is handled and finished

automatically, removing the possibility of human mistakes and sick

days and weekends. Changes are made widely and quickly, allowing

development teams to focus on adding value.

•	 Efficiency: Following a more consistent approach to provisioning

infrastructure can save time and concentrate on nonrepetitive,

higher-order jobs.

•	 Less headache: Anyone can deploy the IaC; there is no need for a

system administrator to deploy it, which means there will be less

overhead on each department in the company.

•	 Accountability: This one is simple and fast. You can track each

configuration’s changes because IaC configuration files may be

versioned like any other source code file. There will be no more

guesswork as to who did what and when.

•	 Low cost: Undoubtedly, one of the most significant advantages of IaC

is the reduction of infrastructure administration expenses. You may

drastically lower your expenditures by combining cloud computing

with IaC. You’ll save money because you won’t have to spend money

on hardware, pay people to run it, or rent physical space to hold it.

However, IaC decreases your expenses differently and more subtly.

�Infrastructure as Code Examples

Let’s look at a quick example of a basic AWS EC2 instance setup scenario; I will cover

three different tools for the same example.

Chapter 2 Understanding DevOps Concepts

60

Terraform

Figure 2-9 shows how the file structure will look. I will not explain the files since

Chapter 6 will cover this part.

Figure 2-9.  File structure example

This is the code in provider.tf:

 1. terraform {

 2. required_providers {

 3. aws= {

 4. source = "hashicorp/aws"

 5. version = "~> 3.27"

 6. }

 7. }

 8. }

 9.

10. provider "aws" {

11. region = "us-west-1"

12. }

This is the code in main.tf:

 1. resource "aws_instance" "web_server" {

 2. ami = "ami-0123456"

 3. instance_type = "t3.micro"

 4. subnet_id = "subnet-14322"

 5. vpc_security_group_ids = "sg-143224"

 6. key_name = "server-key"

 7. tags = {

Chapter 2 Understanding DevOps Concepts

61

 8. Name = "Web_Server"

 9. }

10. }

Ansible

For Ansible, we will use a fundamental YAML file; please note the indentation is

significant in YAML.

 1. - hosts: localhost

 2. gather_facts: False

 3. vars_files:

 4. - credentials.yml

 5. tasks:

 6. - name: Provision EC2 Instance

 7. ec2:

 8. aws_access_key: "{{aws_access_key}}"

 9. aws_secret_key: "{{aws_secret_key}}"

10. key_name: server_key

11. group: test

12. instance_type: t3.micro

13. image: "ami-0123456"

14. wait: true

15. count: 1

16. region: us-west-1

17. instance_tags:

18. Name: Web_Server

19. register: ec2

AWS CloudFormation

AWS CloudFormation is a service from Amazon AWS that makes it simple for developers

and companies to construct a group of linked AWS and third-party resources and

provide and manage them logically and predictably; you can use YAML or JSON.

 1. AWSTemplateFormatVersion: "2010-09-09"

 2. Resources:

 3. WebInstance:

Chapter 2 Understanding DevOps Concepts

62

 4. Type: AWS::EC2::Instance

 5. Properties:

 6. InstanceType: t3.micro

 7. ImageId: ami-0123456

 8. KeyName: server_key

 9. SecurityGroupIds:

10. - sg-143224

11. SubnetId: subnet-14322

12. Tags:

13. -

14. Key: Name

15. Value: Web_Server

As you can see from the previous examples, the tools lead to the same results; it’s

great to know different ones, but not mandatory. If you are thinking about deploying

resources to cloud computing, the next step is to understand IaC because it will save time

and money. Now it’s time to jump into the next topic in this chapter, automation testing.

�Automation Testing
Once upon a time, the only testing step in the development cycle was QA testing, which

was one of the most extended steps in this cycle; the developer finished their work and

uploaded it to version control, and the QA team needed to make sure the code met the

company’s standard depending on the testing scenario.

That took time and probably caused issues between the teams because no one likes

to repeat work; DevOps solved this problem between the groups with a straightforward

approach called automation testing.

What is automation testing? It is a software testing approach for comparing the

actual result to the predicted outcome; it can be accomplished via test scripts or another

automation testing tool. Automating repeated processes and other testing duties that are

not easy to complete manually is what test automation is for.

Manual testing entails a single person evaluating the software’s functioning in the

same manner as a user would. Automated testing uses an automation tool, allowing

more time on higher-value jobs such as exploratory tests, while time-consuming tests

such as regression tests are automated. While updating test scripts will take time, you

will improve your test coverage and scalability.

Chapter 2 Understanding DevOps Concepts

63

Manual testing allows the human mind to derive conclusions from a test that might

otherwise be overlooked by test automation. Large projects, projects that repeatedly

need testing in the same regions, and projects that have previously undergone a human

testing procedure benefit from automated testing.

�Advantages

Why do you need to use automation testing in the first place?

Some of the advantages of automated testing are as follows:

•	 Automation testing minimizes the time it takes to complete a test

because automated testing is more efficient than manual testing.

•	 It lowers the project’s cost and resource needs since a script

produced once may be made to execute an unlimited number of

times as long as the application remains unchanged.

•	 It allows you to deal with many inputs, which is impossible with

manual testing.

•	 It helps create a continuous integration environment in which the

new build is automatically tested after each code push. You can

develop jobs using CI/CD technologies like Jenkins that tests when a

build is deployed and emails the test results to stakeholders.

•	 You can save time by automating your tests. Automated tests are

quick to perform and can be repeated. Put another way, you won’t

have to wait weeks to do the tests again—only a few hours will be

enough, which will lead to different results.

•	 The software development cycle is shorter.

•	 Releases occur more often.

•	 Changes and upgrades to the app are made more quickly.

•	 Deliveries have a shorter time to market.

•	 Because automated testing doesn’t need human participation while

running, you may test your app late at night and get the findings the

following morning. Software developers and QA may spend less time

testing since automated tests can frequently run independently.

Chapter 2 Understanding DevOps Concepts

64

Basically, with automation, your engineers can focus on critical

tasks. Fixing current app functionality isn’t as thrilling as adding new

features, as we all know.

•	 An immediate response provides immediate feedback. Developers

get testing information instantaneously with rapid execution to

respond swiftly if a problem happens. Forget about deciphering the

code that was written three weeks ago.

•	 Test automation makes you more likely to have error-free releases

with more precise tests. Automated testing is more accurate than

manual testing because it requires less human interaction. The

problem is that a human tester may make errors at any stage of the

review process. The machine, on the other hand, will not cooperate.

Because generated test cases are more exact than human testers, you

may lower the likelihood of failure by removing human mistakes.

•	 Your app’s excellent quality and performance will be ensured

through automatic testing. It lets you run hundreds of automated test

cases simultaneously, allowing you to test your app across different

platforms and devices quickly. Choose cloud-based device farms to

get the most out of test parallelism and concurrency. They can assist

you with covering all of the needed OS and hardware setups.

�Misconceptions

Since I mentioned the benefits of automation testing, I will discuss some misconceptions

about it.

•	 You will have more free time as a result of automation: You need to

understand that there is always something to automate; you can

always enhance your infrastructure, and automation will allow

the team to focus on other things and the quality of your code and

infrastructure. Most manual testing time is spent on exploratory and

functional testing, which involves manually searching for faults. Once

that procedure is finished, the manual tester must perform the same

actions repeatedly. That time is significantly reduced with automated

testing. Instead of writing tests, automated testers code them and

Chapter 2 Understanding DevOps Concepts

65

improve them. However, after the test is completed, automated

testing enables the reuse of tests, eliminating the need to repeat the

whole procedure. Instead of spending time on the highly repetitive

activities that a human tester would do, you may concentrate on

broader, more fundamental problems with your building product.

•	 The price of automated testing is excessive: I don’t understand

why people think the automation options are expensive. You can

use open-source software, and automated testing allows you to

concentrate on more important topics such as client demands,

functionality, and enhancements. Automated testing also lowers

the cost and requirements for repeated code modifications, so the

investment pays off over time. Furthermore, the software tests may

be run once the source code is amended. Performing these tests

is time-consuming and expensive, whereas automated tests may

be done repeatedly at no extra expense. Parallel testing is another

method to check how much money your automated testing makes.

Similar testing allows you to perform numerous automated tests

simultaneously rather than executing them one after another; this

significantly reduces the time it takes to run your automated tests.

•	 Manual testing isn’t as good as automated testing: This misconception

makes me laugh whenever I hear it. We are not in competition

here. Sometimes you need manual testing inside your company; it

just depends on your business needs. Each method has its own set

of benefits and drawbacks. A person sitting in front of a computer

does manual testing by methodically walking through the program

using SQL and log analysis, experimenting with different use and

input combinations, comparing the results to the intended behavior,

and documenting the findings. After the original program has been

produced, automated testing is often employed. Unattended testing

may execute lengthy tests that are generally avoided during manual

testing. They may even be installed on several computers with

various settings.

Chapter 2 Understanding DevOps Concepts

66

•	 There is no need for humans: Because automated testing is more

precise and quicker than what people can achieve without incurring

significant human error, this misunderstanding is understandable.

On the other hand, complex applications are built to support a

collaborative approach by incorporating tools that enable co-workers

to walk through a piece of test code and provide feedback on the

script. This automation does not replace the need for in-person

contact or communications in software development. Instead, it

increases that characteristic by giving an additional communication

route. Consider it this way: email did not replace the telephone; it is

only a different means of communication.

�Stakeholders

Automation testing is different from any other automation; it requires expertise with QA

and experience with scripting. The question in this section is, who should be part of the

test automation process?

•	 Developers: They understand what kind of application the company

has and the screens inside the application; therefore, integrating

testing into the development process necessitates integrating

development environments. It’s part of the developer’s job.

•	 QA (manual or automated): For manual testers, those new to

automation, recording, and replaying, utilizing the same recorded

script with various input data may be helpful when finding and

correcting issues in different contexts.

•	 Automation experts: These engineers will use a scripting language

and interface with continuous integration platforms. The ability to

scale testing might be critical for automation engineers.

�Disadvantages

Automation is not always the solution for your business. The following are some

scenarios where automated testing is not recommended and some of automation’s

drawbacks:

Chapter 2 Understanding DevOps Concepts

67

•	 Inexperience with the automation tool: One of the most common

reasons for not using a tool and programming language to construct

powerful scripts is a lack of experience with the tool and a particular

programming language. These and other factors contribute to the

failure of automated testing.

•	 Applications that often change: Choosing test automation for an

application that undergoes frequent modifications necessitates

ongoing maintenance of the test scripts, which may or may not result

in the required return on investment. DevOps comes with the Agile

methodology, which is not recommended.

•	 Wrong test case: The effectiveness of automated testing depends on

the test cases selected for automation. Incorrectly specified tests

result in a waste of resources and time spent automating.

•	 Test scripts created inefficiently: For this point, you need to

understand the difference between DevOps and automation testing;

both have different job responsibilities. Test scripts with insufficient

or no validations might result in false-positive test results. These

false-positive findings hide the underlying flaws, which might have

been readily detected if manual verification or better scripting had

been used.

�Test Automation Process

Figure 2-10 shows the test automation cycle that can be added to the DevOps process, as

I will show later in this chapter.

All operations are included in the automated testing process. We’ll go over each step,

from understanding requirements to automated scripting and CI/CD integration.

Chapter 2 Understanding DevOps Concepts

68

Figure 2-10.  Test automation process

Let’s break the process down:

•	 Comprehension of the needs: The first and most crucial step in test

automation is fully comprehending the market. Understanding the

demand will aid in defining the extent of automation and selecting

the appropriate technology.

Chapter 2 Understanding DevOps Concepts

69

•	 Automation scope: Finding the correct test cases for automation is the

first step in defining the area. All test cases under the test case classes

specified in the “What to Automate?” portion of this chapter would

fall under this category.

•	 Choosing the correct tools: The choice of tool is influenced by several

variables, including the project’s requirements, programming skills,

project budget (whether to use a free or commercial tool), etc.

•	 Automation framework: We need to build an automation framework

to produce comprehensive test automation suites. These frameworks

aid in test scripts’ reuse, maintenance, and robustness. Depending

on the project requirements, we may pick from various automation

frameworks; I will briefly describe these frameworks later in this chapter.

•	 Scripting: After the previous setup of the automation framework, we

begin scripting the test cases that will be automated. The automation

tester usually does scripting depending on the QA engineer, which

will give the work to the automation tester.

•	 CI/CD integration: Although we can run the test cases on demand,

CI/CD is widely used in almost every product or service-based

company. This involves setting up the test suites on a CI/CD tool

like Jenkins from a testing point of view. A significant advantage of

combining the automation suite with the CI/CD pipeline is the ability

to automatically trigger test cases for execution after deployment. The

automated test suites in this configuration assess the build’s stability

with just one click right after deployment.

�Automation Framework

After discussing the steps of automation testing, we need to learn more about the

framework that this kind of DevOps category usually uses; we need to establish a set

of guidelines for manual testing on any application. Examples include the structure

of test cases, the prioritizing of test execution, and many strategies for improving the

whole software testing process, to name a few. In the same way, we employ automation

frameworks in automation testing to assist in reducing the expense of maintaining

automated scripts. Improving the whole automated testing process is also a priority.

Chapter 2 Understanding DevOps Concepts

70

Ask yourself a few things before implementing the solution:

•	 What should be done to make this automation testing work?

•	 What is the report output?

•	 What should I do in case of failure?

•	 How can we test the data/output?

•	 How can we use these scenario functionalities over and over again?

To respond to the concerns mentioned, the type of framework is relevant.

•	 Modular framework: Modular frameworks are a kind of automation

framework in which widely used capabilities such as database

connection, login flow, reading data from an external file, and so

on, are recognized and developed as methods. Instead of repeatedly

writing the same line of code, we call the reusable functions

whenever needed.

•	 Keyword-driven framework: You can write test cases; for example,

create test cases in an Excel spreadsheet. The framework will already

have methods designed for each phrase, such as automation code for

the OpenBrowser and other keywords. Once the framework is set up,

a nontechnical user may develop plain-text automation test scripts.

•	 Data-driven framework: The test data in a data-driven framework is

stored in external files. The test case is performed numerous times

with various datasets in each iteration, depending on the number of

rows in the external files (fetched from the file). The term data-driven

framework comes from the fact that data drives automation.

•	 Hybrid framework: As you can tell from the name, this is the

combination of multiple frameworks. So, a variety of any two of the

previous frameworks would be termed a data-driven framework.

Mainly when we say a hybrid framework, it relates to a data-driven

framework merged with a keyword-driven framework.

We have talked about almost everything related to automation testing; the one thing

that is missing is the tools. Next I will cover some common tools I have used during

my career.

Chapter 2 Understanding DevOps Concepts

71

�Test Automation Tools

Let’s start with one of the most common tools used for automation testing.

Selenium

Selenium is in demand and frequently utilized. It is one of the best QA automation tools

available. It can automate across many operating systems, including Windows, Mac,

and Linux, as well as browsers such as Firefox, Chrome, Internet Explorer, and headless

browsers.

Selenium test scripts can be developed in Java, C#, Python, Ruby, PHP, Perl, and

JavaScript, among other computer languages. Selenium’s browser add-on Selenium IDE

has record and playback capabilities. Selenium WebDriver is a sophisticated tool for

constructing more complicated and advanced automation scripts.

Cucumber

Cucumber is a free behavior-driven development (BDD) tool. Cucumber is an open-

source testing automation tool supporting languages such as Ruby, Java, Scala, Groovy,

and others.

Testers, developers, and customers collaborate to write test scripts. Cucumber works

only in a web environment. Gherkin is a simple English language used to write test code.

Cucumber code may be run on various frameworks, including Selenium, Ruby, etc.

Watir

Pronounced “water,” Watir is an open-source web automation testing tool. Watir is one of

the top automation scripting tools for Windows and supports Internet Explorer. Watir +

WebDriver is compatible with Firefox, Opera, and the HTML Unit headless browser.

Although Ruby is the scripting language, you may automate web applications written

in any language; Watir allows you to connect to a database, read flat files, and use Excel,

which is helpful for data-driven testing. You can create reusable test code that you can

use in several test scripts. Watir is considered one of the best QA automation tools.

Chapter 2 Understanding DevOps Concepts

72

Mabl

If you don’t like to code, Mabl is the right tool; it is an intelligent, low-code test

automation solution for quality engineering. Agile teams can improve application

quality using Mabl by including automated end-to-end testing in the development

process.

�Version Control
Another important DevOps category is probably used in every company nowadays, so

what is it? Version control systems are software tools that aid in recording file changes by

keeping track of code changes. Without version control, it’s tough to automate things and

create CI/CD pipelines.

�Significance of a Version Control System

As we all know, a software product is produced collaboratively by a group of developers

who may be based in various places. Each contributes a particular set of functionality/

features. As a result, they modify the source code to contribute to the product (either

by adding or removing it). A version control system is a kind of software that aids the

development team in quickly communicating and managing (tracking) any changes

made to the source code, such as who made a change and what it was. Every contributor

who made the modifications has their own branch, and the changes aren’t merged

into the source code until all of them have been evaluated. Once all the changes have

been given the green light, they are merged into the main source code. Version control

organizes source code and boosts productivity by streamlining the development process.

Here are more impacts of version control on how a company works:

•	 It increases the pace of project creation by facilitating practical

cooperation.

•	 It offers improved communication and support, increased staff

productivity, expedited product delivery, and enhanced employee

capabilities.

•	 Tracking every tiny change will reduce the risk of mistakes and

disputes while the project is being developed because more than one

person will review the code and ensure no errors (a third eye).

Chapter 2 Understanding DevOps Concepts

73

•	 It assists in the recovery in the event of a calamity or unforeseen

circumstance.

•	 The most crucial point is that it tells us who, what, when, and why

modifications were done.

As DevOps team members, you must know two different use cases for version

control; each depends on the company. I have seen companies using both use cases

simultaneously, ensuring nothing will be lost.

•	 A repository can be compared to a change database. It includes all of

the project’s modifications and historical versions.

•	 The personal copy of all the files in a project is a copy of the work (or

checkout). You can modify this copy without harming other people’s

work, and when you’re done, you can submit your changes to a

repository.

Are these the same tool? Let’s look at examples of each one of them and the pros and

cons of each one of these tools.

Git

Git is one of the most popular version control systems today.

Features

•	 It is a model for a distributed repository.

•	 HTTP, FTP, and SSH are compatible with current systems and

protocols.

•	 The history may be verified via cryptography.

•	 Direct object packing regularly takes place.

Pros

•	 Performance is both quick and efficient.

•	 It offers git bash, a fantastic command-line tool.

•	 Changes to the code can be monitored.

Chapter 2 Understanding DevOps Concepts

74

Cons

•	 Keyword expansion and timestamp preservation are not supported.

•	 If the project is big, it is tough to follow up and trace.

SVN

Features

•	 Metadata is versioned in a free-form manner.

•	 Branching is not affected by file size and is a low-cost procedure.

•	 Versioning is applied to directories.

Pros

•	 It’s simple to set up and manage.

•	 When compared to Git, it has superior Windows support.

•	 It has the advantage of excellent GUI tools such as TortoiseSVN.

Cons

•	 The modification time of files is not saved.

•	 Signed revisions are not supported.

Bitbucket

Features

•	 Code review and comments are included in pull requests.

•	 Bitbucket Pipelines is a service that provides continuous delivery.

•	 Two-step verification and two-step verification are necessary.

Pros

•	 It allows you to work on the repository as a team.

•	 It’s tightly integrated with Atlassian products like Jira and Confluence.

Chapter 2 Understanding DevOps Concepts

75

Cons

•	 It no longer supports HTTPS-based authentication and now only

supports SSH.

•	 When there are several code conflicts, merging code might be

complicated.

GitLab

Features

•	 Git is used for version control and repository management.

•	 Issue management, issue tracking, and bulletin boards are all

available.

•	 The Review Apps tool and the Code Review feature are helpful.

•	 GitLab CI/CD is a CI/CD tool.

Pros

•	 It supports Kubernetes.

•	 It has an integrated CI platform with support for both default and

custom runners.

•	 It includes helpful features such as built-in CI/CD assistance, which

allows us to install and test our apps quickly.

•	 There are fewer code conflicts since it enables local checkout and

several developers to work simultaneously on the same software file.

Cons

•	 The documentation could be improved.

•	 It is expensive.

•	 GitLab needs a dependable support center that is simple to find

and use.

Sure, there are more tools than this, but I will not mention all of them here. I tried

to cover the common ones, and I will now discuss different types of version control,

because as a DevOps engineer, you need to know about each one of them.

Chapter 2 Understanding DevOps Concepts

76

�Version Control System Types

When you are part of a development team, the team members can work on the same

pieces of code during a project. As a consequence, changes made to one section of

the source code may be incompatible with alterations made to the same section by a

different developer working on the project simultaneously.

Let’s discuss the version control types to understand more about version control.

Local Version Control Systems

This is one of the most basic types, and it uses a database to track file changes. One of the

most widely used VCS tools is RCS. Patch sets (differences between files) are stored in a

particular format on a disk. It can then re-create what any file looked like by adding all

the fixes.

This kind of version control offers backup and testing benefits.

Centralized Version Control Systems

Centralized version control systems (CVCSs) have a single repository, with each user

having a working copy (see Figure 2-11). You must commit to updating the repository

with your modifications. Others may be able to view your changes if you update. To make

your improvements visible to others, you’ll need two things.

•	 You will commit.

•	 Others will update or request a change.

The CVCS benefits vary from one company to another, but the general one is that it

is easy to set up. In addition, it provides work transparency and allows the team to follow

up. On the other hand, if one server goes down, the developer can’t save the work, and

the remote commit is usually slow.

Distributed Version Control Systems

Distributed version control systems (DVCSs) have many repositories (see Figure 2-11).

Each user has a working copy and repository. Simply committing your modifications

does not provide anyone access to them. This is because the commit will only reflect

those changes in your local repository, and you’ll need to push them to the central

repository to see them. Similarly, until you have previously pulled other people’s

Chapter 2 Understanding DevOps Concepts

77

modifications into your repository, you do not receive other people’s changes when

you update.

Four elements are necessary to make your modifications apparent to others.

•	 You commit.

•	 You push.

•	 They pull.

•	 They update or request a change.

This type of version control is the most common one; it’s like a two-in-one tool

because of local version control. The whole history is always accessible thanks to local

contributions; there is no need to access a remote server. This saves time, mainly when

dealing with SSH keys, and is an excellent approach for people who work remotely or

offshore.

The centralized repo stores everything in one place depending on the working

directory and the file structure that the company has, and it’s considered one of the

simplest forms of version control; on the other hand, the distributed version controls

where the code will be mirrored on every developer’s computer.

Figure 2-11.  How a centralized repo works

Chapter 2 Understanding DevOps Concepts

78

�Summary
In this chapter, we covered the most topics for the DevOps category and the tools that

can be used; depending on each category, there are tons of tools that can be used. To

summarize, whether you are a novice or an expert looking to learn more, DevOps is a

mindset and a profession that allows you to be creative with no boundaries; there is

always something you can improve and expand. Knowing all of the tools isn’t required,

but understanding how they function and how to utilize them will be a strength when

implementing DevOps.

The following chapters will explain more about DevOps. For example, I didn’t

discuss containerization in this chapter, which is part of DevOps as well. Let’s not waste

any time getting to the technical part.

Chapter 2 Understanding DevOps Concepts

79
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_3

CHAPTER 3

AWS Services
for Continuous Integration
In the previous chapter, we reviewed DevOps and AWS concepts. In this chapter, I will

cover DevOps continuous integration, particularly the following core topics:

•	 What is continuous integration?

•	 Continuous integration concepts

•	 Amazon AWS services for CI

•	 Examples of these CI services

By embracing DevOps methods, AWS delivers configurable services that allow

enterprises to create and deliver products quicker and more reliably.

Provisioning and managing infrastructure, deploying application code, automating

software release procedures, and monitoring the performance of your application and

infrastructure are all made easier with these services.

You can deploy AWS resources using different methodologies; one of these methods

is infrastructure as code (IaC), which we discussed earlier. Others are Terraform,

CloudFormation, and AWS Cloud Development Kit, which help a company track the

resources.

AWS CodeBuild, AWS CodeDeploy, AWS CodePipeline, and AWS CodeCommit are

some services that aid continuous deployment, and we’ll cover each in this chapter.

�Continuous Integration and Continuous Deployment
Continuous integration (CI) and continuous delivery (CD), commonly joined as CI/CD,

are a culture, set of operating principles, and practices used by application development

teams to deliver code changes more frequently and reliably.

https://doi.org/10.1007/978-1-4842-9303-4_3

80

For DevOps teams, CI/CD is a best practice. In Agile methods, it’s also a best

practice. CI/CD allows software development teams to focus on satisfying business

needs while maintaining code quality and security by automating integration and

delivery.

Continuous integration developers integrate their modifications back to the main

branch as often as feasible. The developer’s modifications are verified by building a build

and running automated tests against it. You avoid integration issues if you wait until

release day to integrate changes into the release branch.

When new commits are incorporated into the main branch, continuous integration

focuses on testing automation to ensure the application is not damaged.

This is considered a programming methodology and technique set that regularly

encourages development teams to commit tiny code changes to a Git repository.

Because most current applications include writing code on various platforms and tools,

groups want a standardized method for integrating and validating changes. Continuous

integration allows developers to efficiently create, package, and test their applications.

Developers are more likely to commit code changes more often when they have

a consistent integration procedure, which leads to improved cooperation and code

quality.

Continuous delivery is an extension of continuous integration. It distributes all code

changes to a testing/production environment immediately after the build step, which

means you have an automatic release process and automated testing. You can deploy

your application at any moment by just pressing a button.

In principle, continuous delivery allows you to distribute daily, weekly, biweekly, or

monthly, depending on your company’s needs. Suppose you genuinely want to reap the

advantages of continuous delivery.

In such instances, you should deploy to production as quickly as possible to

guarantee that little batches of code are published that are simpler to debug in the case

of a problem.

The environment-specific parameters that must be bundled with each delivery are

stored using CI/CD technologies. After that, CI/CD automation performs any required

service calls to web servers, databases, and other services that must be restarted.

Following deployment, it may also run additional tasks.

CI/CD necessitates continuous testing, as the goal is to produce high-quality code

and apps. Automated regression, performance, and other tests are run in the CI/CD

pipeline during continuous testing.

Chapter 3 AWS Services for Continuous Integration

81

�CI/CD and DevOps
Every DevOps approach is built on the foundation of continuity. Continuous integration,

continuous delivery, and continuous deployment are all part of the DevOps process.

Let’s take a closer look at each in Figure 3-1, which offers a snapshot of which stage each

one of them is applied in and the advantages of incorporating them into the software

development process.

Figure 3-1.  CI/CD big picture

One benefit of CI/CD is being able to automate things. For example, if CI/CD is

applied, there is no need to interrupt production for releases; therefore, you can build

quickly. Deployment pipelines are triggered automatically for every change. Because

you deploy small batches of changes, releases are less risky and simpler to correct in

the event of a problem; plus, customers see a steady stream of changes, and quality

improves daily than monthly, quarterly, or annually.

Each process comes with specific requirements. To implement continuous

integration in your company, you need the following:

•	 Your team must build automated tests for each new addition,

enhancement, or bug correction.

•	 You’ll need a continuous integration server to monitor the main

repository and execute tests on every new commit.

•	 Developers should integrate modifications as often as feasible, at

least once a day.

Chapter 3 AWS Services for Continuous Integration

82

Satisfying these requirements will provide the following benefits to a company:

•	 As automated testing catches regressions early, fewer problems are

submitted to production.

•	 The release is simple since all integration difficulties were addressed

early on.

•	 Developers are warned when they break the build and can

concentrate on repairing it before moving on to another activity,

resulting in less context switching.

•	 Testing costs are dramatically lowered, as your CI server can execute

hundreds of tests in seconds.

•	 The QA team will be able to spend less time testing the code and

more time improving the quality culture and the code itself.

Next, before implementing continuous delivery, you’ll need to address the following:

•	 Continuous integration requires a solid foundation, and your test

suite must cover enough with your code.

•	 Automated deployments are required. Although the trigger is

still manual, human involvement should not be needed after the

deployment.

•	 Your team will undoubtedly require feature flags to ensure that

unfinished features do not affect consumers in production.

Satisfying these requirements and implementing continuous delivery offers these

benefits:

•	 The difficulty of software deployment has been removed. Your team

no longer needs to spend days preparing for a release.

•	 You can release your code more often.

•	 There will be less pressure on the development team, especially for

small changes.

Chapter 3 AWS Services for Continuous Integration

83

Lastly, here are the elements you will need to consider before implementing

continuous deployment:

•	 The environment should be implemented as the best practice

to avoid many issues; if this is not done later, it can affect the

automation quality, which is supposed to simplify the infrastructure.

•	 Documentation, documentation, documentation: it must stay

current with the deployment schedule.

•	 Define the process of each release and what changes should be made

such as feature flags, bug flags, etc.

By addressing all of these needs, there’s no need to interrupt production for releases,

and for every modification, deployment pipelines are launched automatically.

This means you can build quickly. Installing and maintaining a continuous

integration server are typical continuous integration costs. But you can significantly

reduce the cost of adopting these practices by using a cloud service, which we will

discuss in this chapter.

Jenkins users, for example, establish their pipelines in Jenkinsfiles, which explain

several steps such as build, test, and deploy. The file declares environment variables,

choices, secret keys, certificates, and other factors, subsequently referenced in stages.

Error circumstances and alerts are handled in the post section.

Build, test, and deploy are the three steps of a typical continuous delivery pipeline. At

various phases, the following activities might be included:

•	 You can execute a build after cloning the code from version control.

•	 You can use stage gates to automate the needed and supporting

approvals when required.

•	 All essential infrastructure tasks are automated as code to set up or

pull down cloud infrastructure.

•	 You can get code to run in the desired environment (staging,

QA, Prod).

•	 Managing and customizing environment variables depend on the

environment.

Chapter 3 AWS Services for Continuous Integration

84

•	 The components of an application are pushed to their relevant

services.

•	 Updating the configuration depends on the infrastructure side.

In the next section, we’ll explore cloud services covering CI/CD; specifically, we’ll

focus on Amazon Web Services, specifically, what services you need to use and how to

configure them to meet your company’s needs.

Note  You’ll find the projects I cover in this book much easier to follow if you
already have an AWS account. For more information on signing up for an AWS
account, navigate to https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/cfn-sign-up-for-aws.html.

�Continuous Integration
I mentioned CI, a software development method in which developers regularly merge

code changes into a shared repository before running automated builds and testing. CI

shortens the time to detect and fix defects, enhances software quality, and approves and

deploys new software upgrades.

AWS provides the following three services that relate to CI.

�AWS CodeCommit
AWS CodeCommit (Figure 3-2) is a managed source control service that hosts private

Git repositories and is safe and highly scalable. CodeCommit removes the need for you

to run your source control system, and there is no hardware to provide or scale and no

software to install, set up, or run. CodeCommit can be used to save everything from code

to binaries, and it supports all of Git’s essential features, enabling it to operate in tandem

with your current Git-based tools. Your team may also use CodeCommit’s online coding

tools to read, modify, and work together on projects.

Chapter 3 AWS Services for Continuous Integration

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sign-up-for-aws.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-sign-up-for-aws.html

85

Figure 3-2.  AWS CodeCommit

AWS CodeCommit provides several advantages.

•	 You can use HTTPS or SSH to send your files to/from AWS

CodeCommit. Your repositories are automatically secured at rest

using customer-specific keys through AWS Key Management Service

(AWS KMS).

•	 CodeCommit uses AWS Access Control AWS Identity and Access

Management (IAM) to govern and monitor who has access to your

data and how, when, and where they have access. CodeCommit now

uses AWS CloudTrail and Amazon CloudWatch to help you keep

track of your repositories.

•	 AWS CodeCommit saves your repository in Amazon Simple Storage

Service (Amazon S3) and Amazon DynamoDB for high availability

and durability. Your protected data is kept in numerous locations for

redundancy. Thanks to this design, the data in your repository will be

more available and more durable.

•	 You may now be notified when anything happens in your

repositories. Amazon Simple Notification Service (Amazon SNS)

notifications will be used for notifications. Each notice will provide a

status message and a link to the resources that caused the notification

Chapter 3 AWS Services for Continuous Integration

86

to be produced. You can also use AWS CodeCommit repository

triggers to send alerts, generate HTTP webhooks, and call AWS

Lambda functions in response to your selected repository events.

•	 AWS CodeCommit is a collaborative software development platform.

You can commit, branch, and merge your code, allowing you to keep

track of the projects in your team. Pull requests, which offer a method

for requesting code reviews and discussing code with collaborators,

are now supported by CodeCommit.

�Creating a CodeCommit Repository on AWS
You can create a new CodeCommit repository using the AWS CodeCommit GUI or AWS

Command Line (AWS CLI). After you’ve created a repository, you can add tags to it.

Let’s start with the GUI option.

�Create a Repository (Console)

To create a CodeCommit repository using the GUI, you need to follow these steps:

	 1.	 From the AWS Portal, search for AWS CodeCommit; it’s essential

to choose the correct region for you (Figure 3-3).

Chapter 3 AWS Services for Continuous Integration

87

Figure 3-3.  Choosing CodeCommit from the AWS Portal

	 2.	 Choose to create a repository from the page, as shown in

Figure 3-4.

Figure 3-4.  Creating a CodeCommit repository

Chapter 3 AWS Services for Continuous Integration

88

	 3.	 In the Create repository dialog (Figure 3-5), specify a name for the

repository in the “Repository name” field.

The description is optional, but I usually prefer to write something

explaining what this repo is for and which project, especially if you

have more than one; tags are essential to make AWS management

more efficient. When you are done, click Create.

Note  Case is important when naming repositories. Your AWS account’s name
must be unique in the AWS region.

�Create a Repository (AWS CLI)

The first step to working with the AWS CLI is configuring the command-line tools to

allow you to connect to the AWS Portal and deploy things, so let’s quickly go through that

process.

Figure 3-5.  Choosing the repository name

Chapter 3 AWS Services for Continuous Integration

89

	 1.	 Open the IAM console (Figure 3-6) in the AWS Management

Console after logging in.

Figure 3-6.  IAM page

	 2.	 After creating a user and assigning them the appropriate

permissions, select the user. The new screen will be shown in

Figure 3-7; choose the security credentials and click “Create

access key.”

Figure 3-7.  Creating access key and secret key

Chapter 3 AWS Services for Continuous Integration

90

	 3.	 Choose Show to see the new access key pair. After this dialog box

closes, you can no longer access the secret key. This is how your

credentials will appear.

•	 Access key ID: AKIOMKOUSMP7COURSE

•	 Secret access key: kdasdasm9nmasdc/lkCOURSEKEY

	 4.	 Optional: Choose the Download.csv file to get the key pair. Place

the keys in a safe place. After this dialog box closes, you can no

longer access the secret key.

Now you have the access key and secret key, but before moving on, let’s also go

through the installation process for the AWS CLI. I prefer using v2 instead of v1.

When using the latest Amazon command-line interface (CLI) version, all timestamp

response values are returned in ISO 8601 format. In the first release of the Amazon CLI,

commands returned timestamp values in whatever format the HTTP API response

supplied. This format might be different for each service.

To Install the AWS CLI, you can check the AWS documentation at https://docs.

aws.amazon.com/cli/latest/userguide/getting-started-install.html.

Once you install the tool on your machine, you can set it up; it’s simple using the

following snippet:

1. $ aws configure

2. AWS Access Key ID [None]: AKIOMKOUSMP7COURSE

3. AWS Secret Access Key [None]: kdasdasm9nmasdc/lkCOURSEKEY

4. Default region name [None]: eu-west-1

5. Default output format [None]: json

As a DevOps team member, you need to understand the AWS CLI, and it’s highly

recommended to use it instead of the GUI since the GUI has some limitations; it’s

mandatory to mention this is the direct way to configure the CLI.

With experience, CLI setup may be much quicker than GUI configuration. The user

may set up the network’s inbound and outbound connections and any necessary routing

protocols and access controls with only a few simple instructions. With a graphical

user interface, accessing these features would need many clicks and a search for the

appropriate menus and panels.

Chapter 3 AWS Services for Continuous Integration

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

91

Imagine, for example, having multiple accounts under the AWS organization, a

service from Amazon AWS that allows companies to have various accounts such as Prod,

Dev, and QA; in that case, you may be the easiest way to use AWS SSO.

After configuring the AWS CLI, you can run the commands to create the repository,

but there are some elements you should consider first.

•	 Choose a name that distinguishes the CodeCommit repository from

others using the --repository-name option; this name must be

unique across all AWS services.

•	 The --repository-description attribute is optional and will allow

you to add comments or explain how this repository is being used.

•	 Another optional attribute is --tags, which, naturally, allows you to

add tags and key values.

The command that will be used to create the code commit repository is shown here:

1. aws codecommit create-repository --repository-name test-repo

 --repository-description "first repo for AWS DevOps" --tags Team=DevOps

If the command ran successfully without any issues, the output would have the

following information:

 1. {

 2. "repositoryMetadata": {

 3. �"repositoryName": "test-repo",

 4. �"cloneUrlSsh": "ssh://git-codecommit.eu-west-1.amazonaws.com/

v1/repos/test-repo",

 5. "lastModifiedDate": 1336081622.594,

 6. "repositoryDescription": "first repo for AWS DevOps",

 7. �"cloneUrlHttp": "https://it-codecommit.eu-west-1.amazonaws.com/

v1/repos/test-repo",

 8. "creationDate": 1336081622.59,

 9. "repositoryId": "d897513-c95w-1002-aaef-799cBook",

10. "Arn": "arn:aws:codecommit:eu-west-1:111111111111:test-repo",

11. "accountId": "111111111111"

12. }

13. }

Chapter 3 AWS Services for Continuous Integration

92

One of the most common cases using the AWS CLI is that the DevOps team member

forgot the name or the ID. To retrieve them using the CLI, follow these steps:

	 1.	 To see a list all of CodeCommit repositories, run the following; you

can use --sort-by or --order:

1. aws codecommit list-repositories

The output will be formatted as JSON, like the one below.

 1. {

 2. "repositories": [

 3. {

 4. "repositoryName": "test-repo"

 5. "repositoryId": "d897513-c95w-1002-aaef-799cBook",

 6. },

 7. {

 8. "repositoryName": "Book-repo"

 9. "repositoryId": "fgf0024c-dc0v-44dc-1191-799cBook"

10. }

11.]

12. }

	 2.	 If you need more information about a single CodeCommit

repository, use this:

1. aws codecommit get-repository --repository-name test-repo

The output will be JSON, as the previous is related to the

repository.

	 3.	 To get information about numerous CodeCommit repositories,

use this:

1. aws codecommit batch-get-repositories --repository-names

test-repo book-repo

If it is successful, this command produces a JSON with the following information:

any CodeCommit repositories that could not be located and the CodeCommit

repositories that can be found with information such as repository name, repository

description, repository’s unique ID, and account ID.

Chapter 3 AWS Services for Continuous Integration

93

When you initially link to a CodeCommit repository, you usually clone the

repository’s contents to your local workstation. Straight from the CodeCommit console,

you may add and modify files in a repository. You may also add a CodeCommit

repository as a remote repository if you already have a local repository. This section

explains how to connect to a CodeCommit repository.

Before connecting to CodeCommit, these are the prerequisites:

•	 You must install the necessary software such as Git and settings

on your local computer to be able to link to CodeCommit. You can

do this at https://git-scm.com/book/en/v2/Getting-Started-

Installing-Git.

•	 You’ll need the clone URL for the CodeCommit repository you’d want

to connect to. To access information about available repositories, use

the AWS CodeCommit GUI, AWS CLI, or Git from a local repo linked

to the CodeCommit repository.

Once you set up Git, the user needs to be configured to use CodeCommit; from IAM,

choose the username, and under the username, choose the security credentials; check

Figures 3-8 and 3-9; both show how to configure the needed to grant access to the user.

Figure 3-8.  IAM user information

Chapter 3 AWS Services for Continuous Integration

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

94

Figure 3-9.  IAM code commit configuration

Copy the username and password IAM produced for you by displaying, copying,

and pasting this information into a secure file on your local computer or selecting

“Download credentials” to download this information as a download.csv file. To connect

to CodeCommit, you’ll need this information.

Now to connect, you have two options.

	 1.	 Connect to the CodeCommit repository by cloning the repository.

	 2.	 Connect a local/existing repo to the CodeCommit repository.

Let’s start with the first part, connecting using the clone option:

	 3.	 Once you complete the prerequisites, you can choose any

directory or location on your PC, Linux, Mac, or Windows and run

the clone commands; remember First-Repo, the folder name.

1. git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo First-repo

You can also configure the AWS CLI to set a default profile and region; I don’t prefer

that, especially if you have multiple accounts and need to switch between them.

You will use a source profile we will discuss later in this book, using git-remote-

codecommit via HTTPS, with the AWS CLI default profile and AWS region set as follows:

1. git clone codecommit://test-repo First-repo

Some companies disable HTTPS for security reasons and allow only SSH; in that

case, each DevOps within the team needs to provide a public key, such as this:

1. git clone ssh://git-codecommit.eu-west-1.amazonaws.com/v1/repos/test-

repo First-repo

Chapter 3 AWS Services for Continuous Integration

95

Figure 3-10 shows that the test-repo has been created and the options that we have to

clone the repository.

Figure 3-10.  Repository information

�Connect a Local/Existing Repo to the CodeCommit Repository

There are two other options that pertain to creating a CodeCommit repo: if you currently

have a local repository and want to make a CodeCommit repository the remote

repository, ad if you already have a remote repository and want to push your changes to

both CodeCommit and that remote repository.

One of the most common use cases is to keep utilizing your current Git repository

solution while experimenting with AWS CodeCommit.

	 1.	 Run the Git remote -v command from your local repo directory. It

would be best if you got something like this as a result:

HTTPS

1. origin https://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo (fetch)

2. origin https://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo (push)

Chapter 3 AWS Services for Continuous Integration

96

SSH

1. origin ssh://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo (fetch)

2. origin ssh://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo (push)

	 2.	 Once you run the previous command, run the following

command, which specifies where you want to host your code:

1. git remote set-url --add --push origin some-URL/repo-name

To modify a Git remote origin using an HTTPS URL, one must

first open the Git terminal and verify the current remote URL, for

example.

1. git remote set-url --add --push origin https://git-

codecommit.eu-west-1.amazonaws.com/v1/repos/test-repo

	 3.	 Rerun the git remote -v.

HTTPS

1. origin https://git-codecommit.eu-west-1.amazonaws.com/

v1/repos/test-repo (fetch)

2. origin URL/RepoName (push)

SSH

1. origin ssh://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/test-repo (fetch)

2. origin URL/RepoName (push)

	 4.	 The CodeCommit repository should now be added; run git

remote set-url --add --push origin again but with the

repository URL.

HTTPS

1. git remote set-url --add --push origin https://git-

codecommit.eu-west-1.amazonaws.com/v1/repos/test-repo

Chapter 3 AWS Services for Continuous Integration

97

SSH

1. git remote set-url --add --push origin ssh://git-

codecommit.eu-west-1.amazonaws.com/v1/repos/test-repo

	 5.	 Run the git remote -v command again.

	 6.	 Make sure you’re pushing to both remote repositories now by

adding a dummy text file.

	 7.	 After creating the text, run the following:

1. Git add .

2. git add dummy.text

	 8.	 Run the following command and choose a proper comment:

1. git commit -m "Added dummy text file for texting."

	 9.	 You need to push this file from the local to the CodeCommit

repository. To do this, run the following command:

1. git push -u remote-name branch-name

Once you run the previous command, the file will be uploaded,

and you will see output like the following (remember this for

HTTPS; it is almost the same for SSH):

 1. Counting objects: 5, done.

 2. Delta compression using up to 4 threads.

 3. Compressing objects: 100% (3/3), done.

 4. Writing objects: 100% (3/3), 5.61 KiB | 0 bytes/s, done.

 5. Total 3 (delta 1), reused 0 (delta 0)

 6. To URL/RepoDestation

 7. a5ba4ed..250f6c3 main -> main

 8. Counting objects: 5, done.

 9. Delta compression using up to 4 threads.

10. Compressing objects: 100% (3/3), done.

11. Writing objects: 100% (3/3), 5.61 KiB | 0 bytes/s, done.

12. Total 3 (delta 1), reused 0 (delta 0)

Chapter 3 AWS Services for Continuous Integration

98

13. remote:

14. To https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/

test-repo

15. a5ba4ed..250f6c3 main -> main

�View Repository Details (Console)

Follow these steps to see some details about the repository:

	 1.	 Open the CodeCommit console as mentioned before in this

chapter.

	 2.	 Select the repository’s name from the Repositories menu.

	 3.	 Choose the Clone URL and the protocol to clone the repository.

	 4.	 Choose Settings in the navigation pane to see the settings for the

repository and data, such as ARN and ID.

�View CodeCommit Repository Details (AWS CLI)

It’s crucial as DevOps team members to know all the available options; sometimes, you

need to use CLI for things not supported using the GUI and Git commands previously

mentioned in this chapter.

I prefer to use CLI since it’s everything you need; once you start using CLI, you will

find everything else easy.

Now dealing with CodeCommit, it’s like you are dealing with Git, but for AWS,

which is the same concept. However, in this case I need to change the settings for the

repository.

After going through a couple of code commit configurations, you can share a

CodeCommit repository with other users once you’ve established it. First, choose the

protocol, either HTTP or SSH, to propose to users when cloning and connecting to your

repository using a Git client or an IDE.

The URL and connection details should then be sent to the people you want to

share the repository. You may also need to create an IAM group, apply managed policies

to that group, and update IAM rules to refine access, depending on your security

requirements.

Chapter 3 AWS Services for Continuous Integration

99

Here is a summary of what is needed by both protocols:

HTTPS

1.	 Install the Git tool on your local PC.

2.	 Generate HTTPS credentials for the users, which were covered

earlier.

SSH

1.	 It would help if you generated a public-private key using one

of the tools, such as Putty keygen.

2.	 Save these keys for later.

3.	 The public key will be connected with your cloud IAM user.

4.	 Configure the local PC, as mentioned earlier.

�View CodeCommit Repository Details (Git)

You should be familiar with Git commands to connect and start using the code commit

using Git commands.

Run the git remote show remote-name command from a local repo to get

information about CodeCommit repositories.

The output for this command will look like the following, formatted for HTTPS:

 1. remote origin

 2. �Fetch URL: https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/

test-repo

 3. �Push URL: https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/

test-repo

 4. HEAD branch: (unknown)

 5. Remote branches:

 6. MyNewBranch tracked

 7. main tracked

 8. Local ref configured for 'git pull':

 9. MyNewBranch merges with remote MyNewBranch (up to date)

10. Local refs configured for 'git push':

11. MyNewBranch pushes to MyNewBranch (up to date)

12. main pushes to main (up to date)

Chapter 3 AWS Services for Continuous Integration

100

�Configuring Notifications for AWS CodeCommit
It’s imperative to understand code commit basics and the configuration; you may

establish notification rules for a repository to email users about repository event types

you define. When occurrences fit the notification rule parameters, notifications are

delivered. To utilize notifications, you can either establish an Amazon SNS subject or use

one already in your Amazon Web Services account. Utilize the CodeCommit console or

the AWS CLI to set up notification rules.

From the AWS Portal, go to CodeCommit and choose the repository you want to set

up notifications for, as shown in Figure 3-11.

Figure 3-11.  AWS CodeCommit notification

Next, click “Create notification rule.” A new screen will open, as shown in Figure 3-12.

Enter a name for the rule in the “Notification name” field.

For “Detail type,” you have two options.

	 5.	 Basic if you want only the information provided to Amazon

EventBridge included in the notification

	 6.	 Full if you want to include information provided to Amazon

EventBridge and the CodeCommit or notification manager might

supply it

Chapter 3 AWS Services for Continuous Integration

101

Figure 3-12.  CodeCommit notification settings

The next step is to select the events you want to send alerts under events that trigger

notifications; for the target type, you have two options if you have already configured

the target.

	 7.	 Slack: If you want to get a notification for this repository on the

Slack Channel, use the webhook.

	 8.	 SNS topic: This is provided by AWS, which allows you to send

emails or SMS.

Chapter 3 AWS Services for Continuous Integration

102

Figure 3-13 illustrates these options.

Figure 3-13.  Notification target

I’ve now covered the elements essential to using CodeCommit, but know that it’s a

vast topic I encourage you to explore further. For the needs of this book, however, you

should now be set in terms of using CodeCommit.

Now that you’ve established your CodeCommit repository, it’s time to start coding.

We’ll be utilizing AWS CodeBuild.

�AWS CodeBuild
AWS CodeBuild is a managed service continuous integration solution that generates

code, performs tests, and creates ready-to-deploy software packages. You don’t have to

maintain, scale, or provision your development servers. CodeBuild may utilize Git or any

version control as a source provider.

CodeBuild grows indefinitely and can handle several builds at once. CodeBuild

provides several preconfigured environments for Windows and Linux. Customers may

also use Docker containers to transport their customized build environments. Open-

source technologies like Jenkins and Spinnaker are also integrated with CodeBuild.

Chapter 3 AWS Services for Continuous Integration

103

Unit, functional, and integration tests may all be reported using CodeBuild. These

reports show how many test cases were run and whether they succeeded or failed.

The build process may also occur if your integrated services or databases are placed

within a VPC.

Your build artifacts are secured with customer-specific keys maintained by the KMS

using AWS CodeBuild. You may provide user-specific rights to your projects with IAM.

Like any other service, Code build provides different benefits for any company, such

as the following:

	 9.	 CodeBuild sets up, patches, updates, and manages your build

servers.

	 10.	 CodeBuild grows to match your build requirements on demand.

You pay for the amount of construction time you use.

	 11.	 For the most common programming languages, CodeBuild offers

predefined build environments. To begin your first build, all you

have to do is point to your build script.

�How CodeBuild works
Like any other services on Amazon AWS, you can manage/run code build using

different ways:

	 12.	 Console/GUI

	 13.	 AWS CLI

	 14.	 AWS SDK

	 15.	 CodePipeline

All of them will lead to the same results, but it’s good to know them; see Figure 3-14.

Chapter 3 AWS Services for Continuous Integration

104

Figure 3-14.  Which AWS services you can use to run CodeBuild

Before you start using CodeBuild, you need to answer questions that will help you

understand more about what you will do with the configuration and setup.

Where will your code be stored?
CodeBuild supports a different version/source code repository, but the build

specification (build spec) file must be included in the source code so the code build will

understand the stages.

A build spec is a YAML-formatted collection of build commands and associated

parameters used by CodeBuild to conduct a build.

The following are the supported version control/source code repositories:

	 16.	 CodeCommit

	 17.	 Amazon S3

Chapter 3 AWS Services for Continuous Integration

105

	 18.	 GitHub

	 19.	 Bitbucket

Which build commands should you use, and in what sequence should you
execute them?

When we talk about the commands, buildspec files are necessary; they indicate how

these commands will be executed, and in which order.

What do you need to complete the build, either tools or runtimes?
You code in Python, Java, or even Ruby.

Do I need an extra package such as Maven, or am I good with what I have now?
The following is an example of what buildspec look like; this a sample for a small

Node.js application. Remember, it’s YAML.

 1. version: 0.2

 2. phases:

 3. install:

 4. runtime-versions:

 5. nodejs: 10

 6. commands:

 7. - echo Installing Mocha...

 8. - npm install -g mocha

 9. pre_build:

10. commands:

11. - echo Installing source NPM dependencies...

12. - npm install

13. - npm install unit.js

14. build:

15. commands:

16. - echo build started on 'date'

17. - echo Compiling the Node.js code

18. - mocha test.js

19. post_build:

20. commands:

21. - echo build completed on 'date'

22. artifacts:

Chapter 3 AWS Services for Continuous Integration

106

23. files:

24. - app.js

25. - index.html

26. - package.json

27. - node_modules/async/*

28. - node_modules/lodash/*

Now that you have a high-level understanding of CodeBuild, let’s explore it in more

detail. First up is how to use CodeBuild with a code pipeline. As was the case with setting

up the repository, you have multiple options, and again we’ll focus on using either the

GUI or AWS CLI.

�Using CodeBuild via the Console
CodeBuild services allow DevOps to build an entirely different version depending on the

configuration so that the release will be known to the company.

For example, the company added a new feature called a menu, known as a code

change. This was added so that CodeBuild will generate from the source code a release

called menu-v1.0.zip; this release will be deployed later, and so on.

Configuring CodeBuild is straightforward, but sometimes the setup differs from one

company to another.

As you can see later in this chapter, some integrate cloud build with various tools

or services such as CodePipeline or Jenkins to automate the whole process. There are

common steps you need to follow, shown here:

	 1.	 You need to have source code.

	 2.	 Create a buildspec file.

	 3.	 Create an S3 bucket (the best practice is two buckets).

	 4.	 Upload your source code to version control such as GitHub or

CodeCommit.

	 5.	 Create and configure the build project.

	 6.	 Test the build project by running it.

	 7.	 Check the summary information.

	 8.	 Check the output for the generated artifact.

Chapter 3 AWS Services for Continuous Integration

107

�Step 1: You Need to Have the Source Code

Let’s go with the first step, which is the source code; either you will create a free account

on GitHub and upload the code you want to use there or you will go to my GitHub

account at https://github.com/OsamaOracle.

Clone the repo called CodeBuild-repo-example (https://github.com/

OsamaOracle/CodeBuild-repo-example).

Inside the repository, you can check and see Java code plus the buildspec file.

See Figure 3-15, which shows the repository structure.

Figure 3-15.  Repo folder structure

�Step 2: Create a Build Specs File

At this process stage, you will construct a build specification file, also known as a build

spec. CodeBuild utilizes this document to execute a build. A build spec is a collection of

instructions and parameters formatted in YAML.

CodeBuild cannot correctly transform your build input into build output or identify

the build output artifact in the built environment so that it may be uploaded to your

output bucket if you do not provide it with a build spec.

 1. version: 0.2

 2.

 3. phases:

 4. install:

 5. runtime-versions:

 6. java: corretto11

Chapter 3 AWS Services for Continuous Integration

https://github.com/OsamaOracle
https://github.com/OsamaOracle/CodeBuild-repo-example
https://github.com/OsamaOracle/CodeBuild-repo-example

108

 7. pre_build:

 8. commands:

 9. - echo nothing to do in the pre_build phase...

10. build:

11. commands:

12. - echo Build started on 'date'

13. - mvn install

14. post_build:

15. commands:

16. - echo build completed on 'date'

17. artifacts:

18. files:

19. - target/messageUtil-1.0.jar

20.

�Step 3: Create an S3 Bucket

In a straightforward step, you can create two buckets, which will allow you to understand

and organize the output.

�Step 4: Upload Your Code

You must upload the code to the version control tool, such as GitHub, Bitbucket, or

CodeCommit.

�Step 5: Create the Code Build Project

AWS CodeBuild performs the build when you create a project, so let’s do this:

	 1.	 Go to the CodeBuild service from the console, as shown in

Figure 3-16.

Chapter 3 AWS Services for Continuous Integration

109

Figure 3-16.  AWS Portal

	 2.	 Create the project, as shown in Figure 3-17.

Figure 3-17.  Creating a project

Chapter 3 AWS Services for Continuous Integration

110

�Using CodeBuild via the AWS CLI
With the help of the create-project command and the —generate-cli-skeleton option,

you may construct a skeleton JSON file:

1. aws codebuild create-project --generate-cli-skeleton

The output of the first command will generate a JSON file and copy the JSON file.

Switch to the directory where you stored the file and then execute the create-

project command again.

 1. {

 2. "name": "codebuild-demo-project",

 3. "source": {

 4. "type": "S3",

 5. �"location": "codebuild-region-ID-account-ID-input-bucket/

MessageUtil.zip"

 6. },

 7. "artifacts": {

 8. "type": "S3",

 9. "location": "codebuild-region-ID-account-ID-output-bucket"

10. },

11. "environment": {

12. "type": "LINUX_CONTAINER",

13. "image": "aws/codebuild/standard:4.0",

14. "computeType": "BUILD_GENERAL1_SMALL"

15. },

16. "serviceRole": "serviceIAMRole"

17. }

Please copy the previous code, and modify it depending on the project name,

location of the bucket, and environment configuration as the project needs.

Save this file inside the exact repository location (GitHub, Bitbucket, etc.) and run

the following command:

1. aws codebuild create-project --cli-input-json file://create-project.json

Chapter 3 AWS Services for Continuous Integration

111

Execute the create-project command once again while specifying your JSON file, and

the project will be created.

Next is the project’s source; as mentioned, we created an S3 bucket before so that will

be our source, check Figure 3-18.

�Step 6: Test and Run the Code

Now, where will you run the code build is called the environment. For this one, you have

two options.

	 20.	 A managed image, selections from the operating system,

runtime(s), image, and image version.

	 21.	 A custom image, such as Windows, Linux, Linux GPU, or ARM. If

you choose another registry, enter the data and tags of the Docker

image in Docker Hub as the external registry URL.

Figure 3-18.  CodeBuild source configuration

Chapter 3 AWS Services for Continuous Integration

112

If you check the privileged box, because you want to use this building project to

create Docker images, the building environment image you selected does not include

Docker support from CodeBuild. Otherwise, all builds trying to communicate with the

Docker daemon will fail. To interact with your builds, you must also run the Docker

daemon. The following build commands can be used to establish the Docker daemon

during your build spec install step. Do not perform these instructions using a CodeBuild

build environment image with Docker support.

The last section is the service role, an AWS service that takes on a service role when it

performs activities on your behalf. As a service that conducts backup operations on your

behalf, AWS Backup requires that you pass it a role to assume when performing backup

operations. If you have already created one, there is no need to do it again; choose it.

You could do extra configurations such as VPC, timeout, compute options, and

variables. See Figure 3-19.

Chapter 3 AWS Services for Continuous Integration

113

Figure 3-19.  CodeBuild environment configuration screen

Chapter 3 AWS Services for Continuous Integration

114

The next step is to specify the build spec file; if you check the repository, you will find

a file with that name responsible for telling CodeBuild what to do; there is no need to

mention the filename unless you change the default name.

You can insert the command manually, or you can enter the filename if your source

code/repository already includes the file with the default name (buildspec.yml).

If your build spec file has an alternative name, for example, buildspec-project-one,

YAML, or location, enter the path to it in the build spec name starting from the root. See

Figure 3-20.

Figure 3-20.  Defining the buildspec file

A batch configuration is a collection of builds that may be

executed as a single operation. When starting the build, the

advanced option also allows for batch configuration, and once

you choose it, the following options will appear:

•	 You create a service role or choose the existing one.

•	 Set the allowed compute type(s) for batch, with optional

compute types

•	 Set the maximum builds allowed in batch.

•	 Set the batch timeout.

The next option is the artifact, a product created during development. A data

structure, a prototype, a flow chart, a design specification, or a configuration script are all

examples.

Chapter 3 AWS Services for Continuous Integration

115

Some artifacts are necessary throughout the development cycle and must be

conveniently located.

As you can see from Figure 3-21 and Figure 3-22 we chose S3 as our artifact

destination, in the same bucket; you can set a name for the output in case you want it to

be compressed.

Figure 3-21.  Batch configuration

Chapter 3 AWS Services for Continuous Integration

116

Figure 3-22.  CodeBuild artifact screen configuration

Finally, I disable the CloudWatch monitor because of the cost, but in case this

is production, so you may need to enable it for troubleshooting in the future, Check

Figure 3-23.

Chapter 3 AWS Services for Continuous Integration

117

Figure 3-23.  Logs

Figure 3-24.  Starting the build

Once you are done with creating the project, click Start, check Figure 3-24.

You can run the following command line to start the build using the command line:

1. aws codebuild start-build --project-name project-name

�How to Create a CodeBuild-Based Pipeline

The following steps will show you how to create a pipeline using CodeBuild for the

company code:

	 1.	 Access the AWS Portal with the proper user permission to work

with CodeBuild:

	 a.	 Working as an Administrator/root account is usually not

recommended by AWS.

	 b.	 You might be an Administrator user with specific permission; we will

discuss this later in this book.

Chapter 3 AWS Services for Continuous Integration

118

	 c.	 You might be an IAM User with permission assigned to it and the

permission; you need the following (based on AWS best practices):

 1. codepipeline:*

 2. iam:ListRoles

 3. iam:PassRole

 4. s3:CreateBucket

 5. s3:GetBucketPolicy

 6. s3:GetObject

 7. s3:ListAllMyBuckets

 8. s3:ListBucket

 9. s3:PutBucketPolicy

10. codecommit:ListBranches

11. codecommit:ListRepositories

12. codedeploy:GetApplication

13. codedeploy:GetDeploymentGroup

14. codedeploy:ListApplications

15. codedeploy:ListDeploymentGroups

16. elasticbeanstalk:DescribeApplications

17. elasticbeanstalk:DescribeEnvironments

18. lambda:GetFunctionConfiguration

19. lambda:ListFunctions

20. opsworks:DescribeStacks

21. opsworks:DescribeApps

22. opsworks:DescribeLayers

	 2.	 Search for CodePipeline (we will cover it deeply later in this book).

	 3.	 Create a pipeline and follow the screens and instructions

depending on your setup and configuration; if you are unsure

what you are doing, leave things as default, at least for the first

time; Check Figure 3-25.

