

||||||||||||||||||||

||||||||||||||||||||

||||||||||||||||||||

DevOps with Windows Server

2016

Obtain enterprise agility and continuous delivery by

implementing DevOps with Windows Server 2016

Ritesh Modi

 BIRMINGHAM - MUMBAI

DevOps with Windows Server 2016

||||||||||||||||||||

||||||||||||||||||||

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its

dealers and distributors will be held liable for any damages caused or alleged to be caused

directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1210317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3

2PB, UK.

ISBN 978-1-78646-855-0

www.packtpub.com

Credits

 Author Copy Editor

 Ritesh Modi Dipti Mankame

 Reviewer Project Coordinator

 Satya Srinivas Gogula Judie Jose

http://www.packtpub.com/

||||||||||||||||||||

||||||||||||||||||||

 Commissioning Editor Proofreader

 Pratik Shah Safis Editing

 Acquisition Editor Indexer

 Nitin Dasan Pratik Shirodkar

 Content Development Editor Graphics

 Juliana Nair Kirk D'Penha

 Technical Editor Production Coordinator

 Aditya Khadye Shantanu Zagade

About the Author

Ritesh Modi is currently working as Senior Technology Evangelist at Microsoft, where he

ensures that developers, startups, and companies are successful in their endeavors using

technology. Prior to that, he was an Architect with Microsoft Services and Accenture. He is

passionate about technology and his interest lies in both Microsoft as well as open source

technologies. He believes optimal technology should be employed to solve business

challenges. He is very active in communities and has spoken at national and international

conferences.

He is a known industry leader and already a published author. He is a technology mentor

for T-Hub and IIIT Hyderabad startup incubators. He has more than 20 certifications and is

a Microsoft certified trainer. He's an expert on Azure, DevOps, Bots, Cognitive, IOT,

PowerShell, SharePoint, SQL Server, and System Center. He has co-authored a book titled

Introducing Windows Server 2016 Technical Preview with the Windows Server team. He has

spoken at multiple conferences, including TechEd and PowerShell Asia conference, does

lots of internal training and is a published author for MSDN magazine. He has more than a

decade of experience in building and deploying enterprise solutions for customers. He

||||||||||||||||||||

||||||||||||||||||||

blogs at h t t p s ://a u t o m a t i o n n e x t . w o r d p r e s s . c o m / and can be followed on Twitter

@automationnext. His linked profile is available at h t t p s ://w w w . l i n k e d i n . c o m /i n /r i t e

s h - m o d i /.

Ritesh currently lives in Hyderabad, India.

Acknowledgments

Writing this book has been a fantastic experience. I personally have gained as a person who

has more patience, perseverance, and tenacity than before. I owe a lot to the people who

pushed me through their encouragement and motivation. I would like to thank the

Almighty and my parents for their blessings. I would like to thank many people for making

this book happen.

I must start with the people who mean the world to me, who inspire me to push myself and

who ultimately make everything worthwhile. I am talking about my mother Bimla Modi,

wife Sangeeta Modi, and daughter Avni Modi, the three wonderful ladies in my life.

Thanks of course must go to the PacktPub team. I would like to thank my editors Rashmi

Suvarna and Juliana Nair for taking this project and helping me through it. I would like to

thank the acquisition editor, Kirk D'costa, for finding me for this book. I would also like to

thank my technical editor, Aditya Khadye, who walked through the book multiple times

and gave incredibly useful feedback.

Last but not the least, I would like to thank my team at Microsoft, Manoj Damodaran,

Michael Hopmere, and Ravi Mallela with whom I had several discussions to make this

book better.

About the Reviewer

Satya works as a DevOps consultant at Microsoft. He enables teams to adopt best DevOps

practices across different delivery domains which leads to better agility, reliability, and

consistency.

In the past 18 years, he has gathered diverse experience in product planning, development,

testing, and release management areas that helps him define DevOps strategy for various

software projects.

https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://automationnext.wordpress.com/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/
https://www.linkedin.com/in/ritesh-modi/

||||||||||||||||||||

||||||||||||||||||||

He delivered multiple product releases in engineering domains such as Geographic

Information System, Software Delivery, Unified Communications, Modern Engineering,

and Application Lifecycle Management while working at Intergraph, Computer Associates,

and Microsoft.