Chapter 3 AWS Services for Continuous Integration

119

Figure 3-25.  Creating a pipeline

Figure 3-26.  Source stage

	 4.	 Next, choose the code source; if you save your code on ECR, S3, or

CodeCommit, then select it, and once you do this, a new screen

will pop out, including the configuration part for the repository;

Check Figure 3-26.

Chapter 3 AWS Services for Continuous Integration

120

	 5.	 Next will be the build stage for the code; by default, AWS provides

two options: Jenkins or CodeBuild; as you can see from the

screen from Figure 3-27, you need to choose the project name

if you already have created one. Otherwise, you need to create

one; check Figure 3-28.

Figure 3-27.  Build stage

Figure 3-28.  Project name already exists

Chapter 3 AWS Services for Continuous Integration

121

Note T he “Create project” button will allow you to create a new CodeBuild
project that meets your configuration; click it and follow the previous screenshots
mentioned earlier in this chapter.

	 6.	 Now, you create the project; the last step is to deploy the provider,

choose to skip it, and accept this decision when offered if you do

not want to deploy the build artifact.

The second option is to choose a deployment provider for the

deploy provider and then enter the parameters when requested if

you want to deploy the build artifact.

	 7.	 Review your options on the Review screen before clicking “Create

pipeline.”

	 8.	 Once the pipeline runs successfully, open the S3 services; for each

pipeline, you are creating by default, create a bucket. The format

of this bucket name is as follows:

codepipeline-region-ID-random-number

Or you can find out the bucket name by retrieving the information

for this pipeline using the AWS CLI command; this is the power of

the command line.

aws codepipeline get-pipeline --name my-pipeline-name

Navigate to the folder corresponding to your pipeline’s name. Then access the folder

corresponding to the value you noted before for the Output artifact. You can download

and extract the file’s content (filename.zip).

As mentioned earlier, you can add and test actions to CodeBuild, allowing DevOps to

automate and eliminate the manual process.

It’s simple to do this. To add a build action or test action, all you have to do is follow

these steps:

	 1.	 Open CodePipeline Services.

	 2.	 Choose the pipeline you want to edit.

Chapter 3 AWS Services for Continuous Integration

122

	 3.	 Choose the tooltip from the details pages and the source action

and click Edit.

	 4.	 Now, between the source and Build stage, add another stage.

	 5.	 Choose the stage name and add an action; enter the action name.

	 6.	 For the Action provider, choose CodeBuild.

	 7.	 Choose the output artifact you identified previously in this

method under “Input artifacts.”

	 8.	 Enter a name for the output artifact in the “Output artifacts” field.

	 9.	 Choose to add an action.

	 10.	 Save and release the change.

�Use AWS CodeBuild with Jenkins

Not all companies will use CodePipleine; AWS allows you to integrate the services with

other solutions such as Jenkins, one of the most common CI/CD tools.

Jenkins is an open-source DevOps automation software designed in Java for CI/CD.

It’s used to set up CI/CD processes and provides many plugins that allow DevOps to use

them for different solutions.

	 1.	 To use Jenkins, you should install and configure it; you can set up

an EC2 cluster. To do that, follow the official documentation at

https://www.jenkins.io/doc/book/installing/linux/.

	 2.	 Next, install the CodeBuild plugin for Jenkins, which is done by

following the official instruction: https://github.com/awslabs/

aws-codebuild-jenkins-plugin.

	 3.	 Next, use the installed plugin, following the instructions

mentioned earlier.

�Use AWS CodeBuild with Codecov

I have seen another typical case used for CodeBuild, Codecov, a free application for

open-source software that helps contributors enhance test coverage and maintain code

quality.

And you can sign up for free at https://about.codecov.io/sign-up/; check

Figure 3-29.

Chapter 3 AWS Services for Continuous Integration

https://www.jenkins.io/doc/book/installing/linux/
https://github.com/awslabs/aws-codebuild-jenkins-plugin
https://github.com/awslabs/aws-codebuild-jenkins-plugin
https://about.codecov.io/sign-up/

123

Figure 3-29.  Codecov main page

Figure 3-30.  Generate token and copy it

Follow these steps:

	 1.	 Add the repository to Codecov for which you require coverage.

	 2.	 Choose Copy when the token information appears; check the

below Figure 3-30.

	 3.	 Once you have copied the token, add this token as an

environment variable called CODECOV_TOKEN to your project.

Chapter 3 AWS Services for Continuous Integration

124

	 4.	 Create a bash script, for example, codecov_script.sh, and insert

the following lines:

1. #/bin/bash

2. bash <(curl -s https://codecov.io/bash) -t $CODECOV_TOKEN

	 5.	 Create your buildspec file; I usually use Python for DevOps. You

can use any programming language you want.

1. build:

2. - pip install coverage

3. - coverage run -m unittest discover

4. postbuild:

5. - echo 'CodeCov Connection.'

6. - bash codecov_script.sh

	 6.	 Run the build; it should be working now.

We discussed AWS CodeCommit and CodeBuild as part

of continuous integration; now, we will go for the last part,

CodeArtifact.

�CodeArtifact
CodeArtifact securely saves, distributes, and shares software packages used in the

software development process. So that developers have access to the most recent

versions, CodeArtifact can be set to download software packages and dependencies from

public artifact repositories automatically.

Software development teams increasingly depend on open-source packages to

conduct routine operations in their application package. It is increasingly vital for

software development teams to retain control over a specific version of open-source

software free of vulnerabilities. You can use CodeArtifact to create rules that enforce

those mentioned earlier.

In addition, CodeArtifact works with package managers and building tools such as

Maven, Gradle, npm, yarn, and pip.

Before working with CodeArtifact, you need to understand the concept of this service

so it will be much easier for you to deal with it.

Chapter 3 AWS Services for Continuous Integration

125

Domain
The first concept you need to understand is the domain. Repositories are grouped

into a domain, which is a higher-level object. The domain stores all package assets

and information, making managing numerous repositories within a business more

straightforward. You may apply permissions to several repositories held by distinct AWS

accounts using a domain. Even though an object is accessible from several sources, it is

kept only once in a domain.

This is useful for copying, unique names, and storage, and you can apply policy

across multiple repositories.

Repository
CodeArtifact repositories are not the same ones we are using in version controls; a

CodeArtifact repository has a collection of package versions, each corresponding to a

group of assets. Using tools such as the NuGet CLI, the npm CLI, the Maven CLI (mvn),

and pip, each repository offers APIs for acquiring and publishing packages. Each domain

has a limit of 1,000 repositories.

Package
A package is a collection of software and information for resolving dependencies and

installing the program, consisting of a package name and description.

Package Version
A package version allows the DevOps to identify the package version, for example,

@types/node 1.2.3.

Package Version Revision
A new package version revision is produced each time a package version is modified.

For example, a recent version revision is created if you release a new source code for

Python and want to add another package to the source code by default.

Upstream Repository
When the package versions in one repository can be accessed via the downstream

repository’s repository endpoint, the contents of the two repositories are essentially

merged from the client’s perspective. Create an upstream connection between two

repositories using CodeArtifact.

Asset
An asset refers to an individual file stored in CodeArtifact and associated with a

package version.

Package Namespace
To understand this concept, let me give you a much more straightforward example;

CodeArtifact usually organizes packages into logical groups to disallow name conflicts.

Chapter 3 AWS Services for Continuous Integration

126

For example, if you have an npm package, CodeArtifact will create the name like @types/

node, and @type will indicate the package scope and name of the node; this depends on the

following documentation: https://docs.npmjs.com/cli/v7/using-npm/scope.

For Maven, the approach is different; for example, org.apache.logging.

log4j:log4j is divided into two things:

•	 Group ID: org.apache.logging.log4j

•	 CodeArtifact ID: log4j

Each package manager has a unique namespace to allow DevOps to understand the

type of these packages and their meaning.

�Configure CodeArtifact

The first thing you need to do is open the AWS account if it isn’t already. Then access

CodeArtifact; check Figure 3-31.

Figure 3-31.  CodeArtifact AWS Portal

To create your first domain and repository, open the CodeArtifact interface, choose

to create a domain and repository, and follow the instructions in the launch wizard.

Also, don’t forget to install AWS CLI.

If you want to provide IAM users with access to CodeArtifact, you need

to create an IAM policy; you can use the default one provided by AWS,

AWSCodeArtifactAdminAccess.

Chapter 3 AWS Services for Continuous Integration

https://docs.npmjs.com/cli/v7/using-npm/scope

127

The following policy is a custom IAM policy that will allow users to get information

about repositories and domains of the CodeArtifact:

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

 4. {

 5. "Effect": "Allow",

 6. "Action": [

 7. "codeartifact:List*",

 8. "codeartifact:Describe*",

 9. "codeartifact:Get*",

10. "codeartifact:Read*"

11.],

12. "Resource": "*"

13. },

14. {

15. "Effect": "Allow",

16. "Action": "sts:GetServiceBearerToken",

17. "Resource": "*",

18. "Condition": {

19. "StringEquals": {

20. "sts:AWSServiceName": "codeartifact.amazonaws.com"

21. }

22. }

23. }

24.]

25. }

Another policy example will allow the user to retrieve specific information about the

domain you defined in the policy.

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

 4. {

 5. "Effect": "Allow",

Chapter 3 AWS Services for Continuous Integration

128

 6. "Action": "codeartifact:ListDomains",

 7. �"Resource": "arn:aws:codeartifact:eu-west-1:account-

number:domain-name*"

 8. }

 9.]

10. }

11.

The last step for configuring the CodeArtifact is related to what package you will use.

•	 Python: You can use pip to install the package.

•	 Maven: You should Gradle or mvn.

•	 Npm: You can use the npm CLI.

•	 NuGet: You can use dotnet or AWS toolkit in Visual Studio Code, as

you can see in Figure 3-32.

Figure 3-32.  Visual Studio Code, AWS toolkit

Chapter 3 AWS Services for Continuous Integration

129

Create a CodeArtifact Domain

Configure a domain by clicking “Create domain,” as shown in Figure 3-33.

Figure 3-33.  Creating a CodeArtifact domain

Once you do this, a new screen will show up; check Figure 3-34, and all you have to

do is choose a name and KMS; or you can use the command line, as shown here:

1. aws codeartifact create-domain --domain my_domain

Chapter 3 AWS Services for Continuous Integration

130

Figure 3-34.  Creating a domain screen

Create a CodeArtifact Repository

The CodeArtifact console or AWS CLI can be used to establish a repository. There are no

packages in a repository when you create it.

In the left panel, choose Repository; check Figure 3-35.

Chapter 3 AWS Services for Continuous Integration

131

Figure 3-35.  Creating a CodeArtifact repository

Figure 3-36.  CodeArtifact repository screen

Click “Create repository.” Enter your repository’s name in the “Repository name”

field Enter an optional description for your repository in the “Repository description”

field. Publish upstream repositories and add intermediate repositories to link your

repositories to package authorities like Maven Central and npmjs.com; check Figure 3-36.

The domain screen will allow you to choose a domain within the account or a

different account, as shown in Figure 3-37. Once you are done, review what CodeArtifact

is making for you in the “Review and create” step.

Chapter 3 AWS Services for Continuous Integration

132

Figure 3-37.  Domain screen

This can be done also using AWS CLI, as shown here:

1. aws codeartifact create-repository --domain book_domain --domain-

owner account-number-for-the-domain --repository book-repo --description

"Book Repo"

Example CodeArtifact for Python

There is no console for this, so you need to use AWS CLI; each supporting package has its

own configuration.

1. aws codeartifact login --tool pip --domain book_domain --domain-owner

account-number-for-the-domain --repository book-repo

The previous example shows how to use Python as a package manager configuration;

it’s different if you use Maven or npm.

Before we end this chapter, you should know each artifactory has something called

dependency caching, limiting the number of dependencies that must be retrieved from

CodeArtifact for each build activating local caching in CodeBuild.

Each package manager has a Cache folder; if you use this folder, then you will enable

the dependency caching.

Chapter 3 AWS Services for Continuous Integration

133

Package Manager Tool Folder

pip /root/.cache/pip/**/*

mvn /root/.m2/**/*

Gradle /root/.gradle/caches/**/*

npm /root/.npm/**/*

NuGet /root/.nuget/**/*

For example, you can use dependency caching by mentioning it in the buildspec file,

as shown here:

1. cache:

2. paths:

3. - '/root/.cache/pip/**/*'

�Summary
In summary, technology businesses should adopt DevOps ideas and techniques to

make the transition to the cloud as easy, efficient, and successful as possible; with this,

you will make your life easier. Most IT organizations, if not all, now practice continuous

integration.

Applying this solution benefits any company. AWS provides different solutions

and services. As mentioned earlier in this chapter, any company can offer a complete

automation cycle without a third-party solution.

But at the same, CI/CD offers a simple and efficient method to deploy new app code

in minutes. AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy,

and several additional tools may assist developers in integrating, testing, and deploying

new code. You can even use these solutions to combine them with infrastructure as

code, which will automate the process in the company.

Chapter 3 AWS Services for Continuous Integration

134

We rarely have the time or talent to plan ahead of time in business, especially for

new product development. We can estimate more accurately and confirm more often by

completing fewer steps. A shorter feedback loop allows for more iterations. Learning is

driven by the number of iterations, not the hours spent.

In the next chapter, I’ll cover AWS for continuous deployment concepts and what

Amazon AWS can offer as services for continuous deployment. I will also share an

example and configuration for these services.

Chapter 3 AWS Services for Continuous Integration

135
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_4

CHAPTER 4

AWS Services for
Continuous Deployment
In the previous chapter, I covered CI/CD, focusing on continuous integration, its benefits,

and AWS as a cloud provider for constant integration, and I showed some examples.

In this chapter, I will discuss continuous deployment. You already have an idea of

what the difference is between CI and CD and when you should use each one.

The isolated modifications integrated and confirmed during CI can be coupled

with the remaining product code in a continuous delivery cycle. The pair is then put

through a series of more thorough tests. Continuous delivery aims to demonstrate that

the ultimate product is deployable, not necessarily to deploy it. The continuous delivery

pipeline (CDP) is the method for continuous delivery.

First, however, I’ll explain what continuous deployment is, what continuous delivery

is, and the difference between the two.

In this chapter, I will cover the continuous deployment and delivery of Amazon Web

Services. I’ll also walk you through projects that will give you a complete understanding

of the different relevant services and how to use them.

�Introduction to Continuous Deployment
Continuous deployment is the last step in an automated software development process.

Each check-in on a successful build to your source control is delivered to a production-

like environment using continuous deployment; you’ll deploy the program to

production sooner or later. The sooner you do this, the more likely you are to be able to

resolve errors quickly. It is simpler to recall what you did yesterday that may have created

the issue than to recognize what you did two months ago. Imagine checking some code

into source control and receiving error signals from your production environment five

minutes later.

https://doi.org/10.1007/978-1-4842-9303-4_4

136

You’ll be able to discover and correct the issue right away, and the production

program can be up and running without bugs in five minutes. Unfortunately, the

concept of automatic deployment, let alone automated deployment on every check-in,

makes most managers and software owners uneasy.

When should you change to continuous deployment?

•	 Manual inspections: There are restrictions to what can be done

here if a deployment is not automated. Even if it is automated, an

organization may decide not to deploy every version, in which case

a human check can be implemented. A user acceptance test (UAT) is

typically used to perform such a check early in the pipeline.

•	 Deployment in stages: Even if you want to deploy the newest version

from the pipeline automatically, you can do it in stages. You can, for

example, publish it to a site that is available only to a subset of users who

want to check out the new version, or you can transparently redirect

select users to the latest release. If any issues arise during the evaluation

period, only a subset of users will be impacted and can be referred to the

prior version. The remaining users can be forwarded to the new version

if everything seems OK. This is called canary deployment.

•	 Deployment strategy: We will have a chance to discuss the

deployment strategies in the next chapter; each strategy will need a

different configuration and setup.

�Continuous Delivery
Continuous delivery and continuous deployment are sometimes confused.

Modifications through the pipeline are automatically sent to production, resulting

in many daily production deployments. With continuous delivery you can often

conduct frequent deployments or choose not to if you want a slower deployment pace.

Continuous delivery is required for continuous deployment.

The isolated modifications integrated and confirmed during CI can be coupled

with the remaining product code in the continuous delivery cycle. The pair is then put

through a series of more thorough tests. Continuous delivery aims to demonstrate that

the ultimate product is deployable, not necessarily to deploy it. The continuous delivery

pipeline (CDP) is the method for continuous delivery.

Chapter 4 AWS Services for Continuous Deployment

137

With continuous delivery, such as DevOps, you have the capability to change the

type of deployment you use, and you can deploy new features, bugs, fixes, and more to

production or any other environment.

When continuous delivery is implemented, the following occurs:

•	 Software is deployed through a cycle.

•	 Your team emphasizes software deployment above new feature

development.

•	 Anyone can obtain instant, automatic feedback on their system’s

production readiness whenever they make a change.

•	 On-demand deployments of any version of the program to any

environment are possible.

The following are the main advantages of continuous delivery:

•	 Reduced deployment risk: Because you’re making more minor

changes, less can go wrong, and correcting errors is quicker.

•	 Noticeable progress: Many people keep track of their success by

logging their hours worked. It is considerably less credible if “done”

implies “developers announce it to be done” than if it is deployed

into a production environment and works.

•	 Feedback: The greatest danger of every software project is that you

will create something useless. The sooner and more often you put

functional software in front of actual users, the faster you will learn

how beneficial it is.

Developers can use continuous delivery to automate testing beyond unit tests,

allowing them to evaluate application improvements across several dimensions before

releasing them to users. UI testing, load testing, integration testing, API reliability testing,

and other tests allow developers to test upgrades and identify concerns ahead of time

extensively. Automating the creation and replication of many environments for testing,

which was hard to achieve on-premises, is now simple and cost-effective in the cloud.

Amazon AWS provides two services for continuous delivery: AWS CodeDeploy and

AWS CodePipeline.

Chapter 4 AWS Services for Continuous Deployment

138

�AWS CodeDeploy
AWS CodeDeploy is a fully managed service tool that automates program deployments

to Amazon Elastic Compute Cloud (Amazon EC2), AWS Fargate/ECS, AWS Lambda, and

your on-premises servers.

CodeDeploy may deploy application content stored in Amazon S3 buckets, GitHub

repositories, or Bitbucket repositories that run on a server. A serverless Lambda function

can also be deployed using CodeDeploy. CodeDeploy can be used without making any

modifications to your current code.

You can use CodeDeploy to make it simpler to do the following:

•	 Release new features on time.

•	 Update versions of AWS Lambda functions.

•	 Avoid any downtime during application deployment.

•	 Take on the complexity of upgrading your apps while avoiding many

of the hazards of manual deployments.

The service grows with your infrastructure, allowing you to quickly deploy one or

hundreds of instances. You can use almost any application material, including code,

serverless AWS Lambda functions, web and configuration files, executables, packages,

scripts, and multimedia files.

CodeDeploy offers various advantages that support the DevOps idea of continuous

deployment, starting with deployments being automated using CodeDeploy, enabling

you to deploy software reliably and quickly. CodeDeploy gives you centralized

management over your application deployments.

CodeDeploy allows you to effortlessly create and check the progress of your

deployments using the AWS Management Console or the AWS CLI; you can see when

and where each application revision was deployed using CodeDeploy’s full report. You

can also set up push alerts to obtain real-time deployment changes.

On the other hand, to reduce downtime, CodeDeploy assists you in maximizing

the availability of your application throughout the software deployment. It gradually

introduces updates and monitors application health using customizable rules. Software

deployments can be halted and turned back if there are any issues.

You can halt and roll back deployments automatically or manually if there are issues.

In addition, CodeDeploy works with multiple deployment strategies, discussed in

the next chapter.

Chapter 4 AWS Services for Continuous Deployment

139

There is a different use case for CodeDeploy. However, I will show how to use a

couple of examples so you can understand when you need to use it.

�AWS CodeDeploy Project

Imagine development teams frequently asking you to deploy a web page on an EC2

instance repeatedly. This is a repetitive, tedious manual task. To automate this process,

we will use CodeDeploy; the infrastructure is pretty simple and will be as follows:

•	 The application is based on WordPress, which requires PHP

and MySQL.

•	 The operating system is Amazon Linux or Red Hat Enterprise Linux.

•	 There is a single EC2 instance.

The high-level steps for this project are as follows:

	 1.	 Configure an EC2 instance and install the CodeDeploy Agent.

	 2.	 Configure what needs to be deployed to the EC2 instance.

	 3.	 Upload the WordPress code to S3.

	 4.	 Update the WordPress applications depending on the needs.

Chapter 4 AWS Services for Continuous Deployment

140

Step 1: Configure an EC2 Instance

Sign in to the AWS Console, choose EC2, and click “Launch instances” (Figure 4-1).

Figure 4-1.  Creating an EC2 instance

Next, you need to fill in some information, such as the name, network, and key pair

(SSH); what you need depends on your configuration, as shown in Figure 4-2.

•	 Choose an Amazon Machine Image (AMI), and choose an OS that

is supported by CodeDeploy; you can check here for supported

versions: https://docs.aws.amazon.com/codedeploy/latest/

userguide/codedeploy-agent.html#codedeploy-agent-supported-

operating-systems.

•	 Choose an instance type.

Chapter 4 AWS Services for Continuous Deployment

https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html#codedeploy-agent-supported-operating-systems
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html#codedeploy-agent-supported-operating-systems
https://docs.aws.amazon.com/codedeploy/latest/userguide/codedeploy-agent.html#codedeploy-agent-supported-operating-systems

141

Figure 4-2.  EC2 configuration

Chapter 4 AWS Services for Continuous Deployment

142

You can create an IAM role depending on the needed permission. To make an

IAM role inside AWS, please follow the steps; when dealing with CodeDeploy and

CodePipeline, you must provide permission to allow these services access to the

required resources.

Caution Y ou may notice that some steps are repeatable for CodePipeline and
CodeDeploy. Nevertheless, the idea is to show how easy the configuration is
for both.

CREATE AWS ROLES

If you are familiar with these steps, skip this section.

	1.	F rom the console, choose IAM, or you can access it at https://console.

aws.amazon.com/iam.

	2.	T he IAM screen will open; choose a role. See Figure 4-3.

Figure 4-3.  Creating an IAM role

Chapter 4 AWS Services for Continuous Deployment

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

143

	3.	 Choose Roles from the left menu, and then select “Create role.” On the

“Create role” page, choose the services you will be using for the role, which is

CodeDeploy here, as shown in Figure 4-4.

Figure 4-4.  Choosing CodeDeploy

	4.	T he next screen will be for adding permission; leave everything as is, as shown

in Figure 4-5.

Figure 4-5.  Adding permission to a role

Chapter 4 AWS Services for Continuous Deployment

144

	5.	T ype the service role’s name (CodeDeployServiceRole, for instance) into the

“Role name field” on the Review screen, and then click “Create role,” as shown

in Figure 4-6.

Figure 4-6.  After creating the role

	6.	N ow, click the role, which will open a new screen that allows you to edit the

role and insists on a trust relationship; see Figure 4-7.

Figure 4-7.  Editing the role-trust relationships

You will see the current policy attached to the role; you can add a different one as shown here,

which allows the code deployment to access an additional AWS resource.

For example, if I need to give permission for CodeDeploy for EC2, I use this:

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

Chapter 4 AWS Services for Continuous Deployment

145

 4. {

 5. "Sid":" ",

 6. "Effect": "Allow",

 7. "Principal": {

 8. "Service": "ec2.amazonaws.com"

 9. },

10. "Action": "sts:AssumeRole"

11. }

12.]

13. }

14.

After that, you need to grant access to S3 so CodeDeploy can access the bucket and deploy

the code to EC2.

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

 4. {

 5. "Action": [

 6. "s3:Get*",

 7. "s3:List*"

 8.],

 9. "Effect": "Allow",

10. "Resource": "*"

11. }

12.]

13. }

14.

Note that for the next configuration for EC2 Storage, I recommend leaving it as is to ensure

no extra cost.

Chapter 4 AWS Services for Continuous Deployment

146

•	 Using tags will make your life easier later.

•	 Configure the security group as shown in Figure 4-8.

•	 For now, open ports SSH, HTTP, and HTTPS.

Figure 4-8.  Security group

Continue to the “Instance launch” page and click Launch.

Do not forget to keep the private key in a secret place.

After launching the instance using the private key or SSM, we need to install the CodeDeploy

Agent; if you choose to install it and follow the steps here, the installation for the agent will be

different from one operating system to another.

The link in command 5 in the following snippet is a generic link, so make sure to change it

depending on where the resource will be deployed and the bucket’s name.

 1. sudo yum update

 2. sudo yum install ruby

 3. sudo yum install wget

 4. cd/home/ec2-user

 5. �wget https://bucket-name.s3.region-identifier.amazonaws.com/

latest/install

 6. chmod +x./install

 7. sudo./install auto

 8. sudo service codedeploy-agent status

 9. sudo service codedeploy-agent start

10. sudo service codedeploy-agent status

The name of the Amazon S3 bucket containing your area’s CodeDeploy Resource Kit files

is bucket-name. region-identifier is the identifier for your region, such as West

Europe Region.

Chapter 4 AWS Services for Continuous Deployment

147

For example, aws-codedeploy-eu-west-2 is the bucket name, and the region is

eu-west-2. To find the bucket name and the available region to download the agent, please

refer to the AWS documentation shown here:

https://docs.aws.amazon.com/codedeploy/latest/userguide/resource-kit.

html#resource-kit-bucket-names

Step #2: Configure the Source Content to Be Deployed on EC2

To clone your WordPress code, you need to use the git command.

To install the git command, follow these steps. Each Linux command has its

package manager, but the concept is the same (I am using Ubuntu).

Git packages are available using the apt command, commonly used in Ubuntu.

1. sudo apt-get update

2. sudo apt-get install git-all

Now, with the git command, you can clone the repo; you can choose to clone to

any folder.

git clone https://github.com/WordPress/WordPress.git /home/ec2-user

After cloning the code and moving to the next step, you need to stop and start

scripting for the application, which will be used later in the appspec YAML, the same as

the buildspec discussed previously in other chapters.

	 1.	 The first script you will need is for the dependencies. This script

will be responsible for installing Apache, MySQL, and PHP;

you can call the script WordPress-dependencies.sh to install

dependencies. Save all the scripts in one folder.

1. #!/bin/bash

2. sudo amazon-linux-extras install php7.4

3. sudo yum install -y httpd mariadb-server php

	 2.	 The following script, which is straightforward, starts the

application: start-script.sh.

1. #!/bin/bash

2. systemctl start mariadb.service

Chapter 4 AWS Services for Continuous Deployment

https://docs.aws.amazon.com/codedeploy/latest/userguide/resource-kit.html#resource-kit-bucket-names
https://docs.aws.amazon.com/codedeploy/latest/userguide/resource-kit.html#resource-kit-bucket-names

148

3. systemctl start httpd.service

4. systemctl start php-fpm.service

	 3.	 Shut down the application with stop-script.sh.

1. #!/bin/bash

2. systemctl stop httpd.service

3. systemctl stop mariadb.service

4. systemctl stop php-fpm.service

	 4.	 Create a WordPress database script called create-database.sh.

This script will be used to create a database called Wordpress_DB

to be used by the application; we notice that you also need to

create a folder called scripts and create this file under it.

MariaDB on Amazon Linux 2 does not have a root password

by default. If you create a root password for MariaDB and lock

yourself out of your database, you must reset the root password.

And you can do that by running the following command; if you do

not want to set the MariaDB password, you can do that and leave

it blank.

ALTER USER 'root'@'localhost' IDENTIFIED BY 'new_password';

1. #!/bin/bash

2. mysql -u root -p your-password

3. CREATE DATABASE IF NOT EXISTS test;

4. CREATE_WordPress_DB

	 5.	 The last step is that you need to change the script’s permission to

make them executable.

1. chmod +x//home/ec2-user/scripts/*

	 6.	 If you use CodeDeploy, CodePipeline, etc., you need to write

either the buildspec or AppSpec, depending on which services

you will use; this time, I will use CodeDeploy.

Chapter 4 AWS Services for Continuous Deployment

149

Using the appsec file will be our choice because we are deploying to EC2; before

continuing with the example, let’s look at what the difference is between then.

buildspec.yml
The pipeline generates an artifact at the source, and this file is used to build it.

Remember, only applications that need a build (such as Angular, React, etc.) will need

this. It is unnecessary to download this file using a Node.js application.

appspec.yml
If you want to deploy your software to an EC2 instance, you will need this file. When

the files are replaced in the EC2 instance, the deployment group will seek this file in your

root, which contains instructions. In the case of a Node.js application, for instance, you

would need to issue the command run application again.

 1. version: 0.0

 2. os: Linux

 3. files:

 4. - source:/⩔
 5. destination:/var/www/html/WordPress

 6. hooks:

 7. Before Install:

 8. - location: scripts/WordPress-dependencies.sh

 9. timeout: 300

10. runas: root

11. ApplicationStart:

12. - location: scripts/start_script.sh

13. - location: scripts/create_database.sh

14. timeout: 300

15. runas: root

16. ApplicationStop:

17. - location: scripts/stop_script.sh

18. timeout: 300

19. runas: root

20.

Chapter 4 AWS Services for Continuous Deployment

150

Step 3: Upload WordPress Code to S3

Now you’ll prepare your source code and submit it to a place where CodeDeploy can

deploy it; the following steps demonstrate how to create an Amazon S3 bucket, prepare

the application revision files for the bucket, bundle the revision files, and finally push the

modification to the bucket.

	 1.	 Creating the s3 bucket is a straightforward step either by using the

command line (AWS CLI) or by using console.

1. aws s3 mb s3://test-wordpress-code

	 2.	 Choose S3, as shown in Figure 4-9, and the new screen will

display. Click “Create bucket,” as shown in Figure 4-10.

Figure 4-10.  S3 Dashboard

Figure 4-9.  Creating the S3 bucket from the console

Chapter 4 AWS Services for Continuous Deployment

151

	 3.	 The configuration screen will open; choose the same bucket name

and the region as your CodeDeploy region, and leave the other

settings as the defaults. See Figure 4-11.

Figure 4-11.  S3 configuration screen

Chapter 4 AWS Services for Continuous Deployment

152

	 4.	 Create an archive file with the WordPress application files and the

AppSpec file, and we will register the app called WordPress. The

last command will call the push command to create a bundle for

all the files.

cd/home/ec2-user

If you had not created the role mentioned in step 1 of this example,

you would face a “permission denied” error when running this

command.

1. aws deploy create-application --application-name

WordPress_App

1. aws deploy push --application-name WordPress_App

--s3-location s3://test-wordpress-code/WordPressApp.zip

--ignore-hidden-files

The previous command compiles the files in the current directory

into a single file. WordPressApp.zip is a single archive file that

contains everything you need.

Step 4: Deploy the Code

The next step is now deploying an application. You can use the AWS CLI or the

CodeDeploy interface to deploy the version and track its progress.

If you want to deploy the application using AWS CLI, follow the instructions in this

section.

First, ensure you have the proper permission to deploy the app; otherwise, you will

not be able to do that; you should create a service role needed for the next step.

The following is one of the examples for the Services role (saved under a file called

accessrole.json), which will give access to CodeDeploy under all supported regions:

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

 4. {

 5. "Sid": "",

 6. "Effect": "Allow",

Chapter 4 AWS Services for Continuous Deployment

153

 7. "Principal": {

 8. "Service": [

 9. "codedeploy.amazonaws.com"

10.]

11. },

12. "Action": "sts:AssumeRole"

13. }

14.]

15. }

16.

Then, run the following command, which will create a service role:

1. aws iam create-role --role-name CodeDeployServiceRole --assume-role-

policy-document file://accessrole.json

We need to create a deployment group connected to the previous service role. It is

possible to delegate authority to a service by assigning it a special identity and access

management (IAM) role. CodeDeploy can connect to your Amazon EC2 instances

thanks to the service role.

1. aws deploy create-deployment -group

2. --application-name WordPress_App

3. --deployment group name WordPress_DepGroup

4. --deployment-config-name CodeDeployDefault. OneAtATime

5. --ec2-tag-filters Key=Name,Value=CodeDeployDemo,Type=KEY_AND_VALUE

6. --service-role-arn serviceRoleARN

After applying the earlier steps, refer to Figure 4-12, which explains the application

deployment step.

Chapter 4 AWS Services for Continuous Deployment

154

Figure 4-12.  Creating a deployment group from the console

Before creating a deployment, ensure the CodeDeploy Agent is installed and

running; otherwise, an issue will appear.

1. aws ssm create-association

2. --name AWS-ConfigureAWSPackage

3. --targets Key=tag:Name,Values=CodeDeployDemo

4. --parameters action=Install, name=AWSCodeDeployAgent

5. --schedule-expression "cron(0 2? * SUN *)"

On the same screen of CodeDeploy, you will see the system manager section, which

is responsible for deploying the CodeDeploy Agent via System Manager; see Figure 4-13.

Chapter 4 AWS Services for Continuous Deployment

155

Figure 4-13.  Installing the agent through the console

Let’s deploy now by running the following command:

1. aws deploy create-deployment

2. --application-name WordPress_App

3. --deployment-config-name CodeDeployDefault. OneAtATime

4. --deployment-group-name WordPress_DepGroup

5. �--s3-location bucket=codedeploydemobucket, bundleType=zip,

key=WordPressApp.zip

6.

The following section concerns deployment settings and how fast the application

will be deployed; see Figure 4-14.

Chapter 4 AWS Services for Continuous Deployment

156

Figure 4-14.  Deployment settings

Step 5 (Optional): Redeploy the Code

The question is, what will happen if you change something inside the code? How can

you redeploy again; the answer is simple, as Amazon AWS CodeDeploy allows you to

redeploy again using AWS CLI or the console.

Using the same command as earlier, you can redeploy your code without issues.

1. aws deploy create-deployment

2. --application-name WordPress_App \

3. --deployment-config-name CodeDeployDefault. OneAtATime

4. --deployment-group-name WordPress_DepGroup

5. �--s3-location bucket=codedeploydemobucket, bundleType=zip,

key=WordPressApp.zip

6.

Or, in the console, select your application and click “Deploy application,” as shown

in Figure 4-15.

Figure 4-15.  Deploying the WordPress application

Overall, once the application is deployed and you try to access using the public DNS

of the EC2 instance, the first page will be like that; this page will allow you to configure

the connection to the database and enter a username and password.

Chapter 4 AWS Services for Continuous Deployment

157

Since the next page is HTTP, you need to open the port under the security group to

make it work; otherwise, it will not be open.

In Figure 4-16, you can see the application home page (configuration page).

Figure 4-16.  The WordPress configuration page

You can also use CodeDeploy for on-premises servers; for sure, you will need a VPN

in that case, and it can be used to automate Lambda functions; at the end of this chapter,

I will include one of the projects for CodeDeploy.

Before starting with the following topic, I will explain the difference between

CodeDeploy and CodePipeline, as you can see from Table 4-1, which shows a difference

between CodeDeploy and CodePipeline and will allow you to understand each one

of them.

Chapter 4 AWS Services for Continuous Deployment

158

Table 4-1.  CodeDeploy vs. CodePipeline Key Differences

Factors CodeDeploy CodePipeline

Usage Use to automatically deploy code

to EC2 instances, Lambda, or on-

premises servers.

This is one of the continuous deployments

that allow you to build, test, and deploy

once your code changes.

Known name Deployment as services. Continuous deployment.

Features Helps to minimize downtime during

deployment.

Can work with any complexity of

code update.

Track application health status.

Accessible to roll back updates

across EC2 instances.

Provide different prebuilt plugins that allow

you to integrate with other tools.

Integration with third-party solutions.

Can follow up with the deployment via

workflow model.

�AWS CodePipline
The previous table gave you an idea about what CodePipeline provides. This service

allows you to automate the manual step to release your software so you can quickly

configure stages for the automation software release process. But what else can you do

with CodePipline, or what is the use case for this service?

First, you can automate your software releases. As a company, you want to minimize

the potential for human error; automating your software releases does that.

Uploading your code source to version control allows you to test, build, or deploy

that code. The workflow differs from company to company. Some companies will

make the approval manual to ensure the code meets the standard; others integrate the

workflow with other QA automation tools, and so on.

One of the most critical use cases is speeding up the delivery time and making the

development team focus on the code quality more than the deployment time.

After the development cycle, CodePipline allows you to check the deployment

status using the console and check which stage has been implemented thus far (see

Figure 4-17).

Chapter 4 AWS Services for Continuous Deployment

159

Figure 4-17.  Checking the deployment

Integration with third-party software is another consideration. For example, the

company can use GitHub, Gitlab, or Bitbucket to upload the code to CodeCommit and

trigger action on Jenkins. Again, the configuration could differ from one company to

another; it all depends on the use case.

One more critical feature of CodePipeline is that it allows you to check the

deployment history, see whether it has failed or succeeded, and review what has been

deployed to the server and what changes the development team made. As shown in

Figure 4-18, the history has three statuses.

•	 Succeeded means the pipeline has been deployed to the target

without any issues.

•	 Failed means one or more stages has failed for some reason.

•	 Superseded means the user should stop this pipeline or eliminate

one of the stages.

Chapter 4 AWS Services for Continuous Deployment

160

Figure 4-18.  CodePipeline history

�CodeDeploy Component

When talking about CodeDeploy, a different component, starting with the application,

is considered the first part of the CodeDeploy component, a collection of deployment

groups such as EC2 instances or on-premises servers; moreover, a deployment

configuration is how your deployment will work.

Chapter 4 AWS Services for Continuous Deployment

161

Another component mentioned earlier, the buildspec, is the most important part; it

is responsible for how the application will be deployed to the instance or target. Last but

not least, the deployment group acts like an environment such as Prod, QA, UAT, or Dev.

When working with deployment, you must understand the deployment types or

strategies and which DevOps will be used to meet the company’s needs. The deployment

strategies define the network traffic to the environment, such as production, which can

control the downtime and minimize it as much as possible. When you replace the old

deployment with the new one, how will this be done?

To understand more about the deployment strategies, refer to Chapter 5.

�Project: Create an Essential Pipeline Using
AWS CodePipeline
One of the easiest ways to create a pipeline in CodePipeline is to use AWS’s Setup Wizard

setup. In this section, I’ll show you how to deploy a web application in the S3 bucket to

an EC2 instance using CodePipeline.

The steps are as follows:

	 1.	 Create an S3 bucket.

	 2.	 Install the CodeDeploy Agent on the EC2 instance.

	 3.	 Create the application inside CodeDeploy.

	 4.	 Create a pipeline to deploy the application to EC2.

Chapter 4 AWS Services for Continuous Deployment

162

�Step 1: Create the S3 Bucket
This step is straightforward; from the console, choose S3, as shown in Figure 4-19.

Figure 4-19.  Creating the S3 bucket code pipeline

Download the application, which is already uploaded to GitHub (https://github.

com/OsamaOracle). I am using an application that will be deployed on the Linux

operating system. Then, upload the file to the S3 bucket we created before, as illustrated

in Figure 4-20.

Chapter 4 AWS Services for Continuous Deployment

https://github.com/OsamaOracle
https://github.com/OsamaOracle

163

Figure 4-21.  Creating an IAM role

Figure 4-20.  Uploading the application to S3

�Grant Access to EC2
The next step will be creating an IAM role to grant access to the EC2, as demonstrated in

Figure 4-21. (You can skip this if you’re already familiar with this process.)

Caution Y ou may notice that some of the steps in this section are the same for
CodePipeline and CodeDeploy. The idea is to show and allow you to understand
how easy the configuration is for both.

Chapter 4 AWS Services for Continuous Deployment

164

Once you click “Create role,” a new screen will appear, as shown in Figure 4-22. Click

Next; making this role allows EC2 instances to call AWS services on your behalf.

Figure 4-22.  Creating a a role for EC2

On the next screen, you need to add permission to this role and search for

a policy called AmazonEC2RoleforAWSCodeDeploy plus another policy called

AmazonSSMManagedInstanceCore; see Figure 4-23 and Figure 4-24.

Figure 4-23.  Adding the AmazonEC2RoleforAWSCodeDeploy policy

Chapter 4 AWS Services for Continuous Deployment

165

Figure 4-24.  Adding the AmazonSSMManagedInstanceCore policy

Once you add these policies, name the role something you will remember later; for

me, I called it Ec2Codepipeline, as shown in Figure 4-25.

Figure 4-25.  Naming the role

Chapter 4 AWS Services for Continuous Deployment

166

�Step 2: Launch the EC2 Instance
Next, we need to launch the EC2 instance; I will not repeat the steps since they were

discussed earlier in this chapter with two differences: assign the role to the EC2 instance,

and the instance number needs to be 2. See Figure 4-26.

Figure 4-26.  Creating an EC2 instance for the CodeDeploy project

�Step 3: Install the CodeDeploy Agent on EC2
In this step, we need to create the application in CodeDeploy.

We will allow CodeDeploy to install the agent inside EC2 and choose the deployment

strategy that CodeDeploy supports.

To do this, choose to create an application; the name is up to you. In our case, it will

be the first project, but the compute platform should be EC2/on-premises, as shown in

Figure 4-27.

Chapter 4 AWS Services for Continuous Deployment

167

Figure 4-27.  Choosing an application, CodeDeploy

•	 After creating the application, we need to create a deployment group

for the application to choose the appropriate name.

•	 The services role should be created before.

•	 Under the deployment type, choose In-place.

•	 Set the deployment setting to CodeDeployDefault.OneAtOnce.

•	 Disable the Load Balancer settings.

Figure 4-28 illustrates all of this.

Figure 4-28.  After creating the application screen, you will be able to create a
deployment group

Chapter 4 AWS Services for Continuous Deployment

168

You need to configure the deployment type as shown in Figure 4-29.

Figure 4-29.  Deployment type

The next section is “Environment configuration,” as shown in Figure 4-30.

Figure 4-30.  Environment configuration settings

Deployment configuration will be responsible for installing the CodeDeploy agent

with AWS System Manager; you can choose how to install it. See Figure 4-31.

Chapter 4 AWS Services for Continuous Deployment

169

Figure 4-31.  Installing the CodeDeploy Agent

The last step in the deployment group is to set the deployment settings, such as how

fast an application is deployed and the success or failure conditions for deployment; see

Figure 4-32.

Figure 4-32.  Deployment group, deployment setting

Chapter 4 AWS Services for Continuous Deployment

170

�Step 4: Create the Pipeline
Now, we will create the pipeline from the console and choose CodePipeline, as

demonstrated in Figure 4-33.

Figure 4-33.  CodePipeline main page

Once you click to create a pipeline, a new screen will appear, asking you to choose a

name for your pipeline.

For the role of the service, you have two options: create a new one or choose a

previously created one; see Figure 4-34.

For the advanced settings, leave everything with the default values.

Figure 4-34.  CodePipeline settings

Chapter 4 AWS Services for Continuous Deployment

171

Next, we must choose the application we need to create the pipeline for, which we

already uploaded to the S3 bucket; see Figure 4-35.

Figure 4-35.  CodePipeline’s Add Source stage

For the build stage, skip the build stage since we will not build anything; then click

Next and confirm.

In the last step, the “Add deploy stage” page, choose CodeDeploy, the application

name we created before, and the associated deployment group, as shown in Figure 4-36.

Chapter 4 AWS Services for Continuous Deployment

172

Figure 4-36.  Deployment stage for CodePipeline

Congratulations, you have just created your first project with CodePipeline. You can

add stages to your pipeline, allowing you to understand CodePipeline more.

The previous examples are straightforward and allow you to understand how

CodePipeline works. I will demonstrate another example, but let’s use CI/CD and

integrate CodePipeline with GitHub this time.

�Integrate CodePipeline CI/CD with GitHub
The idea of this project is to deploy a simple static website written in HTML from GitHub

to Amazon S3; when the developer makes a code change, they will create a GitHub pull

request to merge the code with the master/main branch. The merge will trigger an event

(GitHub integration within CodePipeline) and push these changes depending on the

configuration we wrote to S3.

Chapter 4 AWS Services for Continuous Deployment

173

The first step is to create the bucket that will host the website; in my case, I called

it website-static with no particular configuration; the S3 bucket properties will be as

follows and are shown in Figure 4-37.

•	 No public access.

•	 No version.

•	 No policy or security features are enabled.

Figure 4-37.  Creating a website-static bucket

The next step will be to create the code pipeline from the console. Select CodePipline

and click “Create pipeline,” as shown in Figure 4-38.

Figure 4-38.  Creating a pipeline for the project

Chapter 4 AWS Services for Continuous Deployment

174

After clicking the button, the console will redirect you to another page, the

configuration page; see Figure 4-39.

Choose a clear name for your pipeline so you will understand its purpose.

On the same page, AWS will require you to create a service’s role, which is a set of

permissions to allow CodePipeline to interact with other AWS services; either you can

keep the services role name set to the default or you can choose the name by yourself.

In the advanced settings, you will choose the bucket, as shown in Figure 4-40, or you

can allow a pipeline to create one for you, but CodePipeline will set the name.

Figure 4-39.  Pipeline configuration, choosing a pipeline name

Chapter 4 AWS Services for Continuous Deployment

175

Figure 4-40.  Choosing an S3 bucket name

Click Next, and the following screen will allow you to choose the source provider

where the code was uploaded; in our case, it will be GitHub version 2.

The screen will be expanded to allow you to connect GitHub with the pipeline and

create the connection, as shown in Figure 4-41.

Select the Connect to GitHub button on the right if this is your first time connecting

to GitHub using CodePipeline. Doing this will enable a new AWS Developer Tools

window, allowing you to establish a new connection. You will be requested to log into

GitHub if you are not already.

Note T he difference between GitHub version 1 and GitHub version 2 is that in
GitHub version 1, you can download only the source; GitHub version 2 will allow
you to clone it so you can access the metadata.

Chapter 4 AWS Services for Continuous Deployment

176

Figure 4-41.  Pipeline configuration, GitHub integration

Allow AWS to install the connector when you create the connection, as shown in

Figure 4-42.

Chapter 4 AWS Services for Continuous Deployment

177

Figure 4-42.  Installing the AWS connector

Once you are done with the connection, you will be redirected back to the screen;

you need to choose the information of the code repository and which branch, as shown

in Figure 4-43. Click Next once you are done.

Remember to choose the right repository name; once you create the connection,

your repository names will be shown in the field, as well as which branch you will use for

this code.

Chapter 4 AWS Services for Continuous Deployment

178

Figure 4-43.  Pipeline configuration, GitHub connection

Once you click Next, the following configuration will be the build stage, and since

this is a static website and we will not build anything or have any artifactory, we will skip,

confirm, and click Next. See Figure 4-44.

Chapter 4 AWS Services for Continuous Deployment

179

Figure 4-44.  Pipeline configuration, skipping the build stage

On the next screen, AWS provides a different deploy provider; in our case, it will be

Amazon S3. Choose the correct region for the created bucket, the bucket name, and the

development path in case you deploy to a specific folder inside S3.

Select “Extract file before apply.” This option will hide the S3 object key; see

Figure 4-45.

Chapter 4 AWS Services for Continuous Deployment

180

Figure 4-45.  Pipeline configuration, deployment stage

Review all the information. If you are happy with the configuration and setup, click

“Create a pipeline.” The first trigger will be automatic once you click the button; see

Figure 4-46.

Chapter 4 AWS Services for Continuous Deployment

181

Figure 4-46.  Pipeline configuration, CodePipeline results

If you check the S3 bucket after the pipeline run is finished, you will see the code has

been uploaded there.

�Summary
In this chapter, you learned more about using continued deployment inside Amazon

AWS and learned what kind of services match this concept.

Additionally, we reviewed the deployment strategy in general and the one AWS

provides; in this chapter, I tried to cover the concepts with real-life examples to allow you

to understand the use case and the different configurations each time.

In the next chapter, we will cover one of the essential parts of the deployment, which

are the different deployment strategies. In general, we will discuss each one of them in

detail, compare them, and discuss the use case for them. After discussing the strategies

in general, I will cover them from Amazon AWS’s point of view.

Chapter 4 AWS Services for Continuous Deployment

183
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_5

CHAPTER 5

AWS Deployment
Strategies
In the previous chapter, I covered deployment and how to create a pipeline. Still, one

of the central concepts when building the pipeline is understanding the deployment

strategy and which type you will use, because there are multiple deployment types, each

serving a different purpose depending on the use case and the company approach.

In this chapter, I will discuss general and specific deployment strategies. I’ll also

cover the types offered by AWS.

�What Is a Deployment Strategy?
A deployment strategy is the method by which a company, development team, or

DevOps department releases a new version of its software. This method will depend on

how network traffic will be distributed to the latest release and how to deal with it.

These are the deployment types:

•	 Blue/green deployment

•	 Canary deployment

•	 A/B testing deployment

•	 Re-create deployment

•	 Ramped deployment (rolling upgrade)

•	 Shadow deployment

Let’s look at each in detail.

https://doi.org/10.1007/978-1-4842-9303-4_5

184

�Blue/Green Deployments
One of the most common deployment strategies is when the software’s new version runs

next to the old version.

Once the QA team tests the latest version and ensures it’s running without any errors,

the load balancer will switch the traffic from the old version to the new version. This is

also called red/black deployment.

•	 The blue environment is running current application version.

•	 The green environment is running the new application version.

The first, more outdated version is the blue environment, while the latest, most up-

to-date version is the green environment.

As shown in Figure 5-1, the subsequent action is to transition to a green environment

by routing all user traffic to the new setting. Because this move can take place extremely

rapidly, there won’t be any downtime for the users. In addition, if you need to undo the

changes, you can do so immediately by redirecting the traffic to the previous version.

This approach offers several advantages.

•	 You will have two versions of your application, so you can roll back

anytime and test without affecting the live version.

•	 You avoid having multiple versions of the application.

However, there are some potential disadvantages.

•	 Replicating the environment makes the process complex and

requires extra work.

•	 It is useful for a stateful application.

•	 It requires careful testing.

•	 There is an extra cost.

Chapter 5 AWS Deployment Strategies

185

Figure 5-1.  Blue/green (red/black) deployment

�Canary Deployments
One of my favorite deployment strategies is canary deployment. In this type of

deployment, the development team will prepare the new version, but they will gradually

shift it into production based on a percentage.

For example, the DevOps will start deploying the new version gradually, say, 10 percent

of it; then the QA will test that much and inform the team if there are any bugs or errors.

The percentage will be increased to 15 percent, 20 percent, up to 100 percent; this will

help the team test the new version’s stability bit by bit. Canary deployments offer a significant

level of control. However, it may be challenging to put this into practice. See Figure 5-2.

Figure 5-2.  How canary deployment works

Chapter 5 AWS Deployment Strategies

186

The advantages of this kind of deployment are many.

•	 A/B testing: You provide two alternatives to the users, increasing user

engagement; the users will be assigned to group A or B.

•	 No downtime: As you can see, there is no downtime.

•	 Easy rollback: If something goes wrong with the new deployment,

you can easily roll back to the previous version. See Figure 5-3.

Figure 5-3.  Fast rollbacks in case of errors

•	 Fast feedback: The QA will provide quick feedback about each stage,

which makes updating the application much more effortless.

The disadvantage is that it can be slow to roll out.

�A/B Testing Methodologies
In an A/B testing kind of deployment, the developers will deploy the new release next to

the old release. The difference is that the new release will be available only for certain

people, most likely QA to do testing and some developers to fix any reported issues; see

Figure 5-4.

Chapter 5 AWS Deployment Strategies

187

The good thing about this kind of deployment is that it’s a different environment,

like the blue/green deployment. This does consume more resources while the team is

testing, but once the testing is done, the old version can be deleted.

Another downside is that it does create more work, because the developer will

have to maintain and work on two different environments to ensure both of them are

performing correctly.

The advantage is that you can control the traffic.

These are the disadvantages:

•	 The load balancer setup can be complicated.

•	 Troubleshooting is not easy for this deployment.

�Re-create Deployments
This type is straightforward; the system administrators will shut down the old system,

deploy the new release, and immediately reboot the servers, as shown in Figure 5-5.

Figure 5-4.  A/B testing deployment example

Chapter 5 AWS Deployment Strategies

188

There will be downtime between the shutdown and the machine’s startup.

The good thing about this deployment is that it’s cheaper, with no need for a load

balancer to shift the traffic from one to another environment; the bad thing about it, as

you can see, is the downtime, which is not reasonable for some companies.

The advantage is that it’s an easy deployment to set up.

The disadvantage is that downtime may be extended and affect the users.

�Ramped Deployments (Rolling Upgrades)
Please don’t mix this deployment type up with canary deployment. By using canary

deployment, early adopters can get their hands on a new software version before the

general public. Rolling deployments focus on specific servers, while a canary technique

selects a subset of users to test the new software before rolling it out to everyone.

Compared to canary deployment, rolling/ramped deployment gives certain users the

updated program version.

This approach will gradually replace the old version/release with the new version/

release; see Figure 5-6.

Figure 5-5.  How the re-create deployment works

Chapter 5 AWS Deployment Strategies

189

After replacing the environment entirely with the new version, the old one can be

shut down; using this deployment will allow the team to monitor the performance of the

new release and roll out quickly in case something happens.

IT departments need to worry about only one production environment for a web

program when using the rolling deployment method. In other words, IT administrators

first stagger change releases to install a new application version on select servers or

instances. Some servers run the new program; others run the old one. Some users utilize

the updated code, while others use the production version.

This type comprises a network of computers or instances in the cloud, each running

its own copy of the program. In addition, a load balancer is often used to distribute user

requests over many servers.

Here are the advantages:

•	 It’s an easy deployment to set up.

•	 The new version will be replaced slowly and needs time to be tested.

•	 It’s one of the best deployments for stateful applications.

Figure 5-6.  How ramped deployment works

Chapter 5 AWS Deployment Strategies

190

These are the disadvantages:

•	 Supporting the application can be exhausting for this kind of

deployment.

•	 You cannot control the traffic.

�Shadow Deployments
One of the most complex deployments that DevOps can do is a shadow deployment.

The team will deploy the new and old versions together, but the users cannot

connect to the latest version immediately, meaning it will stay “in the shadows” (where

the name comes from); see Figure 5-7.

After that, the developer will send a copy of the requests to the shadow version,

which will help test the new version and the performance of the latest release.

These are the advantages:

•	 There is zero impact on the users.

•	 You can monitor the performance with real production traffic.

Figure 5-7.  How shadow deployment works

Chapter 5 AWS Deployment Strategies

191

These are the disadvantages:

•	 Supporting this kind of development isn’t straightforward.

•	 It is complex to set up.

The previous deployment strategies are for DevOps in general. We need to discuss

the Amazon AWS deployment strategies, which are similar to the previous ones.

In the next section, I will discuss the deployment strategies from Amazon AWS’s

perspective; you will notice that the names are the same. In addition, Amazon AWS added

a new deployment strategy to its cloud, which will be discussed in the next section.

Amazon AWS uses the strategies mentioned earlier in this chapter with an addition

or a new name; this will be explained as it comes up.

�Amazon AWS Deployment Strategies
To create a deployment solution that is complete and fully functional, you have first to

establish the required deployment methods. Your ideal equilibrium of management,

efficiency, price, tolerance for risk, and other variables may influence the deployment

strategies you choose to utilize to update your application. Each deployment service

offered by AWS is compatible with several different deployment techniques.

The following are the deployment options offered by AWS:

•	 In-place deployments

•	 Prebaking versus bootstrapping AMIs

•	 Blue/green deployments

•	 Canary deployments

•	 Linear deployments

•	 All-at-once deployments

�In-Place Deployments
From the name, you can understand that this deployment will update the application

without providing any new infrastructure; the old one will be stopped and then

updated with the latest version. This kind of deployment is similar to the re-creating

deployment method.

Chapter 5 AWS Deployment Strategies

192

Deployment settings for one at a time, half at a time, and all at once are available

with AWS CodeDeploy and AWS Elastic Beanstalk.

The following are the advantages:

•	 The cost remains the same; there is no need to provision new

infrastructure.

•	 The infrastructure and administration/management will be the same.

The following are the disadvantages:

•	 Rollback will be slow since you need to reinstall the old version.

•	 The application needs to be tested well.

•	 Downtime may occur depending on the infrastructure setup on

the cloud.

�Prebaking vs. Bootstrapping AMIs
When application components are prebaked into an Amazon Machine Image

(AMI), it may reduce the time needed to start and run an Amazon EC2 machine.

During deployment, it is possible to rapidly pair the prebaking and bootstrapping

methodologies to construct new instances adapted to the current environment.

Deploying your application with any necessary dependencies or updates when

an Amazon EC2 instance is started is known as bootstrapping an EC2. It is possible for

deployments and scaling events to be delayed if a complicated application or substantial

downloads are necessary.

The following are the advantages:

•	 Bootstrapping lets you quickly reproduce the Dev, QA, and

Production environments.

•	 You can construct a setting where one may heal and learn about

oneself.

•	 It improves Amazon AWS resource management.

•	 It is considered a low-cost option in the cloud.

Chapter 5 AWS Deployment Strategies

193

The following are the disadvantages:

•	 It is not a consistently smooth option and comes with a risk of failure.

•	 The administration’s efforts probably will increase due to the

complexity.

�Linear Deployments
Linear is considered part of blue/green deployment with some canary deployment

features; when traffic is moved via a linear deployment, each increment takes the same

amount of time. The proportion of traffic transferred in each increment and the interval

in minutes between each increment are specified in predefined linear options.

The following are the advantages:

•	 There is no downtime.

•	 Few users will be affected if the new environment doesn’t work

correctly.

The following are the disadvantages:

•	 The deployment will take time.

•	 There is an extra cost.

�All-at-Once Deployments
In another type of blue/green deployment, the traffic will be moved from the old version

to the new one.

The following are the advantages:

•	 There is no downtime.

•	 A few users will be affected if the new environment doesn’t work

correctly.

The following are the disadvantages:

•	 The deployment will take time.

•	 There is an extra cost.

Chapter 5 AWS Deployment Strategies

194

Note  During the writing of this book, Amazon AWS announced fully managed
blue/green deployments in Amazon Aurora and Amazon RDS, something new
and not yet implemented. This type of deployment will eventually make our lives
much easier.

To understand what this means, you can build a distinct staging environment that is

fully controlled, synchronized, and a reflection of the production environment by using

blue/green deployments. The staging environment will make a copy of the primary

database used in your production environment and any in-region read replicas. Blue/

green deployments use logical replication to ensure these two environments remain

in sync.

You won’t have to worry about losing any data if you make the staging environment

the production environment instead. Blue/green deployments will prevent writes from

being made on both the blue and green environments to prevent any data from being

lost during the switchover.

Once you do the configuration, the green environment will catch up to the blue one.

The production environment’s traffic is then redirected to the newly promoted staging

environment using blue/green deployments, which occurs without any modifications to

the application’s code.

�Blue/Green Deployments for MySQL RDS
Search for RDS in the AWS Management Console, choose the databases that must

be modified in the console, and then select Create Blue/Green Deployment from the

Actions drop-down option, as shown in Figure 5-8.

Figure 5-8.  Amazon AWS new feature RDS blue/green deployment

Chapter 5 AWS Deployment Strategies

195

You can modify the properties of your database, like the engine version, DB cluster

parameter group, and DB parameter group for green databases. You can also establish a

blue/green deployment identification associated with your database.

To utilize a blue/green deployment in your Aurora or RDS instance, in our case

MySQL, you will need to switch on binary logging by changing the value for the binlog_

format parameter in the DB cluster parameter group from OFF to MIXED.

Once you choose this option, the configuration is straightforward (Figure 5-9).

Figure 5-9.  Amazon AWS blue/green deployment configuration

Chapter 5 AWS Deployment Strategies

196

The database will be ready for production when you choose Create Blue/Green

Deployment from the drop-down menu since it will create a new staging environment

and execute automatic operations. Note that you will have to pay for this feature of the

database, which includes reading replicas and DB instances in multi-AZ deployments

and any additional options you may have activated on the green one, such as Amazon

RDS Performance Insights.

When the creation process is finished, you will have access to a staging environment

prepared for testing and validation before it’s promoted to the new environment.

At this point, you are close to being ready to move your green databases into

production; check if your deployment finished successfully and that the databases are

prepared for the transition. There is also another option which is helpful, “timeout,” that

allows you to define the maximum time limit for your switchover.

Plus, once you do the switchover, the blue/green deployment will not delete the old

production environment, just in case you still need access.

The RDS blue/green deployment option is beneficial when you need to create, for

example, a DR solution or a staging environment that will allow the developer to work on

it and sync with production instead of performing manual work.

If you want to do this using AWS CLI, it’s simple, as shown here:

1. aws rds create-blue-green-deployment

2. --blue-green-deployment-name blue-green-deployment-mysql-cluster

3. --source arn:aws:rds:eu-west-1:223344555:db:mysql-blue-green-deployment

4. --target-engine-version 5.7

5. --region eu-west-1

�Summary
In this chapter, we discussed the ways I could deploy an application into the cloud or

even on-premises; in addition, we talked about types of deployment strategies.

We covered the types of deployments offered by Amazon AWS and compared each,

mentioning the cons and pros.

Before deciding what to implement in your system, you need to investigate a variety

of facets and contrast the possible deployment strategies. Using one of them depends on

the use case and business needs.

In the next chapter, we will go through different DevOps categories. One of the most

common uses is infrastructure as code; the next chapter will also cover a variety of tools,

such as Terraform, CloudFormation, and Pulumi, as show how to use them.

Chapter 5 AWS Deployment Strategies

197
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_6

CHAPTER 6

Infrastructure as Code
Infrastructure as code (IaC) is one of my favorite subjects; in this chapter, I’ll break it

down and focus on the most important details regarding how it works with AWS.

In this chapter, I will cover IaC in general, the benefits of using IaC, and why you

need to use it. I’ll also cover IaC tools, such as Terraform, CloudFormation, Pulumi, and

Ansible, and the difference between them, as well as when you should use each one of

these tools.

�What Is Infrastructure as Code?
As a DevOps engineer, you will hear about IaC a lot, especially if you or your team is

deploying multiple resources such as databases, virtual machines, load balancers,

and more.

Say you have different environments such as QA, UAT, development, preproduction,

production, and maybe more. Imagine redeploying the same resources to these

environments over and over again. Figure 6-1 shows the effort you need to make

without IaC.

https://doi.org/10.1007/978-1-4842-9303-4_6

198

Figure 6-1.  The old way of deploying resources one by one

You should be able to produce more value in less time using cloud and infrastructure

automation. This allows you to do it more reliably, saving money and time for your

company. In reality, however, using the cloud results an ever-increasing volume, level of

complexity, and variety of items that need to be managed.

One of these advantages is automation. Other advantages are that the cloud can

solve the resource and life-cycle management complexity, versioning, and configuration.

Basically, the method of infrastructure automation known as infrastructure as code is

modeled around and borrows techniques from the field of software development. It

emphasizes the importance of consistent processes that can be repeated for modifying

the configuration of resources such as compute, storage, network, load balancing,

and provisioning. When changes are made to the definitions, those modifications

are subsequently “pushed out” to the systems by making use of processes that are

unattended and include rigorous validation. Figure 6-2 shows you how you can use IaC

to deploy to different environments.

Chapter 6 Infrastructure as Code

199

Figure 6-2.  IaC multiple-environment deployments

DevOps engineers write the IaC files; upload them to the company version control,

for example, GitHub or GitLab; and share the changes done on the code with the other

team members so that the deployment and code enhancements will start.

After that, the DevOps engineer needs to keep updating the code based on the

team review and pushes the changes to the pull request/merge requests; once the team

comments are finished, the pull request will be approved and merged with the main branch.

To simplify, Table 6-1 shows the cloud approach versus the classical one.

Table 6-1.  Apporach Followed in the Cloud

Factor Classical Approach Cloud Approach

Hardware Physical hardware; the company

needs to wait to set up this hardware.

Virtualized resources and quick setup. No

need to wait.

Provisioning It will take time at least two weeks,

depending on the environment.

Fast; probably will take minutes.

Provisioning type Manual configuration. It can be a manual or automated configuration.

Changes It will be risky, and you need to

have a rollback plan in case the

changes fail.

Can be done to improve the infrastructure;

very fast rollback; most of the changes

automated.

Architecture Monolithic. Microservices and monolithic.

Change cost High. Low.

Chapter 6 Infrastructure as Code

200

�Why Do You Need IaC?
The following are the kinds of results that many different teams and organizations want

to accomplish by using infrastructure as code:

•	 With IaC, all the teams can be synced with each other, and they can

follow up and know what changes have been made to the company

infrastructure; there are no secrets anymore.

•	 Developers will have visibility over infrastructure resources and their

configurations; they will also be able to define, provide, and organize

their needs, eliminating the need to rely on IT employees to carry out

these tasks on their behalf.

•	 Rollback and failure accidents are easy to fix; if you deploy something

and cause an issue with IaC, roll back.

•	 Enhancement and improvement never stops with IaC; the time spent

by IT staff members is not wasted on mundane, routine work but on

activities that put their skills to good use.

•	 Instead of discussing potential solutions in meetings and documents,

it is more effective to put them into action, testing them and

measuring their effectiveness.

There are a couple of things you need to understand before you start working with

infrastructure as code. Let’s look at some myths about the process.

Myth 1: I will use IaC to deploy first, followed by automation.
I have seen clients writing the code for infrastructure and using it to deploy the

application. It’s good practice and an automated one, but don’t expect to make changes

from the console later or make changes manually.

Ask your DevOps engineers to update the code; everything must be done using IaC

once you decide to use it.

Chapter 6 Infrastructure as Code

201

There are three main problems in implementing automation later:

•	 Automation should allow quicker delivery times for everything;

automation’s advantages are lost if executed after the bulk of the job

has already been completed.

•	 When you use automation, creating automated testing for your

software is much less of a hassle. And when issues are discovered,

they can be fixed and rebuilt more rapidly. If you include this in the

construction process, you will have a superior infrastructure.

•	 It is challenging to add automation to an established system.

Automation occurs during the planning and execution of a

system. Adding automation to a system not designed initially with

automation in mind requires significant changes to the system’s

architecture and implementation.

In the cloud, infrastructure that isn’t automated quickly becomes a loss. The price of

manual upkeep and repairs may add up rapidly. That is, if the function it performs goes

off without a hitch.

IaC solves the problem of release pipeline environment drift. Teams must manage

deployment environment parameters without IaC. Each habitat becomes a “snowflake”

that can’t be replicated automatically.

Environment inconsistency might hinder deployment. Manual infrastructure

maintenance is error-prone and hard to monitor.

IaC infrastructure deployments are repeatable, avoiding runtime difficulties

from configuration drift or missing dependencies. Release pipelines configure target

environments. The team modifies the source, not the target.

Why are people trying to avoid IaC while making the changes? As shown in

Figure 6-3, it’s simple: fear.

Chapter 6 Infrastructure as Code

202

Figure 6-3.  The automation fears

Code complicates things and requires support engineers to know a lot. This is new

ground for some, but it is the most critical component for backup, feature requests, and

resources. Support and code don’t always match.

No one can remember every configuration of every resource in an infrastructure;

thus, if you want to change a resource, you can do this without IaC and by hand in the

portal without much thought about restoring this at some time.

Myth 2: It’s one way, either speed or quality.
Writing the IaC will take time, only at first, and it’s normal to think that delivering

quick code will make it low-quality code, as you can see in Figure 6-4, which is incorrect.

Figure 6-4.  Speed versus quality

Chapter 6 Infrastructure as Code

203

Teams prioritizing speed over quality produce flawed systems due to the inefficiency

of their plans. It’s common for established firms to feel that they’ve lost their “mojo”

after adopting this strategy. Because of the system’s complexity, even relatively

straightforward modifications that used to be implemented in a matter of hours now

require days or weeks.

Myth 3: A task is not repetitive so there’s no need to automate it.
Ideally, after you’ve built a system, it will be complete. According to this theory, you

don’t make that many adjustments and thus automating them is not worth the effort.

In real life, when a company creates a system, it tries to enhance it as much as

possible to reach a point of stability; these changes need to be documented somehow to

avoid any misconfiguration in the future.

The best way to document the infrastructure is IaC; sometimes, these changes will be

verified from one company to another.

•	 You can make changes on the network layers, either by open security

port, ingress, or egress.

•	 You must update the servers or virtual machine with a new

application upgrade or operating system.

•	 You’ve tweaked the database’s configuration, which dramatically

boosts its speed.

•	 Updating the application server is necessary to access the latest

features.

One of the golden rules in the cloud is that modifying conditions creates stability.

If you can’t patch your application and database regularly, then your system/

application is not stable at all; if small changes cause downtime, then your system is

not stable.

�IaC Types
When you work with IaC, you will notice that not all tools are the same. This is the power

of IaC. Each one of them has a different purpose.

Chapter 6 Infrastructure as Code

204

�Scripts
One of the most famous approaches of IaC is considered simple because the script is

usually written to do only one task.

�Configuration Management
Some of the most familiar IaC tools were designed to do complex tasks such as upgrade

the database, install servers, apply patches, and much more. Examples of these kinds of

tools are Ansible, Chef, and Puppet.

�Provisioning
If you want to create a complete infrastructure, this is the category you are looking for;

you can deploy any infrastructure components such as a load balancer, EC2, and much

more. You could even retrieve a value deployed manually and use it inside your code;

examples of these tools are Terraform and CloudFormation.

�Containers and Templating
All these types of tools don’t provide image templates. Assume you have an EC2 image

and want to use it as an image for another infrastructure; what will you do? With the

help of tools, you can generate templates and images that already have all the libraries

and components an application needs to be installed; one of the best types of tools is

a packer.

�Tool Examples
Table 6-2 explains the differences between the tools from a high level. These are the most

common tools worldwide.

Chapter 6 Infrastructure as Code

205

Table 6-2.  DevOps tools examples and how these tools are working

Tools How It Works Focus

Terraform Agentless Admin focused

Ansible Agentless Admin-focused configuration

management

Jenkins Agentless Dev and can work for admin also, CI/CD

Puppet Agent-based, agentless (not all the

features will work)

Admin and dev focused

Chef Agent-based can be agentless (not all

the features will work)

Dev and admin focused

Salt Agent, agentless Admin focused

After explaining the IaC concepts, how it works, and its benefits, it’s time for the

technical stuff. I will divide the tools into two main categories.

•	 Cloud tools: Cloud tools will support only cloud-native solutions.

These tools will allow you to deploy to different cloud providers, and

some of the tools even work on specific clouds only.

•	 On-premises tools: These tools on only on-premises, allowing DevOps

to configure the infrastructure components.

While infrastructure as code has many benefits, selecting an IaC solution can be

complicated, because the functions of several IaC tools are similar. Many of them are free

and available to the public. Some of them provide business assistance. Without firsthand

experience, it’s difficult to determine how to choose between them.

While it’s technically accurate that you might be just as productive with any of these

tools, most comparisons you see list their general features, giving the impression that

you could be just as effective with any of them.

I actually use several IaC tools, but it will also work if you want to stick only to one

simultaneously. I’ll now cover how to how the best one (or several) for your job.

Chapter 6 Infrastructure as Code

206

�How to Choose an IaC Tool
I will compare different IaC tools, such as Terraform, Ansible, Pulumi, and

CloudFormation, in this section. When you choose a tool, you’ll want to consider the

following factors:

•	 Provision versus configuration management

•	 Agent versus agentless

•	 Integration with other tools

•	 Mutable infrastructure versus immutable infrastructure

•	 General IaC language versus specifically designed language

•	 Paid version versus free version

�Provision vs. Configuration Management
When talking about this provisioning versus configuration management, there are lots

of examples. Terraform, CloudFormation, Azure Resource Manager, and Pulumi are

provision tools, but also Ansible, Puppet, and Chef are configuration management tools.

IT infrastructure provisioning is a way of introducing the necessary hardware and

software. Likewise, it might mean the processes involved in facilitating the access to and

use of information by people and machines. Configuration follows provisioning.

Virtual machines (VMs), load balancing, databases, and so on, can all be provisioned

with the help of these technologies. You can let configuration management and its tool

handle the setup.

On the other hand, configuration management guarantees that hardware, software,

and network infrastructure always perform as intended, where the services they deliver

use the code in a manner that is both repeatable and consistent.

Simply, configuration management is not the same as provisioning.

The configuration management can still deploy the infrastructure, but it’s more

about controlling things such as where the application configuration should be located

and where to install it.

Provision tools, Terraform, for example, provision a virtual machine called a

database instance with specific networking requirements and instance size.

Chapter 6 Infrastructure as Code

207

 1. resource "aws_instance" "database-instance" {

 2. ami = "ami-12345f4433dd1f123"

 3. instance_type = "t2.micro"

 4.

 5. network_interface {

 6. �network_interface_id = aws_network_interface. database-

instance-nw.id

 7. device_index = 0

 8. }

 9.

10. credit_specification {

11. cpu_credits = "unlimited"

12. }

13. }

14.

If you convert the previous code to configuration management, the easiest way to do

this is to use a tool such as Ansible.

 1. ---

 2. - name: EC2_instance_creation

 3. hosts: localhost

 4. gather_facts: false

 5. tasks:

 7. - name: EC2_Specs

 8. block:

 9. - name: EC2_infomation

10.

11. ec2_instance_info:

12. register: ec2_info

13. - name: Print info

14. debug: var="ec2_info.instances"

15.

Chapter 6 Infrastructure as Code

208

You need to complete the YAML code and create the EC2_Block, which will be

responsible for the operating system. This is only a tiny section of the complete YAML

file to provision only EC2, so usually the provision tools are much easier to use than the

configuration when it’s related to the infrastructure section.

 1. - name: EC2_Specs

 2. block:

 3. - name: Launch ec2

 4. tags: chapter_IaC

 5. ec2:

 6. region: us-east-1

 7. key_name: Osama-PrivateKey

 8. group: ec2_secuirty_group

 9. instance_type: t2.micro

10. image: ami-12345f4433dd1f123

11.

�Agent vs. Agentless
Some of the IaC tools require you to install agents to work correctly. Chef and Puppet, for

example, require an agent. For sure, they are powerful tools that can do many things, but

there is a disadvantage to these agents’ tools.

Although Chef and Puppet provide varying degrees of functionality for agentless

modes, these modes appear to be an afterthought. They do not cover the whole set of

features of the configuration management solution. Because of this, the default setup for

Chef and Puppet usually contains an agent.

•	 Administration: Having an agent is an extra job for the system

administrator or site reliability engineer (SRE). This agent requires

updates occasionally, and agents should be in sync with the primary

node, especially if the number of servers is significant.

•	 Security aspect: It would be best if you opened an additional port

to make this agent work, which sometimes is a concern to the

security team.

Chapter 6 Infrastructure as Code

209

•	 Setup: The architecture of the agent tools work can seem

complicated; see Figure 6-5, which illustrates how the Chef

architecture works.

Figure 6-5.  An example of agent tools: Chef

�Integration with Other Tools
IaC is a powerful tool, but it can’t do everything for you. Let’s look at Terraform as an

example; it can do many things and provides a complete infrastructure.

However, Terraform has limitations related to configuring the virtual machine or

application, such as if you need to configure the template.

Figure 6-6 shows a different IaC use case depending on what is needed; from the

bottom, Terraform can be used to provision the cloud infrastructure.

Chapter 6 Infrastructure as Code

210

Figure 6-6.  A complete solution can be provided using different IaC tools

Ansible can provision cloud resources, provision on-premises infrastructure, or even

inject commands to the servers; moreover, a packer, which is open-source software, can

replicate a machine’s exact setup across various platforms.

�Mutable Infrastructure vs. Immutable Infrastructure
Chef and Ansible are considered mutable tools, but what does this mean? Let’s assume

you want to install a Linux package using Chef. Chef will update the software on all

of your servers that are in use. The changes will take effect without you having to do

anything. Each server eventually develops its unique history of modifications as more

and more upgrades are applied to it with time; it is idempotent.

Because of this, each server becomes slightly different from all the others, which can

result in subtle configuration bugs that are challenging to detect and replicate. (This is

the same configuration drift problem that occurs when you manage servers manually; if

you have different environments, these environments will not be in sync with each other

and will be hard to troubleshoot.)

On the other hand, immutable infrastructure refers to a method of managing service

and software deployments on IT resources in which components are swapped out rather

than modified in any way. Microsoft developed this method.

Chapter 6 Infrastructure as Code

211

A perfect example of immutable infrastructure is a container because any changes to

a container can be made only by creating a new version of that container.

For instance, if you want to update an image using Terraform, it will not update the

image. It will just create a new one with the latest update and delete the old one. Although

it is theoretically conceivable to coerce configuration management software into doing

immutable deployments, this is not the approach that is often taken by such tools.

�General IaC Language vs. Specifically Designed Language
Chef and Pulumi allow you to write IaC with the programming language you already

know. Chef supports Ruby, but Pulumi offers support for a broad range of general-

purpose programming languages (GPLs), including JavaScript, TypeScript, Python, Go,

C#, Java, and more.

Moreover, there is another type called a domain-specific language (DSL); for

example, YAML is used by Ansible and CloudFormation (which also supports JSON),

and Terraform uses HCL. Puppet makes use of the Puppet language.

GPL Pros

•	 If you know the language, you don’t need to learn anything extra.

•	 It has professional mature tooling because of the community and

overall level of quality.

•	 It can be applied to the completion of virtually any programming

endeavor.

DSL Pros

•	 It has organized and structured code.

•	 The code is easier to understand since it’s more straightforward and

less wordy.

�Paid Version vs. Free Version
There are different IaC options, and which you use depends on the goal the company

wants to meet. Most IaC vendors provide two options, either paid or free. For instance,

the open-source version of Terraform is free to use on its own, or you can pay for

HashiCorp’s Terraform Cloud.

Chapter 6 Infrastructure as Code

212

I think the free versions of Terraform, Chef, Puppet, and Ansible can be used well for

production; commercial services can make these tools much better, but you can get by

without them. Alternatively, without the premium service known as Pulumi Service, it is

more challenging to utilize Pulumi in production.

�Comparison of Tools
Table 6-3 summarizes the main differences between the IaC tools we’ve discussed so far.

�Terraform
When we are talking about IaC, the first tool that comes to your mind is probably

Terraform, which is an open-source IaC tool created by a company called HashiCorp. It

is generally used by DevOps engineers to automate infrastructure-related activities. You

can use Terraform to create cloud infrastructure, and it works with any cloud providers,

including AWS, Google Cloud, Azure, and more.

With Terraform, you can provide a programmatic description of your whole

network’s setup. Terraform allows you to construct and manage resources in parallel

Table 6-3.  IaC comparison based on different aspect

Factors Terraform Ansible CloudFormation Pulumi Chef Puppet

Free/Paid Both Both Paid Both Both Both

Cloud All All AWS All All All

Category Provision Configuration

Mgmt

Provision Provision Configuration

Mgmt

Configuration

Mgmt

Infra type Immutable Mutable Immutable Immutable Mutable Mutable

Agent No No No No Yes Yes

Community Huge Huge Large Small Large Large

Maturity Average Average minimal minimal High High

DSL/GPL DSL DSL DSL GPL GPL DSL

Procedural/

Declarative

Declarative Procedural Declarative Declarative Procedural Declarative

Chapter 6 Infrastructure as Code

213

across providers, even if your servers originate from various providers such as AWS or

Azure. Terraform is the glue that holds together your IT infrastructure and the universal

language with which you can communicate with all your teams.

Terraform was developed using the Go programming language. The Go source code

is compiled into a Terraform binary (or multiple binaries for each supported OS).

You don’t need to run any additional hardware to use this program to deploy

infrastructure from your laptop, a build server, or any other computer. The Terraform

binary automatically performs API calls on your behalf to various cloud providers

such as Amazon Web Services, Microsoft Azure, Google Cloud Platform, DigitalOcean,

OpenStack, and more. Terraform can use the infrastructure these providers already have

for their API servers and the authentication procedures you currently use (e.g., the API

keys you already have for AWS).

You next question probably is, where does Terraform get its API call? Terraform

configurations are the solution; they detail the architecture you want to build. The “code”

in “infrastructure as code” refers to these settings. Let’s look at how to set up Terraform;

the API used here is for the AWS cloud provider.

While initializing a working directory, the Terraform CLI searches for and installs the

necessary providers. It can automatically download providers from a Terraform registry

or load them from a local cache or mirror.

The operation of Terraform is accomplished by constructing a graph database that

gives operators insight into the relationships between resources. In addition, it produces

an execution plan, showing operators the order in which Terraform’s activities will be

carried out in response to a setting being applied or modified.

1. resource "aws_s3_bucket" "example_bucket" {

2. bucket = "terraform-code-chapter"

3. }

Transparent portability across cloud providers is a typical concern for Terraform

users because of the wide range of cloud services it supports. In other words, if you

use Terraform to specify a set of AWS resources such as servers, databases, and load

balancers, can you then use the exact instructions to deploy the same resources in

another cloud provider like Azure or Google Cloud?

I find this is a question that leads nowhere. However, since various cloud providers

provide different kinds of infrastructure, it is impossible to implement the same

infrastructure in multiple cloud providers.

Chapter 6 Infrastructure as Code

214

The functionality, configuration, administration, security, scalability, availability,

observability, and so on, of AWS’s servers, load balancers, and databases differ vastly

from those of Azure and Google Cloud. Terraform’s approach is to standardize the

language, toolset, and IaC techniques behind the scenes while letting you write provider-

specific code to use the provider’s peculiarities.

Figure 6-7 shows an example of writing code in Terraform to deploy AWS resources

(whatever the resources are). It will not work on another cloud provider because the

Terraform API will differ.

Figure 6-7.  Different Terraform code for each cloud

The Terraform provider allows you to interact with AWS resources, as follows:

1. provider "aws" {

2. region = "eu-west-1"

3. }

I will cover the Terraform basics with AWS. It is as an excellent option for these

reasons:

•	 Amazon AWS was the most common provider with a 32 percent

market share as I wrote this book.

•	 AWS services are mature and include many services that focus on

your needs.

•	 AWS offers different versions including a free tier.

Chapter 6 Infrastructure as Code

215

�Terraform Concepts
Let’s move on to the technical talk; we should start with Terraform state.

Terraform State
Each time you execute Terraform, it makes a Terraform state file that shows what

infrastructure it built. Once you run Terraform, by default the name of the state file will

be terraformed.tfstate. This file has a personalized JSON format that keeps track

of the mapping between the Terraform assets in your system settings and how those

resources look in the actual world.

The following example is a section from the terraform.tfstate file. You can use the

following JSON every time you update the code. Terraform will read from that file and

check/review these resources to ensure there are no duplicates.

 1. {

 2. "version": 4,

 3. "terraform_version": "1.2.0",

 4. "serial": 222,

 5. "lineage": "b697390d-f0a4-14dc-7df4-95b5b2cff75f",

 6. "outputs": {},

 7. "resources": [

 8. {

 9. "module": "module.eks",

10. "mode": "data",

11. "type": "aws_availability_zones",

12. "name": "available",

13. "provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",

14. "instances": [

15. {

16. "schema_version": 0,

17. "attributes": {

18. "all_availability_zones": null,

19. "exclude_names": null,

20. "exclude_zone_ids": null,

21. "filter": null,

22. "group_names": [

23. "eu-west-1"

Chapter 6 Infrastructure as Code

216

24.],

25. "id": "eu-west-1",

26. "names": [

27. "eu-west-1a",

28. "eu-west-1b",

29. "eu-west-1c"

30.],

31. "state": null,

32. "timeouts": null,

33. "zone_ids": [

34. "euw1-az2",

35. "euw1-az3",

36. "euw1-az1"

37.]

38. },

39. "sensitive_attributes": []

40. }

41.]

42. },

43.

When talking about the state, best practices need to be implemented; if you are using

the state file for a private project, it will be saved on your local computer within the same

directory as Terraform, which is acceptable. But if the project is for a company, it will not

work to be local since a couple of issues will happen.

•	 Shared storage for state files

•	 Each team member needs access to the duplicate Terraform state

files because each one will need to update the infrastructure, and

therefore, these changes should be saved under one state file;

otherwise, it will be a messy configuration.

•	 State file lock

•	 Without locking, data inconsistencies, lost updates, and

corrupted state files might arise if more than one team member

uses Terraform.

Chapter 6 Infrastructure as Code

217

•	 Separate state file

•	 A company will have different environments, such as production,

QA, UAT, and more; when you update these environments, it is

much better to keep the state file separated and not mixed.

As a remote back end, Amazon S3, Amazon’s managed file store, is usually your best

bet when using Terraform with AWS.

•	 Since it’s a managed service, you don’t have to set up and manage

any extra hardware.

•	 It’s made to last 99.999999999 percent of the time and be available

99.99 percent of the time, so you don’t have to worry much about

data loss or outages.

•	 You can save the state there and be supported by DynamoDB,

but why?

To secure a system and ensure its integrity, the terraform.tfstate

file is saved in a bucket on Amazon S3. When you or a co-worker

uses the terraform plan command, Terraform retrieves the file from

that location and compares it to your Terraform settings to see if any

adjustments need to be made.

At the same time, the DynamoDB table locks its current state to prevent

data corruption, lost information, and conflicts if any co-workers

attempt to modify the infrastructure simultaneously.

•	 It enables versioning very quickly, saving the state in each change

you make.

•	 AWS provides a different tier for S3 depending on the usage.

To use Amazon S3 for remote state storage, you must first make an S3 bucket,

and you can do this in two ways, either with the console, with AWS CLI, or with some

Terraform code (which should be run first).

If you choose, for example, to create the bucket using Terraform code, you should

run that code first to ensure the bucket is created; otherwise, an error will be generated

that the bucket will not exist.

Chapter 6 Infrastructure as Code

218

Let’s do that. The following are the best practices for creating a Terraform structure

(see Figure 6-8):

•	 Backend.tf is responsible for defining the state file remote back end.

•	 Main.tf contains your module’s main set of settings; if the file is not

created, the state file will be on your local machine.

•	 Terraform.tfvars is used to define the variable, especially if you

have a different environment so that you can call the file, for example,

prod.tfvars, qa.tfvars, and so on. This is usually used to define the

primary variable that can be changed all the time, and when this file

used, this file has precedence over the variable file.

•	 Variable.tf is used as parameters to let us change how our

deployments work by putting in values at runtime. In the main.tf

configuration file, you can set up input variables for Terraform.

•	 Version.tf (optional) is used to define what Terraform version this

code will work with. If not mentioned, it will assume you are using

the latest version.

Figure 6-8.  Terraform folder structure

Let’s create our first file, which is version.tf or provider.tf.

 1. terraform {

 2. required_version = ">= 0.13.1"

 3.

 4. required_providers {

 5. aws = {

 6. source = "hashicorp/aws"

Chapter 6 Infrastructure as Code

219

 7. version = ">= 3.73"

 8. }

 9. }

10. }

Inside main.tf, let’s create the bucket. The code will do the following:

•	 Set up code changes on the S3 bucket so that each time a file in

the bucket is changed, a new version of that file is created. The

configuration lets you see previous models of the file and go back to

them at whatever time, which can be helpful if anything goes wrong.

•	 Server-side encryption should be turned on for all information

published to this S3 bucket. This ensures that your state files and any

classified information they hold are always encrypted on an S3 disk.

•	 Block everyone from getting into the S3 bucket. S3 buckets are private

by default.

 1. resource "aws_s3_bucket" "terraform_state_file" {

 2. bucket = "terraform-state-file-book-aws"

 3.

 4. # Prevent accidental deletion of this S3 bucket

 5. lifecycle {

 6. prevent_destroy = true

 7. }

 8.

 9. # Enable bucket versioning.

10. resource "aws_s3_bucket_versioning" "bucket_version" {

11. bucket = aws_s3_bucket.terraform_state_file

12. versioning_configuration {

13. status = "Enabled"

14. }

15. }

16.

17. # Enable encryption

18. �resource "aws_s3_bucket_server_side_encryption_configuration" "bucket-

encrypt" {

19. bucket = aws_s3_bucket. terraform_state_file

Chapter 6 Infrastructure as Code

220

20.

21. rule {

22. apply_server_side_encryption_by_default {

23. sse_algorithm = "AES256"

24. }

25. }

26.

27. # Block public access

28. resource "aws_s3_bucket_public_access_block" "bucket_public_access" {

29. bucket = aws_s3_bucket.terraform_state_file

30. block_public_acls = true

31. block_public_policy = true

32. ignore_public_acls = true

33. restrict_public_buckets = true

34. }

35.

That’s it. The Terraform state file will be saved into the bucket as the remote back

end. However, what if you want to ensure the lock issue is solved? Then you need to use

another AWS service, called DynamoDB.

Amazon’s key-value store, DynamoDB, has several copies of its data. It provides the

ability to do highly consistent readings and conditional writes, which are the only two

operations a distributed lock system requires. It is also inexpensive and fully managed,

so you do not need to worry about the underlying infrastructure.

To utilize DynamoDB with Terraform’s locking functionality, you must construct a

DynamoDB table with the primary key named LockID.

 1. resource "aws_dynamodb_table" "terraform_locks_file" {

 2. name = "terraform-locks_table"

 3. billing_mode = "PROVISIONED"

 4. hash_key = "LockID"

 5.

 6. attribute {

 7. name = "LockID"

 8. type = "S"

 9. }

10. }

Chapter 6 Infrastructure as Code

221

•	 Billing_mode (optional): How you are paid for read and write

throughput and how capacity is managed are under your control, and

there are two values: PROVISION, which is the default, or PAY_PER_

REQUEST.

•	 Type (required): Attribute type. Valid values are S (string), N

(number), and B (binary).

Now we create most of the resources needed for the bucket and DymanoDB; in case

you want that, the next step is to use the Terraform commands. This is not complicated;

you will use three commands here, but there are more if you want to do more.

•	 Terraform init

After creating a fresh Terraform template or cloning an old one

from version control, the first step is to execute this command. It is

recommended that you do it immediately.

This command will conduct multiple initialization stages to get

the current working directory ready for usage with Terraform.

These procedures can be found in the Terraform documentation.

In most circumstances, it is not essential to worry about these

specific stages, and more information on them can be found in the

following sections.

It is never dangerous to use this command more than once

to bring the working directory up-to-date with modifications

made to the configuration. This command will never erase your

current settings or state, even though future executions may

produce errors.

•	 Terraform plan

This command generates an implementation strategy that

previews the modifications Terraform will apply to your

infrastructure.

This command is optional as well, but it’s important so the

DevOps engineer can review what will be deployed or destroyed.

Chapter 6 Infrastructure as Code

222

•	 Terraform apply

The command will apply and deploy the changes of the new

infrastructure; once you run the order, you need to confirm again

by typing yes.

•	 Terraform destroy

This eradicates all distant objects handled by a particular

Terraform setup or state.

To run the previous code, deploy using the terraform apply command, and

then execute terraform init to get the provider code. After everything has been

deployed, you will have an S3 bucket and a DynamoDB table, but the state of your

Terraform configuration will continue to be kept locally. You must add a back-end

setting to your Terraform code to set up Terraform to save the state in your S3 bucket

(while also encrypting and locking the information). Because this is a configuration for

Terraform itself, it must be included inside a terraform block and must adhere to the

following syntax:

 1. terraform {

 2. backend "s3" {

 3. bucket = "terraform-state-file-book-aws "

 4. key = "chapter6/terraform-iac/terraform.tfstate"

 5. region = "eu-west-1"

 6.

 7. # Replace this with your DynamoDB table name!

 8. dynamodb_table = "terraform-locks_table"

 9. encrypt = true

10.

11. }

12. }

•	 Bucket: This is the label of the S3 bucket that will be used. Make sure

you change the ID of the S3 bucket you established previously in the

process.

•	 Key: This is the file’s location inside the S3 bucket where the

Terraform state file should be saved when created.

Chapter 6 Infrastructure as Code

223

•	 Region: This is the region inside AWS where the S3 bucket is stored.

•	 dynamodb_table: This is the DynamoDB table that will be used for

the locking operation.

•	 Encrypt: By setting this to true, you can be sure that the Terraform

state you save in S3 will be secured on disk. Since we previously

made encryption the default setting for the S3 bucket, this serves as

a secondary layer of protection to guarantee that the information is

always protected.

The terraform init command is responsible for downloading the provider and

setting up the back end, as shown in Figure 6-9.

Figure 6-9.  Running the terraform init command to install the providers

This command will take time, depending on how many providers you are using

inside your code, but you should be able to see a message like the one in Figure 6-10.

Figure 6-10.  Terraform init output

Chapter 6 Infrastructure as Code

224

If you check from the console, you will see the Terraform screen shown in

Figure 6-11.

Figure 6-11.  Remote back-end Terraform state

Sometimes, you need to show some output for the resources, such as database name,

public IP address, or private IP address. Terraform allows you to do that with an output,

but it’s better to do that and configure a file called output.tf.

For example, to show the name of the S3 bucket and DynamoDB that was created

earlier, I need a file called output.tf.

 1. output "s3_bucket_arn" {

 2. value = aws_s3_bucket.terraform_locks_file.arn

 3. description = "The ARN of the S3 bucket"

 4. }

 5.

 6. output "dynamodb_table_name" {

 7. value = aws_dynamodb_table.terraform_locks_file.name

 8. description = "The name of the DynamoDB table"

 9. }

10.

It’s hard to cover everything about Terraform in one section, but I gave you the basics

of how it works. I also created a different project for Terraform using another cloud

provider for free and uploaded it to GitHub (https://Github.com/Osamaoracle). Plus,

Chapter 11 includes some complete projects.

Let’s look at a straightforward Terraform code example. I share the directory

structure in Figure 6-12, which will allow you to understand how it will look at the end.

The figure shows how Terraform will be set up.

Chapter 6 Infrastructure as Code

https://github.com/Osamaoracle

225

Figure 6-12.  Simple Terraform example to set up AWS resources

•	 VPC refers to the virtual private network in AWS.

•	 VPC subnet, in our case, public subnet that will be expose to the

Internet.

•	 We are creating an Internet gateway associated with the VPC.

•	 There is a route table inside VPC with a route that directs Internet-

bound traffic to the IGW.

•	 Route table association with our subnet to determine where network

traffic from your subnet or gateway is directed.

•	 Security group to provide protection at the port and protocol

access levels.

•	 Key pair used to access the EC2.

•	 EC2 instance deployed inside the public subnet.

Let’s look at a real-world example of Terraform to show how the structure folder

works; Figure 6-13 shows the Terraform folder structure.

Chapter 6 Infrastructure as Code

226

Figure 6-13.  Terraform file structure

�The provider.tf

This file will allow Terraform to determine which cloud provider will be used.

1. provider "aws" {

2. access_key = var.access_key

3. secret_key = var.secret_key

4. region = var.region

5. }

6.

�Variable.tf

In this file, we define the variable used inside our Terraform code to make the code more

dynamic.

 1. variable "access_key" {

 2. default = "ACCESS_KEY_HERE"

 3. }

 4. variable "secret_key" {

 5. default = "SECRET_KEY_HERE"

 6. }

 7. variable "region" {

 8. default = "us-east-2"

 9. }

10. variable "cidr_vpc" {

11. description = "CIDR block for the VPC"

12. default = "10.1.0.0/16"

13. }

Chapter 6 Infrastructure as Code

227

14. variable "cidr_subnet" {

15. description = "CIDR block for the subnet"

16. default = "10.1.0.0/24"

17. }

18. variable "availability_zone" {

19. description = "availability zone to create subnet"

20. default = "us-east-2a"

21. }

22. variable "public_key_location" {

23. description = "Public key path"

24. default = "~/.ssh/id_rsa.pub"

25. }

26. variable "instance_ami" {

27. description = "EC2 AMI depends on the region"

28. default = "ami-0cf31d971a3ca20d6"

29. }

30. variable "instance_type" {

31. description = "EC2 Instance type"

32. default = "t2.micro"

33. }

34. variable "environment_tag" {

35. description = "Resource tags"

36. default = "Production"

37. }

�Main.tf

After creating the variable needed to be used and the provider, this file will call all the

necessary resources to be configured inside the AWS console.

 1. resource "aws_vpc" "vpc" {

 2. cidr_block = var.cidr_vpc

 3. enable_dns_support = true

 4. enable_dns_hostnames = true

 5. tags = {

Chapter 6 Infrastructure as Code

228

 6. "Environment" = var.environment_tag

 7. }

 8. }

 9.

10. resource "aws_internet_gateway" "igw" {

11. vpc_id = aws_vpc.vpc.id

12. tags = {

13. "Environment" = var.environment_tag

14. }

15. }

16.

17. resource "aws_subnet" "subnet_public" {

18. vpc_id = aws_vpc.vpc.id

19. cidr_block = var.cidr_subnet

20. map_public_ip_on_launch = "true"

21. availability_zone = var.availability_zone

22. tags = {

23. "Environment" = var.environment_tag

24. }

25. }

26.

27. resource "aws_route_table" "rt_public" {

28. vpc_id = aws_vpc.vpc.id

29.

30. route {

31. cidr_block = "0.0.0.0/0"

32. gateway_id = aws_internet_gateway.igw.id

33. }

34.

35. tags = {

36. "Environment" = var.environment_tag

37. }

38. }

39.

40. resource "aws_route_table_association" "rt_subnet_public" {

Chapter 6 Infrastructure as Code

229

41. subnet_id = aws_subnet.subnet_public.id

42. route_table_id = aws_route_table.rt_public.id

43. }

44.

45. resource "aws_security_group" "sg_ssh" {

46. name = "sg_ssh"

47. vpc_id = aws_vpc.vpc.id

48.

49. # SSH access from the VPC

50. ingress {

51. from_port = 22

52. to_port = 22

53. protocol = "tcp"

54. cidr_blocks = ["0.0.0.0/0"]

55. }

56.

57. egress {

58. from_port = 0

59. to_port = 0

60. protocol = "-1"

61. cidr_blocks = ["0.0.0.0/0"]

62. }

63.

64. tags = {

65. "Environment" = var.environment_tag

66. }

67. }

68.

69. resource "aws_key_pair" "ec2ssh" {

70. key_name = "publicKey"

71. public_key = file(var.public_key_location)

72. }

73.

74. resource "aws_instance" "test_Instance" {

75. ami = var.instance_ami

Chapter 6 Infrastructure as Code

230

76. instance_type = var.instance_type

77. subnet_id = aws_subnet.subnet_public.id

78. vpc_security_group_ids = [aws_security_group.sg_ssh.id]

79. key_name = aws_key_pair.ec2ssh.key_name

80.

81. tags = {

82. "Environment" = var.environment_tag

83. }

84. }

�Output.tf

The last file in our folder structure is output.tf; this file is responsible for showing the

needed output for the user, such as the public IP address, DNS, etc.

 1. output "vpc_id" {

 2. value = "${aws_vpc.vpc.id}"

 3. }

 4. output "public_subnet" {

 5. value = ["${aws_subnet.subnet_public.id}"]

 6. }

 7. output "public_rt_ids" {

 8. value = ["${aws_route_table.rt_public.id}"]

 9. }

10. output "public_instance_ip" {

11. value = ["${aws_instance.test_Instance.public_ip}"]

12. }

Chapter 6 Infrastructure as Code

231

Figure 6-14 shows the command terraform init output.

Figure 6-14.  The terraform init output

After that, check what Terraform provision is on the AWS cloud. This is considered a

critical command every time you deploy or change the configuration Terraform plan; see

Figure 6-15.

Chapter 6 Infrastructure as Code

232

Figure 6-15.  Terraform plan output

�Terraform Module
A Terraform module can be anything that consists of Terraform configuration files

stored in a subdirectory; in other words, a module is a pretty straightforward concept.

All of the configurations you have created up to this point have, in a technical sense,

been modules; however, they are not especially interesting since you deployed them

Chapter 6 Infrastructure as Code

233

directly. If you apply these configuration on a module, that module is referred to as a root

module. It would be best if you constructed a reusable module, which is a module that is

designed to be utilized inside other modules, to get a proper understanding of what the

modules are capable of doing.

Figure 6-16 shows the architecture that will create the following resources using

Terraform:

•	 VPC

•	 Subnets

•	 Internet gateway

•	 NAT gateway

•	 EC2 instance

•	 RDS databases

•	 Security group

Figure 6-16.  Terraform example architecture

Figure 6-17 shows how the final folder structure will look.

Chapter 6 Infrastructure as Code

234

Figure 6-17.  Terraform example folder structure

VPC has only one route table that links the Internet gateway to the public subnet

hosting the EC2 instance.

A private subnet is organized into a single subnet group, each hosting a single

RDS server.

�VPC Code
Create a folder called vpc.tf located inside the module directory.

 1. # VPC

 2. resource "aws_vpc" "iac-chapter" {

 3. cidr_block = var.vpc_cidr

 4.

 5. enable_dns_support = var.enable_dns_support

 6. enable_dns_hostnames = var.enable_dns_hostnames

 7. }

 8. # Internet Gateway

 9. resource "aws_internet_gateway" "iac-chapter" {

10. vpc_id = aws_vpc.iac-chapter.id

11. }

Chapter 6 Infrastructure as Code

235

12.

13. # Route Table

14. resource "aws_route_table" "iac-chapter" {

15. vpc_id = aws_vpc.iac-chapter.id

16.

17. dynamic "route" {

18. for_each = var.route

19.

20. content {

21. cidr_block = route.value.cidr_block

22. gateway_id = route.value.gateway_id

23. instance_id = route.value.instance_id

24. nat_gateway_id = route.value.nat_gateway_id

25. }

26. }

27. }

28.

29. # associate route table with subnet.

30. resource "aws_route_table_association" "iac-chapter" {

31. count = length(var.subnet_ids)

32.

33. subnet_id = element(var.subnet_ids, count.index)

34. route_table_id = aws_route_table.iac-chapter.id

35. }

36.

�EC2
To initiate the creation of the EC2 instance, all that is required is to configure the

machine we want and position it inside the subnet containing our route table.

•	 An instance of AWS EC2

•	 In conjunction with an elastic IP address being attached to that instance

•	 A public-private key pair, also known as a PEM key, to use when

connecting to the model via SSH

Chapter 6 Infrastructure as Code

236

 1. locals {

 2. resource_name_prefix = "${var.namespace}-${var.resource_tag_name}"

 3. }

 4.

 5. resource "aws_instance" "iac-chapter" {

 6. ami = var.ami

 7. instance_type = var.instance_type

 8. user_data = var.user_data

 9. subnet_id = var.subnet_id

10. associate_public_ip_address = var.associate_public_ip_address

11. key_name = aws_key_pair.iac-chapter.key_name

12. vpc_security_group_ids = var.vpc_security_group_ids

13.

14. iam_instance_profile = var.iam_instance_profile

15. }

16.

17. resource "aws_eip" "iac-chapter" {

18. vpc = true

19. instance = aws_instance.iac-chapter.id

20. }

21.

22. resource "tls_private_key" "iac-chapter" {

23. algorithm = "RSA"

24. rsa_bits = 4096

25. }

26.

27. resource "aws_key_pair" "iac-chapter" {

28. key_name = var.key_name

29. public_key = tls_private_key.iac-chapter.public_key_openssh

30. }

31.

Chapter 6 Infrastructure as Code

237

�EC2 Security Group
A security group acts like a firewall, controlling the network that goes in (ingress) and out

(egress) of your network.

Ingress can describe either the act of coming or an entrance. The term egress

represents either the act of leaving or a physical door or window that allows one to do so.

We permit traffic to enter our network via ports 22 (SSH), 80 (HTTP), and 443

(HTTPS), and we let all traffic leave our network through all ports. To make this even

more secure, you should profile your application’s ports for outgoing traffic.

 1. resource "aws_security_group" "ec2" {

 2. name = "${local.resource_name_prefix}-ec2-sg"

 3.

 4. description = "EC2 security group (terraform-managed)"

 5. vpc_id = module.vpc.id

 6.

 7. ingress {

 8. from_port = var.rds_port

 9. to_port = var.rds_port

10. protocol = "tcp"

11. description = "MySQL"

12. cidr_blocks = local.rds_cidr_blocks

13. }

14.

15. ingress {

16. from_port = 22

17. to_port = 22

18. protocol = "tcp"

19. description = "Telnet"

20. cidr_blocks = ["0.0.0.0/0"]

21. }

22.

23. ingress {

24. from_port = 80

25. to_port = 80

26. protocol = "tcp"

Chapter 6 Infrastructure as Code

238

27. description = "HTTP"

28. cidr_blocks = ["0.0.0.0/0"]

29. }

30.

31. ingress {

32. from_port = 443

33. to_port = 443

34. protocol = "tcp"

35. description = "HTTPS"

36. cidr_blocks = ["0.0.0.0/0"]

37. }

38.

39. # Allow all outbound traffic.

40. egress {

41. from_port = 0

42. to_port = 0

43. protocol = "-1"

44. cidr_blocks = ["0.0.0.0/0"]

45. }

46. }

47.

�RDS
Now, it’s time to set up the database; in my case, I chose MySQL.

 1. locals {

 2. resource_name_prefix = "${var.namespace}-${var.resource_tag_name}"

 3. }

 4.

 5. resource "aws_db_subnet_group" "iac-chapter" {

 6. �name = "${local.resource_name_prefix}-${var.identifier}-

subnet-group"

 7. subnet_ids = var.subnet_ids

 8. }

 9.

Chapter 6 Infrastructure as Code

239

10. resource "aws_db_instance" "iac-chapter" {

11. identifier = "${local.resource_name_prefix}-${var.identifier}"

12.

13. allocated_storage = var.allocated_storage

14. backup_retention_period = var.backup_retention_period

15. backup_window = var.backup_window

16. maintenance_window = var.maintenance_window

17. db_subnet_group_name = aws_db_subnet_group.iac-chapter.id

18. engine = var.engine

19. engine_version = var.engine_version

20. instance_class = var.instance_class

21. multi_az = var.multi_az

22. name = var.name

23. username = var.username

24. password = var.password

25. port = var.port

26. publicly_accessible = var.publicly_accessible

27. storage_encrypted = var.storage_encrypted

28. storage_type = var.storage_type

29.

30. vpc_security_group_ids = ["${aws_security_group.iac-chapter.id}"]

31.

32. allow_major_version_upgrade = var.allow_major_version_upgrade

33. auto_minor_version_upgrade = var.auto_minor_version_upgrade

34.

35. final_snapshot_identifier = var.final_snapshot_identifier

36. snapshot_identifier = var.snapshot_identifier

37. skip_final_snapshot = var.skip_final_snapshot

38.

39. performance_insights_enabled = var.performance_insights_enabled

40. }

41.

As you can see from the previous code, different variables need to be filled in by

DevOps, such as the username, password, instance type, name of the instance, and

storage.

Chapter 6 Infrastructure as Code

240

To make our job much easier in the future, we will create qa.tfvars. Depending on

the environment name, which contains the primary variable used by the RDS, the file

will allow DevOps to change database settings easily.

 1. # RDS

 2. rds_identifier = "mysql"

 3. rds_engine = "mysql"

 4. rds_engine_version = "8.0.15"

 5. rds_instance_class = "db.t2.micro"

 6. rds_allocated_storage = 10

 7. rds_storage_encrypted = false

 8. rds_name = ""

 9. rds_username = "admin"

10. rds_port = 3306

11. rds_maintenance_window = "Sun:05:00-Fri:06:00"

12. rds_backup_window = "12:46-13:16"

13. rds_backup_retention_period = 1

14. rds_publicly_accessible = false

15. rds_final_snapshot_identifier = "db-snapshot"

16. rds_snapshot_identifier = null

17. rds_performance_insights_enabled = true

�RDS Security Group
A security group opens the MySQL port for incoming connections.

 1. resource "aws_security_group" "db-sg" {

 2. name = "${local.resource_name_prefix}-rds-sg"

 3.

 4. description = "RDS (terraform-managed)"

 5. vpc_id = var.rds_vpc_id

 6.

 7. ingress {

 8. from_port = var.port

 9. to_port = var.port

10. protocol = "tcp"

Chapter 6 Infrastructure as Code

241

11. cidr_blocks = var.sg_ingress_cidr_block

12. }

13.

14. # Allow all outbound traffic.

15. egress {

16. from_port = 0

17. to_port = 0

18. protocol = "-1"

19. cidr_blocks = var.sg_egress_cidr_block

20. }

21. }

Now, we create the module folders, which include all our main code, but we need

to call this code. We will call the module inside another directory, as mentioned in

Figure 6-13.

main.tf will look like the following:

 1. module "vpc" {

 2. source = "../../modules/vpc"

 3.

 4. resource_tag_name = var.resource_tag_name

 5. namespace = var.namespace

 6. region = var.region

 7.

 8. vpc_cidr = "10.0.0.0/16"

 9.

10. route = [

11. {

12. cidr_block = "0.0.0.0/0"

13. gateway_id = module.vpc.gateway_id

14. instance_id = null

15. nat_gateway_id = null

16. }

17.]

18.

19. subnet_ids = module.subnet_ec2.ids

20. }

Chapter 6 Infrastructure as Code

242

21.

22.

23. module "ec2" {

24. source = "../../modules/ec2"

25.

26. resource_tag_name = var.resource_tag_name

27. namespace = var.namespace

28. region = var.region

29.

30. ami = "ami-1212sdasdas" # Choose ami depends on the region

31. key_name = "${local.resource_name_prefix}-ec2-key"

32. instance_type = var.instance_type

33. subnet_id = module.subnet_ec2.ids[0]

34.

35. vpc_security_group_ids = [aws_security_group.ec2.id]

36.

37. vpc_id = module.vpc.id

38. }

�Terraform Tips and Tricks
As with any other language, Terraform supplies some basic building blocks to help the

DevOps engineer write the best code for the IaC; we will discuss the following in this

section:

•	 Loops

•	 Conditionals

•	 Zero-downtime deployment

�Loops
Terraform provides several distinct looping constructions, each of which is designed to

be used in a somewhat unique circumstance.

Chapter 6 Infrastructure as Code

243

•	 Count: This parameter will be used to loop the resource; for example,

if you want to create 10 EC2 instances, it does not make sense to

repeat the code 10 times, so we use the count parameter to avoid this.

•	 For_each: This can be used in the same way as shown earlier.

•	 For: This is usually used to loop with the list and map variable.

I will give a short example to show the power of Terraform loops.

 1. resource "aws_instance" "web-ec2" {

 2. count = 2 # generate two similar EC2 instances

 3. ami = "ami-134324321"

 4. instance_type = "t2.medium"

 5. tags = {

 6. Name = "web-ec2-${count.index}"

 7. Owner = "Osama"

 8. }

 9. }

This will create two similar EC2 instances, which for some resources can be an issue

like the following:

1. resource "aws_iam_user" "count_example" {

2. count = 2

3. name = "Osama" }

4.

All three users of IAM would have the same name, which would result in an error

since the usernames are supposed to be different.

To solve this, we need to use an index, which will create a unique IAM like the

following:

1. resource "aws_iam_user" " count_example " {

2. count = 2

3. name = "Osama.${count.index}"

4. }

Chapter 6 Infrastructure as Code

244

For_each works in a different way, which is usually used by mapping and listing

variables, and if you don’t do that, the error will be clear like the following:

The given "for_each" argument value is unsuitable: the "for_each" argument

must be a map, or set of strings, and you have provided a value of

type tuple.

To use the previous example with for_each, I need to define an array like the one

shown here:

1. locals {

2. IAM_USER_NAME = {

3. "Osama" = "Chapter_6"

4. "Amazon" = "AWS"

5. "Test" = "working"

6. }

7. }

After that, I can create this as follows:

1. resource "aws_iam_user" "examples" {

2. for_each = local.IAM_USER_NAME

3. triggers = {

4. name = each.key

5. Middle = each.value

6. }

7. }

There are lots of uses for the loop conditions in Terraform. Still, to explain it entirely,

I probably need another chapter to do that, so I tried to show the power of looping in

Terraform and how to take advantage of it to make your code follow best practices and

make it easy to understand.

�Conditionals
Terraform has several distinct options for making loops. It also provides many specific

opportunities for performing conditionals; each option is designed for use in a

somewhat different setting.

Chapter 6 Infrastructure as Code

245

•	 Count parameter: Can be used for conditional statements

•	 For_each: Can be used for conditional statements and within the

inline blocks

•	 If statement: The conditional statement

Let’s assume I want to enable EC2 autoscaling, but depending on the situation and

variable being set, this can be done by using a conditional statement like the following

example.

In the first step, you need to define the Boolean variable.

1. variable "autoscaling_example" {

2. description = "If set to true, enable auto-scaling"

3. type = bool

4. }

Inside the Terraform code, my code will look like the following one:

 1. resource "aws_autoscaling_schedule" "scaling-ec2-out" {

 2. count = var.autoscaling_example ? 1 : 0

 3.

 4. scheduled_action_name = "${var.cluster_name}-scaling-ec2"

 5. min_size = 2

 6. max_size = 5

 7. desired_capacity = 5

 8. recurrence = "0 5 * * *"

 9. autoscaling_group_name = aws_autoscaling_group.example.name

10. }

11.

12. resource "aws_autoscaling_schedule" "scaling-ec2-in" {

13. count = var.enable_autoscaling ? 1 : 0

14.

15. scheduled_action_name = "${var.cluster_name}-scaling-ec2-in"

16. min_size = 2

17. max_size = 5

18. desired_capacity = 2

19. recurrence = "0 23 * * *"

Chapter 6 Infrastructure as Code

246

20. autoscaling_group_name = aws_autoscaling_group.example.name

21. }

22.

What is happening in the example? To explain, the count parameter for each AWS

autoscaling schedule resource will have a value of 1 assigned to it if var.autoscaling_

example is configured to be true.

This will result in the creation of one instance of each resource. If var.autoscaling_

example is false, the count parameter for each AWS autoscaling schedule resource will be

set to 0, meaning that none will be produced.

�AWS CloudFormation
Each cloud provider has its own built-in IaC, allowing the customer to use it if they want

to deploy it to that cloud and try to make it as easy as possible.

CloudFormation is a service offered by Amazon Web Services that helps simplify

constructing AWS infrastructure using template files. AWS supplies CloudFormation;

you can automate the setup of workloads run on the most common AWS services using

CloudFormation.

The lack of code for CloudFormation templates written in YAML is an

understatement. They usually include chunks of complicated programs as well as JSON

specifications. The idea of having a template is moot since they are often encoded via

string processing instructions.

To understand CloudFormation more, let’s see the advantage and disadvantages,

starting with the advantages.

•	 A different template is already available from AWS and can be used.

•	 It is easy to use with Amazon AWS.

•	 If you build the AWS infrastructure manual, a tool can convert the

infrastructure to CF templates.

•	 It can be integrated with CI/CD.

•	 YAML is widely used, so it’s always good to learn it.

Chapter 6 Infrastructure as Code

247

Disadvantages
The following are the disadvantages:

•	 There is a lack of instructions on maintaining a clean and clear code

base for CloudFormation.

•	 It’s not the best tool to use to avoid security threats.

•	 The CloudFormation community is not robust.

•	 It’s hard to troubleshoot the broken code, especially if it’s a lot

of code.

•	 Sometimes the stack will get stuck without displaying an error, and it

will continue to be stuck until it fails.

•	 It might be a long process to generate and update content.

Sometimes the deletion operation fails, and you must do it by hand.

In my case, I prefer YAML for a different reason; as DevOps engineers, YAML is

widely used, and we learn it technically by learning another tool implicitly such as

Ansible or a Kubernetes manifest.

To understand it more, let’s take a look at the following example, which is

creating a VPC:

•	 Route table

•	 Two private subnets

 1. Parameters:

 2. Tag:

 3. Type: String

 4.

 5. Resources:

 6. VPC:

 7. Type: "AWS::EC2::VPC"

 8. Properties:

 9. CidrBlock: "10.0.0.0/16"

10. Tags:

11. - Key: "Name"

12. Value: !Ref "Tag"

Chapter 6 Infrastructure as Code

248

13.

14. privatesubnet1:

15. Type: "AWS::EC2::Subnet"

16. Properties:

17. AvailabilityZone: !Select

18. - 0

19. - !GetAZs

20. Ref: 'AWS::Region'

21. VpcId: !Ref "VPC"

22. CidrBlock: "10.0.0.0/24"

23.

24. privatesubnet2:

25. Type: "AWS::EC2::Subnet"

26. Properties:

27. AvailabilityZone: !Select

28. - 1

29. - !GetAZs

30. Ref: 'AWS::Region'

31. VpcId: !Ref "VPC"

32. CidrBlock: "10.0.1.0/24"

33.

34. RouteTable:

35. Type: "AWS::EC2::RouteTable"

36. Properties:

37. VpcId: !Ref "VPC"

38.

39. Outputs:

40. VpcId:

41. Description: The VPC ID

42. Value: !Ref VPC

Chapter 6 Infrastructure as Code

249

The previous code is a sample of CloudFormation; the VPC name will depend on the

tag, as you can see from the following section:

1. Parameters:

2. Tag:

3. Type: String

We have two different CICR sections, which will create two private subnets. The first

will be 10.0.0.0/24, and the second will be 10.0.1.0/24.

Finally, to connect these to subnets, we need to define the routing table, which

allows connectivity between them.

1. RouteTable:

2. Type: "AWS::EC2::RouteTable"

3. Properties:

4. VpcId: !Ref "VPC"

The last section will show the VPC ID after creation; another example of

CloudFormation will show you how to create the EC2 instance. Notice that if the code

gets longer, it will be hard to troubleshoot if you have an issue.

 1. ---

 2. AWSTemplateFormatVersion: '2022-12-16'

 3. Description: A simple example for EC2.

 4. Parameters:

 5. VpcId:

 6. Type: String

 7. SubnetId:

 8. Type: String

 9. InstanceName:

 10. Type: String

 11. allowsshcidr:

 12. Type: String

 13. �Description: additional security layer to allow certain IP

for ssh.

 14. MinLength: '7'

 15. MaxLength: '20'

Chapter 6 Infrastructure as Code

250

 16. �AllowedPattern: "(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})\\.

(\\d{1,3})/(\\d{1,2})"

 17. InstanceType:

 18. Description: EC2 instance type

 19. Type: String

 20. Default: t2.micro

 21. AllowedValues:

 22. - t2.nano

 23. - t2.micro

 24. - t2.small

 25. - t2.medium

 26. - t2.large

 27. - m4.large

 28. - m4.xlarge

 29. - m4.2xlarge

 30. - m4.4xlarge

 31. - m4.10xlarge

 32. - m3.medium

 33. - m3.large

 34. - m3.xlarge

 35. - m3.2xlarge

 36. - c4.large

 37. - c4.xlarge

 38. - c4.2xlarge

 39. - c4.4xlarge

 40. - c4.8xlarge

 41. - c3.large

 42. - c3.xlarge

 43. - c3.2xlarge

 44. - c3.4xlarge

 45. - c3.8xlarge

 46. ConstraintDescription: choose from the list above

 47. KeyName:

 48. Description: SSH Key pair

 49. Type: AWS::EC2::KeyPair::KeyName

Chapter 6 Infrastructure as Code

251

 50. ConstraintDescription: the name of the key-pair

 51. Mappings:

 52. AMI2RegionMap:

 53. eu-west-1:

 54. '64': ami-1234453

 55. eu-central-1:

 56. '64': ami-1312312

 57. Resources:

 58.

 59. InstanceProfile:

 60. Type: AWS::IAM::InstanceProfile

 61. Properties:

 62. Path: "/"

 63. Roles:

 64. - Ref: InstanceIAMRole

 65. InstanceIAMRole:

 66. Type: AWS::IAM::Role

 67. Properties:

 68. AssumeRolePolicyDocument:

 69. Version: '2022-12-16'

 70. Statement:

 71. - Effect: Allow

 72. Principal:

 73. Service:

 74. - ec2.amazonaws.com

 75. Action:

 76. - sts:AssumeRole

 77. Path: "/"

 78. Policies:

 79. - PolicyName: s3

 80. PolicyDocument:

 81. Version: '2022-12-16'

 82. Statement:

 83. - Effect: Allow

 84. Action:

Chapter 6 Infrastructure as Code

252

 85. - s3:*

 86. Resource:

 87. - Fn::Join:

 88. -"

 89. - - 'arn:aws:s3:::'

 90. - "*"

 91. AutoScalingGroup:

 92. Type: AWS::AutoScaling::AutoScalingGroup

 93. Properties:

 94. Tags:

 95. - Key: Name

 96. Value:

 97. !Ref InstanceName

 98. PropagateAtLaunch: 'true'

 99. LaunchConfigurationName:

100. Ref: LaunchConfiguration

101. MinSize: 1

102. MaxSize: 2

103. VPCZoneIdentifier:

104. - !Ref SubnetId

105. LaunchConfiguration:

106. Type: AWS::AutoScaling::LaunchConfiguration

107. Properties:

108. IamInstanceProfile: !Ref InstanceProfile

109. KeyName:

110. Ref: KeyName

111. ImageId:

112. Fn::FindInMap:

113. - AMI2RegionMap

114. - Ref: AWS::Region

115. - '64'

116. SecurityGroups:

117. - Ref: InstanceSecurityGroup

118. - Ref: SSHSecurityGroup

119. InstanceType:

Chapter 6 Infrastructure as Code

253

120. Ref: InstanceType

121. UserData:

122. Fn::Base64:

123. !Sub |

124. #!/bin/bash -x

125. apt-get update

126. apt-get install --yes awscli

127. InstanceSecurityGroup:

128. Type: AWS::EC2::SecurityGroup

129. Properties:

130. VpcId:

131. !Ref VpcId

132. GroupDescription: Enable HTTP and HTTPS

133. SecurityGroupIngress:

134. - IpProtocol: tcp

135. FromPort: '80'

136. ToPort: '80'

137. CidrIp: 0.0.0.0/0

138. - IpProtocol: tcp

139. FromPort: '443'

140. ToPort: '443'

141. CidrIp: 0.0.0.0/0

142.

143. SSHSecurityGroup:

144. Type: AWS::EC2::SecurityGroup

145. Properties:

146. VpcId:

147. !Ref VpcId

148. GroupDescription: SSH and HTTP enabled

149. SecurityGroupIngress:

150. - IpProtocol: tcp

151. FromPort: '22'

152. ToPort: '22'

153. CidrIp:

154. Ref: allowsshcidr

Chapter 6 Infrastructure as Code

254

155. Outputs:

156. InstanceSecurityGroup:

157. Description: ec2-Security-group

158. Value:

159. Fn::GetAtt:

160. - InstanceSecurityGroup

161. - GroupId

162.

The previous code will create a security group that allows SSH, HTTP, and HTTPS

plus EC2. We define the EC2 instance type so the user can choose from the list instead of

guessing. This EC2 instance will be attached to the IAM role that allows the user to check

the S3 services.

�Pulumi
Pulumi is a cutting-edge platform for managing infrastructure as code. Connecting

with cloud resources via the Pulumi Software Development Kit (SDK) uses pre-existing

programming languages and their respective native ecosystems, such as TypeScript,

JavaScript, Python, Go, .NET, Java, and markup languages like YAML. A command-

line interface (CLI) that can be downloaded, a runtime environment, modules, and a

managed service all collaborate to provide a powerful method of creating, updating, and

maintaining cloud infrastructure.

Figure 6-18 shows the purpose of Pulumi; like any other IaC tool, each project

will have different resources, and the same code will be used to deploy to different

environments such as production, QA, and UAT.

Chapter 6 Infrastructure as Code

255

Figure 6-18.  Pulumi

Pulumi programs deployed using a programming language create and specify your

desired cloud infrastructure’s architecture. You are allocating resource objects whose

characteristics match your infrastructure’s intended state, which allows you to define

new infrastructure in your application. These attributes are exposed externally to the

stack and are used internally to manage dependencies between resources.

A project is a directory containing the program’s source code and information about

how to launch the application. To compile your code, use the pulumi up command

from the Pulumi CLI. A stack is a stand-alone instance of your application that can be

customized with the help of this command. Stacks can be considered analogous to the

various deployment environments when testing and releasing software updates. For

instance, you can build and test against separate stacks for development, staging, and

production.

Chapter 6 Infrastructure as Code

256

�Pulumi Concepts
The following are some Pulumi concepts:

•	 Project

This is any directory where the Pulumi.yaml file is located. To

detect the active project while working in a subdirectory, Pulumi

looks for a Pulumi.yaml file in the parent folder. With pulumi

fresh, you can start a new project. During deployments, a project

indicates the runtime to use and where to find the executable

application. The following runtime environments are supported:

NodeJs, Python, .NET, Go, Java, and YAML.

1. name: Nginx-server

2. runtime: Nginx

3. description: Basic example pulumi.yaml project.

4.

•	 Stacks

When you deploy anything using Pulumi, you deploy it to the

stack; stacks in Pulumi are individual instances of programs that

may be customized separately.

For example, to create a stack for production, just run the

following command:

1. pulumi stack init staging

And to list the stack in Pulumi, use this:

1. pulumi stack ls

The output for the listing will be like the following one:

1. NAME LAST UPDATE RESOURCE COUNT

2. Development 1 hour ago 70

3. production 6 hours ago 150

4. UAT 3 weeks ago 90

Chapter 6 Infrastructure as Code

257

�Resources
Any cloud resources such as compute instances, storage buckets, and Kubernetes

clusters are all examples of resources, and there are two different types.

•	 Custom resource: This is a resource managed by the cloud provider

such as AWS, Azure, and GCP.

•	 Component resource: For example, a VPC in AWS, with Pulumi, has a

built-in module to follow the best practice.

�State and Back Ends
Like any other IaC, the state is the metadata to allow the tools to be deployed through it.

The state is how Pulumi understands when and how to generate, read, delete, or update

cloud resources, and each stack has its state.

Having a back end that you control yourself, just run the following command:

1. pulumi login

This disconnects you from the current back end.

1. pulumi logout

Because of this, all other stack or state operations will need a new login since all

credentials data will be removed from /.pulumi/credentials.json.

Provide the URL for the desired back end to access it.

1. pulumi login s3://<bucket-name> # General Syntax how to store backend in s3

2. �pulumi login 's3://chapter6-bucket-Osama?region=eu-west-1&awssdk=v2&prof

ile=AWS-book'

�Inputs and Outputs
You can tell by the name what the files are used for. Input allows a raw value of the

specified type (such as string, integer, Boolean, list, map, and so on), and output reads

from another source.

Chapter 6 Infrastructure as Code

258

Pulumi Example
I prefer Python since it’s easy to learn and has all the modules you need, so I will

create an S3 bucket in this example.

Pulumi.yaml

1. name: aws-s3-bucket

2. runtime:

3. name: Python

4. options:

5. virtualenv: venv

6. description: this is the pulumi s3 IaC

Save the code in __main__.py, the top-level code environment in Python. The

following example will create a bucket called s3-chapter-bucket; define a policy for that

bucket as read-only.

 1. import json

 2. import mimetypes

 3. import os

 4.

 5. from pulumi import export, FileAsset

 6. from pulumi_aws import s3

 7.

 8. web_bucket = s3.Bucket('s3-chapter-6-bucket',

 9. website=s3.BucketWebsiteArgs(

10. index_document= "index.html",

11.))

12.

13. content_dir = "www"

14. for file in os.listdir(content_dir):

15. filepath = os.path.join(content_dir, file)

16. mime_type, _ = mimetypes.guess_type(filepath)

17. obj = s3.BucketObject(file,

18. bucket=web_bucket.id,

19. source=FileAsset(filepath),

20. content_type=mime_type)

21.

Chapter 6 Infrastructure as Code

259

22. def public_read_policy_for_bucket(bucket_name):

23. return json.dumps({

24. "Version": "2012-10-17",

25. "Statement": [{

26. "Effect": "Allow",

27. "Principal": "*",

28. "Action": [

29. "s3:GetObject"

30.],

31. "Resource": [

32. f"arn:aws:s3:::{bucket_name}/*",

33.]

34. }]

35. })

36.

37. bucket_name = web_bucket.id

38. bucket_policy = s3.BucketPolicy("bucket-policy",

39. bucket=bucket_name,

40. policy=bucket_name.apply(public_read_policy_for_bucket))

41.

42. # Export the name of the bucket

43. export('bucket_name', web_bucket.id)

44. export('website_url', web_bucket.website_endpoint)

45.

As you can see, each IaC tool has advantages and disadvantages, but in the end, they

each will lead to automation and infrastructure as code.

The tools can even be mixed. Some companies don’t like sticking to one IaC, so they

try to combine Terraform, CloudFormation, Pulumi, or Ansible, but you decide which

one you want to learn and use.

Table 6-4 compares Terraform, CloudFormation, and Pulumi to each other.

Chapter 6 Infrastructure as Code

260

Table 6-4.  Comparisons

Factor Terraform CloudFormation Pulumi

Version Open-source and

enterprise versions

Available only when

you use AWS

Open-source and

enterprise versions

Language HCL YAML or JSON Python, Java, Node.js,

and .NET

Role-based access
control

No Yes No

User interface Yes, third-party solution Yes No

Community Massive Not good Not good

Multicloud provider Yes No Yes

Integration with other
cloud tools

Yes No Yes

�Ansible
Ansible is similar to Puppet or Chef but simpler to use than any other configuration

management tool.

Ansible is a tool that can be used for different purposes; imagine a scenario where

you have 10 databases and have been asked to upgrade or patch them. Or say you want

to install an application on a different operating system or server, create users, install

packages, and more. Ansible will automate this by writing a custom playbook. Ansible

is also an easy tool to learn; it already has predefined modules that will make your

life easier.

Figure 6-19 shows the high-level design of how Ansible works and its benefits;

the DevOps engineer has been requested to install Nginx on three servers, and they

already created a playbook called, for example, webserver-Nginx.yaml, which will be

responsible for doing the following:

	 1.	 Install NGINX.

	 2.	 Generate an NGINX configuration file.

	 3.	 Launch the service using NGINX.

Chapter 6 Infrastructure as Code

261

Figure 6-19.  How Ansible works

Ansible will simultaneously establish SSH connections to servers in parallel. After

that, it will simultaneously carry out the first job on the list across all three hosts.

Note the following:

•	 Each job is executed simultaneously across all hosts when using

Ansible.

•	 Before continuing to the next job, Ansible waits until all hosts have

finished the previous task.

•	 Ansible will perform the functions in the sequence that you specify

for them.

Ansible is only one of numerous open-source configuration management

technologies available; why should one use it instead of another? I will give different

reasons.

•	 Easy to learn and use: Ansible’s developers intended for it to be easily

installed with no learning curve.

Chapter 6 Infrastructure as Code

262

•	 Almost nothing to install on the remote server: Ansible server

management requires SSH and Python on Linux servers and WinRM

on Windows systems. Since Ansible for Windows utilizes PowerShell

rather than Python, no prerequisite host software installation is

required.

•	 Predefined modules: Ansible has predefined modules that make your

life much easier.

•	 Compatibility: Ansible is compatible with various packaging,

database, cloud, notification, monitor tools, etc.

Figure 6-20 shows how to connect to your nodes. Ansible then distributes little

programs (known as Ansible modules) to them. After that, Ansible will run these modules

(through SSH by default) and then delete them when done. You can store your modules

on your computer; no servers, daemons, or databases are necessary.

Figure 6-20.  How Ansible works

Chapter 6 Infrastructure as Code

263

Python is used to develop Ansible and runs on Linux, macOS, and BSD. As long

as Python is present on Linux, macOS, and BSD systems and PowerShell is present

on Windows PCs, you can use it to target any method you choose. Therefore, it is

recommended that you set up Ansible on your machine. You should use Python 3.8 on

the computer where Ansible is installed.

Installation is pretty simple and doesn’t need extra configuration from your side. You

can install it in different ways.

�RHEL/CentOS Linux
1. sudo yum install ansible

�Debian/Ubuntu Linux
1. sudo apt-get install software-properties-common

2. sudo apt-add-repository ppa:ansible/ansible

3. sudo apt-get update

4. sudo apt-get install ansible

Install Ansible using pip as follows:

1. sudo pip install ansible

Or the last option is to install it from the source (GitHub):

1. git clone git://github.com/ansible/ansible.git

2. cd ./ansible

3. source ./hacking/env-setup

To work with Ansible, you need to understand these concepts:

•	 Ansible inventory: This is a file located under /etc/ansible/hosts,

where you define the servers you want the master to communicate

with. It makes your life much easier and allows a playbook’s file

to specify the hosts and host groups that will be used to execute

the playbook’s commands, modules, and tasks. According to

your Ansible setup and installed plugins, the file might be in

various forms.

Chapter 6 Infrastructure as Code

264

•	 Playbook: This is a file written by YAML, and it allows you to

configure and customize what you need to do with the tool, which is

the instruction of what the tool will do and need to implement.

•	 Facts: This refers to the data Ansible will get from the hosts it

manages throughout execution. The scripts may then make use of

those variables. Data includes everything about a host you require,

including its IP address, network interface card (NIC), devices,

and so on.

•	 Roles: These are reusable organizational units that facilitate the

distribution of automation code between users.

•	 Modules: You can store your modules on your computer; no servers,

daemons, or databases are necessary. Generally, you’ll need a text

editor, a terminal application, and a version control system to keep

track of the many iterations of your work.

•	 Security: Ansible can be used with passwords, although SSH keys and

ssh-agent are among the most secure options. However, Kerberos

may also be used successfully. There are multiple choices! Rather

than using the root account, you can join using any other user and

switch identities using su or sudo.

•	 CLI: The so-called ad hoc command-line utility is available for usage.

This utility will let you manage OS users across numerous servers

with a single command line.

Let’s talk about the ad hoc commands and their purpose. When it comes to

seldom-used tasks, ad hoc commands shine. To turn off all the lab equipment before a

holiday, for instance, a simple one-liner in Ansible would suffice; no playbook would be

necessary.

Here is how to reboot the server

1. ansible group-web-server -a "/sbin/reboot"

•	 Here, group-web-server is a group. We defined it inside the Ansible

inventory to indicate to the web server, and maybe it has 10 servers

or more.

•	 /sbin/reboot is the Linux command.

Chapter 6 Infrastructure as Code

265

Here is how to get the uptime for a group of servers:

1. ansible all -m shell -a uptime

Here is how to get the disk size:

1. ansible all -m shell -a df -h

You need to understand that covering these tools in one chapter is a tough job; each

one needs a book by itself. Here I am giving you a general idea of how these tools work.

Moving to the playbook and how it works, I will provide you with a simple example.

Simple Playbook Example

Ansible installation on your local workstation and access to a remote Ubuntu server are

prerequisites for this tutorial.

Installing Apache Server is one of the most straightforward examples that can be

given, but be careful. YAML is an indention language; spaces are essential here, so use a

good integrated development environment (IDE).

apache-installation.yaml

 1. ---

 2. - name: Playbook

 3. �hosts: webservers #should be defined inside an inventory (/etc/

ansible/hosts)

 4. become: yes

 5. become_user: root

 6. tasks:

 7. - name: download the latest version

 8. yum:

 9. name: httpd

10. state: latest

11. - name: make sure apache services are up and running

12. service:

13. name: httpd

14. state: started

15.

Chapter 6 Infrastructure as Code

266

Here, note the following:

•	 name is your playbook name.

•	 hosts should be defined inside an inventory (/etc/ansible/hosts).

•	 become tells Ansible that we will switch to a higher user.

•	 Become_user is our high-privilege user.

•	 tasks says what the playbook will do.

In our playbook, we have two tasks; the first will install Apache, and the second will

ensure the Apache services are running and then run this custom playbook.

1. ansible-playbook apache-installation.yaml

We could make the previous playbook more usable by using a variable that allows

you to read a different value, and you can change it when you want.

 1. ---

 2. - name: Playbook

 3. �hosts: webservers #should be defined inside an inventory (/etc/

ansible/hosts)

 4. become: yes

 5. become_user: root

 6. vars:

 7. key_file: /etc/apache/ssl/DevOpsBook.key

 8. cert_file: /etc/apache/ssl/DevOpsBook.cert

 9. server_name: www.DevOpsBook.com

10. tasks:

11. - name: download the latest version

12. yum:

13. name: httpd

14. state: latest

15. - name: make sure apache services are up and running

16. service:

17. name: httpd

18. state: started

19. - name: copy certificate to another place, for example

Chapter 6 Infrastructure as Code

267

20. copy:

21. src: {{key_file}}

22. dest: {{cert_file}}

For another example, let’s assume you have a group defined inside the inventory that

contains, for instance, 15 servers. You need to copy files, create a user, and upgrade the

packages on all the servers. What will you do? There is no time to do them one by one.

 1. ---

 2. - name: Another Custom playbook

 3. hosts: all

 4.

 5. tasks:

 6. - name: Copy files and dont forget the permission

 7. ansible.builtin.copy:

 8. src: ./hosts

 9. dest: /tmp/hosts_backup

10. mode: '0655'

11. - name: Add the user 'Osama'

12. ansible.builtin.user:

13. name: Osama

14. become: yes

15. become_method: sudo

16. - name: Upgrade packages

17. apt:

18. force_apt_get: yes

19. upgrade: dist

20. become: yes

21.

Like the earlier example, you define the name of your playbook and which servers

you need to run this playbook.

•	 Ansible.builtin.copy is a predefined module to allow copying.

•	 ansible.builtin.user is a predefined module to create a user.

Chapter 6 Infrastructure as Code

268

Ansible is one of the most common tools in use, and it has a lot of other features.

Here are some examples:

•	 Loops: A loop allows you to operate repeatedly on each item in a list.

In a loop, you repeat the process while changing the item’s value

each time.

•	 Handlers: One of the conditional forms that Ansible offers is a

handler. A handler acts like a task but executes only when another

job triggers it. If Ansible determines that a task has altered the system

state, the task will issue the notice.

�Summary
In this chapter, you learned about IaC. Even after putting in so much time and effort on

these pages, I can scarcely expect you to be able to write a complete IaC program, but at

least you will have an idea of where to start.

There is no right or good tool to use; it all depends on your use case and what you

feel comfortable with.

Using Terraform as the basis for your infrastructure may get you a long way and

simplify management. If you don’t want to invest time and learn a programing language

or something so complicated, then Terraform is for you; if you already know one of the

programming languages, in that case, you could use Pulumi.

CloudFormation is a valuable tool if you currently use the AWS cloud and do not

intend to switch to another cloud provider or distribute your workloads over several

clouds in the foreseeable future.

In the next chapter, I will cover two of the most critical aspects of DevOps and SRE,

monitoring and observability; the chapter will cover the terms related to these two

concepts and how you can troubleshoot them. In addition, we will discuss the Amazon

AWS services that allow you to keep an eye on the application, infrastructure, and

security.

Chapter 6 Infrastructure as Code

269
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_7

CHAPTER 7

AWS Monitoring
and Observability Tools
In this chapter, I will cover two central concepts for DevOps and SRE engineers:

monitoring and observability. What does each mean? I’ll explain the terms and

components for each concept and why they’re essential for DevOps/SRE engineers.

Moreover, this chapter will cover Amazon AWS services concerning monitoring

and how to use them, such as the resource dashboard, CloudTrail, CloudWatch, X-Ray,

and more.

We will dive deep into these services and show you the configuration for each one

of them.

�Monitoring
One of the critical tenets of monitoring is that you cannot know whether your apps are

functioning as intended, making themselves accessible, or giving a positive end-user

experience if you cannot quantify what is occurring.

In computing, monitoring refers to the apparatus and procedures that track and

control data processing and transmission networks. The process of monitoring,

however, entails so much more. When your systems and apps create metrics, monitoring

translates that information into something your organization can use. Your monitoring

system then uses these metrics to provide quantitative user experience data. This

quantifiable user experience feeds back to the company, letting you know whether its

meeting the needs of its consumers. What is not functioning and what is not providing

enough quality of service are both highlighted to IT by user feedback.

Once upon a time, the system was monitored by waking a developer up all night to

ensure everything worked without downtime. The developer needed to generate reports

https://doi.org/10.1007/978-1-4842-9303-4_7

270

and fill in Excel spreadsheets for everything and then needed to hand everything over to

the next person on the shift.

Sometimes the developer on the shift monitored only, meaning no experience

was required to solve issues or troubleshoot, which increased the response time and

downtime; therefore, DevOps/SRE solves these obsoletes and makes it much easier for

the company.

Most of the company’s systems should be available around the clock and work

properly. You need to ensure they’re running smoothly by knowing everything inside

your infrastructure, recording the changes, logging in, and monitoring the application

logs. This is what’s meant by monitoring and observability, and they’re part of the

DevOps/SRE engineer’s methodology.

Monitoring is all the quantitative information about a system, such as the number

of queries, number of errors, amount of time it takes to execute a query, and the age of

a server, which is collected, processed, aggregated, and shown in real time. It means

analyzing system health to inform team decisions. Metrics and logs can be collected in

advance for use in monitoring.

A system’s performance may be monitored, and known flaws can be spotted with

monitoring; however, monitoring is not without its drawbacks. You need to understand

what indicators and logs to watch for monitoring to be effective.

You need to understand two primary monitoring types before moving on.

•	 White-box monitoring

•	 Black-box monitoring

�White-Box Monitoring
White-box monitoring refers to keeping an eye on server-based software programs.

Everything from the volume of HTTP requests to the application’s response codes might

fall under this category, including the following:

•	 Database queries and the requests on the database server

•	 The user requests and users concurrently on the application

and system

•	 HTTP requests that are included in Table 7-1

Chapter 7 AWS Monitoring and Observability Tools

271

Table 7-1.  HTTP Request Code Examples

Code Category Description

1xx Informational 100, which means continue

101, which implies protocol switching

2xx Success 200, which means OK

201 Created

202 Accepted

3xx Redirection 302 Found

305 Proxy

307 temp redirection

4xx Client Error 400 Bad request

403 Forbidden

404 Not Found

444 No response

5xx Server Error 500 Internal error

503 Services unavailable504 Timeout

�Black-Box Monitoring
Black-box monitoring includes watching servers, paying particular attention to metrics

such as free space on storage, CPU use, memory utilization, load averages, and other

categories such as the following:

•	 Network bandwidth

•	 Input/output operations per second (I/Ops)

•	 Any alert related to storage

Whether you are a system administrator or DevOps/SRE engineer, you need to

take responsibility for monitoring the application (white box) or the servers (black

box) to ensure the system will function properly and know what’s going on inside your

infrastructure.

DevOps engineers may sometimes handle white-box monitoring, depending on

company rules.

Chapter 7 AWS Monitoring and Observability Tools

272

Understanding the value of both forms of monitoring is crucial. Historically, there

was a con of tools for monitoring applications, which caused several issues. For example,

black-box monitoring would detect system problems leading to CPU or memory issues.

Nevertheless, there would not be any data from the application side to explain why this

was happening there. That is why you, as an SRE or DevOps engineer, need to know and

understand that both types to provide a complete picture of your system.

On the other hand, we have observability, where you allow the team to debug and

find the issues so they can understand the system based on the external output that you

get from the metrics or logs.

If a system is observable, the user may examine the data generated to determine the

reason for a performance issue without resorting to further testing or coding.

The difference between monitoring and observability is the plan for dealing with

inevitable difficulties and preventing unforeseen ones; therefore, we can say that

monitoring is reactive, and observability is proactive.

Even for Linux performance observability tools, you can use command lines that will

allow you to understand what is happening on your system, which will also be discussed

in this chapter. Still, before that, we need to discuss the main factors for observability.

•	 Logging: Recording and saving information about what is happening

to your application or software

•	 Metrics: A measurement level to tune the application or system

•	 Traces: Reflect the path a request or action takes as it passes through

each node in a distributed system

Monitoring teams (Ops and SRE) usually use data to establish metrics and

develop custom dashboards and alerting mechanisms. They also track and record

connections between parts of the program, revealing how various software modules and

infrastructure services are used.

An observability platform goes above and beyond. The collected information may

be correlated in real time, allowing DevOps/SRE to gain a comprehensive application

performance perspective. Doing so will teach them what components make up the

system and its interconnections.

This will allow DevOps/SRE to debug any issue that could happen and fix it; in that

way, you are avoiding a problem, a system bug, or even a performance fix by analyzing

and studying your application behavior to show you what, when, and why this event is

happening to your system.

Chapter 7 AWS Monitoring and Observability Tools

273

Furthermore, observability will use the data proactively to find anything new to the

system, for example, an API calling between two systems. Do not forget that you can

also use artificial intelligence to detect any problem; this is called artificial intelligence

operation (AIOps).

When we talk about monitoring and observability, from Amazon AWS’s perspective,

we have different services that will give DevOps/SRE a complete overview of what is

happening in the infrastructure, such as the following:

•	 Resource dashboard

•	 AWS CloudTrail

•	 AWS CloudWatch

•	 AWS X-Ray

These service processes depend on a wide range of data collection, processing, and

visualization resources. The information gained from this analysis can be used to locate

security holes, forecast system behavior, and fine-tune settings.

�Resource Dashboard
When you access the AWS console and create a resource such as EC2, this resource will

allow you to monitor the server status and different metrics by default.

The dashboard will give you an idea about what is happening in your server, as

shown in Figure 7-1.

Figure 7-1.  EC2 Dashboard

Chapter 7 AWS Monitoring and Observability Tools

274

Use this control panel to monitor your EC2 instances and other infrastructure

components. The dashboard provides visibility into an instance, service health, alarm

and status report management, event scheduling, and capacity and instance metric

analysis.

The dashboard offers a variety of metrics that allow the SRE/DevOps engineer to

understand what is happening; see Figure 7-2.

Figure 7-2.  EC2 dashboard with a variety of metrics

What happens when you click the three dots in the dashboard? You will get a new

menu with the options shown in Figure 7-3.

Figure 7-3.  Metrics Extra menu

Chapter 7 AWS Monitoring and Observability Tools

275

The options are as follows:

•	 Enlarge

•	 Refresh

•	 Apply time range

•	 View in metrics

•	 View in resource health

•	 View logs

For instance, Enlarge is responsible for maximizing the metrics and focusing

on one as an entire page; Figure 7-4 shows your CPU utilization after choosing the

Enlarge option.

Figure 7-4.  Enlargement option, EC2 dashboard

Refresh will allow you to renew the metrics output to check if something new is

happening, but this happening automatically depends on the period. Another option

is to apply a time range; this is useful if you want to review what happened during a

specific time.

The last three options related to CloudWatch will be discussed later in this chapter.

Most AWS services allow you to monitor similarly, as shown in Figure 7-5.

Chapter 7 AWS Monitoring and Observability Tools

276

Figure 7-5.  Another example of an RDS monitoring dashboard

�AWS CloudTrail
If you want to keep tabs on what’s happening in your account, you can use CloudTrail.

Your services’ events and activity logs are automatically recorded and stored in S3 by

the service. The information gathered includes usernames, IP addresses of originating

traffic, and timestamps. Free access to all management activities for the last 90 days is

available. It can additionally provide data events and insights derived from your data for

an extra cost.

If you use CloudTrail to secure your accounts, the infrastructure activity will be

recorded under the CloudTrail event. Each event will be in the Event History, allowing

you to view and search for the events that happened during the last 90 days.

There are two CloudTrail types, as shown here:

•	 Each region will have one CloudTrail event. In this approach, any

change made in one of the AWS regions will be recorded, and

CloudTrail will store the event logs in the S3 bucket you choose.

•	 All the regions will have one CloudTrail event. CloudTrail keeps track

of activity inside a specific area only if that region is specified in the

trail’s settings. The CloudTrail event logs are subsequently sent to an

AWS S3 bucket of your choosing.

Chapter 7 AWS Monitoring and Observability Tools

277

�Using CloudTrail
CloudTrail can be used to do the following:

•	 Understand and monitor infrastructure evolution

•	 Get instant updates on any unusual behavior

•	 Bring your CloudTrail data into S3 and analyze your logging activities

in CloudTrail

•	 Make sure you’ve got the safest arrangement possible

You must search for the services under the AWS console to access CloudTrail; see

Figure 7-6.

Figure 7-6.  Access to CloudTrail from the AWS console

Once you are redirected to the CloudTrail page, you will see the welcome page,

allowing you to create the trail base. Let’s start with the steps for how to do that and how

to configure CloudTrail.

Chapter 7 AWS Monitoring and Observability Tools

278

When in the CloudTrail console, go to the Trails section on the left; see Figure 7-7.

Figure 7-7.  CloudTrail welcome page

Clicking Trails will redirect you to a new page; click “Create trail,” as shown in

Figure 7-8.

Figure 7-8.  Creating the trail

Once you click the button, you will need to fill in the following information:

•	 Trail attributes

•	 Log events

•	 The information you’re reviewing

As you can see from Figure 7-9, this is the first configuration step.

Chapter 7 AWS Monitoring and Observability Tools

279

Figure 7-9.  Trail attributes

Specifically, you need to configure the attributes as follows:

•	 Trail name: Choose the name for the baseline for the CloudTrail.

•	 Storage location: Set whether you will create a new bucket (I prefer

not to mix old buckets with the latest event logs), or you can choose

an existing bucket.

•	 Log file SSE-KMS encryption: This is set to Enabled by default; it

encrypts CloudTrail log files using the AWS Key Management Service

(SSE-KMS). You do not need encryption for now.

•	 Log file validation: To determine whether a log file was modified,

deleted, or unchanged after AWS CloudTrail delivered it, set this to

Enabled.

•	 SNS notification delivery: If you want to be alerted each time a log is

sent to your bucket, choose the Enabled option.

•	 CloudWatch Logs: To transmit events to CloudWatch Logs, you must

either choose an existing log group in CloudWatch Logs or establish a

new one while configuring your CloudTrail trail.

Chapter 7 AWS Monitoring and Observability Tools

280

We will enable this option now because we will need it later to continue the example;

see Figure 7-10.

Figure 7-10.  CloudWatch configuration, CloudTrail

Here’s more about each section on this screen:

•	 Log group: Choose a new group; if you have an existing one you want

to use, just set the name here.

•	 Log group name: This is the name of the log group inside

CloudWatch; choose an understandable name.

•	 IAM Role: CloudTrail sends events to the CloudWatch Logs log

stream; we will choose a new one because we do not have an existing

one to use.

•	 Role name: This is the new role name.

Chapter 7 AWS Monitoring and Observability Tools

281

Click Next, and the screen shown in Figure 7-11 will display the event type; we need

both management and data events.

Figure 7-11.  CloudTrail event type

On the same screen, you will notice the configuration for each type you choose; as

shown in Figure 7-12, you define the event you need to monitor and the log for each

activity.

Chapter 7 AWS Monitoring and Observability Tools

282

Figure 7-12.  CloudTrail, log event configuration screen

Click Next and review the configuration; see Figure 7-13 for the review page. Once

done reviewing, create a trail.

Chapter 7 AWS Monitoring and Observability Tools

283

Figure 7-13.  Reviewing and creation, CloudTrail

When the CloudTrail baseline has been created, you must wait a few minutes for

AWS to collect the event history.

After that, you can begin browsing or downloading the events based on what you

want, as shown in Figure 7-14. You can look at information based on the username, user

access key, event name, etc.

Figure 7-14.  CloudTrail event history

Chapter 7 AWS Monitoring and Observability Tools

284

�AWS CloudWatch
We can get a shortcut to CloudWatch with a short definition of repository metrics, so you

can query these metrics whenever you want.

CloudWatch allows you to configure alerts to stop or start specific actions, such as if

you’re going to stop/start/terminate the EC2 server based on these metrics.

To react to changes in the various AWS resources and services, CloudWatch events

are built. CloudWatch events can be customized to respond in a certain way depending

on the criteria used to identify the activity or action that has taken place. Not all AWS

services support CloudWatch events; several different AWS services can be used in

response to an event generated by CloudWatch.

With CloudWatch, DevOps/SRE engineers can centralize all their AWS infrastructure

monitoring data in one place. Data gathering, monitoring, automatic actions, analysis,

compliance, and security are all areas where CloudWatch excels.

The following is a list of some of the input triggers that can be used for

CloudWatch events:

•	 AWS GameLift

•	 AWS Glacier

•	 AWS Glue

•	 AWS GuardDuty

•	 AWS Inspector

•	 AWS Kinesis

•	 AWS Elastic Container Service (ECS)

•	 AWS Elastic Load Balancing

•	 AWS Elastic MapReduce

•	 AWS Elastic Transcoder

•	 AWS Elasticsearch

•	 AWS Elemental MediaPackage

•	 AWS EventBridge

•	 AWS EventBridge Schema Registry

Chapter 7 AWS Monitoring and Observability Tools

285

Plus, you can integrate CloudWatch with EventBridge, another serverless service, to

act on your behalf in case something happens. EventBridge is responsible for receiving

events from other services and responding to them appropriately. EventBridge is

distinguished from CloudWatch Events by a key characteristic: it accepts input from

third-party providers in addition to AWS services.

You could use a third-party solution, such as pager duty or data dog, to replace

EventBridge.

Figure 7-15 shows what CloudWatch offers and how we can configure our

infrastructure to be monitored and automated regarding the response.

Figure 7-15.  What CloudWatch offers

CloudWatch provides different features, and each one depends on the use case that

the company is trying to achieve, such as the following:

•	 CloudWatch logs: This feature will allow the DevOps/SRE engineer to

receive the logs for different AWS services such as EC2, Lambda, RDS,

and more, and you can write your queries to search for something

specific.

•	 CloudWatch metrics: This is the same as the CloudWatch logs; you

can collect them with CloudWatch and customize them depending

on your needs. CloudWatch can gather metrics on-premises.

•	 Microservices insights: If you have any microservices such as

containers, Kubernetes, etc., this will allow you to understand what is

happening inside EKS and ECS.

Chapter 7 AWS Monitoring and Observability Tools

286

•	 Serverless insights: This will allow you to collect, monitor,

troubleshoot, and understand what is happening with serverless

services (Lambda).

•	 Contributor insights: Data analysis depends on the time the system

performance was affected; during an operational event, this aids

developers and operators in swiftly isolating, diagnosing, and fixing

the problem.

•	 CloudWatch synthetics: This feature consists of schedule-aware,

scripted checks of your APIs and endpoints.

•	 CloudWatch real user monitoring (RUM): RUM assists software

and DevOps engineers in maximizing the end-user experience by

detecting client-side performance problems and allowing a faster

resolution.

•	 CloudWatch Evidently: This capability helps application developers

validate new features safely across the whole application stack. It

allows developers to experiment with new proposed applications,

learn about unanticipated consequences, and reduce risk

simultaneously.

•	 Detection of anomalies: When you enable this feature in CloudWatch,

CloudWatch, by default, will use machine learning to study and

analyze the past metrics and start generating the expected metrics.

This will allow SRE engineers to understand what will happen to the

infrastructure before doing anything.

•	 Alarms: When something happens to your infrastructure,

CloudWatch dashboard will put it into a category to allow you to

organize the importance of an alarm, and you could integrate this

with other services to send email or an SMS.

•	 Embedded metric format: This allows you to derive relevant

metrics from detailed application data stored in logs and enables

you to ingest high-cardinality application data, plus build helpful

customized metrics from temporary resources such as AWS Lambda

and containers.

Chapter 7 AWS Monitoring and Observability Tools

287

To access CloudWatch from the console, search for CloudWatch, as shown in

Figure 7-16.

Figure 7-16.  Accessing CloudWatch

CloudWatch contains different services, and each one was described earlier.

Figure 7-17 shows show what CloudWatch looks like.

Figure 7-17.  CloudWatch dashboard, the first screen

You can build many dashboards; each dashboard can be on a favorites list. Your AWS

account does not restrict the total number of dashboards you can have. All dashboards

are global. They are not limited to a particular region.

Chapter 7 AWS Monitoring and Observability Tools

288

Creating a CloudWatch dashboard is simple; all you need to do is follow these steps:

	 1.	 Click Dashboards in the list of options in the left panel; then click

the “Create dashboard” option, as shown in Figure 7-18.

Figure 7-18.  Creating a CloudWatch dashboard

	 2.	 Click “Create dashboard” after giving the dashboard a name in the

“Create new dashboard” dialog box that appears after clicking the

Create button; see Figure 7-19.

Figure 7-19.  Naming the new dashboard

Once you are done with the naming, a new screen will pop out to allow you to add

the widget to your dashboard, as shown in Figure 7-20.

Chapter 7 AWS Monitoring and Observability Tools

289

Figure 7-20.  CloudWatch dashboard widget

	 3.	 In the next step (Figure 7-21), after choosing the widget, which

is the widget template, you can use either a predefined or an

empty one.

Figure 7-21.  Explorer widget

Chapter 7 AWS Monitoring and Observability Tools

290

	 4.	 Once done, the dashboard will be empty, as in Figure 7-22,

because you still need to configure the CloudWatch agent for EC2

or the other resource to use CloudWatch, as shown in Figure 7-22.

Figure 7-22.  Dashboard creation

The process of retrieving or gathering data from where it is first stored constitutes the

initial state of a log. The logs are kept in a specific location, and a program sends the log’s

output to the path where it will be saved.

The data from the location must be read by the collector responsible for transmitting

the information to the appropriate place. Within CloudWatch, the Amazon CloudWatch

agent is the program that is accountable for this responsibility. A program known as the

Amazon CloudWatch agent will be put into your Amazon EC2 instance. In addition, it is

set up to read the specific file the logs are written to and then transmit those logs to the

location where they need to be saved.

The CloudWatch agent in the background is a daemon, meaning it is not visible

to the user but continues running to obtain data from the log file and transfer it to the

storage destination.

The agent is equipped with all the configuration information required to identify the

data source from which it retrieves data and the delivery location to which it sends data.

The Amazon CloudWatch agent was developed to be compatible with the Linux

or Windows operating system. You may use it for your Amazon EC2 instance without

worrying about compatibility issues.

Chapter 7 AWS Monitoring and Observability Tools

291

Table 7-2 breaks down the possible setup locations for the agent.

Table 7-2.  CloudWatch Logs

File Linux Location Windows Location

A script that will

control the agent

 • Start

 • stop

• �/opt/aws/amazon-cloudwatch-

agent/bin/amazon-cloudwatch-

agent-ctl

• �/usr/bin/amazon-cloudwatch-

agent-ctl

$Programfile\Amazon\

AmazonCloudWatchAgent\

amazon-cloudwatch-agent-

ctl.ps1

Agent log file • �/opt/aws/amazon-cloudwatch-

agent/logs/amazon-cloudwatch-

agent.log

• �/var/log/amazon/amazon-

cloudwatch-agent/amazon-

cloudwatch-agent.log

$Programfile\Amazon\

AmazonCloudWatchAgent\

Logs\amazon-cloudwatch-

agent.log

Configuration

validation

• �/opt/aws/amazon-cloudwatch-

agent/logs/configuration-

validation.log

• �/var/log/amazon/amazon-

cloudwatch-agent/configuration-

validation.log

$ProgramData\Amazon\

AmazonCloudWatchAgent\

Logs\configuration-

validation.log

The following CloudWatch agent commands are helpful to obtain more information:

•	 Get the CloudWatch agent version.

1. /usr/bin/amazon-cloudwatch-agent-ctl -a status

•	 Stop the CloudWatch agent.

1. /usr/bin/amazon-cloudwatch-agent-ctl -m ec2 -a stop

•	 Refresh the agent after updating the configuration file.

1. /usr/bin/amazon-cloudwatch-agent-ctl -a fetch-config -s -m

ec2 -c file:configuration-location

Chapter 7 AWS Monitoring and Observability Tools

292

The CloudWatch configuration file looks like the following one:

 1. [general]

 2. state_file = /var/lib/awslogs/agent-state

 3. [applications_logs]

 4. region = eu-west-1

 5. datetime_format = %b %d %H:%M:%S

 6. file = /var/log/secure

 7. buffer_duration = 5000

 8. log_stream_name = Nginx_logs #you can for example database_logs or

Apache_logs.

 9. initial_position = start_of_file

10. log_group_name = server_logs

The configuration attributes are straightforward, but I will expand on each one a bit

more here:

•	 State_file: This file will be used by a watch agent to track and follow

up when pulling the logs, record where it stopped pulling, and so on.

•	 Region: This setting specifies the AWS region of Amazon CloudWatch

to which the agent will deliver the logs.

•	 datetime_format: This is used to define the time and date format used

to store the log data.

•	 File: With the help of this argument, you can give the path to the file

from which the log should extract data.

•	 buffer_duration: This identifies the period for grouping log events in

batches. Milliseconds are used as the measurement unit here. When

the time is more significant, this is the amount of time it takes for the

log to become available in the CloudWatch logs.

•	 log_stream_name: The name provided for the kind of log sent to

CloudWatch Logs is referred to as the log stream name. The log

stream serves as the label for determining the type of log sent to the

CloudWatch Logs service.

•	 initial_position: This is the point in the file where the representative

will begin reading.

Chapter 7 AWS Monitoring and Observability Tools

293

•	 log_group_name: Each source of logs in CloudWatch Logs is

represented by its log stream inside the service. A log group collects

log streams with the same retention, monitoring, and access control

settings. You can construct log groups and specify which log streams

should be placed in each group; see Figure 7-23.

Figure 7-23.  CloudWatch log group dashboard

Configuring an Essential CloudWatch Agent
In this section, you will understand how to install the CloudWatch Agent for AWS

EC2 instances by following the steps. After the initial configuration, the agent will report

certain logs to AWS CloudWatch for additional inspection after the service has started.

An EC2 instance must have an IAM role assigned to it before CloudWatch can

interact with the instance. To make the CloudWatch agent work properly, we must create

an IAM role that allows access to EC2.

•	 You need to log into your AWS account and search for IAM; from the

IAM Dashboard, choose the role, as shown in Figure 7-24.

Chapter 7 AWS Monitoring and Observability Tools

294

Figure 7-24.  IAM Dashboard, role

•	 To create a new role, go to the Roles page and click the “Create role”

button at the top of the screen, as shown in Figure 7-25.

Figure 7-25.  Creating a new role

•	 In the next screen, we will set the entity type to AWS services. AWS

service roles enable interactions between AWS resources and other

kinds of resources; see Figure 7-26.

Chapter 7 AWS Monitoring and Observability Tools

295

Figure 7-26.  Choosing EC2

•	 Click Next. Adding permission will be the next screen; from the

search bar, search for the policy name, already provided by AWS

as CloudWatchAgentServerPolicy. Then click Next, as shown in

Figure 7-27.

Figure 7-27.  Attaching permissions to a role

Chapter 7 AWS Monitoring and Observability Tools

296

This policy looks like the following one, including all the permission required to use

Amazon CloudWatch on the EC2 server:

 1. {

 2. "Version": "2012-10-17",

 3. "Statement": [

 4. {

 5. "Effect": "Allow",

 6. "Action": [

 7. "cloudwatch:PutMetricData",

 8. "ec2:DescribeVolumes",

 9. "ec2:DescribeTags",

10. "logs:PutLogEvents",

11. "logs:DescribeLogStreams",

12. "logs:DescribeLogGroups",

13. "logs:CreateLogStream",

14. "logs:CreateLogGroup"

15.],

16. "Resource": "*"

17. },

18. {

19. "Effect": "Allow",

20. "Action": [

21. "ssm:GetParameter"

22.],

23. "Resource": "arn:aws:ssm:*:*:parameter/AmazonCloudWatch-*"

24. }

25.]

26. }

Click Next, choose a unique name for the role, and write a detailed description of it

and its use, as shown in Figure 7-28.

Chapter 7 AWS Monitoring and Observability Tools

297

Figure 7-28.  Reviewing the configuration page for the role

Either you have an EC2 you want to monitor or you will create a new one; for both

options, you need to attach the role to allow the agent to send the logs to CloudWatch; if

you have an existing EC2, do the same thing, as shown in Figure 7-29.

Figure 7-29.  Adding a role to EC2 to allow the CloudWatch agent to collect logs

Once you click the Modify IAM role, a new screen will open, which allows you to

choose the role we created before, as you can see in Figure 7-30, or the small box that

shows you the option for creating a new EC2.

Chapter 7 AWS Monitoring and Observability Tools

298

Figure 7-30.  Attaching a CloudWatch role to EC2

After creating the role and assigning it to the EC2, we need to install the CloudWatch

agent, which is simple. You need either SSH or a session manager, and AWS allows you

also to use the command line or System Manager.

Which command you will use depends on your operating system. In my case, I’m

using Red Hat, so I run the following command:

1. sudo yum install amazon-cloudwatch-agent

In the System Manager, click Run Command in the left panel, and search for AWS-

ConfigureAWSPackage. From the target, select the instance manual. Select the correct

box depending on your instance ID; see Figure 7-31.

Chapter 7 AWS Monitoring and Observability Tools

299

Figure 7-31.  Installing CloudWatch via the System Manager

Now that the agent has been installed, the logs metrics and the logs will start

appearing inside the CloudWatch dashboard depending on your configuration, as

you can see in Figure 7-32. Figure 7-33 shows the CPU unitization for the EC2 instance

we have.

Figure 7-32.  CloudWatch logs

Chapter 7 AWS Monitoring and Observability Tools

300

Figure 7-33.  EC2 CloudWatch metrics

�CloudWatch Metrics Concepts
This section will introduce you to the concepts and fundamental ideas necessary to

comprehend before you can begin using CloudWatch.

�Namespaces

Note the following about namespaces:

•	 Custom namespaces: Namespaces established by a user from a

specific log that has been produced are called custom namespaces.

AWS namespaces are a kind of namespace created by Amazon Web

Services and are used to aggregate metrics from various AWS services.

•	 Metrics namespaces: Metrics are categorized and classified using

these to avoid the metrics being ungrouped. When working with

metrics, grouping them into categories for convenience is helpful.

Metrics do not have namespaces associated with them by default;

however, namespaces may be generated while a metric is being

formed or when a metric filter is being built from a log. Default

settings do not include namespaces.

•	 AWS namespaces: An Amazon Web Services namespace is

automatically formed for services that do not need any human setup;

for instance, when an EC2 example is started up, CloudWatch will

automatically begin monitoring metrics such as the percentage of CPU

time being used, the number of disk reads, the number of network

packets coming in, and the number of network packets going out.

Chapter 7 AWS Monitoring and Observability Tools

301

�Metric Dimensions

A key and value pair describe how data is kept inside a metric, referred to as a metric

dimension. Up to 10 sizes may be included inside a single metric. A billing metric, for

instance, can be categorized according to various aspects.

�Metric Filter

This feature can be filtered through logs as they come in, and the statistics may be

displayed in graphs and used to construct a CloudWatch alert when necessary. A metric

filter might look for a particular phrase in the logs to see if it can find it.

Earlier in this chapter, when I discussed CloudTrail, I told you we would continue

that example by using Amazon EventBridge to create notifications, known before as

CloudWatch events.

Amazon EventBridge will track and get notifications on the attachment of an IAM

policy to an IAM user.

When an event happens, the EventBridge rule that was built will look for a particular

event name in CloudTrail and then send out an SNS message to tell users about the

event’s occurrence; the following section continues the previous example mentioned

earlier.

From the console, choose Amazon EventBridge, as shown in Figure 7-34.

Caution T he following section continues our previous example in CloudTrail; you
can even use the same steps to create alerts and notifications.

After entering the EventBridge console, go to the Rules section on the left side of the

screen and click; see Figure 7-35.

Figure 7-34.  Amazon EventBridge services

Chapter 7 AWS Monitoring and Observability Tools

302

Figure 7-35.  Choosing Rules in Amazon Eventbridge

Set the rule up by configuring it with the following options; see Figure 7-36:

•	 Enter a name for the regulation here.

•	 The event bus collects the events sent to them by resources known

as emitters. These resources consist of AWS services either in your

account or in other accounts, services, and apps provided by SaaS

partners, as well as the applications you have developed, leaving

them at their defaults.

•	 You have two options for the rule type; either you leave it depending

on the event itself, or you will schedule when the rule will be

triggered.

Chapter 7 AWS Monitoring and Observability Tools

303

Figure 7-36.  Sets a rule name for the Amazon EventBridge

The next step will be to build an event pattern; we will choose “AWS event or

EventBridge partner events,” depending on the use case the source will be. In our case,

we do not need to get everything, and we need only one basis, so we will go with first

option, as shown in Figure 7-37.

Figure 7-37.  Event source configuration

Chapter 7 AWS Monitoring and Observability Tools

304

The event sample is optional, and usually, it is used when you are writing and testing

the event pattern with Amazon AWS; there are three options for that.

•	 AWS event: Used for any resource within the AWS

•	 EventBridge partner events: Usually, as a third-party solution

•	 Enter my own: Custom one created by DevOps

For example, Figure 7-38 shows the event sample options.

Figure 7-38.  Event sample configuration example

Chapter 7 AWS Monitoring and Observability Tools

305

Finally, on the same screen, the event pattern, which means which AWS services I

will send notifications about in this case, will be IAM, and the event name will be IAM-

Policy-Attach. See Figure 7-39.

Figure 7-39.  Event pattern configuration

Chapter 7 AWS Monitoring and Observability Tools

306

Click Next. On the next screen, we need to define the target for our case. SNS and

SNS work based on topics, so either you will create one before or you can add one later,

as shown in Figure 7-40.

Figure 7-40.  Target, SNS topic

Click Next, tag your resource, and review and create, as shown in Figure 7-41.

Figure 7-41.  Reviewing and creation

Chapter 7 AWS Monitoring and Observability Tools

307

CloudWatch is considered one of the most common monitoring tools for Amazon

AWS, and there are many things to cover when it comes to CloudWatch.

For example, you are configuring metric monitoring in RDS, logging in DynamoDB,

and monitoring events in Elasticache, Redshift, DocumentDB, and more.

Monitoring is often an afterthought during application creation and deployment.

Even though it is an effective procedure and a significant component of the responsibility

of the SRE/DevOps, one of the primary goals of this function is to guarantee that the

system continues to have a high level of availability and dependability.

To guarantee that the system is highly available and dependable, one of the most

important things that must be done is to ensure that it can be monitored and observed

appropriately.

SRE/DevOps brings significant automation to the work, and programming language

knowledge is always beneficial when automating things.

�AWS X-Ray
The AWS X-Ray application is tracked and debugged by another Amazon AWS service,

which does so by gathering various data from the application side.

For instance, X-Ray will be able to utilize the data associated with requests to

characterize the problem and determine whether there is room for improvement.

From the console, search for X-Ray, as shown in Figure 7-42.

Figure 7-42.  Console X-Ray

The next screen will be the welcome screen, allowing you to configure X-Ray for your

application quickly, or you can do it by clicking Cancel. See Figure 7-43.

Chapter 7 AWS Monitoring and Observability Tools

308

Figure 7-43.  X-Ray welcome screen

Before moving to work with X-Ray, we need to explain the following concepts:

•	 Segments: This provides information about the request and the task

that has been completed. Take, for instance, the case when your

application receives an HTTP request, and the information will be,

for example, the host, response status, etc.

•	 Subsegments: Supply additional precise time information and

specifics about calls made downstream by your application to satisfy

the first request.

•	 Service graph: A document written in JSON details the many services

and resources included in your application.

•	 Traces: This assembles all the segments produced by a single

request. This request is often an HTTP GET or POST request that

goes via a load balancer, reaches your application code, and creates

downstream calls to other AWS services or external web APIs.

•	 Sampling: The default sample rate is set to a low value to protect

you from paying any service costs while you are getting started. You

may configure X-Ray to change the default sample rule and set other

rules that apply to the sample depending on the service’s or request’s

characteristics. The X-Ray also allows you to create additional sample

rules based on the attributes of the request.

•	 Tracing header: This will include different information that helps

X-Ray to retrieve the data.

•	 Filter expressions: This allow you to filter depending on the term

you need.

Chapter 7 AWS Monitoring and Observability Tools

309

•	 Groups: This can be extended for the previous filter expression and

will enable the developer to create a group using the term he set.

•	 Annotations and metadata:

•	 Annotation: These are straightforward key-value pairs that have

been indexed and are available for use in filter expressions.

Record the data you want to use to group traces in the console by

making annotations and recording them there.

•	 Metadata: These are key-value pairs that do not have their

corresponding values indexed may include values of any kind,

including objects and lists. You may record data that you want to

keep in the trace but do not need to utilize while searching traces

using metadata.

•	 Errors, faults, and exceptions: This monitors problems generated by

your application code and errors sent back by further downstream

services. Errors will be

•	 Error: Client errors (400 series errors)

•	 Fault: Server faults (500 series errors)

•	 Throttle: Throttling errors (429 Too Many Requests)

To use X-Ray, we need to deploy an application that allows us to collect data.

Fortunately, AWS provides you with a sample application built on Node.js; to do that,

follow the steps here.

Choose the X-Ray services from the console, and click “Getting started.” Once you do

that, the screen in Figure 7-44 will appear.

Figure 7-44.  Deploying the sample Node.js application

Chapter 7 AWS Monitoring and Observability Tools

310

The next screen will give you information on what will happen and how this

application will be deployed; this will be done using CloudFormation.

Clicking the Launch Sample application button will open a new CloudFormation

tab; see Figure 7-45.

Figure 7-45.  Review sample application deployment

For the new tab, leave all the settings with no changes unless you need to do some

custom configuration from your side; see Figure 7-46, which shows the CloudFormation

template will be used to deploy the Node.js application.

Chapter 7 AWS Monitoring and Observability Tools

311

Figure 7-46.  CloudFormation: the template that will deploy NodeJS

On the next screen, you will see the setting for the stack name and what VPC you

need to deploy; the CloudFormation template will create a new one for you unless you

use an existing one. See Figure 7-47.

Figure 7-47.  CloudFormation template, stack details screen

The next screen is for stack options, tagging the resource, the permission for the

CloudFormation, and stack failure; see Figure 7-48.

Chapter 7 AWS Monitoring and Observability Tools

312

Figure 7-48.  CloudFormation, stack option

Review the configuration, click Create, and the application will be deployed. X-Ray

will start getting the data for you.

To produce a service graph, X-Ray makes use of the data that is sent by your

application. Each Amazon Web Services resource that transfers data to X-Ray is

represented in the chart as a separate service. Edges are the connecting points between

the many benefits that collaborate to fulfill requests. Edges are the connection points

between your application and its customers and between your application and the

downstream services and resources it uses.

Your application comprises various services and resources, detailed in a document

known as a service graph, a JSON file. The X-Ray console will build a depiction of the

service, also known as the service map, using the service graph; see Figure 7-49.

Chapter 7 AWS Monitoring and Observability Tools

313

Figure 7-49.  X-Ray service map

The movement of a request via your application can be followed using a trace ID.

A single request will produce many segments, all of which will be collected in a trace; see

Figure 7-50.

Figure 7-50.  X-Ray, Traces section

Chapter 7 AWS Monitoring and Observability Tools

314

Clicking one of the trace IDs will give you more information about it; see Figure 7-51.

Figure 7-51.  X-Ray, trace details

The AWS X-Ray analytics interface is a tool that allows users to interact with

trace data to rapidly obtain a better understanding of how their application and the

underlying services it uses are functioning. Through interactive reaction time and

time-series graphs, the console allows you to investigate, analyze, and see traces in

graphical form.

In the Analytics console, selecting choices causes the console to generate filters that

reflect the specified subset of all traces. By clicking the graphs and the panels of metrics

and variables linked with the current trace set, you can adjust the active dataset using

progressively more specific filters; see Figure 7-52.

Chapter 7 AWS Monitoring and Observability Tools

315

Figure 7-52.  X-Ray analytics

�Summary
In this chapter, we discussed settings and administration and safeguarding your

workloads operating on AWS.

In addition, to understand infrastructure monitoring from AWS’s perspective, we

explained different services, starting with the basic services: the resource dashboard,

CloudTrail, CloudWatch, and, finally, AWS X-Ray.

In the next chapter, we will discuss a new concept, security, and how it is crucial in

the DevOps life cycle; we will define new terms called DevSecOps and how to use it daily

to ensure that the environment is secured.

We will go through different Amazon AWS services that can be used to secure your

environment; moreover, the next chapter will discuss code analysis and tools that can be

used as well as show some examples.

Chapter 7 AWS Monitoring and Observability Tools

317
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_8

CHAPTER 8

DevOps Security
(DevSecOps)
In this chapter, I will cover the importance of security in DevOps as well as tools and

strategies you can employ to ensure your company’s assets remain secure, including the

following:

•	 AWS Certificate Manager

•	 Web Application Firewall

•	 Enabling security

•	 Policy as code

To succeed in a highly competitive market, businesses need to act quickly, be willing

to take risks, and maintain operations at affordable costs. The purpose of security teams

in these types of companies is to serve as a safety net that protects the firm’s assets

while also contributing to the company’s overall success. The engineers and managers

responsible for constructing the company’s goods must collaborate closely with the

security teams. When a business uses DevOps, the security department must modify

its culture to be compatible with DevOps, which must begin with an emphasis on the

company’s end users.

Everyone involved in the development pipeline must maintain a customer-centric

mindset in DevOps.

•	 Product managers measure the engagement and retention rates of

customers.

•	 The developers evaluate the product’s ergonomics and its usefulness.

•	 The operators also measure uptime and response times.

But first, let’s talk about why security is so important.

https://doi.org/10.1007/978-1-4842-9303-4_8

318

�Why Is Security Crucial for DevOps?
Security is often lacking in DevOps, which is quite concerning to any company. Pipelines

that support continuous integration/ continuous deployment (CI/CD) and infrastructure

as code (IaC) make it possible to deploy infrastructure and applications more quickly.

The challenge, however, is that to deploy more rapidly, some companies do not involve

security teams, which results in the following issues:

•	 Security usually slows down the process, which leads to delays.

•	 Security flaws are discovered in the infrastructure and the apps very

late in the game.

•	 Discovering security flaws late means changing the whole process

for CI/CD.

Therefore, a development-security-operations (DevSecOps) culture has emerged,

where there is nothing outside the scope of the security measures. Because of the

quick pace at which we generate new products, it makes great sense to include security

measures in the process rather than keep them separate.

Table 8-1 shows the difference between DevOps and DevSecOps.

Table 8-1.  DevOps vs. DevSecOps

DevOps DevSecOps

Purpose DevOps’ primary goal is to

enhance the efficiency and

reliability of software creation and

distribution.

DevSecOps is a movement that tries to protect

software development by including security early

and maintaining it across the whole software

development life cycle (SDLC).

Involved

teams

Developers and operation. Developers, operation, and security.

Used

tools

Different tools, such as IaC and CI/

CD.

CI/CD tools and security process tools.

Threats Seldom attended to throughout

the whole software development

process.

Discovered and addressed.

Chapter 8 DevOps Security (DevSecOps)

319

The lessons we learn from DevOps show that for a plan to be effective,

the operational side must be brought closer to the development side, and the

communication barrier between different developers and operators must be broken

down. Similarly, safeguarding DevOps requires establishing a deep connection between

security teams and the engineers with whom they collaborate. Security has to be a

function of the service to provide value to the client, and the internal objectives of

security teams and DevOps teams need to be aligned to achieve this.

By bringing together engineers and operational staff, the DevSecOps culture or

approach ensures that security is included in projects from the outset and that it takes

place as early as feasible in the creation procedure. Compliance and security verification

processes in CI/CD pipelines are also automated as part of the DevSecOps approach to

keep security standards high without impeding the speed with which applications can

be deployed.

When security is included in DevOps, the security team can incorporate

security controls into the product from the beginning rather than adding them as an

afterthought. Everyone’s primary focus is on the company’s overall success. As a result,

everyone is on the same page, lines of communication are more transparent, and

sensitive information is better protected. Integrating security into DevOps is predicated

on the premise that security teams will embrace DevOps practices and shift their

attention from safeguarding simply the infrastructure to securing the whole enterprise

via continuous improvement.

Security teams and all other security processes for tools, infrastructure, and

applications must be fully included in the modern DevOps culture. The goal is to

produce software that is both higher quality and more secure.

�Security and the Cloud
To reap the benefits of DevOps, you need not host your systems on the cloud, although it

is highly recommended that you do so; cloud computing plays an essential part in many

businesses.

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform are just a

few of the popular cloud computing environments that can handle your infrastructure as

a service (IaaS) and platform as a service (PaaS) needs.

Chapter 8 DevOps Security (DevSecOps)

320

They provide elastic capacity on demand to accommodate expansion without

waiting for hardware to be deployed, and they reduce the up-front costs associated with

purchasing hardware and establishing a data center.

These services are all hidden under the hood by data center and network

management, server and storage provisioning, configuration, management, and

monitoring.

When using a cloud infrastructure like AWS, you can access various application

programming interfaces (APIs) for managing accounts; dividing data; auditing,

encrypting; facilitating failover; storing; monitoring; and more. In addition, they provide

templates for quickly establishing template settings.

However, you must be familiar with the correct methods of accessing and using this

information. And under the shared responsibility model for cloud operations, you need

to understand where the cloud provider’s obligations stop and yours begin and how to

ensure your cloud provider is doing what you need them to do.

Figure 8-1 points out some of the most pressing security issues for cloud users; these

are well-known and mentioned by Sangfor, a cybersecurity company specializing in

computing and network security.

Figure 8-1.  Major cloud security issues

Chapter 8 DevOps Security (DevSecOps)

321

Let’s go through each of these issues to gain a better understanding of what we need

to focus on from a security perspective.

�Weak Identity and Credentials
Organizations may control who has access to sensitive data and other resources with the

help of identity, credentials, and access management solutions. Digital data, computer

networks, and even physical facilities like data centers are all potential examples.

The use of cloud computing brings about several modifications to the conventional

internal system management procedures connected to the administration of identities

and access (IAM). It’s not like these are brand-new problems by any stretch of the

imagination. Because cloud computing profoundly influences identity, credential

management, and access control, these concerns are much more critical when dealing

with public or private cloud computing.

Credentials and cryptographic keys should never be included in source code or

published in public-facing repositories like version control (GitHub, GitLab); doing

so puts them at risk. For key management actions to be carried out, it is necessary to

guarantee that keys are correctly protected using an adequately protected public key

infrastructure (PKI).

Another way is to enable multifactor authentication (MFA) so every identity or

user will have another security layer. This authentication method assists in preventing

password theft, which occurs when an individual fraudulently gains access to a system

using another person’s stolen login credentials.

�Application Vulnerabilities
There is often a lack of implementation or incorrect implementation of critical security

parameters. Cloud misconfiguration refers to any technical flaws in your cloud

infrastructure that might potentially expose your business to harm.

Application misconfiguration can lead to many issues and allow hackers to easily

access your infrastructure and data.

Chapter 8 DevOps Security (DevSecOps)

322

�Malicious Insider
One of the most common threats a company needs to be aware of is an insider threat.

Insider threats usually are employees who could inadvertently or maliciously use their

access privileges to provide outsiders access to a company’s network. When there is an

absence of infrastructure management and increased accessibility, it is considerably

more challenging to identify a hostile insider in cloud-based applications.

Any employee with access to sensitive information and who knows the company’s

security measures might be considered a malevolent insider. The four basic types of

insider threats are sabotage, fraud, IP theft, and espionage. It’s important to note that

carelessness isn’t necessarily the root cause of these dangers, despite popular belief.

�Denial-of-Service Attacks
Denial-of-service (DoS) attacks, also known as distributed denial-of-service attacks, are

aimed at bringing down a network and making it unavailable to the people for whom it

was created.

They are accomplished by overwhelming the targeted system with traffic or feeding

it information that causes it to crash. A successful distributed DoS assault might

compromise the network’s data, which can subsequently be used to gain financial

advantage at the expense of the targeted firm. Most businesses now store and operate

mission-critical applications in the cloud.

�External Sharing of Data
The advent of cloud computing has changed file sharing and collaboration by making

data more readily available. However, this external access poses a serious security risk to

your cloud system. The problem stems from the simplicity with which one can distribute

a link to resources and get access to several databases, jeopardizing the confidentiality of

those resources. We have uncovered exploitable weaknesses in the infrastructure in our

haste to make cloud sharing more accessible and inventive.

Chapter 8 DevOps Security (DevSecOps)

323

�Insecure APIs
Cloud service providers present a collection of UIs and APIs to facilitate client

management and interaction with cloud services. The safety and reliability of all cloud

services depend on the integrity of these application programming interfaces.

These interfaces must be developed to defend against accidental and malicious

efforts to get around the security policy. This protection should include authentication,

access control, encryption, and activity monitoring. APIs that are not developed well

may result in their abuse or, even worse, a data breach. APIs that have been hacked,

broken, or left exposed have been the root cause of many significant data breaches;

understanding the security standards that must be met while building and delivering

these interfaces on the Internet is essential for organizations.

Typically, a system’s APIs and UIs are the most visible elements to outsiders, and

they can be the only assets with a public IP address that need to be secured.

�Hijacking the Accounts
There is a risk of account hijacking, which occurs when hostile attackers obtain access to

extraordinarily privileged or sensitive accounts and then misuse those accounts.

Accounts for cloud services or subscriptions pose the most risk in cloud settings

because of the nature of the services they provide. These accounts are vulnerable

to being compromised by phishing, exploitation of cloud-based services, or stolen

credentials.

Although distinct and potentially devastating, these dangers may pose significant

problems in the cloud, such as the loss of data and assets or the interruption of services;

these risks come from how cloud services are organized, run, and delivered. Data and

applications live in cloud services.

�Advanced Persistent Threats
Advanced persistent threats (APTs) are sophisticated forms of network assault that

include numerous phases and a variety of various attack methods. An advanced

persistent threat is not an assault that is dreamed of or carried out on the spur of the

moment. Instead, attackers actively plan their assault plans against specific targets, and

then they attack the course of an extended period.

Chapter 8 DevOps Security (DevSecOps)

324

APT is a cyberattack that has been planned and executed by a group of threat actors

that are highly experienced and knowledgeable; the attackers meticulously prepare their

campaign to take place over an extended period targeting key targets, and they then

carry it out.

�Lack of Visibility
Implementing a suitable security architecture that can survive cyberattacks is one of the

most challenging difficulties that must be overcome by moving to the cloud. Sadly, the

steps involved in this procedure remain a mystery to many organizations.

When companies think migrating data to the cloud is just lifting and shifting their

current information technology stack and security controls to a cloud environment,

they leave their data vulnerable to various potential risks. Insufficient comprehension of

shared responsibility for security contributes to the problem.

�An Abundance of Available Tools
As the demand for cloud technology continues to rise, tools have also been developed

to meet these demands. Each tool has pros and cons; more tools can lead to

misconfiguration, allowing an attacker to use these threats to access the company’s data.

Now we have explained security and DevOps in general, let’s do this. Still, from the

Amazon AWS side, Amazon AWS provides different security services that allow clients to

understand what is happening on their accounts and correctly protect them; Figure 8-2

shows you the security services inside Amazon AWS.

Chapter 8 DevOps Security (DevSecOps)

325

Figure 8-2.  Amazon AWS security services

We also have other services in AWS that can be considered helpful for security

purposes and guide you to secure the company account, as you can see in Figure 8-3.

Chapter 8 DevOps Security (DevSecOps)

326

Figure 8-3.  AWS helpful security services

I will highlight some of these services. After that, I will cover how you can integrate

DevSecOps with your pipeline and show you an example of the SonarCloud and

Checkov tools that allow you to check threats into your IaC.

�AWS Artifact
AWS Artifact is a free service provided by Amazon AWS. It is a self-service portal

that allows on-demand access to compliance reports and entry into certain online

agreements.

Figure 8-4 shows the welcome screen for AWS Artifact.

Chapter 8 DevOps Security (DevSecOps)

327

Figure 8-4.  Amazon AWS Artifact

Click “View reports” and you will see a different security report issued by Amazon or

a third party; see Figure 8-5.

Figure 8-5.  AWS Artifact report

�AWS Certificate Manager
The AWS Certificate Manager (ACM) simplifies managing SSL/TLS X.509 certificates and

keys for your AWS-hosted websites and apps, including their generation, storage, and

renewal.

Chapter 8 DevOps Security (DevSecOps)

328

�Request a Public Certificate Using the Console
From the console, under Certificate Manager in the left panel, click “Request certificate”;

see Figure 8-6.

Figure 8-6.  Certificate Manager, request certificate

The next screen will be information for the certification, such as the domain name,

which can be on Route 53 or any other third-party solution.

We have a validation method, which is either by DNS if you have permission to

modify the DNS or via email; AWS recommends using DNS by adding a CNAME record

after creating the certificate to your domain.

Note for the domain setup on Route 53, the validation will take a few minutes, but

the third-party solution will take 24 to 28 hours.

Figure 8-7 shows the certificate configuration needed on AWS.

Chapter 8 DevOps Security (DevSecOps)

329

Figure 8-7.  AWS Certificate Manager, request certificate configuration

Click the Request button, and the status of the certificate will be pending validation

until you add the CNAME to your domain; see Figure 8-8.

Figure 8-8.  AWS Certificate Manager, pending validation

If you click the generated certificate, you will see the CNAME that should be added to

your domain; either you will do it manually or by clicking the “Create records” button, as

shown in Figure 8-9.

Chapter 8 DevOps Security (DevSecOps)

330

Figure 8-9.  Certificate Manager, certificate validation in Route 53

You can list your certificate from the right panel, as shown in Figure 8-10.

Figure 8-10.  AWS Certificate Manager services, list certificate

�Web Application Firewall
You can keep tabs on all the HTTP(S) traffic sent to your secure web app resources

with the help of AWS Web Application Firewall (WAF) (Figure 8-11), a web application

firewall. The following resources, such as Load Balancer, CloudFront, API Gateway, and

more, can be shielded from harm.

Figure 8-11.  WAF services, main page

Chapter 8 DevOps Security (DevSecOps)

331

You can also manage who can access what is inside your site using AWS WAF;

whenever access is blocked, the WAF-connected service will verify and respond with

HTTP status code 403.

Or it will send a response you have customized based on the criteria specified, such

as the IP addresses from which the requests originated or the values of query strings.

Let’s talk about the central components of AWS WAF.

�Web ACLs
You can create an ACL in a web browser to restrict access to sensitive Amazon Web Services

data. To establish a security policy for your website, you must create a web ACL and add

rules. Web requests can be inspected according to the criteria defined by the regulations.

The action to be taken based on recommendations that meet the requirements is also

specified in the rules. Any requests not explicitly denied or granted by the rules can be

banned or granted access based on the web ACL’s default action, which you specify.

�Rules
Each rule has a statement describing the inspection criteria and an action to take if a

web request fulfills the rule’s requirements. A match occurs whenever the conditions are

satisfied by a web request. You can configure rules to reject requests that match, to let

those requests through, or to count them, and you have two options: the custom rule or

the rule managed by AWS.

�Rules Group
The rules for a web access control list can be organized into groups for easy reuse.

In the next section, I will show you how to set up the WAF using Terraform. Using IaC

will demonstrate the power of using it.

The Terraform module to configure WAF Web ACL V2 for Application Load Balancer;

the module accepts Load Balancer ARNs and will support the following:

•	 AWS managed rule sets

•	 Associating with Application Load Balancers (ALBs)

•	 Blocking IP sets

Chapter 8 DevOps Security (DevSecOps)

332

Terraform will be structured within two files only.

•	 Main.tf

•	 Variable.tf

�Variable.tf

First, we need to define the variable file, which will contain the changeable things inside

the code, such as the ARN or name, so deploying the code to a different environment will

work fine.

 1. variable "name_prefix" {

 2. type = string

 3. description = "Name prefix used to create resources."

 4. }

 5.

 6. variable "create_alb_association" {

 7. type = bool

 8. description = "Whether to create alb association with WAF web acl"

 9. default = true

10. }

11.

12. variable "alb_arn" {

13. type = string

14. description = "Application Load Balancer ARN"

15. default = ""

16. }

17.

18. variable "tags" {

19. description = "A map of tags (key-value pairs) passed to resources."

20. type = map(string)

21. default = {}

22. }

23.

24. variable "rules" {

25. description = "List of WAF rules."

26. type = any

Chapter 8 DevOps Security (DevSecOps)

333

27. default = []

28. }

29.

30. variable "visibility_config" {

31. �description = "Visibility config for WAFv2 web acl. https://www.

terraform.io/docs/providers/aws/r/wafv2_web_acl.html#visibility-

configuration"

32. type = map(string)

33. default = {}

34. }

35.

36. variable "add_blacklist_rule" {

37. type = bool

38. description = "Add blacklist rule?"

39. }

40.

41. variable "blacklist_ips" {

42. type = list(string)

43. description = "Black list IPs to add, required when add_blacklist_

rule = true"

44. }

45.

46. variable "scope" {

47. type = string

48. �description = "Specifies whether this is for an AWS CloudFront

distribution or a regional application. Valid values are CloudFront

or REGIONAL. To work with CloudFront, you must also specify the

region us-east-1 (N. Virginia) on the AWS provider."

49. default = "REGIONAL"

50. }

51.

Chapter 8 DevOps Security (DevSecOps)

334

�main.tf

The main file will have the WAF configuration.

 1. resource "aws_wafv2_ip_set" "blacklist" {

 2. count = var.add_blacklist_rule ? 1 : 0

 3. name = "blacklist"

 4. description = "IPs to blacklist"

 5. scope = "REGIONAL"

 6. ip_address_version = "IPV4"

 7. addresses = var.blacklist_ips

 8. }

 9.

 10. #####

 11. # WAFv2 web ACL

 12. #####

 13. resource "aws_wafv2_web_acl" "main" {

 14. name = var.name_prefix

 15. scope = var.scope

 16. /* depends_on = [

 17. aws_wafv2_ip_set.blacklist

 18.] */

 19. default_action {

 20. allow {}

 21. }

 22.

 23. dynamic "rule" {

 24. for_each = var.rules

 25. content {

 26. name = lookup(rule.value, "name")

 27. priority = lookup(rule.value, "priority")

 28.

 29. # Action block is required for ip_set

 30. dynamic "action" {

 31. �for_each = length(lookup(rule.value, "action", {})) == 0 ?

[] : [1]

Chapter 8 DevOps Security (DevSecOps)

335

 32. content {

 33. dynamic "allow" {

 34. �for_each = lookup(rule.value, "action", {}) == "allow" ?

[1] : []

 35. content {}

 36. }

 37.

 38. dynamic "count" {

 39. �for_each = lookup(rule.value, "action", {}) == "count" ?

[1] : []

 40. content {}

 41. }

 42.

 43. dynamic "block" {

 44. �for_each = lookup(rule.value, "action", {}) == "block" ?

[1] : []

 45. content {}

 46. }

 47. }

 48. }

 49.

 50.

 51. �# Required for managed_rule_group_statements. Set to none,

otherwise count to override the default action

 52. dynamic "override_action" {

 53. �for_each = length(lookup(rule.value, "override_action", {}))

== 0 ? [] : [1]

 54. content {

 55. dynamic "none" {

 56. �for_each = lookup(rule.value, "override_action", {}) ==

"none" ? [1] : []

 57. content {}

 58. }

 59.

Chapter 8 DevOps Security (DevSecOps)

336

 60. dynamic "count" {

 61. �for_each = lookup(rule.value, "override_action", {}) ==

"count" ? [1] : []

 62. content {}

 63. }

 64. }

 65. }

 66.

 67. statement {

 68.

 69. dynamic "ip_set_reference_statement" {

 70. �for_each = length(lookup(rule.value, "ip_set_reference_

statement", {})) == 0 ? [] : [lookup(rule.value, "ip_set_

reference_statement", {})]

 71. content {

 72. �arn = var.add_blacklist_rule ? aws_wafv2_ip_set.

blacklist[0].arn : null //lookup(ip_set_reference_

statement.value, "arn")

 73. }

 74. }

 75.

 76. dynamic "managed_rule_group_statement" {

 77. �for_each = length(lookup(rule.value, "managed_rule_group_

statement", {})) == 0 ? [] : [lookup(rule.value, "managed_

rule_group_statement", {})]

 78. content {

 79. �name = lookup(managed_rule_group_statement.

value, "name")

 80. �vendor_name = lookup(managed_rule_group_statement.value,

"vendor_name", "AWS")

 81.

 82. dynamic "excluded_rule" {

 83. �for_each = length(lookup(managed_rule_group_

statement.value, "excluded_rule", {})) == 0 ? [] :

toset(lookup(managed_rule_group_statement.value,

"excluded_rule"))

Chapter 8 DevOps Security (DevSecOps)

337

 84. content {

 85. name = excluded_rule.value

 86. }

 87. }

 88. }

 89. }

 90. }

 91.

 92. dynamic "visibility_config" {

 93. �for_each = length(lookup(rule.value, "visibility_config")) ==

0 ? [] : [lookup(rule.value, "visibility_config", {})]

 94. content {

 95. �cloudwatch_metrics_enabled = lookup(visibility_config.

value, "cloudwatch_metrics_enabled", true)

 96. �metric_name = lookup(visibility_config.

value, "metric_name", "${var.name_prefix}-default-rule-

metric-name")

 97. �sampled_requests_enabled = lookup(visibility_config.

value, "sampled_requests_enabled", true)

 98. }

 99. }

100. }

101. }

102.

103. tags = var.tags

104.

105. dynamic "visibility_config" {

106. �for_each = length(var.visibility_config) == 0 ? [] : [var.

visibility_config]

107. content {

108. �cloudwatch_metrics_enabled = lookup(visibility_config.value,

"cloudwatch_metrics_enabled", true)

109. �metric_name = lookup(visibility_config.

value, "metric_name", "${var.name_prefix}-default-web-acl-

metric-name")

Chapter 8 DevOps Security (DevSecOps)

338

110. �sampled_requests_enabled = lookup(visibility_config.value,

"sampled_requests_enabled", true)

111. }

112. }

113. }

114.

115. #####

116. # WAFv2 web acl association with ALB

117. #####

118. resource "aws_wafv2_web_acl_association" "main" {

119. count = var.create_alb_association ? 1 : 0

120.

121. resource_arn = var.alb_arn

122. web_acl_arn = aws_wafv2_web_acl.main.arn

123.

124. depends_on = [aws_wafv2_web_acl.main]

125. }

Check what kind of input you need to use and deploy the code in Table 8-2.

Table 8-2.  WAF Terraform Input Needed

Variable Description

Region The geographic area where the WAF will be deployed

blacklist_ips The list of the IP will be blocked

name_prefix WAF name

alb_arn Load balancer ARN that will be attached with the WAF

Tags A map of tags (key-value pairs) passed to resources.

create_alb_association Whether to create an ALB association with the WAF web ACL

visibility_config Visibility config for WAFv2 web ACL

add_blacklist_rule Add blacklist rule

blacklist_ips Blacklist IPs to add, required when add_blacklist_rule = true

Chapter 8 DevOps Security (DevSecOps)

339

One of the benefits of creating a code like this is that you can use it as a module in

another repo in case you would like to do that by calling the repo itself like the following

example:

 1. module "waf" {

 2. source = "git@github.com:osamaoracle/aws_waf.git"

 3. name_prefix = var.name_prefix

 4. tags = var.tags

 5. rules = var.rules

 6. visibility_config = var.visibility_config

 7. create_alb_association = var.create_alb_association

 8. alb_arn = var.alb_arn

 9. add_blacklist_rule = var.add_blacklist_rule

10. blacklist_ips = var.blacklist_ips

11. }

�Security Hub
The AWS Security Hub gives you a complete picture of your security status in AWS. It

assists you in evaluating the condition of your environment in comparison to the

standards and best practices used in the security sector. It collects information on

security incidents involving all AWS accounts, services, and compatible third-party

partner products.

The data is then used to assist you in analyzing your security patterns and

determining which security concerns should be given the most attention.

AWS Security Hub’s Advantages

•	 Less work is required to gather and sort data. Security Hub decreases

the labor required to gather and prioritize security finds across

accounts. It also analyzes finding data via a standard finding format,

removing the need to handle finding data. After that, Security

Hub will assist you in selecting the most significant providers by

correlating the results from all the other providers.

Chapter 8 DevOps Security (DevSecOps)

340

•	 It has the ability to remediate findings automatically. Amazon

EventBridge can be integrated with Security Hub. When a discovery

is received, you can set a custom action to automate the remediation

of that finding.

•	 It compares current security measures to industry standards and best

practices. The AWS recommended practices and industry standards

are the foundation for the continual installation and security checks

carried out automatically by Security Hub at the account level.

�Enabling Security Hub
You can activate the supported security standards when you enable Security Hub from

the console.

To activate the Security Hub, follow these steps:

	 1.	 You will need the IAM credentials with permission.

	 2.	 Choose to activate AWS Security Hub when you launch the

Security Hub interface for the first time.

	 3.	 The security requirements that Security Hub adheres to are

detailed on the welcome page under the heading “Security

standards.”

	 a.	 Simply checking the box next to a standard will turn it on.

	 b.	 Remove the check mark from the box next to the standard you want to

deactivate.

	 4.	 Finally, Select the check box Enable Security Hub.

If you want to enable multiple accounts, follow the steps in this repo: https://

github.com/awslabs/aws-securityhub-multiaccount-scripts.

�Security Standards

Compliance with regulatory frameworks, industry best practices, or business rules can

be determined using a set of associated controls provided by security standards; see

Figure 8-12.

Chapter 8 DevOps Security (DevSecOps)

https://github.com/awslabs/aws-securityhub-multiaccount-scripts
https://github.com/awslabs/aws-securityhub-multiaccount-scripts

341

Figure 8-12.  Security Hub, security standard section

The following information can be found in this section of the Security Hub:

•	 The kind of security protocol to which the control was assigned

•	 The AWS resource that applied any rules or control

•	 Whenever it is relevant, the AWS Config rule that is applied to

exercise control

•	 All of the control’s parameters, if there are any

Plus, you can find the current security issues based on the region and categorize

them by level, as shown in Figure 8-13.

Figure 8-13.  Security Hub, finding by region

Chapter 8 DevOps Security (DevSecOps)

342

�Trusted Advisor
The idea of a Trusted Advisor service incorporates the best practices that AWS has

discovered in catering to hundreds of thousands of users. The Trusted Advisor will

analyze your AWS setup, after which suggestions will be provided if there are any

changes to reduce costs, increase system availability and performance, or assist in

closing security vulnerabilities.

You may see the message “Check findings for your AWS account” on the

Recommendation page of the Trusted Advisor interface. After reviewing the results,

you can take the suggested actions to resolve any problems. For instance, to lower your

monthly price, Trusted Advisor may indicate that you can eliminate underutilized

resources, such as Lambda and EC2; Figure 8-14, shows the Trusted Advisor dashboard.

If you have Security Hub enabled for your AWS account, the Trusted Advisor

dashboard will allow you to examine any findings that have been generated.

The Trusted Advisor checks the following seven core things:

•	 Permission, S3 bucket

•	 Security group

•	 IAM usage

•	 Root account, MFA

•	 Public snapshot for EBS

•	 Public snapshot for RDS

•	 Services limits

Chapter 8 DevOps Security (DevSecOps)

343

Figure 8-14.  Trusted Advisor dashboard

Clicking Security will give the AWS services you use and the security

recommendation you need to apply or reconfigure, as shown in Figure 8-15.

Figure 8-15.  Trusted Advisor security recommendation

Chapter 8 DevOps Security (DevSecOps)

344

After discussing some security services in Amazon AWS, it’s time to explain policy as

code, how it can benefit security and compliance, and how it works.

�Policy as Code
The policy can be considered a collection of rules or strategies for particular

circumstances. It is a method for enforcing specific rules and limitations prohibiting

illegal access to resources such as services and environments. There are three distinct

categories of insurance plans, namely:

•	 Security policies are organizational policies that an organization

implements to ensure the safety of its infrastructure resources.

•	 Compliance policies ensure that the system or resources comply

with PCI-DSS, GDPR, or HIPAA standards. The guidelines ensure

compliance.

•	 Policies for operational excellence prioritize ensuring that all services

and resources have elements that simplify day-to-day operations, for

example, labeling all available resources.

Policy as code automates and manages these rules or plans by expressing them

in a high-level language such as JSON. Infrastructure as code (IaC) involves writing

infrastructure resources as code. HashiCorp Sentinel, OPA, and CloudFormation Guard

are popular policy-as-code technologies.

Policy as code is an outgrowth of DevSecOps, a culture that supports the shift-left

mentality. If we adopt security measures at each level of the process, we can detect and

resolve problems sooner, saving us time, effort, and money.

�Policy as Code Benefits

The following are the benefits:

•	 Integration with automation: Since the policy is written down as code

in a text file, we can utilize it in the tools we use for automation. For

instance, before providing your infrastructure, you may build up a

pipeline stage that runs before to verify whether the infrastructure

resources fulfill all of the requirements indicated in the policy file;

this can be done before applying your infrastructure.

Chapter 8 DevOps Security (DevSecOps)

345

•	 Version control: The most significant benefit of defining policy

in code is that it is much simpler to use and administer under a

version control system (VCS); it enables you to use all of the current

capabilities of the version control system.

•	 Accessibility: The policy’s information and logic are stated directly in

the code, and the code can be commented on for more clarification;

this makes the policies more accessible than just being told

about them.

As part of your CI/CD strategy, you may use policy as code in several ways, as

mentioned in Figure 8-16.

Figure 8-16.  How policy as code works, one of the methods

The following is what happens in the cycle:

	 1.	 DevOps will upload the code/new code to version control

(GitHub, GitLab).

	 2.	 Depending on the stages built, the pipeline will start automatically

once the PR/MR is created.

	 3.	 One of the stages will validate the code, for example, IaC, against

the policy code.

Chapter 8 DevOps Security (DevSecOps)

346

	 4.	 Pipeline termination occurs if validation fails; in this case, the

DevOps engineer must modify the infrastructure code to ensure it

satisfies the policy; we’ll send it to the cloud provider if everything

checks out.

	 5.	 The code for the infrastructure has already been verified to work

so that it can be automatically deployed.

Another method for the policy as code, called a pre-approved template, will be

locked based on the procedure. Usually, the policy will disable changing the variable of

the IaC and will not allow any changes to the code.

For example, it is forbidden for programmers to utilize the template with some minor

configuration changes, such as instance type.

Otherwise, developers are free to utilize whichever high-end VM instance type

they choose, which can be prohibited due to cost considerations; Figure 8-17 explains

this cycle.

Figure 8-17.  Policy as code, predefined template

As the figure shows, I aim to allow developers to apply/modify the infrastructure

resources. However, based on specific rules, I reduce wait times by eliminating the need

for tickets and saving DevOps time.

A pipeline failure signals a policy violation if developers use a value in the

infrastructure code that violates the policy.

	 1.	 The developer will use the template, change the code depending

on their needs, and then create a pull/merge request to allow

team review.

Chapter 8 DevOps Security (DevSecOps)

347

	 2.	 The pipeline will automatically start and be integrated with the

policy as code to check whether the code meets the policy.

	 3.	 The pipeline checks out the application and the underlying

infrastructure code.

	 4.	 After everything has been checked and verified, the pipeline

system will run the infrastructure code to set up the necessary

conditions for the application. If the validation fails, then the

pipeline will fail too.

Now we know about the policy as code, but how will I use it with Amazon AWS? The

following section will explain how to use it.

�CloudFormation Guard
The CloudFormation Guard tool is a policy-as-code validation solution that is a free

source; It is compatible with technologies for configuring the infrastructure, such as

Terraform and CloudFormation.

It allows developers to design rules and evaluate structured data in YAML or JSON

format; the good thing about it is that it supports Kubernetes.

Refer to this repo for more information about it: https://github.com/aws-

cloudformation/cloudformation-guard.

�How to Install CloudFormation Guard
Open the terminal, whether Mac, Linux, or PowerShell.

1. $ curl --proto '=https' --tlsv1.2 -sSf https://raw.githubusercontent.

com/aws-cloudformation/cloudformation-guard/main/install-guard.sh | sh

Depending on your operating system, remember to add ~/.guard/bin/ to

your $PATH.

Or the easier way is to use Homebrew. You can configure Brew on Ubuntu, for

example, efficiently and use it to install the package.

1. brew install cloud formation-guard

Chapter 8 DevOps Security (DevSecOps)

https://github.com/aws-cloudformation/cloudformation-guard
https://github.com/aws-cloudformation/cloudformation-guard

348

To validate the CloudFormation template with CloudFormation Gurard, all you have

to do is run the following command:

1. cfn-guard validate –d cloud formation-template-name –r guard-rule-file

How do you write the Guard policy against the CloudFormation template you wrote?

Assuming that we have a CloudFormation template that will define the Amazon EBS,

use this:

 1. ---

 2. AWSTemplateFormatVersion: '2023-01-28'

 3. Description: EBS template

 4. Resources:

 5. SampleVolume:

 6. Type: AWS::EC2::Volume

 7. Properties:

 8. AvailabilityZone: eu-west-1a

 9. Size: 25

10. VolumeType: gp3

On the other hand, the policy as code or Guard, in this case, protects from deploying

or setting up any other EBS with a particular rule that we are using.

1. AWS::EC2::Volume {

2. Properties {

3. Encrypted == true

4. Size >= 30

5. VolumeType == 'ssd'

6. AvailabilityZone == 'eu-west-1b'

7. }

8. }

We need to execute the previous command to determine whether the

CloudFormation file we wrote corresponds to the EBS disk that complies with the policy.

1. cfn-guard validate –d mycloudformation-template.yaml -r

mypolicy-template

Chapter 8 DevOps Security (DevSecOps)

349

The output will look like the following:

 1. FAILED rules

 2.

 3. cfntestrule/default FAIL

 4.

 5. ---

 6.

 7. Evaluation of rules cfntestrule against data cfntest.yaml

 8.

 9. --

10.

11. Property traversed until [/Resources/SampleVolume/Properties] in data

[cfntest.yaml] is not compliant with [cfntestrule/default] due to retrieval

error. Error Message [Attempting to retrieve array index or key from map at

path = /Resources/SampleVolume/Properties , Type was not an array/object

map, Remaining Query = Encrypted]

12.

13. Property [/Resources/SampleVolume/Properties/Size] in data [cfntest.

yaml] is not compliant with [cfntestrule/default] because provided value

[25] did not match expected value [30]. Error Message []

14.

15. Property [/Resources/SampleVolume/Properties/AvailabilityZone] in data

[cfntest.yaml] is not compliant with [cfntestrule/default] because provided

value ["us-west-2a"] did not match expected value ["eu-west-2b"]. Error

Message []

16.

But on the other hand, we can change the CloudFormation template to meet the

policy like the following:

 1. ---

 2. AWSTemplateFormatVersion: '2023-01-28'

 3. Description: EBS template

 4. Resources:

 5. SampleVolume:

 6. Type: AWS::EC2::Volume

Chapter 8 DevOps Security (DevSecOps)

350

 7. Properties:

 8. Encrypted: true

 9. AvailabilityZone: eu-west-1b

10. Size: 30

11. VolumeType: ssd

Run the same command as shown previously against the policy; the output will look

like this:

1. PASS rules

2. cfntestrule/default PASS

3. ---

4. Evaluation of rules cfntestrule against data cfntest.yaml

5. --

6. Rule [cfntestrule/default] is compliant for Template [mycloudformation-

template.yaml]

7.

After learning about the CloudFormation Guard, it’s time to move on to the following

service.

�Amazon AWS Service Catalog
AWS Service Catalog is a managed service offered by AWS that enables businesses to

provide catalogs that the team will already approve; any AWS resources, including EC2,

RDS, applications, and many more, are included in AWS IT services. See Figure 8-18.

Figure 8-18.  Service Catalog dashboard

Chapter 8 DevOps Security (DevSecOps)

351

This service offers the ability to construct a service catalog and grant access to other

teams via a centralized interface.

IT administrators or teams working in DevOps can use this method to guarantee that

other groups are correctly applying compliant infrastructure resources.

Since we are talking about the Service Catalog, it will be good for you to understand

some concepts.

Users: Two types of catalogs are supported:

•	 Administrator catalog: From the name, you can understand that

catalog is for the IT administrator, which will be a template for the

CloudFormation, access, and policies.

•	 End-user catalog: This is responsible for a team member interested in

provisioning the resources via the catalog.

Products: You have an IT service that you want to let people use on AWS. A product

comprises one or more AWS resources, such as EC2 instances, storage volumes,

databases, monitoring configurations, networking components, or packaged AWS

Marketplace products. A product can be anything from a single compute instance

running AWS Linux to a fully configured, multitier web application running in its

environment.

Portfolios: These are collections of products with details on their setup and provide

better control over which customers can utilize certain products and under what

conditions. The Service Catalog allows you to construct a unique portfolio for each user

role within your business and selectively offer them access to the right portfolio based on

their specific needs.

Constraints: The last concept is how you will deploy AWS resources for the

product; you need to know there are different types of AWS Service Catalog constraints,

shown here:

•	 Launch constraints

•	 Notification constraints

•	 Template constraints

The first step is to set up the Service Catalog.
To set up and provision the products and portfolios, you can use a CloudFormation

template as an example provided by AWS. You can change settings depending on what

you need.

Chapter 8 DevOps Security (DevSecOps)

352

Here is the template link:

1. https://awsdocs.s3.amazonaws.com/servicecatalog/development-environment.

template

This template will allow you to launch a new Amazon EC2 machine using the

Amazon Linux AMI; the template will enable you to change the region and determines

which AMI is used.

For this purpose, an EC2 security group is created, and SSH access is allowed.

The second step is to create a portfolio.

•	 Launch the Service Catalog admin panel.

•	 Select Portfolios from the sidebar, as shown in Figure 8-19.

Figure 8-19.  Creating portfolios

Once you click, you will be redirected to a new screen; click “Create portfolio,” as

shown in Figure 8-20.

Chapter 8 DevOps Security (DevSecOps)

353

Figure 8-20.  Portfolios screen

Fill in the information based on your setup, as shown in Figure 8-21.

Chapter 8 DevOps Security (DevSecOps)

354

Figure 8-21.  Portfolio configuration screen

Click Create, and the portfolio will be created; confirm the creation and click it again,

as shown in Figure 8-22.

Chapter 8 DevOps Security (DevSecOps)

355

Figure 8-22.  Portfolio configuration and creation

Once you have created a portfolio, click the administration portfolio (that we created

earlier) to add the product, as you can see in Figure 8-23.

Chapter 8 DevOps Security (DevSecOps)

356

Figure 8-23.  Adding a product to the portfolio

Enter the following information about your product into the corresponding field on

the “Create product” page:

•	 Set the product name to EC2-Linux.

•	 Fill in Product Description as for DevOps Team – EC2 Products.

•	 Set Owner to DevOps.

•	 Leave Distributor empty.

•	 For the version, we will use the cloud formation template provided by

Amazon AWS.

•	 Set version name to v1.0.

The support details will depend on the company.

•	 Email contact: Team-email@company.com

•	 Support Link: http://company.zendesk.com/

•	 Support description

Figure 8-24 shows this configuration.

Chapter 8 DevOps Security (DevSecOps)

http://company.zendesk.com/

357

Figure 8-24.  Product configuration

The next step is to make the constraints now that the products have been created.

As shown in Figure 8-25, choose the second tab inside the portfolio.

Figure 8-25.  Creating a constraint

Use the “Create constraint” page to specify Ec2-Linux as the product we created

earlier; finally, choose Template as the constraint type; see Figure 8-26.

Chapter 8 DevOps Security (DevSecOps)

358

Figure 8-26.  Creating constraints for products

Choose the text editor option under “Template constraint”; we will use the

following rule:

 1. {

 2. "Rules": {

 3. "Rule1": {

 4. "Assertions": [

 5. {

 6. �"Assert" : {"Fn::Contains": [["t2.medium", "t2.small"],

{"Ref": "InstanceType"}]},

 7. �"AssertDescription": "Instance type should be t2.medium or

t2.small"

Chapter 8 DevOps Security (DevSecOps)

359

 8. }

 9.]

10. }

11. }

12. }

You can understand from the rule mentioned earlier that the EC2 has to be only

t2.small or t2.medium; see Figure 8-27.

Figure 8-27.  Template constraint

Chapter 8 DevOps Security (DevSecOps)

360

We will need to set up the access to allow users to use this portfolio, as shown in

Figure 8-28; by clicking “Grant access,” you will have three different options under

AWS IAM.

•	 Groups

•	 Roles

•	 Users

Figure 8-28.  Granting access to allow users to use a portfolio

You can let others see your portfolio in one of two ways. Your portfolio can be shared

with other accounts in two ways: by granting access to IAM principals (groups, roles, or

users) already existent in your account or by specifying principal names (groups, roles,

or users); see Figure 8-29.

Chapter 8 DevOps Security (DevSecOps)

361

Figure 8-29.  Granting access to a portfolio

After that, you should attempt to log in as the authorized user you assigned, go to the

AWS Service Catalog, click Products, and click Launch.

Try to set any instance type other than the one mentioned in the previous role

(t2.meduim or t2.small); se Figure 8-30. The error will look like the following:

The instance type should be either t2.meduim or t2.small (Same as we set before).

Chapter 8 DevOps Security (DevSecOps)

362

Figure 8-30.  Launching a new product

Service catalogs ensure that the end user can offer legally permissible resources.

�Static Code Analysis
Static code analysis is a process that analyzes the code primarily independent of the

programming language and the computing environment in which it is executed. It is

possible to do this without running the software.

This strategy is a tried-and-true method that can identify vulnerabilities and flaws in

any code, regardless of the programming language it was built since the program is not

run while the analysis is taking place.

Even before a program is launched for the first time, static analysis may help uncover

bugs. Not only can finding a mistake lower the cost of repairing the problem, but the

short feedback loop may assist in steering a programmer’s work. Sometimes, a coder

can fix bugs they had no idea were possible. A static analysis tool facilitates knowledge

transfer by providing attack scenarios and details on code structures.

Moreover, static analysis tools simplify the process of revisiting a large body of code

once a security researcher has discovered a new kind of attack to look for potential entry

points. Analyzing historical code for newly found types of faults is crucial since certain

security flaws in software might linger for years before they are uncovered.

Although both are undesirable, false negatives pose a considerably more significant

threat to security; in other words, a false negative occurs when a tool should detect a flaw

in a program but does not.

False positives and negatives are an inevitable byproduct of any static analysis

technique. The vast majority of factories make both.

Different tools can be used for static code analysis, the most common one is

covered next.

Chapter 8 DevOps Security (DevSecOps)

363

�Checkov
Within DevOps, many options can be used to secure your code, and you can add an extra

layer of security to your code to scan it and ensure there are no threats.

One of the famous wells known tools and open source is Checkov.

Whether using Terraform, CloudFormation, Kubernetes, Helm, ARM Templates, or

the Serverless framework, Checkov’s unified command-line interface makes it easy to

manage and evaluate IaC scan results from any of these and other platforms.

The installation for this tool is simple; I am using Ubuntu. To install it, follow

these steps:

1. sudo apt update

2. sudo apt install software-properties-common

3. sudo add-apt-repository ppa:deadsnakes/ppa

4. sudo apt install python3.7

5. sudo apt install python3-pip

6. sudo python3.7 -m pip install -U checkov

To set up the Checkov tool inside your pipeline, first you have to define which CI/CD

tools you are using and what configuration inside the company; the second step will be

to write the pipeline stage that will call the tool to check IaC code based on a file called

.checkov.check.yaml.

You can call the file whatever you want.

Check the following pipeline stage, which calls the Checkov tool based on the

previous file; I will also share the file configuration:

 1. .terraform:test: &terraform_test

 2. stage: security-check

 3. image:

 4. name: bridgecrew/checkov:2-pyston

 5. entrypoint:

 6. - '/usr/bin/env'

 7. �- 'PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/

sbin:/bin'

Chapter 8 DevOps Security (DevSecOps)

364

 8. script:

 9. �- (if [-f "${TF_STATE_NAME}.cache"]; then checkov -f ${TF_

STATE_NAME}.cache; checkov -d . --config-file $CHECKOV_CONFIG_

FILE; checkov -d .terraform --config-file

10. $CHECKOV_CONFIG_FILE; else exit 0; fi);

Note this variable:

1. CHECKOV_CONFIG_FILE = ${CI_PROJECT_DIR}/.checkov.check.yaml

The file checkov.check.yaml configuration will look like this:

 1. compact: true

 2. directory:

 3. - modules

 4. download-external-modules: false

 5. evaluate-variables: true

 6. external-modules-download-path: .external_modules

 7. framework: all

 8. no-guide: false

 9. output: cli

10. quiet: false

11. skip-fixes: true

12. skip-check: [CKV_AWS_18,CKV_AWS_144]

13. skip-suppressions: true

14. soft-fail: false

Once the pipeline runs, Checkov will start running based on the previous file; if the

code meets the check, it will be deployed and will give you a summary of the code, the

same as the following example:

Passed checks: 4, Failed checks: 0, Skipped checks: 0

Check: "Ensure all data stored in the S3 bucket is securely encrypted

at rest."

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "Ensure the S3 bucket has access logging enabled."

Chapter 8 DevOps Security (DevSecOps)

365

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "Ensure all data stored in the S3 bucket have versioning enabled."

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "S3 Bucket has an ACL defined which allows public access."

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Otherwise, you need to fix the issues inside the code, the same as in the following

example:

Passed checks: 3, Failed checks: 1, Skipped checks: 0

Check: "Ensure all data stored in the S3 bucket is securely encrypted

at rest"

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "Ensure the S3 bucket has access logging enabled"

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "Ensure all data stored in the S3 bucket have versioning enabled"

 PASSED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

Check: "S3 Bucket has an ACL defined which allows public access."

 FAILED for resource: aws_s3_bucket.aws-bucket

 File: /s3.tf:1-25

If you need more information about this tool, refer to https://www.checkov.io/.

�SonarQube
Java-based SonarQube is a free and open-source program developed by SonarSource

(https://www.sonarsource.com/) and is a cloud-based and on-premises solution.

Chapter 8 DevOps Security (DevSecOps)

https://www.checkov.io/
https://www.sonarsource.com/

366

The ability to do static code analysis is a huge step toward ensuring that all of the

code in an application is of a high standard and is safe to use; developer teams can

showcase the quality of their code with SonarQube’s help.

It is possible to automate code analysis on developer contributions with SonarQube

thanks to its seamless integration with CI/CD pipelines; it lowers the possibility of

releasing an app with flaws such as poor security or too complicated code.

�Installing SonarQube

Both manual and automated Docker container installations of SonarQube using the

Sonar image are supported. Another option is to deploy a SonarQube VM from the Azure

Marketplace if you have an Azure subscription.

�Manual Installation

I will not go through the manual installation steps because SonarQube needs the

following prerequisites:

•	 Java, or you can use Oracle JRE or OpenJDK

•	 PostgreSQL database, Oracle, or MS SQL Server

•	 Web browser

•	 Install the SonarQube CE (Community Edition).

•	 From the $SONARQUBE-HOME/conf/sonar.properties file,

configure access to the database.

•	 Start the web browser.

�Docker Installation

The Docker engine and the official Docker image for the SonarQube Community Edition

can be downloaded from Docker Hub at https://hub.docker.com/sonarqube/ if you

need to set it up for testing or demonstration reasons.

Or you can even install it using Helm and deploy it on Kubernetes from this

GitHub repo:

https://github.com/SonarSource/helm-chart-sonarqube/tree/master/charts/

sonarqube

Chapter 8 DevOps Security (DevSecOps)

https://hub.docker.com/sonarqube/
https://github.com/SonarSource/helm-chart-sonarqube/tree/master/charts/sonarqube
https://github.com/SonarSource/helm-chart-sonarqube/tree/master/charts/sonarqube

367

It’s easy to install it via Helm. All you have to do is the following:

1. helm repo add sonarqube https://SonarSource.github.io/helm-chart-

sonarqube

2. helm repo update

3. kubectl create namespace sonarqube

4. helm upgrade --install -n sonarqube sonarqube/sonarqube

Also, you can install SonarCube from the AWS Marketplace provided by the cloud

provider, as shown in Figure 8-31.

Figure 8-31.  AWS Marketplace, SonarQube

When using SonarQube in a continuous integration setting, developers typically

have to wait a long time for the analysis findings. Before seeing the code analysis results,

users must commit their changes and wait for the CI process to complete; SonarCube

can be integrated into your CI/CD pipeline easily.

To solve this issue, you need to use another tool called SonarLint, which allows

real-time code analysis, and the good thing about this tool is that you can integrate it

with VS Code and use it while writing your code, as shown in Figure 8-32.

Chapter 8 DevOps Security (DevSecOps)

368

Figure 8-32.  VS Code SonarLint

In addition, you can use Terraform to configure SonarCube using the following. A

URL and credentials (username and password or token) must be entered when setting

up the provider.

 1. terraform {

 2. required_providers {

 3. sonarqube = {

 4. source = "jdamata/sonarqube"

 5. }

 6. }

 7. }

 8.

 9. provider "sonarqube" {

10. user = "admin"

11. pass = "admin"

12. host = "http://127.0.0.1:9000"

13. }

14.

Chapter 8 DevOps Security (DevSecOps)

369

�SonarCloud
Another tool that can be integrated into the CI/CD pipeline and add an extra layer of

security is SonarCloud (Figure 8-33).

Figure 8-33.  SonarCloud dashboard

This is a cloud-based service for analyzing code to find bugs and improve quality.

SonarCloud’s algorithms are deliberately cautious while searching for problems.

These tools aim to reduce the occurrence of false positives.

There are three distinct categories of problems.

•	 Code smells are issues in the code that don’t directly impair the

program’s functionality but might lead to larger, more difficult-to-

fix matters down the line and make it harder to maintain. If these

problems are found early on, technical debt in the application can be

reduced.

•	 Bugs are programming mistakes that prevent a program from

functioning as intended. The trustworthiness of the code is impacted.

•	 Security flaws, also known as vulnerabilities, are flaws in the program

that attackers might use to gain unauthorized access to the system.

SonarCloud was built to be included in the software development life cycle to

intervene and stop problems before they reach production; it occurs in the editor, the

pull request, and the actual code. See Figure 8-34.

Chapter 8 DevOps Security (DevSecOps)

370

Figure 8-34.  Adding SonarCloud to the pipeline

We need to mention that SonarCloud is still new to scanning IaC, which was added

in 2021; the documentation says the following kind of security threats will be discovered

and examined:

•	 Allowing public ACLs or policies on an S3 bucket is security sensitive.

•	 Authorizing HTTP communications with S3 buckets is security

sensitive.

•	 Disabling S3 server access logging is security sensitive.

•	 Disabling server-side encryption of S3 buckets is security-sensitive.

•	 Granting access to S3 buckets to all our authenticated users is

security sensitive.

•	 Having policies granting anonymous access to S3 buckets is security

sensitive.

•	 Unversioned or suspended versioned S3 bucket is security sensitive.

In my opinion, SonarCloud, so far in writing this chapter, will not be your first option

when scanning the IaC, such as Terraform; there have been other tools in the market for

a long time.

As shown in Figure 8-35, you can add the version control repo to the SonarCloud to

ensure it’s free of bugs and security issues.

Chapter 8 DevOps Security (DevSecOps)

371

Figure 8-35.  SonarCloud with one repo

Click the repo.

SonarCloud will give all the information and insight on what has been done and scan

for that repo; see Figure 8-36.

Figure 8-36.  SonarCloud inside the repo

If you click one of the branches, you will see complete information on scanning the

desired repo, as shown in Figure 8-37.

Chapter 8 DevOps Security (DevSecOps)

372

Figure 8-37.  Complete information for the repo

If you need to check the code and the quality of your code, SonarCloud will allow

you to do that by choosing the Code tab; see Figure 8-38, which shows the Terraform

structure and the points that SonarCloud checks.

Figure 8-38.  SonarCloud code tab

So far, DevSecOps is one of the primary important things to consider when talking

about DevOps.

Moreover, AWS provides different services that can be used for this purpose; another

tool that can be used for this is called Amazon CodeGuru.

Chapter 8 DevOps Security (DevSecOps)

373

�Amazon CodeGuru
The code review process will begin when all the developers have finished writing their

code and have submitted a pull request to merge it to an upstream branch. It is common

practice for the project’s team leader to review the code; but visually examining the

whole code can be time-consuming.

The code review process is essential, but it must not increase the burden of reviewers

or constitute a stumbling block in the development process. We can automate the

process of examining the code by using several tools for code review. Some well-known

products now available on the market, such as SonarQube, do this for us.

In addition, Amazon has just introduced a new service called Amazon CodeGuru

(Figure 8-40), which can undertake code evaluations and provide information about

application performance. It helps improve the program’s stability, enables us to delve

deep, and reduces the time we spend discovering challenging problems. Such issues

include sensitive data, race situations, undefined functions, and sluggish resource leaks.

See Figure 8-39.

Figure 8-39.  Amazon CodeGuru Dashboard

The following are some of the functions that CodeGuru offers:

•	 The reviewer provides automated code inspection and review for

static code.

•	 The profiler provides visibility and suggestions on the program’s

performance while running.

To understand more about CodeGuru, let’s go through the following example:

integrating CodeGuru with CodeCommit will analyze the pull request.

	 1.	 The first step is creating a CodeCommit repository inside Amazon

AWS; see Figure 8-40.

Chapter 8 DevOps Security (DevSecOps)

374

Figure 8-40.  Creating a CodeCommit repository and enabling CodeGuru

Figure 8-41.  CodeGuru associated repo that we created earlier

	 2.	 To upload the code, go to https://github.com/OsamaOracle and

upload the code from there, but before doing that, go to CodeGuru

and check the associated repo.

See Figure 8-41.

Chapter 8 DevOps Security (DevSecOps)

https://github.com/OsamaOracle

375

You can upload the code by using the following:

1. git clone ssh://git-codecommit.eu-west-1.amazonaws.com/v1/

repos/poc-test

2. cp Python-new-file-devops poc-test

3. git add .

4. git commit -m "First draft."

5. git push origin master

	 3.	 Create a new branch named test, make some changes to the code,

and then push the updated version back to the repository. After

that, we will submit a pull request to the main/master branch

from the test branch. See Figure 8-42.

Figure 8-42.  Creating a pull request inside the code commit

	 4.	 Once you have done this, under Code Guru, the details section

will provide suggestions whenever you submit a pull request. See

Figure 8-43.

Figure 8-43.  The details section

	 5.	 Code Guru Dashboard will provide information on what is

pending or completed for review (review status); it will take 10

minutes to complete the analysis for the code and give you the

recommendation needed; see Figure 8-44.

Chapter 8 DevOps Security (DevSecOps)

376

Figure 8-44.  CodeGuru dashboard

	 6.	 Click the pull request once the status shows it’s completed, and

you will see the recommendation related to the code, as shown in

Figure 8-45.

Chapter 8 DevOps Security (DevSecOps)

377

Figure 8-45.  CodeGuru recommendations

�Summary
In this chapter, I focused on the relationship between DevOps and security under one

concept called DevSecOps; I mentioned different tools provided by Amazon AWS and

third parties.

I provided an example for a real case scenario using these tools. You learned the

difference between SonarQube and SonarCloud and how to integrate Amazon AWS

services to provide a complete DevOps solution included with a security layer.

Again, there is no good or bad tool, and it’s all up to the company’s configuration,

budget, and use case; you can see that the continuous integration and delivery pipeline

is automated, except for the human reviews at certain stages.

The next chapter will cover one of the most commonly used tools by DevOps

engineers: Kubernetes. The chapter will detail what Kubernetes is, as well as Kubernetes

architecture, Kubernetes objects, and how to create Kubernetes in different ways.

Since we are talking about Amazon AWS, we will cover Amazon EKS and real-life

examples of how to manage the EKS.

Chapter 8 DevOps Security (DevSecOps)

379
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_9

CHAPTER 9

Microservices vs.
Monolithic
In this chapter, we will compare two popular application architectures: microservices

and monolith.

In addition, I will walk you through containers of the most common tools used for

microservices.

I will also demonstrate the containerization solution from Amazon AWS’s side,

including how to configure it and how to use it to deploy an application.

�Monolithic
A standard method for creating server and client applications is to use a monolithic

architecture, wherein one huge codebase is used to create these applications. It is

necessary to rebuild and redeploy the whole application to make any code modifications

or updates. If something goes wrong, this process could cause the entire program

to crash.

Application components are merged into one massive whole in monolithic

programs, which are single-tiered. This results in huge codebases that can be difficult

to maintain over time; Figure 9-1 shows the classic application architecture and how a

monolithic application is deployed.

https://doi.org/10.1007/978-1-4842-9303-4_9

380

Figure 9-1.  Monolithic architecture

The fact that all of a monolith’s components are housed in a single location makes

it possible for the development process to be kept to a minimum, which in turn helps

speed up the product’s time to market. Creating a monolith enables a single developer or

a small development team to design, test, and launch apps in less time. Since there is just

one code repository to keep track of for testing and debugging monoliths, rather than

the several code repositories required by microservices-based systems, monoliths are

often much simpler to test. When there are fewer elements to a monolithic program, the

program is easier to maintain and troubleshoot.

The simplicity of a monolithic app’s deployment, management, and maintenance

over a microservices solution is due to its streamlined lack of moving parts.

Suppose we have a simple application that uses this approach. In that case, it will be

necessary to reserve three servers: one for a web application that the public will face, one

to deploy the application, and one for the database. Each of these servers would, in turn,

require expertise.

You can install all the monolithic on one server, but it is not a best practice for

production. Adding another feature to the application will cause extra headaches,

complexity, and downtime. Moreover, if a company deploys to the server once or twice a

year, more planning, operations, and weekends are required.

Chapter 9 Microservices vs. Monolithic

381

While a monolithic approach may involve fewer moving parts at the outset, it

becomes more challenging to install, administer, and keep the overall system working

smoothly as the number of deployable components grows and as data centers grow.

It is far more challenging to pinpoint precisely where to place each part to maximize

resource efficiency and save hardware expenses. Regularly deploying new software

versions is so great that it may make or break many businesses.

�Modular Monolith
The modular monolith is a subset of the single-process monolith, consisting of

independently workable parts that must be combined for deployment. Modules are a

tried and true method of organizing software; see Figure 9-2.

Figure 9-2.  Monolith but deployed as modular

A modular monolith is indeed a good option for many businesses. It can facilitate a

high degree of parallel work if the module borders are specified. It avoids the difficulties

of the more distributed microservice design and has far fewer complicated deployment

considerations; one of the companies that applied a modular monolithic is Shopify.

Chapter 9 Microservices vs. Monolithic

382

�The Challenge
The monolith, whether a single process monolith or a distributed monolith, is typically

more susceptible to the dangers of coupling, particularly implementation and

deployment coupling, which we will examine in further depth in the following sections.

There is a more significant potential for disruption when more people are

confined to a small space. Several developers will want to change the same piece of

code simultaneously, and several groups will want to release new features at various

intervals. Questions of ownership and decision-making authority remain unanswered.

The problems caused by muddled ownership lines have been the subject of numerous

studies.

In my opinion, this is a case of delivery contention. A pertinent query to ask is, how

long does it takes your team to deploy a hotfix to a live environment? In an outage, users

will immediately notice whether your pipeline delivers updates slowly.

Neither adopting a microservice design nor maintaining a monolith ensures that you

will never encounter the difficulties associated with delivery contention. Still, you have a

lot more leeway in tackling this issue when you employ a microservice design because of

the more explicit boundaries it provides.

�Coupling and Cohesion
Other concepts you will hear when you work with microservices and monolithics

are coupling and cohesion. Coupling describes how modifying one element impacts

another, while cohesiveness describes how related pieces of code are grouped.

Conversely, coding cohesion describes how we pile together similar pieces of software.

You can draw a straight line between these ideas.

Cohesion is low if the same functionality is dispersed over two unrelated parts of

code. Also, there is tight coupling, because when this code is modified, it is necessary to

adjust both it and the linked object.

The high cost of modification across service borders in distributed systems means

dealing with a shifting code structure will be costly. Making changes across several

decoupled services while potentially addressing the fallout from service contract breaks

is a significant hassle.

The monolith is flawed because it frequently fails to be either of these. We

accumulate and affix together all kinds of unrelated code instead of leaning toward

cohesiveness and keeping things together that tend to change together.

Chapter 9 Microservices vs. Monolithic

383

Similarly, loose coupling is nonexistent; modifying a single line of code may be

straightforward, but deploying the resulting change may have far-reaching consequences

for the rest of the monolith, necessitating yet another round of deployments.

�Monolithic Advantages and Disadvantages
Like anything else, monoliths present both advantages and disadvantages. The following

are some reasons you might opt for a monolithic architecture:

•	 Cost-effective at the first phases of the application: The source code

may be found in a single location and then distributed as a single

deployment unit. What could be simpler? There are no overhead

costs associated with the infrastructure or product creation.

•	 Easy to deploy: As shown in Figure 9-1, monolithic is less complex;

the deployment should include only a single deployment item (such

as a JAR file, for example). There are no dependencies. You will not

encounter breaking changes when the user interface (UI) is bundled

with the back-end code. At one location, everything both persists and

changes.

•	 Easy to test: Since a monolithic is built as a single application, you can

do the testing for one application and automation as one; moreover,

you test only a single service independent of any others. In most

cases, everything is quite apparent.

•	 Easy to manage: It’s easy because you are working with one

application and one database as one stack.

Let’s not forget the disadvantages of the monolithic approach:

•	 Scaling the application is not easy; you must plan when to mount the

application or add new features.

•	 Want to apply new technology to the infrastructure? Different

obstacles will be in your way.

•	 Development and operation work are separated without any

collaboration; the gap between the two teams is considered an issue,

Chapter 9 Microservices vs. Monolithic

384

and the operation team is not aware of any development work, and

it’s the same for development.

•	 When you employ a monolithic architecture, you are restricted to

using the technologies already inside your monolith. You are not

allowed to utilize any other tools, even if those other tools might be

more effective in solving the situation at hand.

The software business has changed to accommodate the growing number of users by

releasing new versions of existing programs at a higher frequency and with fewer bugs.

Because of the rise in the number of deployments, it was necessary to conceive an

architecture that would handle frequent deployments and tighter update cycles while

lowering the risk of the application being generally unavailable—and thus, microservices

were born.

�Microservices
The idea behind the microservices architecture is to build your program as a collection

of smaller apps. The term microservice is used to describe each of these programs.

It is versioned, has a life cycle, operates in its environment, and is independent of

other components. It also has the option of its deployment life cycle; your application

comprises a collection of microservices, each responsible for a small set of business

rules; Figure 9-3 shows the high-level architecture.

Chapter 9 Microservices vs. Monolithic

385

Figure 9-3.  Microservices high-level architecture

A microservice is similar to a stand-alone piece of full-featured software with its

development cycle and versioning mechanism.

Decoupling microservices is another essential component of the microservice

architecture; each microservice must be able to be provisioned, scaled, started, updated,

or stopped separately from the others. This way, if any of these microservices becomes

unavailable or unstable, it must not affect the availability or stability of the other

microservices or the program.

Microservices support different protocols, such as HTTP (Rest API) or AMQP, and in

general, each of the services completes each other, so we need to access each other.

Figure 9-4 shows an example of different microservices communicating.

Chapter 9 Microservices vs. Monolithic

386

Figure 9-4.  Microservices and how they communicate with each other

Now, if I have many internal microservices, when would it make sense to use the

REST API instead of AMQP for interservice communication? The simple answer is that it

depends on the company’s business.

Note that with the REST API, the debugging process for an HTTP request is relatively

straightforward and straightforward; however, the debugging process for an AMQP

message is more complicated.

Since HTTP is a technology the developers are already aware of, there is no need

to provide further training for a new developer who joins the project. Sharing your

application programming interfaces (APIs) as HTTP APIs is a recommended best

practice since HTTP is the Internet protocol that receives the most significant support.

On the other hand, using AMQP to send messages provides you with dependability,

and the fact that AMQP is asynchronous frees you from worrying about when messages

will be sent. It is unnecessary to know the host or IP address of the cluster of AMQP

brokers to send or receive notifications; this is in contrast to the situation with HTTP, in

which you can have various hosts and IP addresses for each area.

Microservices cannot share resources such as databases; thus, they require the

resource to be separate, even though some companies share the microservices for ease

of management.

Chapter 9 Microservices vs. Monolithic

387

For example, if microservice A’s database goes down, microservice B will keep

running as usual; Figure 9-5 explains how microservices architecture is meant to

function.

Figure 9-5.  Microservices architecture

The standard way for developing applications is known as a monolithic architecture,

which is an approach to application development. This design builds applications from

their component elements, each treated as an independent entity. When we say this, we

are referring to consolidating all relevant functions into a single location where they can

be managed and controlled.

On the other hand, the microservices methodology makes it possible to construct

application architecture using specialized services that each serves a particular function

and is independent regarding their database and business logic. The microservice

architecture operates as a decentralized system in which the individual components

communicate independently using predefined protocols, explained earlier, called APIs.

Chapter 9 Microservices vs. Monolithic

388

�Microservices Advantages and Disadvantages
Each service uses its unique set of access restrictions in a microservice architecture.

You need to ensure that only authorized users cam access each service from inside

the environment and through third-party apps that use the environment’s APIs. To

understand it more, we need to discuss the advantages of this approach.

•	 With better scaling than monolithic scaling, new features can be

added without affecting the current features; in an architecture

that utilizes microservices, every service is individually conceived,

created, and put into operation. If one of the software’s components

requires an update, we can update the microservice that manages

that particular capability and continue to utilize it.

•	 With improved fault tolerance, each application component will

be deployed as a microservice, which means no downtime, the

development process will be accelerated, and developers can focus

on enhancing the application.

Even if one of the services fails, the applications contained inside the microservices

might continue to function normally.

•	 Resiliency: When microservices face an issue or a bug, it is not

mandatory to have downtime to fix the problem; it can be fixed

without affecting the users.

•	 Migrate: It’s easy to move to the new technology and use the latest

with microservices.

Like any other technology, there are disadvantages:

•	 Using microservices means for some companies you will add

complexity because you are working with different tools and layers; the

communication overhead of an application is increased when it is broken

up into several smaller components. While transferring requests across the

various modules, developers have to exercise an increased level of caution.

•	 Your team needs to be up-to-date with technology and what they

are doing; the idea of these kinds of architecture is to adopt the new

technology and keep the system up-to-date and the technology

moving fast, which means the team needs to stay up-to-date.

Chapter 9 Microservices vs. Monolithic

389

•	 Troubleshooting will not be like before because the developer needs

to inspect different logs and services to find the root cause of the

issue. It would be best if you combined another solution for logging

(mentioned in Chapter 7).

Table 9-1 summarizes the differences between microservices and monolithic

depending on various aspects.

Table 9-1.  Difference Between Microservices and Monolithic

Factor Monolithic Microservices

Scaling Hard to scale up or down the system. Easy to implement, and each

microservices can be scaled up or down

depending on the needs.

Security Since you are maintaining one

application as one stack, the security

is increased, and the communication is

done as a single unit.

We need to increase the focus on security

and try to secure the API by providing a

token, which needs implementation.

Agile

methodology

The development team and operation

work as two separate teams.

With implementation services, you

increase automation, which means more

collaboration between the development

and operation.

Agility Hard to adopt new technology. Easy to adopt new technology.

deployment Done as one single deployment makes it

easy; perhaps you will need downtime.

Done depends on which stack or features

need to be deployed; there is no need for

downtime.

Testing Usually, done as one stack application. It can be done on a different level,

and each microservice must be tested

separately.

Rollback Sometimes, rollback will affect the

downtime if the deployment fails.

Deployment failure can be rolled back

easily without affecting the users.

Chapter 9 Microservices vs. Monolithic

390

�Which Architecture Is the Best for You?
Based on the factors in Table 9-1, you can choose between these two architectures based

on different factors; the next section will explain these factors.

Monoliths are best suited for small solutions that don’t require extensive business

logic, high scalability, or much flexibility.

Also, if you want to build your app and start using it immediately, a monolithic

model is the way to go. It’s helpful if you want to preserve your legacy system but don’t

have any immediate plans to modernize it or if you want to pay less up front to test your

company’s idea. Plus, if you are looking for lower latency, all interactions in monolith-

based solutions occur inside a single instance of a running program. The time it takes

for a data packet to go from one place on the network to another has been reduced to a

minimum due to the decreased network communications.

There is no need to move to microservices if your code is well-organized and

observable within a monolith. But when will you go for the microservices architecture,

and based on what?

Including new features and growing your app will be a breeze using the

microservices design. A microservice paradigm is a way to go if you want to build a

complex application with many different parts and paths for users.

One of the most common reasons to choose microservices is if you plan to deploy

often and release new features; when using microservices, you can drastically cut down

your time to market. By focusing on individual services, development teams can add

new features without reworking the entire architecture.

If you want to apply the latest technology to your application or integration,

microservices are the best solution, and that means using containers.

�Containerization
Increasing the demand for automation and deployment frequently requires adopting

a solution that will feature automated setup, monitoring, and failure handling, as well

as automatic scheduling of these components to our servers, and this solution will be

Kubernetes.

With Kubernetes, the development team may independently and often deploy their

apps without involving the operation/system administrators team. Kubernetes will help

the operation team by letting them focus on enhancing the infrastructure because it has

built features that allow self-healing in case of failure. You can deploy and operate your

Chapter 9 Microservices vs. Monolithic

391

applications without worrying about the underlying infrastructure. Kubernetes picks a

server for each component, deploys it, and makes it easy to identify and interact with all

the other parts of your program when delivering a multicomponent application.

As Kubernetes relies on Linux container technologies such as Docker to isolate

running programs, you should be acquainted with the fundamentals of containers

before delving into Kubernetes.

Before moving to Kubernetes in detail, we need to understand containers such

as Docker.

�Why Containerization?

When I have one extensive application and need to move into microservices, I can

deploy each application component on a specific virtual machine (VM). Nevertheless, it

will not make any sense, and the hardware waste will be huge.

In addition, to increase the strain on system administrators, the expanding number

of VMs also leads to demolishing human resources because of the need to configure and

manage each VM. Individually, we must find another way to implement the solution.

The VM approach has its own advantages. This solution can be implemented to

meet many companies’ needs; it is now simpler to access and share data and back it up

and restore it. This facilitates greater flexibility and mobility in company operations. Not

only does this add to the benefits of cooperation and enhanced productivity, but it also

contributes to preserving company continuity.

On the other hand, when we are talking about microservices, we need to find a

solution for them; as DevOps engineers, you use something called a container. They

function similarly to VMs but with significantly less overhead, allowing you to run many

services on the same host computer while providing a different environment to each of

them and isolating them from each other.

Like any other process, one executed in a container does so inside the host operating

system. The containerized process, however, retains its segregation from other processes.

The process seems only to use the hardware and operating system.

Unlike containers, which all call the same Linux kernel, each virtual machine runs its

kernel, providing complete isolation.

Figure 9-6 shows the virtual machine types.

Chapter 9 Microservices vs. Monolithic

392

Figure 9-6.  VM architecture type

As you can see, virtual machines have two types.

•	 Bare-metal hypervisor: This type operates directly on the existing host

system (server) and accesses its hardware. The bare-metal class runs

on servers and is more efficient and faster than Type 2 hypervisors,

used mainly by companies, and there are different solutions, such as

VMware ESXi or KVM.

•	 Hosted hypervisor: If you have a laptop and need to use another

operating system, you will probably install a solution such as a VM

player or virtual box, which allows you to do what you need from

testing or another operating system.

On the other hand, containers all make system calls to the same kernel operating in

the host operating system. Only this kernel runs x86 instructions on the host computer’s

central processing unit (CPU). In contrast to the case with virtual machines, the central

processing unit is not required to perform any virtualization; see Figure 9-7.

If your hardware resources are restricted, you may be able to use virtual machines

only for isolating a few critical activities. Containers, with little impact on performance,

are the superior option when many processes must be isolated on a single host

computer.

Chapter 9 Microservices vs. Monolithic

393

Figure 9-7.  Container architecture

After comparing a monolithic design and a microservice architecture, you should

now be aware that the microservice architecture is the one that combines Agility and

DevOps the best.

�Docker
Kubernetes is a software solution that allows you to deploy and manage containerized

apps on top of it rapidly and straightforwardly. It uses the capabilities of containers

to run various apps without knowing any of the technical characteristics of these

applications or manually installing them on each host; it also eliminates the need for

manual deployment of these applications.

One of the most well-known container tools is Docker; Docker allows you to

manage containers, which are, in reality, separate namespaces running Linux. Docker

is responsible for making available a user-friendly application programming interface

(API) for managing containers. Containers are analogous to tiny virtual machines

operating on top of the Linux kernel rather than at the hypervisor level.

Chapter 9 Microservices vs. Monolithic

394

As a result of the isolation provided by containers, you are free to run an unlimited

number of containers, each of which may execute programs written in a different

language without any interference from the others. The process of relocating a

microservice is simplified to the point where it only requires halting a container that

is already operating and starting a new container from the same image on a different

computer.

Docker’s integration with microservices results in the following three primary

benefits:

•	 It decreases the load on the host computer.

•	 The host system is synchronized without any fighting between the

many microservices.

•	 Decoupling the microservice from the host system.

Docker is an ecosystem built around containers. Its network management and

container-to-container communication capabilities are especially well suited to the

characteristics of the microservice architecture we discussed previously.

Cloud computing and Docker provide a robust platform to host your microservice.

You can access as many computers as you need over the cloud. After installing Docker,

you can use each machine to run several containerized microservices.

Using Docker, you can control containers, which are just separate Linux namespaces.

Docker aims to provide an easy-to-use interface for managing containers, basically

lightweight virtual machines that operate on top of the Linux kernel rather than the

hypervisor. So, you can add still another layer of virtualization to your host computer by

installing Docker on top of your Linux system.

To avoid putting unnecessary strain on the host machine, which exists to execute

Docker, your microservices will be deployed on top of this layer. As a result of the

isolation provided by containers, you are free to run an unlimited number of containers,

each of which may execute programs written in a different language without any

interference from the others. The process of relocating a microservice is simplified to the

point where it just requires halting a container that is already operating and starting a

new container from the same image on a different computer.

Chapter 9 Microservices vs. Monolithic

395

Docker’s use with microservices has three significant advantages.

•	 It lightens the load on the host computer.

•	 The host system is synchronized without any fighting between the

many microservices.

•	 It decouples the microservice from the host system.

Docker is also compatible with the DevOps approach. Build and deploy a Docker

container locally before releasing it to production, and you can be confident that you’re

working in the same environment where the application will ultimately operate.

Docker is often used to refer to the underlying technology used to power

containerization. At the same time, there are at least three caveats to keep in mind while

discussing Docker as a technology.

•	 The runtime

•	 Daemon

•	 The orchestrator

Figure 9-8 shows the Docker three-layer architecture.

Chapter 9 Microservices vs. Monolithic

396

Figure 9-8.  Docker architecture

The runtime is the lowest level of operation. It is in charge of initiating and

terminating container processes (this includes building all of the OS constructs, such as

namespaces and cgroups). Docker employs a multilevel runtime structure, with high-

level and low-level runtimes communicating.

Runc is the Open Containers Initiative (OCI) runtime-spec reference

implementation. Docker nodes run runc instances for every container.

Containerd is the name of the runtime environment at the upper level. When

compared to runc, containerd has much more functionality. It handles everything from

obtaining images to setting up network connections and running instances of runc at

lower levels, the complete container life cycle.

Chapter 9 Microservices vs. Monolithic

397

The Docker daemon (dockerd) is a higher-level process that sits atop containerd.

It handles more complex responsibilities such as providing the Docker remote API,

managing images, managing volumes, managing networks, and more.

�Docker Installation

Dockers can be set up in a wide variety of environments. Several operating systems are

available, including Windows, macOS, and Linux. Installing is possible in the cloud, on-

premise, or on a laptop. There are also programmed installations, wizard-based setups,

and manual setups. You may set up Docker in a wide variety of environments.

Docker installation is simple. Assuming you use Ubuntu, the steps are shown here.

To use a repository that is accessible only over HTTPS, it is necessary to update the

apt package index and install the required packages.

sudo apt-get update

sudo apt-get install \

 ca-certificates \

 curl \

 gnupg \

 lsb-release

Next, you need to add GPG key (which enables data to be sent safely between parties

and can be used to confirm a message came from a trusted source).

sudo mkdir -m 0755 -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg

--dearmor -o /etc/apt/keyrings/docker.gpg

To start the repository, use the following command:

echo \

 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/

docker.gpg] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list

> /dev/null

Next, Install Docker Engine, containerd, and Docker Compose.

Chapter 9 Microservices vs. Monolithic

398

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-

plugin docker-compose-plugin

By executing the hello-world image, you can ensure that Docker Engine was

installed correctly.

sudo docker run hello-world

If you don’t want to install it at all, you still can use https://labs.play-with-

docker.com/, which is a website that allows you to play with Docker.

�Images
Docker images may be objects with a complete operating system’s filesystem, a program,

and all of the necessary dependencies, akin to a virtual machine template from someone

working in operations. A virtual machine template is the same as a virtual machine that

has been shut down. An image in Docker terminology is just a dormant container. As a

programmer, you can compare a picture to a type.

Or you can say a Docker image is a prepackaged bundle that includes the software

and data needed to launch an application. It encompasses the OS, the application code,

and any dependencies. You need a PC with Docker installed and the image for your

desired application to execute it.

Docker images can be obtained by downloading them from an image repository.

Docker Hub is the most popular registry, although others are out there. The image is

pulled down to the local Docker host, which may be used to launch containers.

Layers of information are superimposed on one another to form a single image.

The image contains a minimal operating system (OS), all the application files, and their

dependencies. Containers are designed to be quick and light; thus, the pictures within

them are often minimal (Microsoft images tend to be huge).

Type docker image ls into the Docker host’s terminal to see the available

Docker images.

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

You’d see the previous output if you were working from a newly installed Docker host

or using Play With Docker, neither of which comes with any images.

Chapter 9 Microservices vs. Monolithic

https://labs.play-with-docker.com/
https://labs.play-with-docker.com/

399

Pulling refers to transferring images to your Docker host. Use the ubuntu: latest

image if you want to keep up with Linux.

$ docker image pull ubuntu: latest

latest: Pulling from library/ubuntu

50aff78429b1: Pull complete

f6d82e297bce: Pull complete

275abb2c8a6f: Pull complete

9f15a39356d6: Pull complete

fc0342a94c89: Pull complete

To see the newly downloaded image, do another docker image ls command.

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest 2d33efk222 3 hours ago 76.9MB

Supplying the repository’s name and the picture’s tag, separated by a colon, is

enough to reference an image from an official repository (:). Docker image pull follows

this pattern when using an image from the official repository.

$ docker image pull <repository>:<tag>

�Image Commands

Here are some Docker commands:

•	 The docker's image pull command is what you use to get files

to work with. To get an image, we search external registries’ image

archives.

•	 docker image ls returns a list of all the images currently available

on the local Docker host.

•	 docker manifest inspect shows the whole manifest for any image

hosted on Docker Hub.

•	 docker image rm is used to delete the image.

•	 docker buildx is an add-on to the Docker command-line interface,

enabling the CLI to handle many architectures simultaneously.

Chapter 9 Microservices vs. Monolithic

400

�Containers
During runtime, a picture is contained inside a container. Similar to how a VM can be

launched from a VM template, containers can be found from a single image.

Containers are much more efficient and lightweight than virtual machines (VMs)

because, unlike VMs, they do not need to run their operating system (OS) but instead

share the OS and kernel of the host computer. Commonly used container images provide

the essential software and dependencies for the specific use case.

Figure 9-9 shows the image and how it will be responsible for running either one

container or two containers.

Figure 9-9.  Images and container

The docker container run command is the most straightforward container launch

method. The command has several options, but the simplest form is as follows:

docker container run --name [container_name] [docker_image]

Docker supports interactive container execution. It also implies that you may provide

commands inside the container while executing. You can get a command prompt within

a running container if you use it interactively. The following command will do this:

docker container run -it [docker_image] /bin/bash

Chapter 9 Microservices vs. Monolithic

401

The following is a list of different containers commands and what they do:

•	 docker container run is the new container creation command s. It

may be as easy as taking a picture and a command as input. It is the

image used to create the container, and the command specifies the

software to launch within the container.

•	 The Ctrl+PQ command will disconnect your shell from the

container’s terminal while leaving the container.

•	 docker container ls enumerates all containers that are currently

operational. The -a option also displays containers in the halted

(Exited) state.

•	 docker container exec deploys a new process into an already active

container. It helps extend your Docker host’s shell into a container’s

internal terminal.

•	 docker container insecpt will show the container and Docker

configuration.

•	 docker container stop will exit a container that is currently

operating.

•	 docker container start will begin running again a container that

was previously stopped (exited). When using docker container

start, you may provide a container by name or ID.

�Dockerfile
To make any application run as a Docker or container, you will need a Dockerfile, and

you can define it as a text file but with instructions on how the Docker engine will build

this image.

After reading the instructions from a Dockerfile, Docker can automatically construct

image bundles. A Dockerfile is a text file containing instructions for building an image

using the command line. The Dockerfile instructions are described in Table 9-2.

Chapter 9 Microservices vs. Monolithic

402

Table 9-2.  docker file instructions

Dockerfile
Instruction

Purpose

ADD Adds the contents of src> (which could be a local file, directory, or URL), together

with any additional files or external file URLs, to the image’s filesystem at the

location dest>.

COPY Adds the contents of src> to the image’s filesystem at the specified destination.

ENV Sets the environment variable

EXPOSE Signals to the Docker that the container listens on the specified network port(s) at

runtime.

FROM required must be the first noncomment instruction in the Dockerfile.

It can be repeated several times in a single Dockerfile to generate several

different images. When issuing a new FROM command, remember the last image

ID that was output by the commit.

LABEL Adds metadata to an image.

STOPSIGNAL Configuration of the system call signal that will be used to terminate the

container. This signal can be an unsigned integer, such as 9, corresponding to an

entry in the kernel’s syscall table, or a signal name, such as SIGKILL, following

the format SIGNAME.

USER Sets the user ID to use when running the image and any RUN, CMD, or

ENTRYPOINT commands that follow it in the Dockerfile.

VOLUME It makes a mount point you provide visible on the filesystem and indicates that it

can store volumes mounted from a host computer or another container.

WORKDIR Makes the directory specified after it the current working directory for subsequent

RUN, CMD, ENTRYPOINT, COPY, and ADD commands, working as a cd command

in Linux.

ONBUILD It puts a trigger instruction into the picture that will be run when the image is

used as a starting point for another construction.

The trigger will run as part of the downstream build, just as if it had been placed

after the FROM instruction in the Dockerfile for that build.

(continued)

Chapter 9 Microservices vs. Monolithic

403

Table 9-2.  (continued)

Dockerfile
Instruction

Purpose

RUN The command’s shell form is executed in a shell, often /bin/sh -c on Linux or

cmd /S /C on Windows.

CMD A CMD’s primary function is to specify the default values for the running

container. If an executable is not included by default, an ENTRYPOINT instruction

must also be limited.

A Dockerfile is limited to a single CMD instruction. If you list multiple CMD, only

the last one will take effect.

ENTRYPOINT It makes it possible to set up a container as an executable.

It’s unable to utilize CMD or run command-line arguments with the shell form.

However, the ENTRYPOINT will launch in a shell. This action prevents the

executable from being PID 1 and receiving UNIX signals. To get around this

shortcoming, prepend exec.

HEALTHCHECK Provides instructions for Docker to run to verify the container is working.

SHELL Allow you to use a different shell such as csh, zsh, or PowerShell.

MAINTAINER The author who created the Dockerfile is working as LABEL.

There is nothing better to understand the technical stuff than to look ay an example;

in the next section, a simple application will print “hello world” using Nginx.

The first thing we need is a Dockerfile like the following one so it can tell the Docker

engine what to do, but before working with the Dockerfile, we need to make sure all the

files are located under one directory. Figure 9-10 shows the folder structure.

Figure 9-10.  Folder structure

As mentioned, the Dockerfile will be a set of instructions to tell the Docker Engine

what to do.

Chapter 9 Microservices vs. Monolithic

404

Dockerfile

FROM ubuntu

Install Nginx

Update the repository

RUN apt-get update

Install necessary tools

RUN apt-get install -y vim wget dialog net-tools

RUN apt-get install -y nginx

Remove the default Nginx configuration file

RUN rm -v /etc/nginx/nginx.conf

Copy a configuration file from the current directory

ADD nginx.conf /etc/nginx/

Add a the HELLO WORLD index file

ADD index.html /www/data/

RUN echo "daemon off;" >> /etc/nginx/nginx.conf

COPY simple-bash.sh /simple-bash.sh

RUN chmod +x /simple-bash.sh

EXPOSE 80

ENTRYPOINT ["/simple-bash.sh"]

CMD ["nginx"]

The index.html file contains an HTML tag that will print only what we need.

<!DOCTYPE html>

<html>

 <head>

 <title>DOCKER</title>

 </head>

 <body>

 <p>HELLO DOCKER WORLD.</p>

 </body>

</html>

Chapter 9 Microservices vs. Monolithic

405

For the next file, since we will set up our custom page and we need to expose it, we

need to use Nginx as the web server, but the default configuration will not work because

we need to print the previous message.

worker_processes 1;

events { worker_connections 1024; }

http {

 access_log /dev/stdout;

 sendfile on;

 access_log /dev/stdout;

 error_log /etc/nginx/logs/nginx-error.log;

 server {

 root /www/data;

 listen 80;

 location / {

 }

 }

}

This is a simple bash script that will just replace the Docker hostname and execute

the file inside Docker.

#!/bin/sh

Replace the hostname in the container

sed -i.bak ‘s/HOSTNAME/'"$HOSTNAME"‘/g' /www/data/index.html

Startup the cmd

exec "$@"

We are ready to build the image by running the following command inside

our folder:

docker build -t helloworld:1.0 .

Chapter 9 Microservices vs. Monolithic

406

Figure 9-11 shows the output.

Figure 9-11.  Docker build output

Now after waiting around two minutes, the image will be built, and if you run, your

screen will look like Figure 9-12.

docker images

Figure 9-12.  Docker image command output

Now, let’s run the container from this image by running the following command:

docker run -d -p 9090:80 --name aws-book helloworld:1.0

The output for the previous command should be a generated hash like the following:

03063e592fac9a8eefeb413ea6e9a5557473aef69e6de623f3d876895e5ae668

See Figure 9-13.

Chapter 9 Microservices vs. Monolithic

407

Figure 9-13.  Our website running inside Docker

We covered the Docker basics and now understand how it works, but what about

Amazon AWS? What do I need to do if I want to run Docker inside AWS? The following

section will cover this.

When you delete a container, its associated volumes will be removed.

docker rm -vf $(docker ps -aq)

Delete all images:

docker rmi -f $(docker images -aq)

Or you can use the docker cleanup command to eliminate disconnected images

and close down containers that have been shut down.

docker system prune -a --volumes

If you’re looking for a simple way to deploy, manage, and scale containerized

applications, look no further than Amazon Elastic Container Service.

�Amazon Elastic Container Service
Amazon Elastic Container Service (Amazon ECS) is a fully managed container

orchestration service that includes AWS configuration and operational best practices

by default. Because of this, you won’t have to worry about the control plane, nodes, or

extensions. It works with AWS and third-party tools like Docker and the Amazon Elastic

Container Registry. Before discussing these services, you need to know, as a DevOps

engineer, that you can create your EC2 instance and run Docker there.

Running Docker on EC2 will not be different from creating EC2 (discussed in

Chapter 3 and Chapter 4) and installing Docker inside the EC2 instance. Just follow the

Docker installation steps, which leads us to the next question, why do you need to use

Chapter 9 Microservices vs. Monolithic

408

ECS? ECS has many features that could be used, such as one of the most prominent

features, optional server management with AWS Fargate. No server management,

capacity planning, or secure container workload isolation is required with AWS Fargate.

Your workload’s infrastructure management needs are taken care of by Fargate.

With planning, you can distribute containers across your cluster according to your

needs regarding resources, isolation policies, and availability guarantees. ECS Anywhere

now supports running instances outside its infrastructure. If you use ECS Anywhere, you

can control your containerized workloads locally from the same Amazon ECS console

and AWS CLI you use in the cloud or possibly use Amazon’s EC2 cloud service. You can

control your EC2 instances through the AWS CLI or the Amazon Elastic Compute Cloud

console.

Another feature of ECS is integration with AWS Identity and Access Management

Integration (IAM). Permissions for containers can be set at a finer level. As a result, your

application development can take place in complete secrecy.

That is to say, you can deploy containers with the same high safety and regulation

compliance standards expected from Amazon Web Services.

If you’re looking for a way to manage your containers using ECS, here are two

examples:

•	 Fargate launch is a serverless, pay-as-you-go service. Containers

remove the need to manage server hardware and software, and it’s

suitable for massive tasks that must be optimized for minimum

overhead and intermittently large amounts of work from a small

number of workers.

•	 Use the EC2 launch type to set up and deploy EC2 instances in your

cluster, where your containers will be run. This can be used for a lot

of work that needs cost optimization or if your application requires

access to long-term storage.

You need to understand the ECS components, which we will cover in the next

section.

�ECS Components

ECS has different components that, as a DevOps engineer, you need to understand to

allow you to know how this service is working; the first principal component is called a

cluster.

Chapter 9 Microservices vs. Monolithic

409

Amazon Elastic Compute Cloud (ECS) clusters are collections of related jobs or

services. Applications can be partitioned using clusters. It separates them so that they

don’t share the same underlying system. When you use Fargate to run your tasks, it will

also manage the resources in your cluster.

It is required that your application’s components be set up to run in containers

before you can deploy them to Amazon ECS.

A container stores all the components your app needs to function. All necessary

code, runtime, system tools, and libraries are included. Images are used as a blank,

readable template to build containers.

So, you can consider images and containers as types components of ECS; in most

cases, a Dockerfile is used to construct an image. A container’s contents are described in

a plain-text file called a Dockerfile; after the images have been created, they are added to

a registry from which they can be retrieved at any time.

The next component, a task definition, is a text file that details the containers that

make up your application. The file is a JSON document. Up to 10 storage units can be

described using this term. The job description is like a plan for your submission. It lays

out all the particulars of your application. It can define various aspects of a given task,

such as the OS parameters and the containers to be used; your task definition options

will vary based on the requirements of your application.

Standardizing all of your application components on a single task definition is

unnecessary. Indeed, we advise distributing your application across several different

task definitions. To achieve this, you can merge related containers into new task

definitions, with each definition standing in for another part of the whole.

Another ECS component in a cluster is a task. A task is the concrete realization of a

task definition. In Amazon Elastic Compute Cloud, you can control how many instances

of your application run on a cluster by defining individual tasks. Both independent tasks

and those that are integrated into services can be executed.

The Amazon Elastic Compute Cloud (ECS) allows you to launch and manage as

many Amazon ECS clusters as needed to handle your workload. The Amazon ECS

service scheduler will start a new instance according to your task definition if a running

task fails or is terminated. It does this as a replacement, keeping the service’s workload at

your set level.

Finally, we need a container agent that uses the Amazon Elastic Container Service

(ECS), which runs on each container instance in the cluster. With the agent’s help,

Amazon ECS receives updates on the tasks and resources your containers are using.

Chapter 9 Microservices vs. Monolithic

410

Figure 9-14 shows the ECS component architecture discussed earlier.

Figure 9-14.  ECS component architecture

�Create an ECS Cluster via Console

In this section, we will create an ECS cluster using a console and use Terraform to create

an ECS cluster. The Amazon Elastic Container Service (ECS) cluster resources can be

quickly and easily generated via the console cluster creation wizard by generating an

AWS CloudFormation stack.

Amazon AWS provided a quick CloudFormation template that allows you to launch

ECS to your account using this GitHub repository https://github.com/aws-samples/

ecs-refarch-cloudformation.

You can change the CloudFormation template based on what you need, and based

on the region, you can click “Launch stack,” as mentioned in the README file inside

this repository. From the console, search for ECS, and you will be redirected to the ECS

welcome screen, as shown in Figure 9-15; go to the https://console.aws.amazon.com/

ecs/ to access the Amazon ECS management interface.

Chapter 9 Microservices vs. Monolithic

https://github.com/aws-samples/ecs-refarch-cloudformation
https://github.com/aws-samples/ecs-refarch-cloudformation
https://console.aws.amazon.com/ecs/
https://console.aws.amazon.com/ecs/

411

Figure 9-15.  ECS welcome screen

Select Clusters in the sidebar menu, and then create a cluster, as shown in

Figure 9-16.

Figure 9-16.  Creating an ECS cluster

You can give your cluster a unique identity by giving it a name on the “Configure

cluster” page. Upper and lowercase letters, numbers, hyphens, and underscores (up to

255 total) are acceptable; your cluster’s virtual private cloud settings can be found under

Networking. See Figure 9-17.

Chapter 9 Microservices vs. Monolithic

412

Figure 9-17.  ECS creating the cluster

As mentioned, the following section will allow you to choose which method to

launch your ECS; see Figure 9-18.

Chapter 9 Microservices vs. Monolithic

413

Figure 9-18.  ECS launch method

Click On to enable CloudWatch for the ECS instances and see Figure 9-19.

Many resource metrics, including a central processing unit, memory, disk, and

network usage, are automatically collected by CloudWatch.

You can use the diagnostic data provided by Container Insights to quickly pinpoint

the source of any problems and implement a solution. Metrics collected by Container

Insights can also be used as the basis for CloudWatch alerts.

Once the cluster configuration is done, you will see it under the cluster; see

Figure 9-20.

Figure 9-20.  Creation completed, ECS test

Figure 9-19.  Enabling the CloudWatch option

Chapter 9 Microservices vs. Monolithic

414

A task definition is needed for Docker containers with Amazon Elastic Container

Service. Multiple containers can be defined within a single task definition. Which launch

type you use determines which parameters you set.

To do that, in the left panel, click “Task definitions”; you have two options: create it

via the console or provide JSON.

It should look like the following file if you provide it via JSON:

{

 "executionRoleArn": "$TASK_EXECUTION_ROLE_ARN",

 "taskRoleArn": "$TASK_EXECUTION_ROLE_ARN",

 "containerDefinitions": [

 {

 "logConfiguration": {

 "logDriver": "awslogs",

 "secretOptions": [],

 "options": {

 "awslogs-group": "$LOG_GROUP",

 "awslogs-region": "$AWS_DEFAULT_REGION",

 "awslogs-stream-prefix": "awslogs-tripmgmtdemo-ecstask"

 }

 },

 "entryPoint": [],

 "portMappings": [

 {

 "hostPort": 8080,

 "protocol": "tcp",

 "containerPort": 8080

 }

Chapter 9 Microservices vs. Monolithic

415

],

 "environment": [

 {

 "name": "JAVA_OPTS",

 �"value": "-Djava.net.preferIPv4Stack=true -Djava.net.

preferIPv4Addresses"

 },

 {

 "name": "JHIPSTER_SLEEP",

 "value": "0"

 },

 {

 "name": "SPRING_DATASOURCE_URL",

 �"value": "jdbc:mysql://$AURORA_MYSQL_RDS_URL:3306/tripmgmt?useUni

code=true&characterEncoding=utf8&useSSL=false&useLegacyDatetimeCo

de=false&serverTimezone=UTC"

 },

 {

 "name": "SPRING_DATASOURCE_USERNAME",

 "value": "$DB_USERNAME"

 },

 {

 "name": "SPRING_DATASOURCE_PASSWORD",

 "value": "$DB_PASSWORD"

 },

 {

 "name": "SPRING_PROFILES_ACTIVE",

 "value": "prod,swagger"

 }

],

 "image": "$ECR_LATEST_IMAGE_URL",

 "essential": true,

 "name": "cntr-img-tripmgmt"

 }

],

Chapter 9 Microservices vs. Monolithic

416

 "requiresCompatibilities": [

 "EC2"

],

 "networkMode": "awsvpc",

 "family": "task-tripmgmt-demo",

 "cpu": "2048",

 "memory": "4096"

}

We must ensure that our image has been uploaded to an Elastic Container

Registry (ECR) or any other option you prefer.

If you don’t want to create one, go to https://gallery.ecr.aws/.

After that there is a link should be provided to you; see Figure 9-21.

Figure 9-21.  AWS ECR repo, WordPress image

You have a different image and application deployed as a container, so feel free to

choose what you want to run inside your ECS; see Figure 9-22.

Chapter 9 Microservices vs. Monolithic

https://gallery.ecr.aws/

417

Figure 9-22.  ECR public repo main page

If you create a task definition without JSON, you will get the screen shown in

Figure 9-23; the image URL will have the copied URL shown in Figure 9-21.

You must insert the container’s name, ports, and protocol.

Chapter 9 Microservices vs. Monolithic

418

Figure 9-23.  Task definition option setting without JSON

Click Next, and you will need to configure how to manage the ECS, using either

Fargate or EC2, based on the use case mentioned earlier in this chapter. Figure 9-24

shows the resource assigned to this task definition.

Chapter 9 Microservices vs. Monolithic

419

Figure 9-24.  Configuring the environment, storage, monitoring, and tags

Click Next and review the setting before clicking Create; see Figure 9-25.

Chapter 9 Microservices vs. Monolithic

420

Figure 9-25.  Review and create a screen

Once the task definition is created, you should see it under the task definition in the

left panel; see Figure 9-26.

Chapter 9 Microservices vs. Monolithic

421

Figure 9-26.  Task definition creation completed successfully

Amazon ECS allows you to run and maintain a specified number of instances of a

task definition simultaneously in an Amazon ECS cluster. You can create one by clicking

the task definition itself, as shown in Figure 9-27.

Figure 9-27.  Creating ECS services

Once you click “Create service,” you will be redirected to the next screen, and you

must configure the services with the options needed for the first section, which is the

cluster that needs to be assigned, as shown in Figure 9-28.

Chapter 9 Microservices vs. Monolithic

422

Figure 9-28.  Service configuration, cluster

On the same screen, you can choose how many replicas you need and a load

balancer to expose your ECS to the world or internally, as shown in Figure 9-29.

Chapter 9 Microservices vs. Monolithic

423

Figure 9-29.  Services configuration, replica number

Also, you need to configure the load balancer, which type you need, and the health

check for the load balancer, the ports, and the target group; see Figure 9-30.

Chapter 9 Microservices vs. Monolithic

424

Figure 9-30.  Service configuration, load balancer

Once you click Create, the services will start deploying, and the load balancer will be

deployed; see Figure 9-31.

Chapter 9 Microservices vs. Monolithic

425

Figure 9-31.  Services in progress to deploy

If you go to the Load Balancer section under EC2, you will see the load balancer

there, as shown in Figure 9-32.

Figure 9-32.  Load balancer created

Copy the Load Balancer DNS name and an open new tab in the browser, paste the

DNS name there, and WordPress will open.

The previous are steps to create the ECS using the console. The next section will

show how to complete the ECS, but this time using IaC as well as Terraform.

�Create an ECS Cluster via Terraform

Terraform is one of the most potent IaC tools, and as a DevOps engineer, you will

probably review or write Terraform code daily. This section will explain how to create

an ECS instance using Terraform; the folder structure should look like what is shown in

Figure 9-33.

Figure 9-33.  ECS Terraform folder structure

The Terraform code will be able to create a new VPC, ECS cluster, task definition, and

services that will provision load balancer and target group.

Let’s start.

In your project’s root folder, make the changes to the following files.

Chapter 9 Microservices vs. Monolithic

426

main.tf

The data in this file can be used to build an AWS Elastic Container Service cluster.

Create ECS cluster

resource "aws_ecs_cluster" "cluster" {

 name = "ecs-cluster"

}

resource "aws_ecs_cluster_capacity_providers" "cluster" {

 cluster_name = aws_ecs_cluster.cluster.name

 capacity_providers = ["FARGATE"]

 default_capacity_provider_strategy {

 base = 1

 weight = 100

 capacity_provider = "FARGATE"

 }

}

ECS Service

resource "aws_ecs_service" "ecs_service" {

 name = "ecs-service"

 cluster = aws_ecs_cluster.cluster.id

 task_definition = aws_ecs_task_definition.ecs_task.arn

 launch_type = "FARGATE"

 desired_count = 1

 network_configuration {

 subnets = [aws_subnet.private_east_a.id, aws_subnet.private_east_b.id]

 }

}

Tasks definitions

resource "aws_ecs_task_definition" "ecs_task" {

 family = "service"

 network_mode = "awsvpc"

 requires_compatibilities = ["FARGATE", "EC2"]

Chapter 9 Microservices vs. Monolithic

427

 cpu = 512

 memory = 2048

 container_definitions = <<DEFINITION

 [

 {

 "name" : "centos",

 "image" : "centos:7",

 "cpu" : 512,

 "memory" : 2048,

 "essential" : true,

 "portMappings" : [

 {

 "containerPort" : 80,

 "hostPort" : 80

 }

]

 }

]

 DEFINITION

}

variables.tf

The file will contain a variable that will be used across the code.

variable "region" {

 description = "region to use for AWS resources"

 type = string

 default = "us-east-1"

}

variable "region_a" {

 description = "The region the environment is going to be

installed into"

 type = string

 default = "us-east-1a"

}

Chapter 9 Microservices vs. Monolithic

428

variable "region_b" {

 description = "The region the environment is going to be

installed into"

 type = string

 default = "us-east-1b"

}

variable "cidr" {

 description = "CIDR range for created VPC"

 type = string

 default = "10.0.0.0/16"

}

variable "private_cidr_a" {

 description = "CIDR range for created VPC"

 type = string

 default = "10.0.1.0/24"

}

variable "private_cidr_b" {

 description = "CIDR range for created VPC"

 type = string

 default = "10.0.2.0/24"

}

variable "access_key" {

 type = string

 sensitive = true

}

variable "secret_access_key" {

 type = string

 sensitive = true

}

Chapter 9 Microservices vs. Monolithic

429

vpc.tf

A virtual private network, such as subnets, an Internet gateway, and a NAT gateway, will

create the network.

Create VPC for ECS

resource "aws_vpc" "vpc_ecs" {

 cidr_block = var.cidr

 tags = {

 Name = "Project ECS"

 }

}

Create Private subnets for ECS

resource "aws_subnet" "private_east_a" {

 vpc_id = aws_vpc.vpc_ecs.id

 cidr_block = var.private_cidr_a

 availability_zone = var.region_a

 tags = {

 Name = "You can set tags here"

 }

}

resource "aws_subnet" "private_east_b" {

 vpc_id = aws_vpc.vpc_ecs.id

 cidr_block = var.private_cidr_b

 availability_zone = var.region_a

 tags = {

 Name = "You can set tags here"

 }

}

Chapter 9 Microservices vs. Monolithic

430

Provider.tf

Here we will define the Terraform version, which cloud provider Terraform will use, and

the version.

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "~> 2.20.0"

 }

 aws = {

 source = "hashicorp/aws"

 version = "~> 4.16"

 }

 }

}

provider "docker" {}

Run the Terraform code using the following command.

terraform init

The output will look like Figure 9-34.

Figure 9-34.  Terraform init output

Chapter 9 Microservices vs. Monolithic

431

You can validate the configuration by running this command:

terraform validate

This in turn should give you output like this:

Success! The configuration is valid.

output.tf and terraform.tfvars are optional files, but they give users more

visibility when they deploy the code. For example, output.tf will present the main

deployment output based on our configuration; on the other hand, terraform.tfvars is

used to set the primary variable in one file.

Output.tf

The following will show the ECS cluster name once the deployment is finished, and as

mentioned, it’s an optional file.

output "aws_ecs_cluster" {

 value = aws_ecs_cluster.cluster.name

 description = "ECS Cluster name"

}

Terraform.tfvars

Inside this file, you can set the primary variable that will probably change based on the

environment; you can add the VPC CIDR or cluster name.

access_key = <"AWS access key">

secret_access_key = <"AWS Secret key">

The code will be able to run without these two files usually and without any issues.

�Summary
In this chapter, we discussed two of the most crucial concepts for DevOps to understand:

the microservices and monolithic application architectures. We explained the cons

and pros of these two architectures and their guidelines; after that, we discussed one

separately.

Chapter 9 Microservices vs. Monolithic

432

After reviewing Docker’s core concepts, we deployed an application using Docker

and learned how to write a Dockerfile and the Docker commands.

Then we covered the container services inside Amazon AWS, which is ECS, and

the concepts of this service; we learned a different method to deploy it, either using the

console or IaC/Terraform.

In the next chapter, you will continue your learning journey and learn about one of

the most potent DevOps tools, Kubernetes, and you will learn about EKS.

Chapter 9 Microservices vs. Monolithic

433
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_10

CHAPTER 10

Kubernetes
In the previous chapter, we discussed what containers are and why they are used. In

this chapter, I will cover one of the most potent tools in the DevOps world. Kubernetes

is a container orchestration automation tool used to deploy microservices applications.

We’ll review Kubernetes concepts and the architecture of the tool. We will then look at

different configurations, how to deploy Kubernetes, and how to create CI/CD. We’ll also

explore Kubernetes architecture and Kubernetes objects and how to create them using

different methods.

�What Is Kubernetes?
Figure 10-1 shows the official website for Kubernetes.

Figure 10-1.  Kubernetes website

Kubernetes can be defined in just a few words: a production-ready container

orchestration platform. Kubernetes is not meant to replace Docker or any of its

functionality; rather, it is intended to facilitate the management of clusters of servers

running Docker. Kubernetes requires the basic Docker installation and the full-featured

Docker image to function correctly.

With Kubernetes, your program can be deployed over a cluster of thousands of

computers and operate as if they were a single supercomputer. By hiding the specifics of

the underlying infrastructure, it makes life easier for programmers and IT administrators.

https://doi.org/10.1007/978-1-4842-9303-4_10

434

We can refer to Kubernetes as “K8S.”. Kubernetes is a Greek vocabulary word that

means “poilt,” and the 8 is the letter count between the K and S. Kubernetes application

deployment is consistent whether your cluster has two nodes or two thousand. The

cluster’s size is irrelevant. More nodes in a cluster mean more computing power for

programs already in use.

Figure 10-2 shows how much effort the company made to maintain the data center

from servers, storage, and networking.

Figure 10-2.  Company that built a complete data center to deploy their
application

�Kubernetes Benefits
Kubernetes simplifies application management by automating operational tasks

associated with container management and providing built-in commands for deploying

and distributing updates to applications, scaling them up or down to meet fluctuating

demand, keeping an eye on them, and more.

�Facilitating a Focus on Essential App Features for Developers

When talking about Kubernetes, it is helpful to consider it as the cluster’s operating

system. Kubernetes takes the burden off of app developers to include infrastructure-

related services in their applications by handling them independently.

Chapter 10 Kubernetes

435

This includes finding new services, increasing their capacity, distributing the load,

fixing problems as they arise, and choosing a new server to redeploy the services. Instead

of worrying about how to connect their apps to the network, developers can concentrate

on creating the applications themselves.

�Improving Operational Teams’ Ability to Make Effective Use
of Available Resources

Kubernetes will deploy your containerized software to a node in the cluster, tell its parts

where to locate one another, and keep everything up and running. Kubernetes can

achieve far better resource usage than is feasible with manual scheduling since your

application does not care whose node it is running on and can be moved at any moment.

�High Availability Solution and Ensure It

Production is based on the notion of maximum availability. Therefore, ensure your app

is constantly running. However, remember that this is the end game. With a microservice

design, the possibility of catastrophic failure is reduced. It incorporates microservices.

An individual microservice’s failure will not affect the application’s overall stability.

Using Kubernetes, you can make your Docker containers highly accessible by replicating

them over many host computers and often checking their status.

�Management of Release and Deployment of Containers

Kubernetes’s ability to handle Docker container deployments and rollbacks will

significantly simplify your response to this issue. Kubernetes quickly updates container

images across several hosts with a single command.

�Scaling

When a traffic surge hits your production machines and a single container cannot

handle it, you need the means to pinpoint which one it is. Decide whether you want to

scale it vertically or horizontally; otherwise, your container may fail if the load is not

reduced.

Chapter 10 Kubernetes

436

The scale has two types; see Figure 10-3.

•	 Vertical scale: This refers to scale by adding more resources such as

CPU and RAM; the container will allow the use of the more powerful

machine.

•	 Horizontal scale: This approach means adding more servers to the

current one (more nodes); in that case, the container will run on

different machines.

Figure 10-3.  Vertical scales vs. horizontal scale

Sometimes, using K8S will not be the best option for the company, because it will

add complexity to your application and infrastructure; these cases could differ from one

setup to another, depending on the use case.

In general, it will be similar to the following:

•	 Monolithic application

•	 Kubernetes can be used to deploy container-based monoliths, but

it shines when it manages many containers. When a monolithic

program is containerized, it often uses only a few containers. With

so little to handle, Kubernetes is not the best option, and you may

discover something more suitable.

Chapter 10 Kubernetes

437

•	 If you do not use a container, Kubernetes is not the best option.

•	 If your application has been deployed on a single EC2 instance,

moving to Kubernetes will make it complex.

•	 The application does not support containerization solutions or is not

configured as a container solution.

Let’s understand how Kubernetes architecture works, which is the first step of

everything; Figure 10-4 shows the architecture but not the details, which can be split into

two types.

•	 The master node, where everything is managed and controlled by

Kubernetes

•	 Applications that are deployed and executed on worker nodes

Figure 10-4.  How Kubernetes architecture compares to traditional datacenters

Whether the master node or the worker node, each has its components, which will

be discussed next.

�Kubernetes Components
The section covers the components of the master and worker nodes.

Chapter 10 Kubernetes

438

�Master Node Components

It is the master node’s job to oversee the Kubernetes cluster and provide the application

programming interface (API) that controls everything from resource configuration

to deployment. Components of the Kubernetes master node can be operated within

Kubernetes as a pod, with each container handling a specific task.

Figure 10-5 explains the components of a master node.

Figure 10-5.  Kubernetes master node components

The cluster’s control and functionality are provided through the control plane. It

comprises several parts that can either share a single node as a master and operate

in tandem or be run independently on other nodes and duplicated to guarantee

availability. The elements are covered next.

API

Alternatively, we can call the API the Kube-API server, one of the main components that

allows you to communicate to K8S and the control plane parts.

Chapter 10 Kubernetes

439

Scheduler (kube-scheduler)

The scheduler (also called the kube-scheduler) is responsible for selecting and

scheduling nodes to run the newly created pods. The factors for choosing the nodes are

as follows:

•	 Resource requirements

•	 Affinity and anti-affinity specifications

•	 Workload

•	 Constraints

Controller Manager

Several different types of controllers handle cluster-level tasks, such as component

replication, worker node tracking, and node failures.

The Job controller detects and reacts to node failures, while the Node controller

keeps an eye out for job objects representing one-time activities and spins up pods to

carry them out.

As is probably apparent from its name, the Services-Account controller is responsible

for the services account for new namespaces, while the EndpointSlice controller links

the services account to pods.

Etcd

Etcd is a trustworthy distributed data store that always keeps a copy of the cluster’s

configuration as Kubernetes’ backup store for all the cluster data.

It’s essential to ensure you have a backup strategy for Ectd; otherwise, you could lose

the Kubernetes setup and may need to reinstall again.

But possibly all currently running workloads will keep running. The Etcd role

prevents Kubernetes from modifying the existing configuration. Pods that have already

been planned can continue to operate, but no new pods can be scheduled.

This section will cover how you can back up Etcd if you run K8S locally, but if you

use a cloud provider such as EKS, it will manage this part for you, and you don’t have to

worry about it.

Chapter 10 Kubernetes

440

Cloud services such as Amazon EKS and Google GKE will install and configure a

pool of servers running Etcd on your behalf, but they will not provide much information

on the machines. They provide you with an operational Kubernetes cluster but do not

provide too much information about the resources behind the scenes.

You should be aware that Etcd is a component of the Kubernetes control plane.

Operating on a primary node is recommended if you want to administer an Etcd

datastore on-premises or if you plan to run an Etcd datastore on your own. You have the

option of choosing between the following:

•	 You can install Etcd on the primary node.

•	 You can install as a group that will be running with the other

components.

The first option is preferable since it lowers the likelihood that your cluster will be

inaccessible if there is an interruption in service. Having a collection of servers devoted

to running Etcd helps eliminate potential security threats.

The issue is that it will constantly cost more than the first method because it includes

more machinery, planning, and maintenance; the problem is that it will always cost

more. Even though it is perfectly OK to operate Etcd on the same machines as the kube-

apiserver, you should not be reluctant to utilize dedicated servers for Etcd if you have the

financial means.

If you plan to manage Etcd locally, you need to back up frequently; you can follow

these following steps:

	 1.	 Look up the value for the critical cluster.name in the Etcd cluster.

ETCDCTL_API=3 etcdctl get cluster.name \

--endpoints=https://192.169.1.102:2379 \

 --cacert=/home/cloud_user/etcd-certs/etcd-ca.pem \

--cert=/home/cloud_user/etcd-certs/etcd-server.crt \

--key=/home/cloud_user/etcd-certs/etcd-server.key

	 2.	 Back up Etcd using etcdctl and the provided Etcd certificates.

ETCDCTL_API=3 etcdctl snapshot save/home/cloud_user/etcd_

backup.db \

--endpoints=https://192.169.1.102:2379 \

--cacert=/home/cloud_user/etcd-certs/etcd-ca.pem \

Chapter 10 Kubernetes

441

--cert=/home/cloud_user/etcd-certs/etcd-server.crt \

--key=/home/cloud_user/etcd-certs/etcd-server.key

Figure 10-6 illustrates what the previous commands will do,

namely, back up Etcd and restore it. Everything will be done on

the primary node, assuming the primary private node IP address

is 192.169.1.102.

Figure 10-6.  Backups and restoration process for Etcd

To restore Etcd, follow these steps:

Restore the Etcd data using the backup (the following command

will spin up a temporary Etcd cluster and save the data from

the backup file to a new data directory in the same place as the

previous data directory):

sudo ETCDCTL_API=3 etcdctl snapshot restore/home/cloud_user/etcd_

backup.db \

--initial-cluster etcd-restore=https://192.169.1.102:2380 \

--initial-advertise-peer-urls https://192.169.1.102:2380 \

--name etcd-restore \ --data-dir/var/lib/etcd

	 3.	 Change who owns the newly created data directory.

sudo chown -R etcd:etcd/var/lib/etcd

Chapter 10 Kubernetes

442

	 4.	 Start Etcd.

sudo systemctl start etcd

	 5.	 Check to see whether the data that was restored is still there by

checking up the value for the key cluster name again.

ETCDCTL_API=3 etcdctl get cluster.name \

--endpoints=https://192.169.1.102:2379 \

--cacert=/home/cloud_user/etcd-certs/etcd-ca.pem \

--cert=/home/cloud_user/etcd-certs/etcd-server.crt \

--key=/home/cloud_user/etcd-certs/etcd-server.key

If you create Kubernetes on the cloud, you don’t have to manage Etcd

by yourself, but it’s a good idea to show you how it will be backed up

and restored in case of failure.

Before moving to the cloud part, I would like to show you how to set

up Kubernetes locally or on a virtual machine.

�Worker Node Components

The host that carries out your containerized apps is the worker node. The job of keeping

your apps up and running, monitoring them, and delivering services has completed;

Figure 10-7 shows the components of the worker node.

Figure 10-7.  Kubernetes worker node components

Chapter 10 Kubernetes

443

Kubelet is an agent executable on every node part of the cluster. It ensures that

containers are operating inside a pod at all times.

It ensures that the containers specified in the PodSpecs run in good health. It does

this by taking a collection of PodSpecs that are delivered via a variety of techniques. The

kubelet service does not manage containers not initially produced by Kubernetes.

Kube-Proxy distributes the strain of the network traffic across the many application

components and controls how network rules are applied to nodes; the rules allow

sessions inside or outside your cluster to send data to your pods across the network.

We have the container runtime, and we also have Docker or RKT, the software

responsible for running the container.

There are several alternatives to Kubernetes, and some are also open-source. Others

are restricted to using a single cloud service provider. The following are some examples

of containers as services:

•	 Amazon ECS/Amazon Fargate

•	 Mirantis Kubernetes Engine

•	 G2 Deal

•	 Apache Mesos

•	 Docker Swarm

•	 Hashicorp Nomad

And we have the cloud Kubernetes solution offered by a different cloud provider,

which can assist you in getting a Kubernetes cluster up and operating with the click of a

few buttons.

•	 Amazon Elastic Kubernetes Service (Amazon EKS)

•	 Google Kubernetes Engine (GKE)

•	 Azure Kubernetes Service (Azure AKS)

To get Kubernetes up and running, you will need Linux computers, called nodes in

Kubernetes. A node could be a real computer or a virtual machine hosted by a cloud

provider, such as an EC2 instance.

Chapter 10 Kubernetes

444

�Building a Kubernetes Cluster
This section will walk you through creating Kubernetes on-premises or on local

machines, and during the process, I will use kubeadm.

Kubeadm is a tool that simplifies setting up the Kubernetes cluster; I will use the

following three servers:

•	 One server acts as the master node.

•	 Two servers act as worker nodes.

Assuming you are using the Ubuntu operating system, Table 10-1 will guide you

about the specification.

Table 10-1.  Kubernetes Installation Server Information

Server Name Operating System IP

k8s-master Ubuntu 22 192.168.1.2

k8s-worker1 Ubuntu 22 192.168.1.3

k8s-worker2 Ubuntu 22 192.168.1.4

Note  You must run the commands and install the package on all three nodes
through step 16.

	 1.	 Configure the host file on each node so all nodes can

communicate using the following hostnames:

sudo vi/etc./hosts

	 2.	 Put the hosts on every node. You will be responsible for providing

each node’s private IP address.

1. <master node private IP> k8s-master

2. <worker node 1 private IP> k8s-worker1

3. <worker node 2 private IP> k8s-worker2

Chapter 10 Kubernetes

445

	 3.	 On all nodes, set up containerd. This procedure requires loading

specific kernel modules and modifying certain system settings.

cat <<EOF | sudo tee/etc./modules-load.d/containerd.conf

Overlay

br_netfilter

EOF

	 4.	 Load the modules.

sudo modprobe overlay

sudo modprobe br_netfilter

	 5.	 Create the necessary network settings for Kubernetes.

1. cat <<EOF | sudo tee/etc./sysctl.d/99-kubernetes-cri.conf

Net.bridge.bridge-nf-call-iptables = 1

3. net.ipv4.ip_forward = 1

Net.bridge.bridge-nf-call-ip6tables = 1

5. EOF

6.

	 6.	 Apply the previous settings.

sudo system

	 7.	 Install containerd.

sudo apt-get update && sudo apt-get install -y containerd.io

	 8.	 Make a new, blank configuration file for containerd.

sudo mkdir -p/etc./containerd

	 9.	 Create a template for containerd and save the settings there.

sudo containerd config default | sudo tee/etc./containerd/

config.toml

	 10.	 To apply the modifications made to the configuration file, restart

containerd.

Sudo systemctl restart containerd

Chapter 10 Kubernetes

446

	 11.	 First, make sure the containerd is up and running.

Sudo systemctl status containerd

	 12.	 Disable swap.

sudo swapoff -a

	 13.	 Install the dependency packages.

sudo apt-get update && sudo apt-get install -y apt-transport-

https curl

	 14.	 Download and add the GPG key.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |

sudo apt-key add -

	 15.	 Add Kubernetes to the repository in Linux.

1. cat <<EOF | sudo tee/etc./apt/sources.list.d/kubernetes.list

2. deb https://apt.kubernetes.io/Kubernetes-xenial main

3. EOF

	 16.	 Update the package and install the Kubernetes packages; we will

install version 1.24, the latest version at the time this book was

written.

1. sudo apt-get update

2. sudo apt-get install -y kubelet=1.24.0-00 kubeadm=1.24.0-00

kubectl=1.24.0-00

After finishing the prerequisites to install Kubernetes, you must set up the

master node.

�The Master Node Setup

The first step to start with Kubernetes is to set up the master/primary node; after that,

the worker node can join it by running one command; the section will show the steps to

set up the master node.

Chapter 10 Kubernetes

447

•	 Start the Kubernetes cluster initialization using kubeadm on the

control plane node.

sudo kubeadm init --pod-network-cidr 192.168.0.0/16

--kubernetes-version 1.24.0

•	 Set the access for kubectl.

1. mkdir -p $HOME/.kube

2. sudo cp -i/etc./kubernetes/admin.conf $HOME/.kube/config

3. sudo chown $(id -u):$(id -g) $HOME/.kube/config

•	 To check if you can access the cluster, just run the following

command:

kubectl get nodes

Kubernetes’ present network architecture and pod support depend on plugins for

other networking frameworks. Explore the details of CNI’s integration with Kubernetes

and evaluate the many network plugins for Kubernetes, such as Calico, Flannel, Weave

Net, Cilium, and Multus.

	 1.	 Calico’s Network Extension can be set up like so:

Kubectl apply -f https://docs.projectcalico.org/manifests/

calico.yaml

	 2.	 Verify the node’s health on the control plane.

kubectl get nodes

The master node is ready to welcome any joining the worker node;

each master node generates a token that will enable the worker

to join.

kubeadm token create --print-join-command

The previous command will generate a complete command, copy it,

and paste it one by one from worker node one and worker node two,

but do not run it in parallel; see Figure 10-8.

Chapter 10 Kubernetes

448

Figure 10-8.  Kubeadm join command for the worker node

Kubernetes will now be working with one master node and two workers; another way

to set up and test Kubernetes is to use the following (just for testing, not in production):

•	 Minikube (https://minikube.sigs.k8s.io/)

Whether using macOS, Linux, or Windows, minikube makes

deploying a local Kubernetes cluster easy. Proudly, we have

made it our mission to aid Kubernetes beginners and application

developers.

•	 Microk8s (https://microk8s.io/)

To get Kubernetes up and running quickly and easily, you should

use MicroK8s. Explore new upstream capabilities and promptly

turn on/off services.

�Minikube Installation for a Single-Node Cluster

Minikube does not cost anything to use and is very user-friendly. In addition to

configuring Kubernetes, it will install all its necessary components on your local PC. If

you ever want to delete your local cluster completely, Minikube makes it simple to

uninstall all the required components.

Never use it in production because it is not designed for it.

Minikube’s main benefit is that it is an excellent tool for rapidly testing different

Kubernetes implementations. The biggest issue is that it will not let you set up a

Kubernetes cluster with many nodes, making it impossible to try any multimode

situations we will cover later.

Minikube’s primary function is to bring together your local Kubernetes components

and get them talking to one another. Minikube offers two options for accomplishing

this goal.

•	 Virtual machine

•	 Docker

Chapter 10 Kubernetes

https://minikube.sigs.k8s.io/
https://microk8s.io/

449

The first involves running a hypervisor on top of the existing system. Minikube will

launch a virtual machine with all Kubernetes preinstalled, such as a hypervisor or KVM.

That alternative approach is far less complicated. Minikube eliminates the need for

a virtual machine by launching Kubernetes components within a single, massive Docker

container using a local Docker daemon. You needs to run Docker on their computer to

benefit from this strategy. That is the plan we will implement here.

The following instructions will guide you on how to install Minikube on Ubuntu; see

Figure 10-9.

Figure 10-9.  Minikube documentation depends on the operating system

1. �curl -LO https://storage.googleapis.com/minikube/releases/latest/

minikube-linux-amd64

2. sudo install minikube-linux-amd64/usr/local/bin/minikube

After package installation, start the cluster by running the following command:

1. minikube start

After starting the cluster, you can deploy the application and test Kubernetes.

$ minikube status

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

Chapter 10 Kubernetes

450

Your Minikube installation may need to be terminated or removed. Instead of

terminating the Docker container manually, you should utilize the Minikube CLI. The

two necessary commands are as follows:

$ minikube stop

Stopping "minikube" in docker...

Node "aws-node" stopped.

Check again if all the processes have been stopped.

$ minikube status

host: Stopped

kubelet: Stopped

apiserver: Stopped

kubeconfig: Stopped

Use this command to delete the cluster permanently.

$ minikube delete

�Using Kubernetes and Kind to Create a Cluster
with Several Nodes

As an alternative to Minikube, we will talk about a tool called Kind (https://kind.sigs.

k8s.io/), which has a lot in common with Minikube but is far less well-known. Like

Minikube, Kind is meant to host a Kubernetes cluster on a local machine. The critical

distinction between Kind and Minikube is that Kind can initiate Kubernetes clusters with

many nodes, whereas Minikube can only create a cluster with a single node.

The Docker-in-Docker (DIND) concept allows Kubernetes worker nodes to run

within Docker containers. You can get them to act as Kubernetes worker nodes by

deploying Docker containers, which include the Docker daemon and the Kubelet.

To install Kind, all you have to do is follow the steps; these are for Linux:

curl -Lo./kind https://kind.sigs.k8s.io/dl/v0.17.0/kind-linux-amd64

chmod +x./kind

sudo mv./kind/usr/local/bin/kind

Chapter 10 Kubernetes

https://kind.sigs.k8s.io/
https://kind.sigs.k8s.io/

451

Immediately after Kind has been installed, a new Kubernetes cluster can be created

with the following command:

kind create cluster # Default cluster context name is `kind.`

This is an example of what you will see when listing your clusters of the same Kind:

kind get clusters

kind

AWS Test

We discussed installing Kubernetes using different tools on your local laptop or

virtual machine; if you do not want to install Kubernetes on your local device, you can

always create the cluster on any cloud provider.

The following section will show you how to set up a Kubernetes cluster on Amazon

Elastic Kubernetes Service (EKS).

�Amazon EKS Kubernetes Installation

EKS is a commercial offering that rivals the Google Cloud Platform or Azure AKS. See

Figure 10-10.

Figure 10-10.  Amazon EKS dashboard

If you use EKS, Amazon AWS will take care of your Kubernetes control plane. Rather

than letting you directly interact with the servers that make up the control plane, the

service will set up a few nodes to operate everything needed.

Note that this service is not free. You can estimate the cost using the AWS calculator,

as shown in Figure 10-11; I am using one cluster and one worker node.

Chapter 10 Kubernetes

452

Figure 10-11.  AWS calculator pricing for EKS

With Amazon EKS, you can create a cluster in several different ways. You can utilize

the AWS command-line interface (CLI), CloudFormation, Terraform, or the AWS

Management Console.

Using the command-line interface tool eksctl, which AWS provides, you can create

Kubernetes clusters on Amazon EKS with as few as two commands.

�EKSCTL

A straightforward CLI for working with Amazon’s EKS-managed Kubernetes service for

EC2. It is built on CloudFormation and written in Go.

The easiest way to set up EKS is using eksctl, and you can do that with the

following steps:

	 1.	 Install eksctl depending on your operating system.

	 2.	 The following command will download and extract the most

recent version of eksctl:

curl --silent --location "https://github.com/weaveworks/eksctl/

releases/latest/download/eksctl_$(uname -s)_amd64.tar.gz" | tar

xz -C/tmp

	 3.	 Copy the executable to the /usr/local/bin directory.

sudo mv/tmp/eksctl/usr/local/bin

	 4.	 Check and test the eksctl by running the following

eksctl version.

Chapter 10 Kubernetes

453

The AWS documentation has clear steps depending on your operating system

to install the tool; see https://docs.aws.amazon.com/eks/latest/userguide/

eksctl.html.

After installing eksctl, you can use the tool to provision the EKS cluster. Note that

you must configure the AWS CLI command and provide the access and secret keys;

otherwise, eksctl cannot communicate with the account.

You can also use AWS CloudShell and install eksctl there. See Figure 10-12.

Figure 10-12.  AWS CloudShell

The following YAML file will make it much easier to install and set up the cluster with

what you need. The comments are written in the YAML file; it is changeable depending

on the setup and configuration needs and can save time over a manual installation.

You can assign a policy to the cluster depending on the needs of the cluster.

cat << EOF > book.yaml

apiVersion: eksctl.io/v1alpha4

kind: ClusterConfig

metadata:

 name: aws-eks

 region: eu-west-1

nodeGroups:

 - name: node-group-1

 instanceType: t2.small

 desiredCapacity: 2

EOF

Next run the following:

1. eksctl create cluster -f book.yaml

Chapter 10 Kubernetes

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html

454

Or, without the YAML file, you can provision the EKS cluster using a different

parameter in eksctl, as shown here:

eksctl create cluster \

 --name= aws-eks \

 --region=eu-west-1 \

 --nodes=2 \

 --tags environment=develop \

 --node-type=t2.small \

 --ssh-access \

 --ssh-public-key=public-key-value \

 --node-private-networking \

 --vpc-private-subnets=your-private-subnet-az1, your-private-subnet-az2 \

 --vpc-public-subnets= your-public-subnet-az1, your-public-subnet-az2

�Terraform

In this section, I will show you how to create an EKS instance using Terraform; you

already learned what Terraform is and how to use it to provision different resources on

Amazon AWS.

I will not dive deep into how to create EKS; a complete project will be provided to

you in next chapter.

�CloudFormation

Another way to create an EKS instance is with CloudFormation; no AWS service,

including Amazon EKS, can be installed outside a virtual private cloud. Two potential

solutions are as follows:

•	 The EKS cluster is set up on top of an existing virtual private network.

•	 Create a new VPC to house your EKS cluster.

AWS provides a complete CloudFormation template to set up EKS. Follow

these steps:

Chapter 10 Kubernetes

455

	 1.	 A key pair must be created; see Figure 10-13.

Figure 10-13.  Key pair AWS creation

	 2.	 After creating the key pair, in the CloudFormation dashboard,

click “Create stack.” See Figure 10-14.

Figure 10-14.  CloudFormation creating a stack

	 3.	 Enter the following URL: https://s3.amazonaws.com/aws-

quickstart/quickstart-amazon-eks/templates/amazon-eks-

entrypoint-new-vpc.template.yaml.

Then click Next. See Figure 10-15.

Chapter 10 Kubernetes

https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml
https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml
https://s3.amazonaws.com/aws-quickstart/quickstart-amazon-eks/templates/amazon-eks-entrypoint-new-vpc.template.yaml

456

Figure 10-15.  Using the AWS template to create EKS

	 4.	 CloudFormation requires you to provide a few variables and

parameters before it can deploy your Amazon EKS cluster.

You can do so on the following screen. Enter the following variables:

•	 Stack name: Choose a meaningful name for your CloudFormation

stack so you can identify the resources it generates.

•	 Availability zone: Choose two, at a minimum, from those in your

AWS region.

•	 CIDR: Define the IP address where EKS will be set up and allow a

remote connection using the correct security group.

•	 The number of availability zones: The best practice is to choose at

least two availability zones.

•	 Bastion host: This will allow you to access the EKS; by default AWS

allows only the EKS creator to access the EKS unless they give your

permission.

•	 SSH key name: Choose the key pair name we created earlier. See

Figure 10-16.

Chapter 10 Kubernetes

457

Figure 10-16.  CloudFormation template variable

•	 The new clusters will be fully operational after some time. To

communicate with the Amazon EKS cluster, you must create a new

Kubeconfig file on your local workstation by doing the following:

•	 You first need to be an IAM user with access and secret keys; see

Figure 10-17.

Chapter 10 Kubernetes

458

Figure 10-17.  Creating access key and secret key

•	 The next step will be to install AWS CLI, and to do that, define

which operating system you have; I am using Ubuntu.

curl "https://awscli.amazonaws.com/awscli-exe-

linux-x86_64.zip" -o "awscliv2.zip"

unzip awscliv2.zip

sudo./aws/install

•	 We will need access and secret keys, so note them. The AWS CLI

setup procedure begins with the following command:

$ aws configure –profile book-aws

AWS Access Key ID [None]: [Access Key ID]

AWS Secret Access Key [None]: [Secret access key]

Default region name [None]: [Your current AWS region]

Default output format [None]: json

Chapter 10 Kubernetes

459

•	 The kubeconfig file can be generated using the AWS CLI now that

it has been set up correctly. Run this command. The cluster’s

name is the value returned by the preceding command:

aws eks update-kubeconfig --name [depend-on-name-you-

set-in-cloud-formation]

Added new context arn:aws:eks:eu-west-1:XXX:cluster/

book-aws to/root/.kube/config

You need to know that once the EKS cluster is created, you cannot stop it from being

out of charge, but you either delete or use it.

If it is destroyed, there will be no way to put the cluster back in the same condition as

before it was deleted.

If you create the cluster using IaC, destroying the cluster is pretty straightforward;

there is no need to do extra work. What you have to do depends on whether you used

Terraform or CloudFormation.

Removing the cluster is as simple as selecting the stack from the list in the

CloudFormation web dashboard and clicking the “Remove stack” button. This will cause

CloudFormation to delete all of the newly generated resources.

For Terraform, the Terraform instance is destroyed, and the cluster is gone.

It would be best to remember to delete the cluster when you are not using it, such as

at night. Disabling unused resources is the best strategy to reduce cloud service costs.

�Diving into Kubernetes
The next topic in this chapter is talking about Kubernetes in detail, as well as the

Kubernetes objects.

Kubernetes can control a group of computing nodes and allocate them to containers

depending on their resource needs and the computing power available in the cluster.

One or more containers can be grouped into logical units (or pods) and run/scaled

as a single unit, which we will discuss in this section.

Chapter 10 Kubernetes

460

�Pods
Earlier in this chapter, I showed how to install Kubernetes and the components. Now I

will show you how to deal with the Kubernetes objects.

Kubernetes pods are where all the container management happens; you will never

have to modify, deploy, or remove containers manually. Launching many containers on

the same host under the same user namespace creates a pod. Figure 10-18 shows how

pods work.

Figure 10-18.  How pods work

Not only can containers within the same pod talk to one another via local hosts, but

pods can communicate. Each pod will be assigned to a private IP address at boot time.

Without requiring a NAT device, Kubernetes networking models allow pods to

connect directly with one another. Remember that they are not NAT gateways for

communication between pods in your cluster.

However, then, why do we need pods? To put it another way, why can’t we utilize

containers? There seems to be no need to use numerous containers at once. We need a

way to centralize our operations; why can’t we use one big box? Now is the time for us to

respond to your inquiries.

A container can host only a single process at a time; the onus of keeping numerous

unrelated methods alive inside a single container, managing their logs, and so on falls on

the user. You’d need features such as an automated process that resumes when there is

a process crash. In addition, everything would be reported to the same standard output,

making it impossible to tell which method was responsible for which logs.

Chapter 10 Kubernetes

461

Pods are designed to be readily deleted and regenerated; nevertheless, if a worker

node hosting two pods were to die, all the containers they were running would become

unreachable. Because of this, you may safely delete and regenerate your pods without

worrying about your app crashing.

The kubectl run command creates a pod on your Kubernetes cluster. Getting a pod

up and operating on your Kubernetes cluster could not be easier or quicker than that.

kubectl run my-nginx --image=nginx

The previous command will run a pod inside the cluster; the pod name is my-nginx

based on the official image for Nginx.

What if I create a pod based on specs that I define, for example, declarative syntax,

based on YAML?

apiVersion: v1

kind: Pod

metadata:

 name: nginx

 labels:

 env: test

spec:

 containers:

 - name: nginx

 image: nginx

This YAML is easy to understand; as you can see, the YAML depends on the

key/value.

•	 apiVersion: Which version of the Kubernetes API you’re using to

create this object

•	 Kind: What kind of object do you want to create

•	 Metadata: Data that helps uniquely identify the thing, including a

name string, a UID, and an optional namespace

•	 spec: What state you desire for the object

Chapter 10 Kubernetes

462

Save the previous YAML as a file called K8s-first-example.yaml and then run the

following command to deploy it on the cluster:

$ kubectl create -f K8s-first-example.yaml

Pod/nginx-Pod created

There are many components of a pod. The Kubernetes API version and resource

type are the first things to consider while working with YAML files. Third, all Kubernetes

materials share the following three sections:

•	 The metadata of a pod consists of its name, namespace, labels, and

other data.

•	 The pod’s contents, including its containers, volumes, and other

information, are described in its Spec file.

•	 The pod’s current status, the containers’ descriptions, respective

states, internal IP address, and other pertinent data can all be found

in the status field.

After deploying the pods, how can you check the information on the pods you have

on the cluster? To achieve this, you can use two commands.

•	 kubectl gets lists items; it is used to generate a list of things. To use

the command, you must specify the kind of item you want to display.

Therefore, the kubectl get Pods command will be what we use.

•	 kubectl describes that its primary goal is to obtain all the details

about a single item that its kind and name can recognize. Using the

command kubectl describe Pods my-nginx, we can get the details

of the pod we just created; the command will return a complete set of

information about that specific pod, such as its IP address.

The kubectl command can be used in different ways, and you can format the output

depending on your needs; a beneficial kubectl command-line option is the -o option.

It would be best if you did not ignore this one’s advantages. You can modify the kubectl

command line’s output by selecting this option.

$ kubectl get pods my-nginx -o yaml # In YAML format

$ kubectl get pods my-nginx -o json # In JSON format

Chapter 10 Kubernetes

463

These settings can also be used to back up your Kubernetes cluster. Let’s say you’re

in a position where you do not have the YAML declaration because you imperatively

built a pod; check the following command:

kubectl get my-nginx -o yaml > my-nginx.yaml

Or run the following command:

kubectl run my-nginx --image=nginx:latest \

 --labels type=test \

 --dry-run=client -o yaml > mypod.yaml

The -o wide format is useful. You can get additional information than is shown in

the standard output by selecting this option.

$ kubectl get Pods -o wide

According to Kubectl get and your application’s log, the pod has started and is now

operating. OK, but what does it look like in practice?

Because services get their, you can connect to a pod in numerous ways for testing

and debugging. Using port forwarding is one of them, as shown here:

$ kubectl port-forward my-nginx 8080:80

Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

You can easily deduce what this command does: forward port 8080 to my local PC to

port 80 on the pod identified by my-nginx, as shown in Figure 10-19.

Figure 10-19.  Redirecting Nginx pods to my local PC

Chapter 10 Kubernetes

464

Try to run a curl command; you will get an Nginx page. Figures 10-20 show what

occurs when you make the request. The kubectl procedure is not the only thing standing

between you and your pod; however, those other pieces are not important now.

Figure 10-20.  How the Kubectl forward command works

The pod can be accessed after it has been launched. Docker’s docker exec

command runs external code within a container; Kubernetes mimics this functionality

with the help of the kubectl exec command. The following command will allow you to

connect to your NGINX container inside the nginx pod that was created earlier:

$ kubectl exec -ti pods my-Nginx bash

There should still be active pods that you’ve built. Assume you have two pods,

one in the default namespace and one in the custom namespace (we will discuss the

namespace later).

Now that you no longer need their services, you want to terminate them.

$ kubectl delete po my-nginx

pod "my-nginx" deleted

�Labels and Annotations
We will move on to another fundamental idea of Kubernetes: labels and annotations.

Labels allow you to associate a key with your Kubernetes objects; Figure 10-21 shows

what label is used in Kubernetes.

Chapter 10 Kubernetes

465

Figure 10-21.  What is the label in K8S

Labels in Kubernetes are used to assign a custom key to objects. To obtain certain

Kubernetes things based on their labels, you must first label those objects.

Labels allow you to associate a key with objects you build, such as pods. There is no

hard and fast rule on what you must use as an object’s label.

Once your objects have been labeled, you can use those labels to list and query them

in your Kubernetes cluster.

To illustrate this, let’s say you wanted to see all the pods running in the production

environment so you labeled some of them with the label env = prod and then ran the

kubectl get pods command.

$ kubectl get pods my-nginx --label env = prod

Or, you can even use the new command shown here:

kubectl label pods my-nginx env = prod

You can add a label when creating a pod.

$ kubectl run my-nginx --image nginx --label "usage=web-server"

It is also worth noting that labels can be specified using a declarative syntax.

apiVersion: v1

kind: Pod

Chapter 10 Kubernetes

466

metadata:

name: my-nginx

Labels:

 env: prod

 usage: web-server

spec:

containers:

 - name: my-nginx

 image: nginx:latest

To list the label using kubectl, use this:

$ kubectl get Pods --show-labels -o wide

The output will be as follows:

$ kubectl get po --show-labels

NAME READY STATUS RESTARTS AGE LABELS

aws-book 1/1 Running 0 16 m <none> env = prod

devops-pod 1/1 Running 0 2 m usage = test

Here’s how you update the labels:

kubectl label --overwrite pods my-nginx status=unhealthy

Imagine you want to launch a new pod to a specific node by including a node

selector in the pod’s YAML, as follows:

apiVersion: v1

kind: Pod

metadata:

 name: my-nginx

spec:

 nodeSelector: <worker-node-name>

 containers:

 - image: Nginx

 name: my-nginx

Annotations are an additional kind of information used by Kubernetes. Since both

labels and annotations are made up of a key and a value, they have many similarities.

Chapter 10 Kubernetes

467

Annotations are utilized in place of fields. After the necessary API modifications

become evident and are agreed upon by the Kubernetes developers, new labels are

created, and the associated annotations are deprecated.

Adding descriptions for each pod or API item is an excellent way to utilize

annotations since this allows all cluster users to quickly seek information about a

specific pod or API object.

However, annotations are not as helpful as labels. Labels are used to classify items

and establish connections between them.

On the other hand, annotations provide background data about the resource upon

which they are defined.

Similar to labels, annotations are key/value maps.

"metadata": {

 "annotations": {

 "key1" : "value1",

 "key2" : "value2"

 }

}

Here’s how to use annotations with declarative syntax within Kubernetes:

apiVersion: v1

kind: Pod

metadata:

 annotations:

 kubernetes.io/created by: |

 {"kind": "SerializedReference", "apiVersion": "v1",

 �"reference" :{ "kind": "ReplicationController", "namespace":

"default",...

Or you can, for example, use them like the following example:

apiVersion: v1

kind: Pod

metadata:

 name: annotations-usage

 annotations:

 image: "https://registry.Gitlab.com/"

Chapter 10 Kubernetes

468

You will utilize what you know about label selectors instead of naming each pod to

be deleted, another benefit of labels.

$ kubectl delete po -l env=prod

pod "my-nginx" deleted

pod "app-1" deleted

�Namespaces
Namespaces (Figure 10-22) allow you to partition your cluster’s resources into

manageable chunks. The name of a resource must be unique inside a namespace but not

between them; I will compare this object with a tablespace in the database.

Figure 10-22.  How namespaces look in Kubernetes

Using several namespaces enables you to partition large systems into more

manageable chunks. They can also divide resources for usage in different settings, such

as production, development, and quality assurance.

Resource names are solely required to be unique inside a given namespace.

Resources with identical names but in separate namespaces are possible. Many different

resources have their namespaces; however, a few exceptions exist.

A node is a resource that can be used anywhere in the system and is not associated

with any specific namespace.

Chapter 10 Kubernetes

469

Here’s how to check the current namespaces in your cluster:

$ kubectl get ns #or namespaces

NAME LABELS STATUS AGE

default <none> Active 1 h

kube-public <none> Active 1 h

kube-system <none> Active 1 h

By default, kubectl only displays items located in the default namespace. The list also

shows the existence of the kube-public and kube-system namespaces. Let’s check out

the kube-system namespace’s pods.

$ kubectl get po --namespace kube-system

NAME READY STATUS RESTARTS AGE

fluentd-cloud-kubia 1/1 Running 0 1 h

kube-dns-v9-udsa 1/4 Running 0 1 h

lb-controller-v1 2/2 Running 92 1 h

As a namespace is just another Kubernetes object, it can be created by a YAML file to

the Kubernetes. Therefore, let’s check out the procedure.

apiVersion: v1

kind: Namespace

metadata:

 name: aws-book

To apply the previous YAML, use this:

$ kubectl create -f aws-book-ns.yaml

Instead of manually crafting a YAML file, use the specialized kubectl create

namespace command. Developing a namespace manifest in YAML requires your

attention, and usually, I prefer to learn things in a complex way and then use the easy

way so you can be aware of both methods.

$ kubectl create namespace aws-book

namespace "aws-book" created

Chapter 10 Kubernetes

470

Adding an object for a namespace we created earlier can be done differently, either

by using the YAML or by providing the namespace when creating the resource using the

kubectl create command to create resources in the namespace you have established.

$ kubectl create -f My-Nginx.yaml -n aws-book

pod "My-Nginx" created

If the namespace and associated pods are no longer needed, you can safely delete

them. It is possible to remove the whole namespace with the following command (the

pods will be removed automatically):

$ kubectl delete ns aws-book

namespace "aws-book" deleted

To remove everything from the current namespace, including the pods and services,

use the following command. I do not recommend using this command, especially if you

are unsure if these pods are in use.

$ kubectl delete all --all

pod "my-nginx" deleted

service "my-nginx-svc" deleted

�Jobs
The Kubernetes API makes jobs available to users with another resource object. Last, a

task will spin up a few pods to carry out an order you provide.

A job may launch several pods, each executed repeatedly until some threshold is

reached. The task keeps a tally of how many pods have finished without incident.

The job is considered finished after some threshold number of completed iterations.

When a job is deleted, the associated pods are also removed. When a job is suspended,

any running pods are terminated until the job is restarted.

A primary use case is creating a single job object to consistently execute a single pod

to completion. If the first pod fails or is removed, the Job object will initiate a new pod.

Several common scenarios using Kubernetes jobs are listed here:

•	 Creating a database copy for safekeeping

•	 Indicating one’s interest through electronic mail

•	 Removing messages from a queue

Chapter 10 Kubernetes

471

Because of the potential complexity of the settings involved in establishing a task

or job, this section will emphasize declarative syntax. Here is a Kubernetes YAML job

creation example:

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

This task will produce a pod from the busybox Docker image, and the command

echo Hello World will be executed.

The restart policy option is set to Never, which tells Kubernetes to restart the pod or

the container if it fails. A new pod will be started if the current pod is lost.

The restart policy parameter has two options.

•	 Never

•	 OnFailure

If you set this to Never, the job will never try to restart the pods, and this option is

useful when trying to troubleshoot; otherwise, the logs will keep updated every time the

pod attempts to launch.

Check the logs by running the following:

$ kubectl logs

Chapter 10 Kubernetes

472

The job has five options; we need to talk about them to allow you to understand the

power of the job and how to be helpful.

•	 backoffLimit

•	 completions

•	 parallelism

•	 activeDeadlineSeconds

•	 ttlSecondsAfterFinished

�backoffLimit

After a failed launch, if the Kubernetes job is left alone for six minutes, it will

automatically attempt to restart the failed pod six times. By adjusting the backoffLimit

setting, you can alter this restriction.

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

 backoffLimit: 4

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

�completions

This option will allow Kubernetes to understand how often you need to run the job even

after finished or completed.

Chapter 10 Kubernetes

473

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

 completions: 5

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

The previous code will create five different pods for each job, which will wait until it

is finished and rerun the new job, leading us to the following parameter.

�parallelism

Using the completions feature guarantees that the pods will be built sequentially. The

parallelism switch can be used to compel simultaneous processing.

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

 parallelism: 5

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

Chapter 10 Kubernetes

474

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

�activeDeadlineSeconds

You can set a pod to expire after a certain length of time if you so want. When a job’s

purpose is to consume a queue, this can be pretty helpful, and it should be seconds.

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

 backoffLimit: 4

 activeDeadlineSeconds: 120

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

�ttlSecondsAfterFinished

Even after your task has finished, Kubernetes will keep it around if you need to rerun it

later. This is because its logs will be interesting to read even years after the project has

been finished.

Jobs and pods can be removed from the system in an automated manner by using

this parameter.

Chapter 10 Kubernetes

475

apiVersion: batch/v1

kind: Job

metadata:

name: hello-world-job-example

spec:

 ttlSecondsAfterFinished: 60

template:

 metadata:

 name: hello-world-job-example

 spec:

 restartPolicy: Never

 containers:

 name: hello-world-example

 image: busybox

 command: ["/bin/sh", "-c"]

 args: ["echo 'Hello world'"]

Now, you can delete a job like usual using the kubectl command.

$ kubectl delete jobs hello-world-job-example

However, what you want to delete the job and keep the pods that the job has created?

Use this:

$ kubectl delete jobs hello-world-job-example --cascade=false

�Kubernetes and CronJob
If you are a Linux user, you should know what crontab is, but if you use Windows, let me

explain.

Scheduled tasks in Linux can be executed using the a cron job. By using cron jobs,

you can program your server to run a series of commands or scripts automatically, such

as a backup or maybe a server check script.

Chapter 10 Kubernetes

476

However, why do you need to use a cron job with Kubernetes?

•	 Some databases can be run on Kubernetes, so you may need to create

a backup.

•	 You can clear caching data.

•	 You can send a report email to the team at 3 a.m.

Let’s create a cron tab on Kubernetes.

A cron expression typically has five items, each separated by whitespace. These

numbers, from left to right, mean the following:

•	 Minutes

•	 Hour

•	 Day of the month

•	 Month

•	 Day of the week

Here is the syntax:

<Minute> <Hour> <Day_of_the_Month> <Month_of_the_Year> <Day_of_the_Week>

<command>

Here are examples of a cronjob:

•	 Schedule a cron to execute at 3 a.m. daily.

0 2 * * */bin/sh backup.sh

•	 Schedule a cron to execute every minute.

* * * * * * /scripts/script.sh

You can see many other examples to understand how the cron job works at https://

crontab.guru/examples.html.

Make your first cronjob now within Kubernetes; using declarative syntax will make

this easier.

apiVersion: batch/v1

kind: CronJob

Chapter 10 Kubernetes

https://crontab.guru/examples.html
https://crontab.guru/examples.html

477

metadata:

 name: hello-world-cronjob

spec:

 schedule: "* * * * * *"

jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: hello-world

 image: busybox:1.28

 �command: # or you can use this format command: ["/bin/

sh", "-c"]

 -/bin/sh

 - -c

 - �date; echo Hello world # or you can use this format args:

["echo 'Hello world'"]

 restartPolicy: Never

A cronjob can be removed from Kubernetes using the kubectl delete command,

similar to any other resource.

$ kubectl delete -f <path-to-your-yaml/name-of-the-yaml.yaml

cronjob/hello-world-cronjob deleted

�Kubernetes Trick and Tips
Kubernetes’ primary strength is that it can be fed a list of containers and left to maintain

their stateful execution in the background, distributed throughout the cluster. To do this,

you must create a pod resource and have Kubernetes assign a worker node to operate the

containers inside the pod.

However, what if the container dies? What will happen?

The Kubelet that is running on a node, will start running the pod’s containers as soon

as the pod is scheduled to run on that node, and it will continue to keep those containers

running for as long as the pod continues to exist. The Kubelet will restart the container if

the container’s primary process terminates unexpectedly.

Chapter 10 Kubernetes

478

Even if your app sometimes crashes due to a problem, running it on Kubernetes will

immediately restart it, giving it the capacity to self-heal without any further code changes

on your part.

�Liveness Probe
Using liveness probes, Kubernetes can determine whether a container is still

functioning. Each pod container’s specification may include a liveness probe. Once the

probe fails, Kubernetes will restart the container and try again.

One of the three methods through which Kubernetes may investigate a container is

as follows:

•	 A TCP socket probe attempts to establish a TCP connection to the

container’s designated port.

•	 A container’s IP address and the port and route you choose are sent

in an HTTP GET probe; if the diagnostic returned a code between 200

and 399, it was successful.

•	 To test a container, an Exec probe can run any command within the

container and examine the resultant exit status code.

Let’s look at an example of HTTP and how to use it; I will use a Docker image called

luksa/kubia-unhealthy to see what an unhealthy probe is.

The Docker image is here: https://hub.Docker.com/r/luksa/kubia-unhealthy.

apiVersion: v1

kind: Pod

metadata:

 name: liveness-http-example

spec:

 containers:

 - image: luksa/kubia-unhealthy

 name: liveness-http-example

 livenessProbe:

 httpGet:

 path:/⩔
 port: 8080

Chapter 10 Kubernetes

https://hub.docker.com/r/luksa/kubia-unhealthy

479

This image is based on a broken application and will work as a load balancer healthy

check for the path and which port will be used.

$ kubectl get po liveness-http-example

NAME READY STATUS RESTARTS AGE

liveness-http-example 1/1 Running 2 5 m

The RESTARTS column shows that the pod’s container has been restarted once.

The time and computing power required for liveliness should be minimal. The

probes are run often and are given a one-second time limit by default. You should expect

a significant decrease in container speed if you equip it with a probe designed to handle

the heavy lifting.

�Replication Controllers
A Kubernetes resource called a replication controller guarantees the continuous

operation of its pods; a replication controller will detect a missing pod and generate a

new one if it is lost for any reason.

Figure 10-23 shows when a node is removed from the cluster or the pod is forcibly

removed from the node.

Figure 10-23.  How the Kubernetes replication controller works

Chapter 10 Kubernetes

480

The results of a node #1 failure take three pods down. Pods 1 and 2 are unmanaged

since they were generated without a replication controller, whereas pod 3 is

managed by one.

When a node fails, a replication controller immediately spins up a replacement pod

(pod 3) to take its place, but pods 1 and 2 are irretrievably erased.

A replication controller closely monitors the number of active pods to ensure that a

particular type’s target number of pods is consistently met.

It will duplicate an existing pod if there are not enough active pods. If there are too

many copies in operation, it will shut down the extra pods.

The following are three components of a replication controller:

•	 A replication controller’s scope selector uses a label selector to

narrow down which pods it will manage.

•	 A replica defines how many instances of the pod system are

supposed to be active.

•	 A pod template is used when creating a new pod.

Figure 10-24 shows the three parts of a replication controller.

Figure 10-24.  The three parts of a replication controller

A replication controller, like many things in Kubernetes, is a deceptively basic notion

that delivers or allows significant functionalities.

Chapter 10 Kubernetes

481

•	 It ensures that a pod continually operates by spawning a new pod

whenever the previous pod disappears.

•	 When a node in a cluster fails, its pod copies are automatically

replicated on other nodes.

•	 The pods scale horizontally

The following is a replication controller defined in this manifest that uses a replica of

three pods, and the selector will be tested:

apiVersion: v1

kind: ReplicationController

metadata:

 name: replication-example

spec:

 replicas: 3

 selector:

 app: Test

 template:

 metadata:

 labels:

 app: Test

 spec:

 containers:

 - name: replication-example

 image: luksa/kubia

 ports:

 - containerPort: 8080

Here is a look at the data available about replication controllers using the kubectl

get command:

$ kubectl get rc

NAME DESIRED CURRENT READY AGE

replication-example 3 3 2 3 m

Chapter 10 Kubernetes

482

The previous has a replication replica of three pods; if you want to change or edit the

replica, either you edit the YAML or you can run the following command:

kubectl scale rc replication-example --replicas=10

However, if you want to scale down, you can run the following command:

kubectl scale rc replication-example --replicas=3

�Replica Set
A replica set is functionally identical to a replication controller, except its pod selectors

are more granular, unlike the label selector of a replication controller, which restricts

matching pods to those with a given label. See Figure 10-25.

Figure 10-25.  A replica set and how it works

A replica set can also be used to find pods with the same set of labels but differ in

their values; a single replication controller cannot match pods marked with labels, for

example, env=prod and usage=test.

Now that your replication controller has generated and abandoned several pods, you

will establish a replica set to see how these pods might be brought into a larger group.

Chapter 10 Kubernetes

483

Check the following example, which shows you how to use the replica set; you’re

using the more straightforward matchLabels selection, which is analogous to the

selector used by a replication controller.

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: replication-example

spec:

 replicas: 3

 selector:

 matchLabels:

 app: Test

 template:

 metadata:

 labels:

 app: Test

 spec:

 containers:

 - name: replication-example

 image: luksa/kubia

�DaemonSets
When you want to operate a certain number of pods deployed anywhere in the

Kubernetes cluster, you must employ replication controllers and replica sets. On the

other hand, there are circumstances where you would want a pod to operate on each

node in the cluster.

Figure 10-26 shows the difference between how a daemon set works versus a replica

set; a daemon set ensures that one pod of each container will run on the worker node.

If you have three worker nodes, then daemon sets will ensure that the pod will run

on three of them.

On the other hand, a replica set replicates the pod on any of the worker’s nodes.

Chapter 10 Kubernetes

484

Figure 10-26.  Daemon set versus replica set

apiVersion: apps/v1

kind: DaemonSet

metadata:

name: daemon-example

spec:

selector:

 matchLabels:

name: daemon-example

 template:

 metadata:

 labels:

name: daemon-example

 spec:

 containers:

 - image: nginx

 name: daemon-example

Chapter 10 Kubernetes

485

You can check the daemon set like so:

$ kubectl get ds

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE

daemon-example 0 0 0 0 0

�Logs
Like any other tech tool, Kubernetes has its log to allow you to debug and troubleshoot.

The kubectl logs command can obtain application logs from the container and can

stream the stdout property of a dedicated container in a dedicated pod.

To access a particular container, as we did when we used kubectl exec, you will

need to know the individual container’s name and the pod’s name.

kubectl logs <pod-name>

In the pod nginx console, if you want to get the most recent lines of output from a log,

you can do so by using the --tail option.

kubectl logs --tail=20 <pod-name>

See all logs from pod nginx that were generated in the last hour with the following:

kubectl logs --since=1 h <pod-name>

�Volumes

When you create a pod, you can build volumes and connect them to the containers

contained inside the pods. Volumes are storage-bound to the pod’s life cycle.

Volumes are simply a kind of storage tied to the pod’s life cycle. The volumes

produced with the pod will be erased as soon as the pod is removed from the system.

You might think of volumes as an excellent method to share a directory and files

among containers operating in the same pod. However, they are not restricted to this use

case, which is not always true. This is because volumes are not limited to this use case.

When Docker first introduced the idea of volumes, it consisted of more than shared

folders and containers that could be mounted. Moreover, the Kubernetes volume

functionality was designed around this concept, and volumes were utilized instead of

shared directories.

Chapter 10 Kubernetes

486

Within Kubernetes, you need to understand different types of volumes.

•	 emptyDir volumes

•	 Persistent volumes

•	 Ephemeral volumes

•	 hostPath volumes

•	 ConfigMap

�emptyDir

The first example will be an empty volume.

The emptyDir volume type is the most commonly used. You can mount it to the

location of each container executing in the pod. As the name indicates, it is merely an

empty directory initialized when the pod is created.

The following section will demonstrate how to create a pod to launch two containers.

These containers will be a nginx container and a busybox container.

To stop the busybox container from doing its task, I will interfere with the command

it executes at the beginning of the process.

In this manner, we will be able to get it going endlessly as a long process, and we will

be able to execute further commands to verify whether our emptyDir has been initialized

appropriately.

The emptyDir is the volume type generated whenever a pod is trying to run,

and while a pod is starting to run, it will exist in an emptyDir, which can be used for

temporary storage. If we delete a pod, the data from an emptyDir will also be deleted

permanently.

apiVersion: v1

kind: Pod

metadata:

 name: myvolumes-example

spec:

 containers:

 - image: alpine

 imagePullPolicy: IfNotPresent

Chapter 10 Kubernetes

487

Name: myvolumes-container

 �command: ['sh', '-c', 'echo The Bench Container 1 is Running ;

sleep 3600']

 volumeMounts:

 - mountPath:/aws-book

 name: example-volume

 volumes:

 - name: example-volume

 emptyDir: {}

We define a directory volume with the name example-volume that is empty. The

braces that are placed at the end indicate that we do not give any more information for

the emptyDir.

The emptyDir requirement makes it accessible to all of the containers that are

contained inside the pod.

The pod is empty when formed, but the container can read and write the same file in

the emptyDir volume such that each container can mount it at a different path.

The emptyDir can be used for scratch space for disk-based merge sorting,

checkpoints for each crash, and files the website fetches to manage content.

�awsElasticBlockStore

This volume type has been described but still can be used; from the name, you can tell it

is related to AWS. Amazon AWS has storage called Elastic Block Storage (EBS), which can

be attached to EC2.

When a pod mounts an AWS EBS volume, EBS volumes still exist even when

unmounted, unlike emptyDir, which is destroyed when a pod is removed.

To use EBS within Kubernetes, use the following:

apiVersion: v1

kind: Pod

metadata:

 name: test-ebs

Chapter 10 Kubernetes

488

spec:

 containers:

 - image: Nginx

 name: test container

 volumeMounts:

 - mountPath:/test-ebs

 name: test volume

 volumes:

 - name: test volume

 # You must create the EBS before use it here.

 awsElasticBlockStore:

 volumeID: "<volume id in AWS>"

 fsType: ext3

�Persistent Volumes

A persistent volume is storage inside a cluster that has been provided statically or

dynamically using storage classes after being provisioned by an administrator. It is a

resource inside the cluster, like a node is a resource within the cluster.

Another concept called PersistentVolumeClaim (PVC) is like a request for that

storage; compare this concept to pods; when you deploy pods, you are consuming that

node’s resources and writing YAML to do the PVC work like with pods.

Usually, you use a PV for different reasons.

•	 Sometimes you need a volume to ensure the logs will be saved there.

•	 Database storage and data are always essential; a backup will need a

volume to ensure that it will be saved and can be restored at any time.

•	 Keep the files after a cluster is destroyed.

The following example will create a PV.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: example-pv

spec:

 accessModes:

Chapter 10 Kubernetes

489

 - ReadOnlyMany #you can change this

 capacity:

 storage: 10Gi

 storageClassName: standard

 volumeMode: Filesystem

The following are the different access modes:

•	 ReadWriteOnce: Even when using the ReadWriteOnce access mode,

it is possible for many pods that are operating on the same node to

have access to the disk; you can use ReadWriteOnce.

•	 ReadOnlyMany: Many pods can mount the disk in read-only mode,

referred to as ROX.

•	 ReadWriteMany: This can be mounted as read-write by different

nodes and is referred to as RWX.

•	 ReadWriteOncePod: This is a new feature in K8S 1.22, in which read-

write access can be granted to a single pod running on a single node,

referred to as RWOP.

For volume mode, we also have two different options:

•	 File system: A volume will be mounted into pods such that it appears

as a directory in the file system of each pod.

•	 Block: This is a volume as a raw block storage device that does not

already have a file system preconfigured.

After creating the PV, you need to link it with the pod; to do that, we need to make the

persistent volume claim or PVC.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-pvc

spec:

 storageClassName: ""

 volumeName: example-pv

Chapter 10 Kubernetes

490

This will link the PV and the pod and allow the pod access to that storage.

However, this is considered a static PVC for a different reason since we did not leave

the storage class name empty. To make it dynamic, control it, and change it to be more

usable, use the following:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: standard

The next step is to create a pod manifest that will be able to use the persistent

volume, as shown here:

apiVersion: v1

kind: Pod

metadata:

 name: my-nginx

spec:

 containers:

 - name: my-nginx

 image: nginx:latest

 volumeMounts:

 - mountPath:/Nginx-mount

 name: pv

 volumes:

 - name: pv

 persistentVolumeClaim:

 claimName: example-pvc

Chapter 10 Kubernetes

491

Like any other Kubernetes resource, this can be managed by kubectl, which means

listing the persistent volume.

$ kubectl get pv

Likewise, you can examine all of your persistent volume claims by using this:

$ kubectl get pvc

The pending state of a volume or claim indicates that the storage class has not yet

finished supplying space for the volume.

Troubleshoot and understand what is happening; to do that, you must run the

following command:

$ kubectl describe pvc example-pvc

�ConfigMaps

A ConfigMap can be used as an API object to organize nonsensitive information, such as

settings. Pods can use ConfigMaps in many different ways: as environment variables, as

command-line arguments, or as configuration files in a volume.

Both ConfigMap and secrets can act as volume mounts. When a ConfigMap is

mounted as a volume, all the values it stores in a given directory can be injected into the

running container. This functionality makes replacing a configuration directory a breeze

if you have the configuration files in your ConfigMap.

It is simple to list the ConfigMaps in your cluster.

$ kubectl get configmap #, or you can use cm

There are two ways to generate a ConfigMap: declaratively or imperatively. Similar to

how we created pods using the command line, declarative techniques include writing

a YAML file and then applying it to the cluster to build the resource. The status quo is

unchanged.

$ kubectl create configmap configmap-example

configmap/configmap-example created

The previous will create an empty ConfigMap; let’s use a declarative method.

apiVersion: v1

kind: ConfigMap

Chapter 10 Kubernetes

492

metadata:

name: configmap-example

Having an empty ConfigMap is pointless; in this sample ConfigMap, some keys have

single-valued values, while others have values that resemble configuration format

fragments.

apiVersion: v1

kind: ConfigMap

metadata:

 name: example-configmap

data:

 color: "black"

 version: "1.5"

 environment: "prod"

Several lines can be used in the YAML format by simply separating them with the |

character. As part of our declaration file, we use the following syntax:

apiVersion: v1

kind: ConfigMap

metadata:

 name: example-configmap

data:

 color: "blue"

 configfile.txt: |

 However, another example in this book

However, using the ConfigMap within the pods can be done in two different ways.

•	 All the values in a ConfigMap can be injected into an environment.

•	 Set the value of an environment variable using the parameters in one

or more ConfigMaps, each of which may have a single value.

Although the first approach allows you more leeway, maintaining and staying

structured over time might be more challenging.

For situations where you want to have a separate ConfigMap for each pod

specification or application before deploying them, the second method is

recommended.

Chapter 10 Kubernetes

493

apiVersion: v1

kind: Pod

metadata:

 name: nginx-example-with-configmap

spec:

 containers:

 - name: nginx-example-with-configmap

 image: nginx:latest

 env:

 - name: COLOR

 valueFrom:

 configMapKeyRef:

 name: example-configmap

 key: color

However, how will ConfigMap be helpful, and what is the point of it? It will allow you

to load the variable with the pods.

To understand the point of using ConfigMap, run the following command:

$ kubectl exec Pods/nginx-example-with-configmap -- env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

HOSTNAME=nginx-example-with-configmap

COLOR=black

KUBERNETES_PORT_443_TCP_PROTO=tcp

KUBERNETES_PORT_443_TCP_PORT=443

KUBERNETES_PORT_443_TCP_ADDR=192.168.0.1

KUBERNETES_SERVICE_HOST=1192.168.0.1

KUBERNETES_SERVICE_PORT=443

KUBERNETES_SERVICE_PORT_HTTPS=443

KUBERNETES_PORT=tcp://192.168.0.1:443

KUBERNETES_PORT_443_TCP=tcp://192.168.0.1:443

NGINX_VERSION=1.22.1

NJS_VERSION=0.4.3

PKG_RELEASE=1~buster

HOME=/root

Chapter 10 Kubernetes

494

Since the ConfigMap is considered one of the volume types, how can we use it as a

volume or even mount it?

apiVersion: v1

kind: Pod

metadata:

 name: nginx-with-configmap

spec:

 volumes:

 - name: configuration-volume

 configMap:

 name: example-configmap

 containers:

 - name: nginx-with-configmap

 image: nginx:latest

 volumeMounts:

 �- name: configmap-volume # you need to configure the volume to match

this name

 mountPath:/opt/configmap

If you want to double-check that the directory has been mounted in the container,

type ls and see what comes up.

$ kubectl exec Pods/nginx-with-configmap -- ls/opt/configmap

color

testfile.txt

book.txt

�Kubernetes Secrets

Earlier, we covered the ConfigMap and how to use it to save nonsensitive data, but what

about protecting the password and sensitive information? Another object in Kubernetes

is called Secret.

Configuring Kubernetes apps is done with the help of the Secret object. Both

ConfigMaps and Secrets serve the same purpose and are thus compatible with one

another.

Chapter 10 Kubernetes

495

ConfigMaps are designed to store nonsensitive configuration data, whereas Secrets

are designed to store sensitive data such as passwords, tokens, and secret API keys. Apart

from that, the functionality of Secrets and ConfigMaps are the same.

The kubectl get command may list secrets just as it lists any other Kubernetes

resource.

$ kubectl get secret

As with ConfigMaps, the hashed parameters of your secret can be seen in the data

column, and both imperative and declarative techniques for generating a secret are

supported. Both the imperative and declarative methods of developing a secret are

supported.

You can create a secret using this:

kubectl create secret generic app-secret --from-literal=username=aws

--from-literal=password=book

In addition, you can create a secret from a file; if this file already contains a value,

you could do the same as ConfigMap earlier and create a Secret.

Assume that we already have a file named sensitive-info.txt.

$ kubectl create secret generic app-password –from-file=./

sensitive-info.txt

Note  Your shell will read special characters such as $, *, =, and ! as commands;
therefore, you must use the escape character before entering them.

This is the same with the following example:

kubectl create secret generic prod-db-secret --from-literal=username=aws

--from-literal=password= 'BCpS2/8wpyXEH8'

In addition, a YAML file can be used for declarative secret creation; you will need

to take an extra step and convert your secret argument into a Base64 string. If we were

to hard-code your secret value into a YAML file, it would be a security risk since these

values are meant to be confidential.

$ echo 'awsdevopsbyosama' | base64

YXdzZGV2b3BzYnlvc2FtYQ==

Chapter 10 Kubernetes

496

After encoding the password, you can write the YAML based on the following:

apiVersion: v1

kind: Secret

metadata:

name: app-password

type: Opaque

data:

 app_password: YXdzZGV2b3BzYnlvc2FtYQ==

What if we insert a secret but as a variable like as we did before with the ConfigMap?

As a test, I want to inject a variable inside an Nginx pod that will have the password.

apiVersion: v1

metadata:

name: nginx-example

namespace: aws-book

spec:

containers:

 - name: nginx-example

 image: nginx:latest

 env:

 - name: APP-PASSWORD # set the name of the variable here

 valueFrom:

 secretKeyRef:

 name: app-secret # Name of secret object we created earlier.

 key: username # Name of key we created earlier

Another example of something you should be familiar with when reading a secret

from a pod is the envFrom YAML key; read all of the values inside a Secret and get them

all at once as environment variables within the pod.

apiVersion: v1

metadata:

 name: nginx-example

 namespace: aws-book

spec:

Chapter 10 Kubernetes

497

 containers:

 - name: nginx-example

 image: nginx:latest

 envFrom:

 - secretRef:

 name: app-secret # Name of the secret

Because ConfigMaps and secret work together, you can mount the secret as a volume,

as in an earlier example.

apiVersion: v1

metadata:

 name: nginx-example

 namespace: aws-book

spec:

 containers:

 - name: nginx-example

 image: nginx:latest

 VolumeMounts:

 - name: voume-example-with-secrets # Name of the volume you choose.

 MountPath:/opt/test

 Volumes:

 - name: volume-example-with-secrets # Name of the volume

 Secret:

 SecretName: app-secret # name of the secret

�Services
A Kubernetes service is a resource you can establish to provide a single, consistent

point of access to a set of pods that all offer the same service. Each service has a fixed IP

address and port number that will not shift as long as the service is in operation.

The services dentition is easy to create and will look like the following:

apiVersion: v1

kind: Service

metadata:

 name: serivces-definition

Chapter 10 Kubernetes

498

spec:

 selector:

 app.kubernetes.io/name: prod

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

Clients can establish connections to that IP address and port, which are

subsequently routed to one of the pods supporting that service. Clients of service do

not have to be aware of the location of the individual pods delivering the service in this

manner, making it possible for those pods to be relocated anywhere within the cluster at

any moment.

We have four different types of Kubernetes services.

	 1.	 ClusterIP

•	 This is considered to be the default service and the most

common one.

•	 The service will not be reachable from the outside.

•	 Kubernetes will assign an internal IP address to the services.

•	 We can use it to communicate between the different services

operating inside the cluster. For example, consider the

communication between the app’s front-end and back-end

components.

Figure 10-27 shows how ClusterIP works, and the traffic will be

internal.

Chapter 10 Kubernetes

499

Figure 10-27.  ClusterIP services and how they work

The following is how you configure the ClusterIP service:

apiVersion: v1

kind: Service

metadata:

 name: clusterip-example

spec:

type: ClusterIP

 clusterIP: 192.168.0.1

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

	 2.	 NodePort

•	 This allows the services to be exposed outside.

•	 The port range for NodePort should be in the specific scope of

30000–32767.

•	 Provide a connection to your service from the outside world.

•	 When you use a NodePort, you have the flexibility to build up

your load-balancing solution.

Chapter 10 Kubernetes

500

Figure 10-28 shows how NodePort works, and the traffic will be

external.

Figure 10-28.  NodePort services and how they work

Here’s an example of node port configuration:

apiVersion: v1

kind: Service

metadata:

 name: nodeport-example

spec:

type: NodePort

 selector:

 app: web

 ports:

 - name: http

 protocol: TCP

Chapter 10 Kubernetes

501

 port: 80

 targetPort: 8080

 nodePort: 30000 # 30000-32767, Optional field

	 3.	 LoadBalancer

	 4.	 This is considered an extension for load balancing.

•	 Each cloud provider, such as Amazon Web Services, Microsoft Azure,

Google Cloud Platform, and so on, has its native load balancer

technology.

•	 The back-end pods receive traffic that is routed by the external load

balancer. The cloud provider determines the load-balancing strategy.

•	 The LoadBalancer service will be created with no manual human

intervention once you make the services.

•	 Use these services when running your Kubernetes cluster on a server

provided by a cloud provider. See Figure 10-29.

Figure 10-29.  LoadBalancer and how it works

Chapter 10 Kubernetes

502

You can configure LoadBalancer with the following:

apiVersion: v1

kind: Service

metadata:

 name: LoadBalancer

spec:

type: LoadBalancer

 # clusterIP: 192.168.1.100

 loadBalancerIP: 192.168.1.1

 selector:

 app: web

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

You can list all of the service’s resources, as shown here:

$ kubectl get svc

Accessing services from the outside world is possible using tools such as ClusterIP,

NodePort, and LoadBalancer. Kubernetes provides several networking alternatives, but

their shortcomings are a significant reason why many developers of applications seek

other substitutes.

Since we mentioned the type of services, let’s not forget the most common one used

by most companies: Ingress.

Why is it so popular? For starters, each LoadBalancer service needs its load balancer

with its public IP address, but Ingress needs one, even when giving access to hundreds

of services. The Ingress service forwards HTTP requests from clients to appropriate

services based on the host and route provided in the request.

See Figure 10-30. Ingress, which functions at the network stack’s application layer

of HTTP, can provide benefits such as cookie-based session affinity and more that other

services do not.

Chapter 10 Kubernetes

503

Figure 10-30.  How Ingress works

An Ingress controller mediates between Kubernetes and external services, hiding the

complexities of application traffic routing.

Ingress controllers for Kubernetes do the following:

•	 Incoming traffic is load balanced to operating pods within the

Kubernetes cluster.

•	 Services that need to connect with services outside the cluster may

have their outbound traffic inside the cluster managed.

•	 Keep an eye on the Kubernetes pods and have the load balancing

rules adjusted if any pods are added or withdrawn from service.

Many ingress controllers are often kept on hand inside a Kubernetes cluster, ready

to be picked and deployed as needed; the following are some well-known ingress

controllers:

•	 Traefik: The Traefik project is an open-source Kubernetes ingress

controller that aims to make integrating Kubernetes with third-party

applications easier.

•	 Amazon Application Load Balancers (ALB): This widely used ingress

controller uses AWS ALBs to process incoming resource requests.

•	 Nginx: The Nginx web server is used by this controller as the

ingress server.

Chapter 10 Kubernetes

504

The following is an example of Ingress and how it forwards to the multiple back ends

simultaneously; you can path section as much as you have.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: prod-ingress

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/target-type: instance

spec:

tls:

 - hosts:

 - https://osamaoracle.com

 secretName: tls-secret

 rules:

- host: https://osamaoracle.com

 http:

 paths:

 - path:/cloud

 pathType: Exact

 backend:

 service:

 name: cloud-book

 port:

 number: 443

 - path:/devOps

 backend:

 service:

 name: DevOps-Apress

 port:

 number: 443

As you can see, the path type from the previous took a value exactly, and we have

another three different options, each used for another purpose.

Chapter 10 Kubernetes

505

•	 Exact: This is used to find a URL with the same path, case-

insensitively.

•	 Prefix: URL prefixes are separated by/are matched.

•	 ImplementationSpecific: The IngressClass is responsible for

matching this sort of route. An implementation can regard this as its

path type or the same as the prefix and exact route types.

Using services differs from company to company; what allows you to define what you

want in your application and how to expose it online?

To avoid the hassle of manually managing services and load balancing, Kubernetes

Ingress offers a centralized resource.

�Deployment
The following types of workloads are often required for cloud-based application

deployment:

•	 Stateless

By definition, stateless applications and services do not save

any client data (state) that can be modified and then used in

subsequent actions or sessions.

When discussing containers or pods being stateless in

containerization, we imply that they do not persist in any data

related to the running application inside the container or any

associated volumes.

Let me give you an example; imagine you have two pods for the

same app, the first one storing the request or access into JSON file

and the second one the same app but storing the access or request

that is coming into a database.

We can call the first pod stateless because it does not depend on

anything, but the second one is stateful.

Chapter 10 Kubernetes

506

•	 Stateful

We refer to containers and pods as stateful if they keep any

mutable data inside them; managing this kind of application

is complex and you need to be careful, especially with rollouts,

rollbacks, and scalability.

We talked about most of the Kubernetes objects, but the question

is, what if you need to update the pods? What will you need to do?

This is the purpose of Kubernetes.

There are two options for upgrading all of those pods. The following are options:

•	 You must terminate the old ones to make room for the new pods.

•	 Begin a new one and remove the old one once the new one is ready.

One option is adding all the new pods at once and then deleting the

old pods; another is adding new pods and progressively deleting

old pods.

There are advantages and disadvantages to each of these approaches. If you choose

the first option, your app could be inaccessible.

For another one, your app must support concurrently executing two different app

versions. The new version of your app should not change the data store’s structure or

data in a manner that causes incompatibilities with older versions.

Instead of using a replication controller or a replica set, both considered lower-level

notions, a deployment can be used to deploy apps and update them declaratively.

Newer, more advanced replica sets have replaced the older replication controllers;

replica sets can also control and oversee pods. When using a deployment, the actual

pods are created and managed by the deployment’s replica sets, not by the deployment

directly; see Figure 10-31.

Chapter 10 Kubernetes

507

Figure 10-31.  Deployment using a replica set

Why would adding another object on top of a replication controller or a replica set be

a good idea?

•	 By using deployments, we can automatically generate fresh pods

and replica sets. Kubernetes may replicate pods and replica sets

according to the parameters specified in the definition file.

•	 With deployments, you can use declarative language to define the

intended configuration of your pods and replica sets.

•	 If the current state of a cluster in deployment is unstable, it can be

returned to a former state with the aid of a deployment.

•	 When extra capacity is needed, deployments are helpful. They aid

in the production of more pods and replica sets. Adding different

pods to your deployment allows you to increase the pod workload as

demand grows automatically.

The following are the benefits of using deployment:

•	 Applications that are containerized benefit from deployments since

the process of deploying, updating, and scaling such apps is fully

automated.

•	 As pod instances are immediately created during deployments,

the process is often quicker and more error-proof than manually

establishing your pods.

In Chapter 4, we discussed the deployment type and each of them; here, we can use

them and control how our pods will be deployed to the cluster.

Chapter 10 Kubernetes

508

The deployment definition is the same as any other Kubernetes object and can be

done as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-nginx

 labels:

 app: nginx

spec:

 replicas: 1 # you can change depending on the number of pods needed.

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: my-nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

You can see the deployment’s specifics using the standard kubectl get deployment

and kubectl describe deployment commands; we need to learn another concept

within the deployment.

Rolling deployment is a method of deploying new software that gradually replaces

older versions by upgrading the underlying infrastructure.

kubectl rollout undo deployment/my-nginx

You can check the status of this rollout by running the following command:

$ kubectl rollout status deployment/my-nginx

deployment my-nginx successfully rolled out

Chapter 10 Kubernetes

509

The output is similar to this:

Waiting for rollout to finish: 2 out of 3 new replicas have been updated...

Let me explain the deployment dentition structure by showing the following YAML:

apiVersion: apps/v1

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment-example

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 environment: test

 minReadySeconds: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 template:

 metadata:

 labels:

 app: nginx

 environment: test

 spec:

 containers:

 - name: nginx

 image: nginx:1.17

 ports:

 - containerPort: 80

Chapter 10 Kubernetes

510

•	 Replica: This defines the pod number that needs to be running

using the template selector.

•	 Selector: The pods that belong to the underlying replica set can be

located using a selector labeled with this set of instructions.

•	 Template: This sets the parameters for making pods. Tags in the

metadata must be compatible with our filter.

•	 Strategy: This clarifies the plan for upgrading to new pods; we

discussed the strategy in Chapter 4.

�Kubernetes and Helm
Providing people with the YAML manifest files for your Kubernetes objects is the

quickest method to get your application into the hands of those who can deploy it on

their cluster, and you share these YAML files on version control.

https://artifacthub.io/ will provide you with all the available charts.

This method is often used as an example of executing a specific application in a

container on Kubernetes. There are several drawbacks, however, to distributing YAML

manifests in their raw form.

•	 Hard-coded values are used for all possible fields in the YAML

templates. You must modify the manifest files directly to modify the

ConfigMap object’s value or the number of Service object copies.

•	 Each application can have a unique deployment procedure.

Unfortunately, there is no rule on which YAML manifests the author

should provide and which components you should deploy.

•	 Dependency management, which can be there, is not.

Helm is the go-to package management for Kubernetes services and apps, and it

is available in the Kubernetes ecosystem. Helm’s fundamentals are straightforward if

you’ve used other popular package managers like APT or yum.

Helm contains three concepts you need to understand.

•	 Chart: This is what gets set up with your command-line interface

with Helm. Each Kubernetes YAML manifest needed to deploy the

app to the cluster is stored in a Helm chart.

Chapter 10 Kubernetes

https://artifacthub.io/

511

•	 Repository: This is a place where Helm charts can be kept and shared

by chart collectors and chart users. You have the option of making

them open or closed to the general public.

•	 Release: This is a Helm chart that has been deployed to a Kubernetes

cluster and is actively serving requests. While working with the Helm

CLI, you may do tasks like these and install and remove Helm.

Helm, in general, is familiar to anyone using Kubernetes, but what is the use case

for Helm?

•	 Use Helm to make the development on Kubernetes much more

accessible; if you have multiple YAML files and want to speed up the

deployment process, you can use Helm.

•	 Use Helm to make sure the software is updated correctly. The system

to update Helm versions is unique.

•	 Dependency is easier to use within Helm; by default, Helm can

manage this.

Installing Helm is easy and can be done on most operating systems, but you can refer

to the documentation at https://helm.sh/docs/.

There is now a local installation script for Helm that can automatically download

and install the most recent version of Helm.

You can download the script and run it on your computer. Before launching, you can

read the documentation to understand the app’s purpose.

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/

main/scripts/get-helm-3

$ chmod 700 get_helm.sh

$./get_helm.sh

When you’ve added Helm to your system, you can double-check that it is working by

running the following:

helm version.

Chapter 10 Kubernetes

https://helm.sh/docs/

512

After entering this command, you will see the results.

$ helm version

version.BuildInfo{Version:"v3.7.1", GitCommit:"1d11fcb5d3f3bf00dbe6fe3

1b8412839a96b3dc4", GitTreeState:"clean", GoVersion:"go1.16.9"}

No repositories are set up in Helm by default; let’s try to deploy our first application

to Kubernetes. Let’s get NGINX up and running on your local Kubernetes cluster by

deploying a preconfigured Helm chart. To locate this chart in your local repository,

use this:

$ helm repo add nginx-stable https://helm.nginx.com/stable

$ helm repo update

Once you add the repo, you can update it by running the following command:

$ helm repo update

After that, you can install the Nginx to the Kubernetes cluster by running only one

command.

$ helm install nginx bitnami/nginx

NAME: nginx

LAST DEPLOYED: Mon Feb 20 11:29:33 2023

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

** Please be patient while the chart is being deployed **

NGINX can be accessed through the following DNS name from within your

cluster.

You can verify the installation by running kubectl get pods.

Another example of how Helm will simplify the work is by installing WordPress; visit

https://github.com/bitnami/charts/tree/main/bitnami/wordpress.

	 1.	 To add a trusted Helm repository, use the following command:

helm repo add bitnami https://charts.bitnami.com/bitnami

Chapter 10 Kubernetes

https://github.com/bitnami/charts/tree/main/bitnami/wordpress

513

	 2.	 If you want to install WordPress, you can do it using the following

command:

helm install wordpress bitnami/wordpress

The output will be something like this:

NAME: WordPress

LAST DEPLOYED: Mon Feb 20 02:12:10 2023

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTES:

** Please be patient while the chart is being deployed **

	 3.	 Once the deployment is finished, you can access the WordPress

URL by checking the Kubernetes services.

kubectl get svc --namespace default wordpress --template

"{{ range (index.status.loadBalancer.ingress 0) }}{{. }}

{{ end }}"

The command output will be the load balancer IP, which you can insert inside the

browser and configure WordPress.

This is how all files in the chart folder are organized:

•	 Chart.yaml is the chart metadata YAML file, which includes

information such as the chart’s version, keywords, and references to

other charts required for installation.

•	 Values.Schema.JSON is a JSON structure describing the values is

acceptable. Please use the YAML format, which is optional.

•	 The chart folder contains supplementary diagrams that rely on the

principal diagrams (optional).

•	 The template folder is the primary location for Kubernetes YAML

manifest file generation templates.

•	 Values.Yaml is the default chart setup settings will be utilized as

template parameters in the YAML file.

Chapter 10 Kubernetes

514

I will provide three examples that show you the power of the Helm chart and how

easy it is to use it and allow you to install and configure the stack you need.

�Kubernetes Dashboard
A Kubernetes dashboard is a web UI that provides an overview of the cluster, which will

be easy for the administrator to monitor and update Kubernetes settings.

The first step is to add the Kubernetes dashboard repo to Helm.

$ helm repo add kubernetes-dashboard

The Helm chart can be deployed to the cluster as a Kubernetes dashboard.

helm install kubernetes-dashboard kubernetes-dashboard/kubernetes-dashboard

An authentication token allows users to log into the Kubernetes UI (RBAC). We will

have to create a new user account using the service account mechanism of Kubernetes,

grant the user admin permissions, and log in to the dashboard using the bearer token

tied to the user. Each person has a unique token.

The first step is to establish a Kubernetes dashboard service account and give

it a name.

apiVersion: v1

kind: ServiceAccount

metadata:

 name: aws-book #or any other name you want.

 namespace: kubernetes-dashboard

The second step will be to create ClusterRoleBinding.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: admin-user

roleRef:

apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: cluster-admin

subjects:

Chapter 10 Kubernetes

515

- kind: ServiceAccount

 name: admin-user

 namespace: kubernetes-dashboard

Once you deploy the previous code, you will need to generate a token by running the

following command:

kubectl -n kubernetes-dashboard create token admin

Choose the token, copy it, and then paste it into the Enter token form when

prompted, as shown in Figure 10-32.

Figure 10-32.  Kubernetes dashboard token

�Elasticsearch with Kibana
Elasticsearch is a distributed, freely available, and open analytics and search engine

that can be used with any data, whether textual, numerical, geographic, structured, or

unstructured.

Kibana is an open-source front-end application that works with Elastic Stack to

provide search and data visualization for information stored in Elasticsearch.

Elasticsearch can be set up in Helm by adding the repository.

helm repo add elastic https://helm.elastic.co

Chapter 10 Kubernetes

516

Then, you can define the namespace or the custom value by running the following

.yaml file:

helm install elasticsearch elastic/elasticsearch -n aws-book

Or if you want to use the custom values.yaml, use this:

helm install elasticsearch elastic/elasticsearch -n aws-book -f./

values.yaml

The helm test command is another way to determine the state of the cluster.

helm test elasticsearch

We are done with the first part, which is installing Elasticsearch; let’s install Kibana,

which requires almost the same steps.

helm install kibana elastic/kibana

Figure 10-33 shows the Kibana dashboard once it’s installed.

Figure 10-33.  Access after the installation

�Prometheus with Grafana
Metrics and other time-series data can be stored and monitored using Prometheus. If

your data is being saved in Prometheus, you can use Grafana to examine it (and other

sources). This example shows you how to collect data from NServiceBus, put it into

Prometheus, and then use Grafana to explore it.

Chapter 10 Kubernetes

517

Like any other example for the helm, the first step is to add the repo.

helm repo add prometheus-community https://prometheus-community.github.io/

helm-charts

Plus, you need to add a Grafana repo.

helm repo add grafana https://grafana.github.io/helm-charts

The next step is to install the tools individually, starting with Prometheus.

helm install prometheus prometheus-community/prometheus

I don’t recommend exposing the Prometheus to the Internet because this tool’s GUI

is not that good, but if you want to do that, just run the following command:

kubectl expose service prometheus-server — type=NodePort — target-

port=9090 — name=prometheus-server-example

Use this command to set up Grafana.

helm install grafana grafana/grafana

Like the previous command, you can expose Grafana using the following command:

kubectl expose service grafana — type=NodePort — target-port=3000 —

name=grafana-example

�RBAC in Kubernetes
Role-based access control (RBAC) system access control, often known as role-based

security, is a technique that limits user privileges. Authorizing users and giving them

access requires providing appropriate permissions and privileges.

There are two distinct kinds of RBAC. Authorization API resources are required for

RBAC to work in Kubernetes. API for K8s.io

•	 Both Role and ClusterRole serve to specify a group’s access privileges.

A role determines which actions are authorized by rules for each API

resource. The only distinction between Role and ClusterRole is that

the former is namespace specific, while the latter is global.

Chapter 10 Kubernetes

518

•	 RoleBinding and ClusterRoleBinding assign a particular role

to a person or set of users (alternatively, groups of users or

ServiceAccounts). Similarly, RoleBinding is limited to a specific

namespace, but ClusterRoleBinding applies to the whole cluster.

It is important to note that ClusterRoleBinding is compatible only

with ClusterRole, while RoleBinding is consistent with ClusterRole

and Role.

Figure 10-34 shows how RBAC works.

Figure 10-34.  How role binding works

There are several applications for ClusterRoles. You can do the following with a

ClusterRole:

•	 Rights can be defined on namespace resources, and access can be

given to each unique namespace.

•	 Permissions can be limited on namespace-specific resources, and

access can be allowed across all namespaces.

•	 Permissions on cluster-scoped resources need to be defined.

The process of creating a role is relatively straightforward to understand. To clarify,

you should first declare a namespace and then the rules. The following rules are an

example of allowing GET and LIST operations to be performed on pods located in the

default namespace.

Chapter 10 Kubernetes

519

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default # Namespace

 name: role-example

rules:

- apiGroups: [""]

 resources: ["pods"] # The pod can be accessed.

 verbs: ["get", "list"] # operations can be

performed.

•	 Resources: These are resources that have the potential to be used.

Support is provided for pods, deployments, ConfigMaps, and other

Kubernetes resources.

•	 Verbs: These identify the different operations that can be carried out.

The GET method is used to query a particular object, whereas the

LIST method lists all objects of a specific type. Create, update, and

remove are other possible value alternatives.

•	 apiGroups: This displays the name of the API group of which the

resource is a member.

When a role has been created, assigning that role to a particular user is called role

binding. Here’s an example:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: RoleBinding-example

 namespace: default

roleRef:

 kind: Role

name: role-example #the one we created above.

 apiGroup: rbac.authorization.k8s.io

Chapter 10 Kubernetes

520

subjects:

- kind: User

 name: <user-id> # User ID of the user-example

 apiGroup: rbac.authorization.k8s.io

What if you need to provide full access to the namespace and allow users to do what

they want to the specified namespace?

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: full-access-namespace

 namespace: aws-book

rules:

- apiGroups:

 - '*'

 resources:

 - '*'

 verbs:

 - get

 - list

 - watch

 - create

 - update

 - patch

 - delete

From the side RoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: full-access-namespace-rb

 namespace: aws-book

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

Chapter 10 Kubernetes

521

 name: full-access-namespace

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: admin-group

The good thing is that you can validate the role and user binding using an open-

source tool called rbac-lookup.

https://github.com/FairwindsOps/rbac-lookup

Once you configure the tools, all you have to do is run the next command:

rbac-lookup admin-group -o wide

In the last section of this chapter, I will explain the tools used for CI/CD with

Kubernetes.

�Kubenetes CI/CD Tools
The following are some tools:

•	 Argo

Free, open-source software designed to help Kubernetes users

manage workflows, clusters, and GitOps operations.

https://argoproj.github.io/

Argo provides four different solutions.

•	 Argo Workflows

•	 Argo CD

•	 Argo Rollouts

•	 Argo Events

However, the focus is on the Argo CD that will allow you to deploy

to Kubernetes.

•	 Tekton

Chapter 10 Kubernetes

https://github.com/FairwindsOps/rbac-lookup
https://argoproj.github.io/

522

With Tekton, developers can design, test, and deploy applications in cloud and on-

premises environments using a single framework.

https://tekton.dev

•	 You can use the version control built-in pipeline, for example, github

action, gitlab pipeline, or bitbucket pipeline.

•	 You can use Jenkins.

The free and open-source software that facilitates the development, deployment,

and testing of cloud-native apps on Kubernetes. Amazon, GCP, IBM Cloud, Azure, Red

Hat OpenShift, and Pivotal are some of the many supported cloud providers.

https://jenkins-x.io/

I will give a complete example of how the deployment will be on Kubernetes. One of

the most common tools to deploy is Flux (https://fluxcd.io/).

Flux is a tool for synchronizing Kubernetes clusters with configuration sources (such

as Git repositories) and automating configuration changes when new code is ready

to deploy.

	 1.	 The first step is to use Flux, so let’s do that. I will use Helm, which

is much easier than the standard installation.

helm repo add fluxed https://charts.fluxcd.io

kubectl apply -f https://raw.githubusercontent.com/fluxcd/

helm-operator/master/deploy/crds.yaml

kubectl create ns flux

There are different ways to connect Flux to Git. One of them uses

the Git token API, and you can follow the instruction here to

create a token in GitHub. See Figure 10-35.

Chapter 10 Kubernetes

https://tekton.dev
https://jenkins-x.io/
https://fluxcd.io/

523

Figure 10-35.  Creating a personal token, Github

Additionally, here is the step mentioned in GitHub documentation:

https://docs.github.com/en/authentication/keeping-your-account-and-data-

secure/creating-a-personal-access-token

Another way is that Flux utilizes an SSH key to establish a connection to the Git

repository. Existing SSH keys can be used to generate a Kubernetes secret.

Failing that, use fluxed’s GitHub key to set things up. Since I already have a pair of

keys, I plan to use the private key to generate a Kubernetes Secret.

Once you are done, run the following Linux command. On Windows use set instead

of export.

export GITHUB_USER=<username>

export GITHUB_TOKEN=<access-token>

Currently, the following commands can be used to bootstrap Flux and install it on

your cluster.

The following command will establish the aws-book-repo repository in your GitHub

account, populate it with configurations for the Flux components, and bootstrap those

settings into your cluster under the namespace flux we created earlier.

flux bootstrap github \

 --owner=$GITHUB_USER \

 --repository=aws-book-repo \

 --branch=main \

Chapter 10 Kubernetes

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

524

 --path=./flux-config/config-path \

 --personal

Next, make sure the FluxCD toolkits have been installed in your cluster by running

the following scripts:

kubectl get deployment -n flux

You now have the following components of the Flux toolkit already installed on your

cluster:

•	 Source Controller: In a Kubernetes cluster, the controller obtains

artifacts. The Source Controller may receive and act upon incoming

alerts, such as those generated by Git commits and Helm chart

uploads.

•	 Helm Controller: This is in charge of looking after Helm equipment.

•	 Kustomize Controller: This controller’s job is to compare the actual

state of the cluster with the ideal state indicated by Commit manifests

pulled from the Source Controller and bring the two into harmony.

•	 In addition to facilitating garbage collection for removed resources

and monitoring the well-being of currently deployed resources,

the Kustomize Controller enables dependency ordering and health

evaluation.

•	 Notification Controller: This processes incoming and outgoing

communications. Its function is to establish links with other services,

including those provided by GitHub and GitLab. Its job is to inform

the controllers in the GitOps toolkit whenever there are changes to

the source code.

Copy the following URL to check if Flux has created the GitHub repo:

https://github.com/your-github-username/aws-book-repo

The next step is to automate the deployment; Flux will help you generate the needed

files, but we need to clone the Git repo locally.

git clone https://github.com/your-github-username/aws-book-repo

Chapter 10 Kubernetes

525

Then, we must change the directory to flux-config/config-path and run the

following command:

cd flux-config/config-path

One must first tell Flux where the forked podinfo repository is before it can be used

to keep an eye on it. One way to do this is by creating a GitRepository manifest that

specifies the repository’s URL, branch, and interval for monitoring.

flux create source git podinfo \

 --url=https://github.com/$GITHUB_USER/podinfo \

 --branch=master \

 --interval=30 s \

 --export > ./flux-config/config-path/podinfo-source.yaml

Use the following command to generate a Kustomization manifest, which will

instruct Flux to look in the specified directory for the deployable manifests:

flux create kustomization podinfo \

 --source=podinfo \

 --path="./kustomize" \

 --prune=true \

 --validation=client \

 --interval=5 m \

 --export >./flux-config/config-path/podinfo-kustomization.yaml

Once the files are created, you need to push the changes to Git by using the following

command:

git add.

git commit -m "new updates"

git push

If anything is added to the repo, Flux will notice the change.

Here are some useful Flux commands:

•	 When executing the following, you can see Flux bringing the cluster’s

state into conformity with the one specified in the manifests.

watch flux get kustomizations

Chapter 10 Kubernetes

526

•	 Running the following will permanently halt Kustomization

monitoring:

flux suspend kustomization <kustomization_name>

•	 This resumes the previous command:

flux resume kustomization <kustomization_name>

�Summary
In this chapter, I covered Kubernetes and Amazon EKS; moreover, I covered the

Kubernetes objects and the most important commands that will be used daily.

Kubernetes is one of the most common DevOps tools; almost all companies use it.

Nevertheless, each company uses it in different ways and integrates it with various tools.

The beauty of these tools is that every day is a learning experience.

The chapter covered the most common CI/CD tools used by Kubernetes; for sure,

there are other tools that can be found online, but these are popular ones.

In the next chapter, I will show you how to use Kubernetes for real projects so you

can see a complete integration between the DevOps tools and how to use them within

one solution to reach a goal.

Chapter 10 Kubernetes

527
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4_11

CHAPTER 11

DevOps Projects
I have included this chapter to help you better understand how to work with the DevOps

tools I covered in earlier chapters about CI/CD, IaC, Amazon AWS, EKS, and more.

How do you use all these concepts together to create something outstanding?

DevOps is a mentality; as I mentioned earlier, you could go to three different companies

using the same tools, but each might choose to configure and use these tools in different

ways. This is the beauty of DevOps.

In this chapter, I will create three different projects; you can find the source code for

each in my GitHub repository at github.com/OsamaOracle.

These projects will not depend on one Amazon AWS service. I will cover different

AWS services, and the source code for each will include a complete Readme file to help

you understand the project’s purpose.

To understand the idea of DevOps and the purpose of this book, you should apply

and try these solutions by yourself.

The following are the requirements for this chapter’s projects:

•	 Amazon AWS; create an account at https://aws.amazon.com/

console/

•	 GitHub Account; create an account at https://github.com/GitHi

•	 AWS CLI installed and configured; follow the steps at https://

docs.aws.amazon.com/cli/latest/userguide/getting-started-

install.html

•	 Terraform; use the latest version at www.terraform.io/

•	 VS Code, which you can download at https://code.

visualstudio.com/

I covered how to install each of the tools mentioned in earlier chapters; make sure

you have configured the tools and are ready to start your first DevOps project.

https://doi.org/10.1007/978-1-4842-9303-4_11
https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://github.com/GitHi
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
http://www.terraform.io/
https://code.visualstudio.com/
https://code.visualstudio.com/

528

I will also review common commands here so you will not need to repeat them in

each project step; you can fork the GitHub repository and make the necessary changes.

With all that said, let’s get started. The first thing you’ll want to do is to clone my

GitHub repository.

�Cloning a GitHub Repository
There are three options to clone a repository to your local machine: SSH, HTTPS, and

good old-fashioned download. Let’s quickly run through them here.

�SSH
Setting up SSH for GitHub will allow you to clone the repo each time with no password

or username; all you have to do is configure the GitHub once, and you are done.

The first step is to set up an SSH key and generate an SSH key; if you are using Linux,

all you have to do is run the following commands:

	 1.	 Run the ssh-keygen command.

ssh-keygen -t rsa

	 2.	 The command will ask you where you’d want to save the key, so

choose a location.

In parentheses is a proposed default filename and directory. Here

is an example of a typical .ssh/id_rsa file location: /home/user

name. Press Enter to accept the path. Or, provide the critical path

and filename and hit Enter.

	 3.	 To prevent unwanted access to your private key, however, you

need to set a passphrase, but it’s optional.

	 4.	 Repeat the passphrase when asked to verify it.

	 5.	 Now create the SSH key, go to the previous path, and copy the

id_rsa.pub content.

	 6.	 Go to GitHub, as shown in Figure 11-1.

Chapter 11 DevOps Projects

529

Figure 11-1.  GitHub setting

	 7.	 On the next screen, you need to choose to add the SSH key, as

shown in Figure 11-2.

Chapter 11 DevOps Projects

530

Figure 11-2.  GitHub SSH key

	 8.	 On the next screen, copy the public key by clicking New SSH key,

as shown in Figure 11-3.

Figure 11-3.  Adding the SSH key to GitHub

�HTTPS
Now that the generic steps have been done, HTTPS is simple if you clone the repository

using this option.

You will need the GitHub username and password when you close the GitHub

repository. See Figure 11-4.

Chapter 11 DevOps Projects

531

Figure 11-4.  HTTPS GitHub link

You should be all set now to start on the first project.

�Project 1: Creating an AWS Endpoint
The project consists of the following:

•	 A Lambda function that stores a request payload into the DynamoDB

datastore

•	 A Lambda function that is triggered by an EventBridge rule each

seven days

The solution contains several GitHub Action workflows that automate deployment

using Terraform. Workflows use a remote S3 backend to store Terraform state files. See

Figure 11-5.

Chapter 11 DevOps Projects

532

Figure 11-5.  Project architecture

Here is the project link: https://github.com/OsamaOracle/AWS-endpoint.

�Repository Structure
Figure 11-6 shows how to view the GitHub folder structure.

Figure 11-6.  Repository structure

Chapter 11 DevOps Projects

https://github.com/OsamaOracle/AWS-endpoint

533

Here’s a breakdown of the folders and files:

•	 .docs contains all the pictures in the Readme file.

•	 .github/workflows

•	 deploy-app-to-aws.yaml is the GitHub Action pipeline to allow

the app to be deployed.

•	 deploy-backend-to-aws.yaml will be run only once to create the

back end for Terraform.

•	 App

•	 Main.tf will create all the required Amazon AWS resources such

as policy, Lambda, and CloudWatch

•	 Output.tf is the function URL’s output once Terraform is

deployed.

•	 Variable.tf is the value will be used as the main file.

•	 Src folder

•	 generate-report-lambda-function is the Python function

that generates a report via Lambda.

•	 Store-payload-lambda-function is the function that will

store the endpoint in the datastore DynamoDB.

•	 Backend is where the terraform state file will be saved and deployed

automatically via GitHub action.

�How Do You to Use the Solution?
To save a payload, send a POST request to the function URL (you can also find it in the

store-payload Lambda function resource in the AWS console).

> curl -i \

 �-d '{"key1":"value1", "key2":"value2"}' -H "Content-Type:

application/json" \

 �-X POST https://e4aj24hziroq2sjpdzw4riwxey0hssvf.lambda-url.eu-

central-1.on.aws

Chapter 11 DevOps Projects

534

Note T he function URL supports only POST requests on the root path. Any other
requests will be rejected.

Figure 11-7 shows the output of the previous command.

Figure 11-7.  POST output

You can confirm that the payload was stored successfully using the AWS DynamoDB

console (Figure 11-8). Please open it and retrieve all the items from the payload-

datastore table.

Chapter 11 DevOps Projects

535

Figure 11-8.  DynamoDB datastore

In some period, the generate-report Lambda function will be triggered automatically

and generate a report with the total count of items in the datastore, as shown in

Figure 11-9.

Figure 11-9.  A report with the total count of items in the datastore

Chapter 11 DevOps Projects

536

�How to Deploy the Solution to AWS
To deploy the solution to AWS, follow these steps:

	 1.	 Fork the repository or push the source code to GitHub.

	 2.	 In the project, select Secrets and Variables ➤ Actions ➤ Variables

(Figure 11-10), and configure the following environment

variables:

•	 TF_BACKEND_STATE_BUCKET is the name of a bucket where the

Terraform state will be stored.

•	 TF_BACKEND_STATE_KEY is the name of an object where the

Terraform state will be stored.

•	 TF_BACKEND_LOCKS_DYNAMODB_TABLE is the name of a DynamoDB

table where Terraform locks will be stored.

•	 REPORT_BUCKET_EXISTS is the flag that shows if the report

bucket already exists; if set to false, Terraform configuration will

automatically create a new one.

•	 REPORT_BUCKET_NAME is the name of the bucket where reports will

be stored.

•	 AWS_REGION is the desired AWS region. See Figure 11-10.

Chapter 11 DevOps Projects

537

Figure 11-10.  Defining the GitHub variable

	 3.	 In the project, select Secrets and Variables ➤ Actions ➤ Secrets

(Figure 11-11), and configure the following secrets:

•	 AWS_ACCESS_KEY_ID is the AWS Access Key that will be used for

Terraform configuration deployment.

•	 AWS_SECRET_ACCESS_KEY is the AWS Secret Access Key that will be

used for Terraform configuration deployment.

Chapter 11 DevOps Projects

538

Figure 11-11.  Defining an access key and secret as a secret inside GitHub

	 4.	 Run “Deploy Terraform backend to AWS workflow” (Figure 11-12),

which creates the needed resources to store and maintain the

Terraform state and ensure it finished successfully.

Figure 11-12.  GitHub workflow action

Chapter 11 DevOps Projects

539

	 5.	 Run “Deploy application to AWS workflow” (Figure 11-13), which

creates application resources, and ensure it finished successfully

Figure 11-13.  Terraform runs automatically without human interaction

At the end of the Terraform Apply step, you will see the function URL, like

https://<random-string>.lambda-url.<region>.on.aws/. This URL can be used to

store a payload in the data store.

After running the deployment workflow, you can check that it has created two

Lambda functions, as shown in Figure 11-14 and Figure 11-15.

Chapter 11 DevOps Projects

540

Figure 11-14.  Lambda function deployed by GitHub action

To see an initial report, open the configured S3 Report bucket in the AWS console.

Figure 11-15.  S3 report generated by Lambda

Chapter 11 DevOps Projects

541

�Project 2: Creating an EKS Instance and Deploying
an Application to the Cluster via Terraform
This repo contains the example app from https://dotnet.microsoft.com/en-us/

learn/aspnet/hello-world-tutorial/intro, a simple Dockerfile, and a Helm chart for

it. See Figure 11-16.

Figure 11-16.  ASP.NET Hello World

The goal is to deploy the included application (under app/) to the EKS cluster you

created using the provided rudimentary Dockerfile and Helm chart in a namespace

named with your first name.

The objective of this project is to do the following:

•	 Enable HPA for the deployment and set the target utilization to 80

percent for CPU and 85 percent for memory.

•	 Set a CPU request to 150m.

•	 Make the application highly available.

•	 Expose the application via a service to the cluster.

Chapter 11 DevOps Projects

https://dotnet.microsoft.com/en-us/learn/aspnet/hello-world-tutorial/intro
https://dotnet.microsoft.com/en-us/learn/aspnet/hello-world-tutorial/intro

542

•	 Expose the application to the Internet. You can use the Route 53 zone

already created in the provided AWS account in region eu-west-1.

•	 Make the application’s index page show Hello {GREET_VAR} instead

of “Hello world,” where GREET_VAR is an environment variable. The

variable should get its value from the values.yaml file.

The Terraform code will deploy the following AWS resources:

•	 Virtual private network (VPC)

•	 Subnet (public subnet, private subnet)

•	 NAT gateway

•	 EKS cluster

•	 ECR private repo, which will be used for Docker

The following are EKS features:

•	 AutoScaler is enabled.

•	 One worker node for a cluster is set up in a private subnet.

•	 One worker node for a cluster is set up in a public subnet.

�How to Run the Code
The code, this time, will not be deployed using any pipeline; on the other hand, it will be

deployed manually using the Terraform code shown here:

terraform init

terraform plan

terraform approve --auto-approve

�Delete the Resource
terraform destroy --auto-approve

In this code, some stuff needs to be done twice or manually; when you deploy the

code, the ECR will start creating the image. Therefore, it’s essential to run the code twice.

Chapter 11 DevOps Projects

543

•	 Terraform will fail the first time it tries to deploy the code because

the ECR was created but the image is not built yet; you need to access

the AWS account via ECR and then choose the repo, view the push

command, and run them manually.

•	 Copy ECR ARN and paste it under value.yaml, which is located

under the challenge directory. See Figure 11-17.

Figure 11-17.  Repostoiry structure

Here’s a breakdown of the structure:

•	 Aws.tf defines the provider needed and which region the EKS will be

deployed in.

•	 Deployment.tf creates the ECR repository in AWS, plus the policy

required to use the ECR.

•	 Kms.tf creates the EKS secret encryption key.

•	 EKS.tf will be responsible for deploying the EKS and creating the

worker node; I am using terraform-aws-modules/eks/aws, a stable

external module.

•	 Provider.tf defines the version for each component used inside

our code.

•	 Variable.tf contains all the variables that can be changed during

the process to make our code more reusable.

•	 Vpc.tf is a virtual private network responsible for creating the

subnets.

Chapter 11 DevOps Projects

544

Here’s the project link: https://github.com/OsamaOracle/Terraform-eks-helm-

deployment.

�Project 3: Creating AWS Resources Using Terraform
This project aims to demonstrate the IaC–Terraform usage but by using the module and

creating a different AWS resource using IaC.

The following modules are created:

•	 AWS network, VPC, subnets, NAT gateway, Internet gateway

•	 EKS

•	 AWS RDS, MariaDB

•	 Elasticache, Redis Cluster

•	 SSM parameter store

•	 S3 buckets

•	 EC2 instances

•	 EC2 key pair

•	 Web Application Firewall (WAF)

•	 Load balancer

•	 IAM policy for EKS

The Terraform code is built by a module; utilizing modules may save time and

prevent expensive mistakes by reusing configuration generated by you, other team

members, or other Terraform practitioners who have released modules for you to utilize.

When you create a Terraform module, you can recall it in the following way:

module "vpc" {

 source = "./vpc"

 vpc_cidr = var.vpc_cidr

 public_list = var.public_list

 private_list = var.private_list

 public_security_group = var.public_security_group

 private_security_group = var.private_security_group

Chapter 11 DevOps Projects

https://github.com/OsamaOracle/Terraform-eks-helm-deployment
https://github.com/OsamaOracle/Terraform-eks-helm-deployment

545

 alb_name = var.alb_name

 prefix = local.prefix

}

Each module has input that allows you to choose from it; the Terraform module is a

folder containing a set of configuration files used consistently. By enclosing collections

of related resources in Terraform modules, you can write less code overall for associated

pieces of infrastructure.

Here’s the project link: https://github.com/OsamaOracle/AWS_infrastructure_

project.

Another example of the module in this project is rds, as shown here:

module "rds" {

 source = "./rds"

 subnet_list = module.vpc.private_subnet_ids

 security_groups = [module.vpc.vpc_security_group_private]

 cluster_name = var.cluster_name

 master_username = var.master_username

 master_password = var.master_password

 engine = var.engine

 engine_version = var.engine_version

 instance_class = var.instance_class

 dbname = var.dbname

 username = var.username

 password = var.password

 port = var.port

 allocated_storage = 20

 skip_final_snapshot = var.skip_final_snapshot

 multi_az = var.multi_az

 environment = var.environment

}

The input of the module is different this time from the VPC because each module has

its information, and each AWS service has its mandatory requirements. See Figure 11-18.

Chapter 11 DevOps Projects

https://github.com/OsamaOracle/AWS_infrastructure_project
https://github.com/OsamaOracle/AWS_infrastructure_project

546

Figure 11-18.  Terraform module folders

Each one of these modules contains two necessary files.

•	 Main.tf

•	 Variable.tf

The main file will contain a resource that will be created; for example, see

Figure 11-19.

Chapter 11 DevOps Projects

547

Figure 11-19.  Inside the module file main.tf

�How to Run the Code
The code, this time, will not be deployed using any pipeline; on the other hand, it will be

deployed manually using the Terraform code shown here:

terraform init

terraform plan

terraform approve --auto-approve

Inside the project is a file called backend.tf; this file will allow you to upload the

state file to Amazon S3. The bucket must be created before running the code.

terraform {

backend "s3" {

bucket = aws_s3_bucket.backend_bucket.id

key = "terraform.tfstate"

region = "eu-central-1"

}

}

Chapter 11 DevOps Projects

548

�Project 4: Creating a CloudFormation Project
In this project, we will use another IaC service, AWS CloudFormation. Before

implementing this project, it’s important you understand the concepts we will repeat

from earlier projects, but this time using IaC.

We will do a couple of things in the code. First, we will “harden” Linux. Hardening

Linux, or any other operating system, increases the system’s safety by incorporating

preventative measures. Linux distributions consist of many parts that must be

constructed with great care. As a consequence, there may be lots of untied ends. A

machine’s security risks increase in proportion to its complexity.

In addition, log files offer a history of actions taken by the Linux OS, programs,

and the system, which may help diagnose problems and, in this case, deploy a

CloudWatch agent.

This project aims to prepare a hardened, logging configured, and highly available

server that hosts a simple application to echo sent requests; all of this will be done using

IaC and CloudFormation. Table 11-1 provides a succinct rundown of each step of the

project and its purpose.

Table 11-1.  CloudFormation Project Summary

Project Step Purpose

Basic infrastructure and

VM setup

Working CloudFormation template that deploys the essential

infrastructure required to set up the instance

Application setup Application code and setup options

Logging setup Script to set up logging mechanism on the system

Hardening A script that hardens the OS to be resistant to general cyberattacks

Final output CloudFormation script

Implementation plan and documentation

The code will first set up the network that includes the VPC and the subnets, as

shown in Figure 11-20.

Chapter 11 DevOps Projects

549

Figure 11-20.  CloudFormation section where it will set up a VPC

Next, we will set up the EC2 based on a predefined AMI from the AWS market and

deploy it to the previous VPC, and we will set up an SSH key (which can be changed, and

you can use your key), as shown in Figure 11-21.

Figure 11-21.  SSH key for the Ec2

Then we will set up a small application to have Nginx do an echo and run a bash

script that will do a simple hardening; the bash is already uploaded to my S3 bucket.

https://osamaoracle.s3.eu-west-2.amazonaws.com/Hardening/

restricted_user.sh

Next, I will configure the CloudWatch agent, which requires a configuration based on

my setup, and I will use the one that has already been uploaded to the S3 bucket.

https://osamaoracle.s3.eu-west-2.amazonaws.com/Logging/cwagent-

config-2.json

Then I will deploy the application and configure the Nginx web server based on the

configuration that was already written and uploaded to my S3 bucket as a template for

this project.

Chapter 11 DevOps Projects

https://osamaoracle.s3.eu-west-2.amazonaws.com/Hardening/restricted_user.sh
https://osamaoracle.s3.eu-west-2.amazonaws.com/Hardening/restricted_user.sh
https://osamaoracle.s3.eu-west-2.amazonaws.com/Logging/cwagent-config-2.json
https://osamaoracle.s3.eu-west-2.amazonaws.com/Logging/cwagent-config-2.json

550

�Project Architecture
Figure 11-22 shows the project architecture.

Figure 11-22.  Project architecture

The basic architecture consists of the following:

•	 One VPC

•	 Two public subnets

•	 One Internet gateway

•	 One AutoScaling group

The single autoscaling group spans two availability zones (AZs), with one subnet in

each availability zone, so the loss of one AZ/data center does not affect the availability of

the solution, and the application remains up.

Logging will be configured for all critical logs and stored in CloudWatch; the

operating system will also be hardened to resist cyber threats.

�Application Setup
A Python-based Flask application has been set up on the instance responsible for

echoing the request sent by a user.

Chapter 11 DevOps Projects

551

The application has been set up to restart upon the system reboot automatically.

�Logging

A CloudWatch agent to monitor system stats has been set up on the instance.

�Hardening

Ubuntu 18.04 OS has been hardened as follows:

•	 Encryption has been set up on the underlying volume.

•	 A custom admin user has been created.

•	 A custom-restricted user has also been created.

•	 The IP banning system has been implemented to thwart relevant

cyberattacks on the system via SSH and application ports.

•	 System packages also get upgraded every month.

Here is the project link: https://github.com/OsamaOracle/Complete-AWS-Project.

�Summary
In this last chapter, I shared projects using different DevOps techniques and the same

tools used in other chapters, but with each project, I showed you how to use these tools

differently.

The more you practice DevOps, the more things you will learn every time; it’s

essential to apply and practice DevOps to allow you to understand the tools and how to

use them.

Chapter 11 DevOps Projects

https://github.com/OsamaOracle/Complete-AWS-Project

553
© Osama Mustafa 2023
O. Mustafa, A Complete Guide to DevOps with AWS, https://doi.org/10.1007/978-1-4842-9303-4

Index

A
Accessibility, 17, 322, 345
Access Management Integration (IAM),

85, 93, 94, 98, 99, 103, 118, 126,
127, 142, 153, 163, 243, 254, 280,
293, 294, 297, 301, 305, 321, 340,
342, 360, 408, 457, 544

Account hijacking, 323
Administrator catalog, 351
Advanced persistent threats (APTs), 323,

324, 510
Agile development, 46–48
Amazon CodeGuru

associated repo analysis, 374
CodeCommit, 373, 374
dashboard, 373
definition, 373
details section, 375
functions, 373
pull request, 375
recommendations, 375–377

Amazon Elastic Compute Cloud (ECS),
138, 407–410, 421

Amazon Elastic Container Registry, 407
Amazon Elastic Container Service

(Amazon ECS)
AWS Identity and IAM, 408
cluster creation, 410, 425 (see also ECS

cluster creation using console;
ECS cluster creation via
Terraform)

components, 408–410

containers management, 408
description, 407
EC2 instance, 407

Amazon EventBridge, 301–303, 340
Amazon Machine Image (AMI), 140, 192
Amazon’s EC2 cloud service, 408
Amazon Web Services (AWS), 1, 319

application, 28, 29
cloud services (see Cloud computing

services)
compliance standards, 29
cybersecurity protection, 29
data security, 24, 25
deployment methods, 191–196
edge services, 18–20
networking infrastructure, 25–28
On-Premise vs. AWS, 22
onsite services and operations, 21–24
Well-Architected (see Well-Architected

framework)
Annotations, 309, 464–468
Application programming interfaces

(APIs), 320, 386, 393, 438
Argo, 521
Artificial intelligence operation

(AIOps), 273
ASP.NET Hello World, 541
Authentication method, 321
Automation testing tools

advantages, 63, 64
Cucumber, 71
data-driven framework, 70

https://doi.org/10.1007/978-1-4842-9303-4

554

definition, 62
disadvantages, 66
framework, 69, 70
hybrid framework, 70
keyword-driven framework, 70
Mabl, 72
manual testing, 62
misconceptions, 64–66
modular frameworks, 70
process, 68–70
Selenium, 71
stakeholders, 66
Watir, 71

Availability zones (AZs)
data centers, 12, 13
data storage/backup, 15
fundamental issues, 17
geographical region, 16, 17
regions, 13–15
security/latency, 16
service-level agreement, 17
uninterrupted power supply (UPS), 13
website, 12

AWS Artifact, 326–327
AWS Certificate Manager (ACM)

AWS-hosted websites and apps, 327
certificate configuration request,

328, 329
certificate validation, 330
pending validation, 329
public certificate request console, 328
Route 53, 328
validation method, 328

AWS CloudShell, 453
AWS ECR repo, 416
awsElasticBlockStore, 487
AWS endpoint

deploy the solution, 536–539
DynamoDB datastore, 535
GitHub variable, 537
Lambda function, 531
POST output, 534
POST request, 533, 534
project architecture, 532
repository structure, 532, 533
S3 report, Lambda, 540

AWS Fargate, 408
AWS Identity, 85, 408
AWS resources, Terraform

modules, 544, 545
Terraform code, 547
Terraform module folders, 546

AWS Security Hub
activation, 340
advantages, 339, 340
data, 339
security status, 339

AWS Service Catalog
constraints, 351, 357–359
dashboard, 350
definition, 350
granting access, 360, 361
IT administrators/teams, 351
portfolios, 351–356
products, 351, 356, 357, 362
set up, 351
template, 352
types, 351

Aws.tf, 543

B
backoffLimit, 472
Bare-metal hypervisor, 392
Behavior-driven development (BDD), 71

Automation testing tools (cont.)

INDEX

555

Blue/green deployment
advantages/disadvantages, 193
configuration, 195, 196
production environment, 194
red/black deployment, 184, 185

C
Centralized version control systems

(CVCSs), 76
Central processing unit (CPU), 392
Chart.yaml, 513
Checkov tool, 363–365
CI/CD tools, Kubernetes

Argo, 521
Flux, 522–526
Tekton, 522

Clone GitHub repository
HTTPS, 530, 531
SSH, 528, 530

Cloud computing services
automated scaling, 9
availability zones (AZs), 9
benefits, 6
capex vs. opex, 5, 6
categorization, 7
characteristics, 8–10
concepts, 10
cost explorer, 10
cost/speed, 1
hardware devices, 7
horizontal and vertical scaling, 2
measured service, 10
public cloud services, 6
public/private/hybrid cloud, 3
regions, 11–17
reliability/security, 2
resource pooling, 9

self-service on-demand feature, 8
serverless, 4
services/models, 3
shared responsibilities, 4, 5
types, 2

CloudFormation, 57, 61–62, 246–254,
351, 456

advantages, 246
Ansible

configuration tool, 260
Debian/Ubuntu Linux, 263–267
features, 268
high-level design, 260
open-source configuration, 261
RHEL/CentOS Linux, 263
working process, 261, 262

application setup
hardening, 551
logging, 551

AWS template, create EKS, 456
connectivity, 249
create access key/secret key, 458
create stack, 455
disadvantages, 247
IaC, 459, 548
key pair AWS creation, 455
log files, 548
project architecture, 550
project summary, 548
Pulumi program

comparisons, 260
concepts, 256
cutting-edge platform, 254, 255
inputs/outputs, 257–260
resources, 257
state/back ends, 257

source code, 247–253
SSH key, Ec2, 549

INDEX

556

template files, 246
template variable, 457
variables, 456
VPC, 247, 549

CloudFormation Guard tool,
347–350

CloudFront, 19
Cloud infrastructure, 320
Cloud misconfiguration, 321
Cloud security issues, 320

account hijacking, 323
application vulnerabilities, 321
APTs, 323, 324
available tools, abundance, 324
DoS attacks, 322
external data sharing, 322
identity and credentials, 321
insecure APIs, 323
lack of visibility, 324
malicious insider, 322

Cloud service providers, 323
Cloud services, 440
Cloud services/subscriptions, 323
CloudTrail tools

attributes, 279
configuration file, 280
configuration step, 278
console, 277
event history, 283
event type, 281
log event, 282
reviewing and creation, 283
services events and activity

logs, 276
trail creation, 278
types, 276
welcome page, 278

CloudWatch, 413, 550, 551
accessing process, 286, 287
agent commands, 291
attributes, 292
configuration file, 292
dashboard, 287–290
definition, 284
EC2 server

configuration file, 297
IAM role modification, 297, 298
logs, 297, 299
metrics, 300
session manager, 298
source code, 296
system manager, 299

explorer widget, 289
features, 285, 286
group dashboard, 293
IAM Dashboard, 294
input triggers, 284
logs, 291
metrics concepts, 300

configuration file, 302
dimension, 301
EventBridge services, 301–303
event source configuration, 303, 304
filter options, 301
monitoring tools, 307
namespaces, 300
pattern configuration, 305
reviewing and creation, 306
target, 306

offers, 285
permissions, 295
role creation, 294
setup locations, 291
trusted entity type, 295

ClusterIP, 498, 499, 502

CloudFormation (cont.)

INDEX

557

ClusterRole, 517, 518
CNAME record, 328, 329
CodeArtifact

approach, 126
asset/namespace, 125
configuration process, 126–128
dependency caching, 132
domain repositories, 125
domain screen, 129, 130, 132
package version, 125
Python, 132, 133
repository screen, 130–132
software packages and

dependencies, 124
upstream connection, 125
visual studio code, 128

CodeBuild process
benefits, 103
buckets, 108
build specs, 107
build stage, 120
Codecov, 122–124
continuous integration solution, 102
Jenkins, 122
JSON file, 110–117
menu options, 106
pipeline creation, 117–122
portal, 109
project creation, 109
repo folder structure, 107
source code, 107
source stage, 119
upload code, 108
version control/source code, 104
working process, 103–106

CodeCommit repositories, 373
advantages, 85
CLI, 88

code commit configurations, 98
command-line tools, 86, 88–95
description, 88
features, 84
Git commands, 99
local/existing repo, 95–98
notification target, 100–102
page creation, 87
portal, 86, 87
protocols, 99
view repository details, 98

CodeDeploy
advantages, 138
code deployment, 152–156
CodePipeline, 157, 158, 160
CodePipeline agent

application screen, 167
deployment group, 169
deployment type, 168
EC2 instance, 166
environment configuration

settings, 168
deployment group creation, 154
deployment settings, 155, 156
deployment strategies, 138
EC2 instance, 140–142
high-level steps, 139
installation process, 155
modifications, 138
project development, 139
redeployment, 156–158
role creation, 142–147

configuration process, 145
IAM screen, 142
permission, 143
role page, 143
security group, 146
service role, 144

INDEX

558

source code, 144, 145
trust relationships, 144

S3 WordPress Code, 150–152
services role, 152
source content configuration,

147–149
WordPress application, 156, 157

CodePipeline
advanced settings, 170
automation tools, 158
CodeDeploy component, 160
deployment history, 159
deployment stage, 172
EC2 instance, 161

AmazonSSMManagedInstanceCore
policy, 165

CodeDeploy installation, 166–169
grant access, 163–165
IAM role creation, 163
launch, 166
permission, 164
policies, 165
role creation, 164

GitHub
bucket name, 175
build stage, 179
configuration, 174
connection, 178
deployment stage, 180
installation, 176, 177
integration, 176
project console, 173
results, 181
S3 bucket properties, 172
website-static bucket, 173

history, 160
main page, 170–172

S3 bucket code, 162, 163
source stage, 171

Cohesion, 382
Command-line interface (CLI)

access and secret key, 89
clone option, 94
CloudFormation, 254
CodeBuild

artifact screen configuration, 116
batch configuration, 114, 115
buildspec file, 114
environment configuration

screen, 111, 113
JSON file, 110, 111
logs, 117
project creation, 117
source configuration, 111
test/code build, 111

code commit configuration, 94
code commit repository, 91, 92
configuration process, 91
installation process, 90
management console, 89
page details, 89
repository information, 95
user information, 93

ConfigMap, 491–495
Containers, 391–393, 396

commands, 401
docker container run command, 400
VM, 400

Continuous delivery pipeline (CDP),
135, 136

Continuous deployment/delivery (CD)
advantages, 137
canary deployment, 136
CodeDeploy, 138–158
deployment strategies, 136

CodeDeploy (cont.)

INDEX

559

isolated modifications, 136
production program, 136

Continuous integration and continuous
delivery (CI/CD), See also
Continuous deployment/
delivery (CD)

application development, 79
automation testing, 69
CD advantages, 49
CI advantages, 48
CodeArtifact, 124–133
CodeBuild, 102–124
CodeCommit (see CodeCommit

repositories)
concepts, 49, 79
continuous testing, 80
deployment process, 49, 83
DevOps approach, 81–84
requirements, 81, 82
stages, 49
testing/production environment, 80
tools, 50

Coupling, 382, 385
Credentials, 321
Cronjob, 475–477
Cross-site scripting (XSS), 19
Cryptographic keys, 321
Ctrl+PQ command, 401

D
Decoupling microservices, 385
Denial-of-service (DoS) attacks, 322
Deployment

benefits, 507
definition, 508
kubectl, 508
replica, 510

selector, 510
strategy, 510
template, 510
replica set, 506, 507
replication controller, 506
rolling, 508
stateful, 506
stateless applications, 505

Deployment strategies, 183
A/B testing methodologies, 186, 187
AWS deployment methods

blue/green deployments, 194, 195
deployment options, 191
in-place method, 191, 192
linear options, 193
MySQL RDS, 194–196
prebaking and bootstrapping

methodologies, 192
blue/green (red/black), 184, 185
canary, 185, 186
ramped (rolling), 188–190
re-create, 188, 189
shadow, 190, 191
types, 183

Deployment.tf, 543
Development-security-operations

(DevSecOps)
ACM, 327–330
AWS Artifact, 326, 327
AWS Security Hub, 339–341
AWS Service Catalog, 350–362
CI/CD pipelines, 319
cloud, 319
code analysis (see Static code analysis)
emergence, 318
issues (see Cloud security issues)
Trusted Advisor, 342–350
WAF, 330–339

INDEX

560

DevOps, 37
Agile (see Agile development)
automation testing, 62–72
benefits, 44
collaboration, 38, 42
communication barrier, 319
continuous (Agile) development, 37
CI/CD, 48–50
customer-centric mindset, 317
vs. DevSecOps, 318
infrastructure as code, 50–62
innovation, 43
organizational silos, 42
satisfaction, 44, 45
security, 318, 319
shared goal, 41
software delivery process, 39–41
speeds, 43
version control system, 72–77

Distributed denial-of-service
attacks, 322

Distributed version control systems
(DVCSs), 76–77

Docker, 433
advantages, 394, 395
cloud computing, 394
container tools, 393
definition, 394
DevOps approach, 395
easy-to-use interface, 394
installation, 397, 398
isolation, 394
multilevel runtime structure, 396
technology, 395
three-layer architecture, 395, 396

Docker daemon, 112, 397, 449, 450
Docker engine, 403
docker exec command, 464

Dockerfile, 432, 541
description, 401
docker build output, 405, 406
folder structure, 403
instructions, 401, 402
Nginx, 405
script, 405

Docker images, 478
image repository, 398
operating system’s filesystem, 398
OS, 398
pulling, 399
software and data, 398

Docker-in-Docker (DIND), 450
Domain-specific language (DSL), 211

E
ECS cluster creation using console

AWS CloudFormation stack, 410
CloudFormation template, 410
CloudWatch, 413
ECR, 416, 417
Fargate/EC2, 418
GitHub repository, 410
launch method, 412, 413
load balancer, 423–425
service configuration, 421–423
task definition, 414, 420, 421
task definition without JSON, 417, 418
virtual private cloud settings, 411

ECS cluster creation via Terraform
code, 425
folder structure, 425
main.tf, 426
output.tf, 431
provider.tf, 430, 431
Terraform.tfvars, 431

INDEX

561

variable.tf, 427
vpc.tf, 429

Edge location services (EVs)
AWS Shield, 20
CloudFront, 19, 20
data connection options, 18
Lambda@Edge processes, 20
Route 53, 18, 19
telecom networks, 18
web application firewall, 19

eksctl, 452–454
EKS features, 542
EKS.tf, 543
Elastic block storage (EBS), 10, 487
Elastic capacity, 320
Elastic Cloud Compute instances (EC2), 7

CloudFormation, 249
CloudWatch, 296–302
monitoring system, 273
Terraform modules, 235, 236

Elastic Compute Cloud (Amazon
EC2), 138

Elastic Container Registry (ECR), 416
Elastic File System (EFS), 21
Elastic Kubernetes Service (EKS), 451

AWS calculator, 452
dashboard, 451
eksctl, 452

Elasticsearch, 515
emptyDir, 486, 487
End-user catalog, 351
Etcd, 439–442
etcdctl, 440

F
Fargate launch, 408
Flux, 522–526

G
General-purpose programming languages

(GPLs), 211
GitHub, 523, 529

access key and secret, 538
variable, 537
workflow action, 538

GitHub action, 540
Google Cloud Platform (GCP), 319, 451

H
Helm, 363, 366, 367, 510–514
Hosted hypervisor, 392
HTTPS, 75, 85, 94, 96, 99, 237, 530, 531
Hypertext Transfer Protocol

(HTTP), 19, 386

I, J
Identities and access (IAM), 321
Identity and access management

(IAM), 85, 153
Image commands, 399
Infrastructure as a service (IaaS), 4, 319
Infrastructure as code (IaC), 197, 318, 344

advantages, 198
agent tools, 209
Ansible, 61
automation fears, 202
categories, 53
Chef and Puppet, 208, 209
cloud approach, 199
CloudFormation, 61, 246–268
comparison tools, 212
configuration files, 50
configuration management, 204
containers/templating, 204

INDEX

562

containers/tools, 54
database instance, 206
definitions, 198
factors, 206
file structure, 60
GPLs vs. DSL, 211
idempotent, 210
imperative approach, 53
implementation, 201
integration, 209, 210
multiple-environment

deployments, 199
mutable/immutable infrastructure,

210, 211
paid vs. free versions, 212
power, 51
provisioning, 204
provisioning tools, 54
provision vs. configuration

management, 206–208
resources, 197, 198
scripts, 204
speed vs. quality, 202
standard tools

advantages, 59, 60
Ansible, 55
Azure Resource Manager, 57
Chef, 55
CloudFormation, 57
Google Cloud Deployment

Manager, 58
Puppet, 56
SaltStack, 56
Terraform, 55
tool roundup, 58
Vagrant, 56

teams/organizations, 200–203
Terraform, 212–246
tools, 204, 205
types, 54
version control, 51
working process, 52, 53

Ingress controller, 503–505

K
K8S, 436, 439
K8s-first-example.yaml, 462
Key Management Service (KMS), 85
Kibana dashboard, 516
Kind, 450, 451, 461
Kms.tf, 543
Kubeadm, 444
kubectl create namespace, 469
kubectl exec command, 464, 485
kubectl get Pods, 462
kubectl gets, 462, 463
Kubelet, 443, 477
Kube-Proxy, 443
Kubernetes, 390, 391, 393, 432

annotations, 464–468
benefits

architecture, 437
containers deployment, 435
essential app features, developers,

434, 435
high availability solution, 435
operational teams’ ability, available

resources usage, 435
release management, 435
scale, 436, 437
vertical vs. horizontal scale, 436

CI/CD tools, 521–526

Infrastructure as code (IaC) (cont.)

INDEX

563

components
master node, 438–442
worker node, 442, 443

computing nodes group, 459
cronjob, 475–477
daemon set, 483
daemon vs. replica set, 484
dashboard token, 514, 515
data center, 434
definition, 433
deployment, 505–510
Elasticsearch, Kibana, 515
Helm, 510–514
installation server information, 444
jobs, 470

activeDeadlineSeconds, 474
backoffLimit, 472
completions, 472, 473
Kubernetes YAML job creation, 471
parallelism, 473
restart policy option, 471
scenarios, 470
ttlSecondsAfterFinished, 474, 475

as “K8S”, 434
labels, 464–468
liveness probes, 478, 479
logs

awsElasticBlockStore, 487
ConfigMap, 491–494
emptyDir, 486, 487
Kubernetes Secrets, 494–496
persistent volumes, 488, 489, 491
volumes, 485, 486

namespaces, 468–470
pods, 460–464
primary strength, 477
prometheus, grafana, 516, 517

RBAC, 517, 518, 520, 521
replica set, 482, 483
replication controller, 479–482
service, 497–505
website, 433

Kubernetes cluster
Amazon EKS kubernetes

installation, 451
CloudFormation, 454–459
eksctl, 452–454
install Kubernetes, 446–448
Kind, 450, 451
Kubeadm, 444
master node setup, 446–448
Minikube installation, single-node

cluster, 448–450
Terraform, 454
worker node, 448

kube-scheduler, 439
kube-system namespace, 469

L
Labels, 464–468
Lambda function, 531, 540
Liveness probes, 478, 479
Load Balancer DNS, 425
LoadBalancer service, 501, 502

M
Master node components, 438

API, 438
controller manager, 439
Etcd, 439–442
scheduler (kube-scheduler), 439

Metadata, 461

INDEX

564

Microk8s, 448
Microservice design, 382
Microservice paradigm, 390
Microservices architecture

advantages, 388
Amazon ECS (see Amazon Elastic

Container Service (Amazon ECS))
AMQP, 386
communicating, 385, 386
containerization, 390–393
debugging process, 386
decentralized system, 387
disadvantages, 388
Docker, 393–398
Dockerfile, 401–407
full-featured software, 385
functions, 387
high-level architecture, 385
images (see Docker images)
life cycle, 384
vs. monolithic architecture,

389, 390
protocols, 385
resources sharing, 386
smaller apps, 384

Microsoft Azure, 319
Minikube, 448, 450

benefit, 448
operating system, 449
primary function, 448

Modular monolith
advantages, 383
challenges, 382
coupling and cohesion, 382, 383
description, 381
disadvantages, 383, 384
parallel work facilitation, 381

Monitoring system
AIOps concepts, 273
black-box monitoring, 271–273
CloudTrail tools, 276–283
CloudWatch, 284–307
definition, 269
HTTP requests code, 270
observability tools, 272
primary types, 270
resource dashboard

EC2 dashboard, 273
enlargement option, 275
menu options, 274, 275
metric analysis, 274
RDS dashboard, 276

white-box monitoring, 270, 271
X-Ray application, 307–315

Monolithic app’s deployment, 380
Monolithic architecture, 387

application components, 379
classic application architecture,

379, 380
codebase, 379
development process, 380
resource efficiency, 381
testing and debugging, 380
web application, 380

Multifactor authentication
(MFA), 321

N
Namespaces, 468–470
Nginx, 260, 403, 461, 503, 512, 549
Node, 468
NodePort, 499, 500, 502
Nodes, 443

INDEX

565

O
Observability tools, see Monitoring system
Open Containers Initiative (OCI), 396
-o wide format, 463

P, Q
Persistent volume, 488, 489, 491
PersistentVolumeClaim (PVC), 488–491
Pipeline failure signals, 346
Pipeline project, see CodePipeline
Platform as a service (PaaS), 3, 4, 319
Pods, 460–464
PodSpecs, 443
Policy as code, 317, 344–347
Pre-approved template, 346
Prebaking vs. bootstrapping

methodologies, 192–193
Provider.tf, 543
Public key infrastructure (PKI), 321
Pulling, 399
Python-based Flask application, 550

R
rbac-lookup, 521
Replica set, 482–484, 506, 507
Replication controller, 479–482, 506
Resiliency, 388
Respiratory Distress Syndrome (RDS),

194–196, 238–242
Return on investment (ROI), 45, 67
Role-based access control (RBAC), 57,

260, 517, 518, 520, 521
Role binding, 519, 520
Rolling deployment, 188, 189, 508
Runc, 396

S
S3 bucket, 549
Scheduler (kube-scheduler), 439
Security policy, 323
Security standards, 340, 341
Security teams, 317, 319
Service-level agreement (SLA), 8, 17, 23
Shared responsibility model, 320
Software as a service (SaaS), 4
Software Development Kit (SDK), 254
Software development life cycle

(SDLC), 44
SonarCloud’s algorithms, 369
SonarCloud tool, 377

CI/CD pipeline, 369
cloud-based service, 369
code quality analysis, 372
dashboard, 369
problem categories, 369
scanning IaC, 370
security threats analysis, 370
software development life cycle, 369
version control repo, 370–372

SonarLint, 367, 368
SonarQube tool, 377

automate code analysis, 366
CI/CD, 367
continuous integration setting, 367
definition, 365
Docker installation, 366, 367
installations, 366
manual installation, 366
Terraform, 368

SSH
add key to GitHub, 530
GitHub, 528, 530
key, 528–530

INDEX

566

Static code analysis
Amazon CodeGuru, 373–376
Checkov, 363–365
definition, 362
false positives and negatives, 362
Java-based SonarQube, 365–368
revisiting process, 362
SonarCloud, 369–372
tried-and-true method, 362
uncovering bugs, 362

System’s APIs and UIs, 323

T
Tekton, 521, 522
Template constraint, 351, 358, 359
Terraform, 332, 347, 454, 459, 539, 543

CI/CD concepts, 79
code process, 214
commands, 221, 222
concepts, 215
conditionals, 244–246
DynamoDB table, 220
file management, 217
file structure, 60, 226
folder structure, 218
graph database, 213
HashiCorp, 212
infrastructure automation

technology, 54
init command, 223
looping constructions, 242–244
Main.tf, 227–230
modules

architecture, 233
building blocks, 242
configuration files, 232–234
EC2 instance, 235, 236

folder structure, 233, 234
RDS database, 238–242
security group, 237, 238, 240
VPC code, 234, 235

output.tf, 224, 230–232
plan output, 232
provider.tf, 226
remote back-end, 224
resources, 214, 225
source code, 215, 216, 218–220
state files, 216
structure, 218
syntax code, 222
variable, 226, 227

Terraform code, 542
Terraform module, 545
terraform.tfvars, 431
Test automation tools, see Automation

testing tools
Trusted Advisor

analysis, 342
CloudFormation

Guard, 347–350
core things, 342
dashboard, 343
interface, 342
policy as code, 344–347
Security Hub, 342
security recommendation, 343

Types of Kubernetes services
ClusterIP, 498, 499
ingress controller, 503–505
LoadBalancer, 501, 502
NodePort, 499, 500

U
User acceptance test (UAT), 136

INDEX

567

V
Values.Schema.JSON, 513
Values.Yaml, 513, 516, 542
Variable.tf, 218, 226–227, 533, 543
Version control system (VCS), 345

Bitbucket Pipelines, 74
CVCS benefits, 76
DVCS modifications, 77, 78
Git, 73, 74
GitLab, 75
local files, 76
significance, 72
SVN, 74
types, 76
use cases, 73
working process, 72

Virtual machine (VM), 391, 392, 400
Virtual private cloud (VPC), 25, 26, 411
Virtual private network, 25, 429, 542
VM architecture type, 392
VMware ESXi/KVM, 392
Vpc.tf, 543

W
WAF Terraform, 338
Web ACL, 331
Web Application Firewall (WAF), 19

access management, 331
customized, 331
resources, 330
rules, 331
rules group

main.tf, 334
Terraform, 331

variable.tf, 332
web ACL, 331

Well-Architected framework
approaches, 29
cost optimization issues, 31
documentation, 33
management dashboard, 32–34
operational excellence, 30
performance efficiency, 31
reliability, 30
security, 30
structurally integrated principles, 32
sustainability, 31
terms, 31

Worker node components, 442, 443

X
X-Ray application

analytics console, 315
annotations and metadata, 309
CloudFormation, 311
concepts, 308, 309
console, 307
Node.js application, 310
review application deployment, 310
service map, 313
stack details screen, 311, 312
traces section, 313, 314
welcome screen, 308

Y, Z
YAML file, 50, 61, 208, 453, 454, 462, 469,

491, 495, 510, 511, 513

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Overview of Amazon Web Services
	Cloud Services at a Glance
	Types of Cloud Computing
	Cloud Service Models

	AWS Cloud Computing’s Key Characteristics
	AWS Regions
	Availability Zones

	Global Edge Services
	Route 53
	Web Application Firewall
	CloudFront
	Lambda@Edge
	AWS Shield

	AWS Operational Benefits
	AWS Data Best Practices
	AWS Network Best Practices
	AWS Application Best Practices
	The Well-Architected Framework
	The Well-Architected Tool

	Conclusion

	Chapter 2: Understanding DevOps Concepts
	DevOps Primer
	The DevOps Process
	DevOps Goals
	Shared Goal
	Collaboration (No Silos Between Teams)
	Speed
	Innovation
	Satisfaction of Customers

	Agile vs. DevOps
	Continuous Integration and Continuous Delivery
	Continuous Integration’s Advantages
	Continuous Delivery
	Continuous Delivery Advantages
	Continuous Deployment
	Roundup of Concepts
	CI/CD Tools

	Infrastructure as Code
	How Infrastructure as Code Works
	IaC Types
	Standard IaC Tools
	Terraform
	Ansible
	Chef
	Puppet
	SaltStack
	Vagrant
	AWS CloudFormation
	Azure Resource Manager
	Google Cloud Deployment Manager
	Tool Roundup

	Benefits of Infrastructure as Code
	Infrastructure as Code Examples
	Terraform
	Ansible
	AWS CloudFormation

	Automation Testing
	Advantages
	Misconceptions
	Stakeholders
	Disadvantages
	Test Automation Process
	Automation Framework
	Test Automation Tools
	Selenium
	Cucumber
	Watir
	Mabl

	Version Control
	Significance of a Version Control System
	Git
	SVN
	Bitbucket
	GitLab

	Version Control System Types
	Local Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems

	Summary

	Chapter 3: AWS Services for Continuous Integration
	Continuous Integration and Continuous Deployment
	CI/CD and DevOps

	Continuous Integration
	AWS CodeCommit
	Creating a CodeCommit Repository on AWS
	Create a Repository (Console)
	Create a Repository (AWS CLI)
	Connect a Local/Existing Repo to the CodeCommit Repository
	View Repository Details (Console)
	View CodeCommit Repository Details (AWS CLI)
	View CodeCommit Repository Details (Git)

	Configuring Notifications for AWS CodeCommit

	AWS CodeBuild
	How CodeBuild works
	Using CodeBuild via the Console
	Step 1: You Need to Have the Source Code
	Step 2: Create a Build Specs File
	Step 3: Create an S3 Bucket
	Step 4: Upload Your Code
	Step 5: Create the Code Build Project

	Using CodeBuild via the AWS CLI
	Step 6: Test and Run the Code
	How to Create a CodeBuild-Based Pipeline
	Use AWS CodeBuild with Jenkins
	Use AWS CodeBuild with Codecov

	CodeArtifact
	Configure CodeArtifact
	Create a CodeArtifact Domain
	Create a CodeArtifact Repository
	Example CodeArtifact for Python

	Summary

	Chapter 4: AWS Services for Continuous Deployment
	Introduction to Continuous Deployment
	Continuous Delivery
	AWS CodeDeploy
	AWS CodeDeploy Project
	Step 1: Configure an EC2 Instance
	Step #2: Configure the Source Content to Be Deployed on EC2
	Step 3: Upload WordPress Code to S3
	Step 4: Deploy the Code
	Step 5 (Optional): Redeploy the Code

	AWS CodePipline
	CodeDeploy Component

	Project: Create an Essential Pipeline Using AWS CodePipeline
	Step 1: Create the S3 Bucket
	Grant Access to EC2
	Step 2: Launch the EC2 Instance
	Step 3: Install the CodeDeploy Agent on EC2
	Step 4: Create the Pipeline

	Integrate CodePipeline CI/CD with GitHub
	Summary

	Chapter 5: AWS Deployment Strategies
	What Is a Deployment Strategy?
	Blue/Green Deployments
	Canary Deployments
	A/B Testing Methodologies
	Re-create Deployments
	Ramped Deployments (Rolling Upgrades)
	Shadow Deployments

	Amazon AWS Deployment Strategies
	In-Place Deployments
	Prebaking vs. Bootstrapping AMIs
	Linear Deployments
	All-at-Once Deployments
	Blue/Green Deployments for MySQL RDS

	Summary

	Chapter 6: Infrastructure as Code
	What Is Infrastructure as Code?
	Why Do You Need IaC?
	IaC Types
	Scripts
	Configuration Management
	Provisioning
	Containers and Templating
	Tool Examples

	How to Choose an IaC Tool
	Provision vs. Configuration Management
	Agent vs. Agentless
	Integration with Other Tools
	Mutable Infrastructure vs. Immutable Infrastructure
	General IaC Language vs. Specifically Designed Language
	Paid Version vs. Free Version
	Comparison of Tools

	Terraform
	Terraform Concepts
	The provider.tf
	Variable.tf
	Main.tf
	Output.tf

	Terraform Module
	VPC Code
	EC2
	EC2 Security Group
	RDS
	RDS Security Group

	Terraform Tips and Tricks
	Loops
	Conditionals

	AWS CloudFormation
	Pulumi
	Pulumi Concepts
	Resources
	State and Back Ends
	Inputs and Outputs

	Ansible
	RHEL/CentOS Linux
	Debian/Ubuntu Linux
	Simple Playbook Example

	Summary

	Chapter 7: AWS Monitoring and Observability Tools
	Monitoring
	White-Box Monitoring
	Black-Box Monitoring

	Resource Dashboard
	AWS CloudTrail
	Using CloudTrail

	AWS CloudWatch
	CloudWatch Metrics Concepts
	Namespaces
	Metric Dimensions
	Metric Filter

	AWS X-Ray
	Summary

	Chapter 8: DevOps Security (DevSecOps)
	Why Is Security Crucial for DevOps?
	Security and the Cloud
	Weak Identity and Credentials
	Application Vulnerabilities
	Malicious Insider
	Denial-of-Service Attacks
	External Sharing of Data
	Insecure APIs
	Hijacking the Accounts
	Advanced Persistent Threats
	Lack of Visibility
	An Abundance of Available Tools

	AWS Artifact
	AWS Certificate Manager
	Request a Public Certificate Using the Console

	Web Application Firewall
	Web ACLs
	Rules
	Rules Group
	Variable.tf
	main.tf

	Security Hub
	Enabling Security Hub
	Security Standards

	Trusted Advisor
	Policy as Code
	Policy as Code Benefits

	CloudFormation Guard
	How to Install CloudFormation Guard

	Amazon AWS Service Catalog
	Static Code Analysis
	Checkov
	SonarQube
	Installing SonarQube
	Manual Installation
	Docker Installation

	SonarCloud
	Amazon CodeGuru

	Summary

	Chapter 9: Microservices vs. Monolithic
	Monolithic
	Modular Monolith
	The Challenge
	Coupling and Cohesion
	Monolithic Advantages and Disadvantages

	Microservices
	Microservices Advantages and Disadvantages
	Which Architecture Is the Best for You?
	Containerization
	Why Containerization?

	Docker
	Docker Installation

	Images
	Image Commands

	Containers
	Dockerfile
	Amazon Elastic Container Service
	ECS Components
	Create an ECS Cluster via Console
	Create an ECS Cluster via Terraform
	main.tf
	variables.tf
	vpc.tf
	Provider.tf
	Output.tf
	Terraform.tfvars

	Summary

	Chapter 10: Kubernetes
	What Is Kubernetes?
	Kubernetes Benefits
	Facilitating a Focus on Essential App Features for Developers
	Improving Operational Teams’ Ability to Make Effective Use of Available Resources
	High Availability Solution and Ensure It
	Management of Release and Deployment of Containers
	Scaling

	Kubernetes Components
	Master Node Components
	API
	Scheduler (kube-scheduler)
	Controller Manager
	Etcd

	Worker Node Components

	Building a Kubernetes Cluster
	The Master Node Setup
	Minikube Installation for a Single-Node Cluster
	Using Kubernetes and Kind to Create a Cluster with Several Nodes
	Amazon EKS Kubernetes Installation
	EKSCTL
	Terraform
	CloudFormation

	Diving into Kubernetes
	Pods
	Labels and Annotations
	Namespaces
	Jobs
	backoffLimit
	completions
	parallelism
	activeDeadlineSeconds
	ttlSecondsAfterFinished

	Kubernetes and CronJob
	Kubernetes Trick and Tips
	Liveness Probe
	Replication Controllers
	Replica Set
	DaemonSets
	Logs
	Volumes
	emptyDir
	awsElasticBlockStore
	Persistent Volumes
	ConfigMaps
	Kubernetes Secrets

	Services
	Deployment
	Kubernetes and Helm
	Kubernetes Dashboard
	Elasticsearch with Kibana
	Prometheus with Grafana
	RBAC in Kubernetes
	Kubenetes CI/CD Tools

	Summary

	Chapter 11: DevOps Projects
	Cloning a GitHub Repository
	SSH
	HTTPS

	Project 1: Creating an AWS Endpoint
	Repository Structure
	How Do You to Use the Solution?
	How to Deploy the Solution to AWS

	Project 2: Creating an EKS Instance and Deploying an Application to the Cluster via Terraform
	How to Run the Code
	Delete the Resource

	Project 3: Creating AWS Resources Using Terraform
	How to Run the Code

	Project 4: Creating a CloudFormation Project
	Project Architecture
	Application Setup
	Logging
	Hardening

	Summary

	Index