Satya has also contributed to Release Management service, which is an integral part of

Visual Studio Team Services (VSTS) and Team Foundation Server (TFS).

||||||||||||||||||||

||||||||||||||||||||

Acknowledgments

I would like to thank my son, Kaushal, and my daughter, Srikari, for being patient when I

spent most of my personal time during technical review. They are awesome. I would like to

thank my wife, Swati, for her constant support. It would not be possible without her. I

would like to thank my mother, Surya Parvathamma, and my father, Krishna Rao, for their

blessings. They are foundation of what I am. I would like to thank the author, Ritesh Modi,

for asking me to be a part of this wonderful project. I am sure this book will make the

implementation of best DevOps practices real. I would like to thank my manager,

Manoj Damodaran, and leadership at Microsoft for allowing me to undertake this.

||||||||||||||||||||

||||||||||||||||||||

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and

ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a

range of free newsletters and receive exclusive discounts and offers on Packt books and

eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt

books and video courses, as well as industry-leading tools to help you plan your personal

development and advance your career.

Why subscribe?

Fully searchable across every book published by Packt

Copy and paste, print, and bookmark content

On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786468557.

If you'd like to join our team of regular reviewers, you can e-mail us at

customerreviews@packtpub.com. We award our regular reviewers with free eBooks and

http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557
https://www.amazon.com/dp/1786468557

||||||||||||||||||||

||||||||||||||||||||

videos in exchange for their valuable feedback. Help us be relentless in improving our

products!

||||||||||||||||||||

||||||||||||||||||||

Table of Contents

Preface 1

Chapter 1: Introducing DevOps 9

Software delivery challenges 10

Resistance to change 10

Rigid processes 10

Isolated teams 11

Monolithic design and deployments 11

Manual execution 11

Lack of innovation 12

What is DevOps? 12

DevOps principles 16

Collaboration and communication 16

Flexible to change 16

Application lifecycle management 17
Development methodology 18

Software design 18

Automating processes and tools 18

Failing fast and early 19

Innovation and continuous learning 19

DevOps practices 19

Configuration management 20

Continuous integration 22

Build automation 23
Test automation 23
Application packaging 24

Continuous deployment 24

Preproduction deployment 25
Test automation 26
Staging environment deployment 26
Acceptance tests 26
Deployment to production 26

||||||||||||||||||||

||||||||||||||||||||

Continuous delivery 26

Continuous learning 27

Measuring DevOps 28

Summary 29

Chapter 2: DevOps Tools and Technologies 30

||||||||||||||||||||

 [ii]

||||||||||||||||||||

Cloud technology 31

Infrastructure as a Service (IaaS) 33

Platform as a Service (PaaS) 33

Software as a Service (SaaS) 34

Advantages of using cloud computing 34
Windows Server 2016 35

Application platform 36

Windows Server as a hosting platform 36

Nano servers 37

Windows Containers and Docker 37

Hyper-V containers 39

Nested virtual machines 39

Enabling microservices 40

Reduced maintenance 40

Configuration management tools 41

Deployment and packaging 41

Visual Studio Team Services 42

Source code management service 43

Team Foundation Version Control 45
Exploring Git 45

Build Management service 46

Executing Build Definitions 48
Build architecture 48
Agents, agent pools, and agent queues 49
Queuing Build Definitions 49
Configuring a Build definition 49

Release Management service 59

Executing release definitions 61
Release Management architecture 61
Release definition configuration 62

Setting up a cloud environment 74

Visual Studio Team Services 75
Azure account 77

Summary 81

Chapter 3: DevOps Automation Primer

82

Azure Resource Manager 83

||||||||||||||||||||

 [iii]

||||||||||||||||||||

ARM and ASM 83

ARM advantages 84

ARM concepts 85

Resource providers 85
Resource types 85

Resource groups 92

Resource and resource instances 92

Azure Resource Manager 92

Azure Resource Manager architecture 93

Azure Resource Manager features 93

Role-Based Access Control 93

Tags 94

Policies 94

Locks 94

Multi-region 95

Idempotent 95

Extensible 95

Azure Resource Manager templates 95

Template basics 96

Parameters 97

Variables 98

Resources 99

Outputs 100

Expressions and functions 101

||||||||||||||||||||

 [iv]

||||||||||||||||||||

Nested resources 102

A minimal template 102

ARM template tools 104

Authoring tools 104

Deployment tools 112

Deployments 113

PowerShell 113

PowerShell features 114

Cmdlets 114

Pipeline 115

Variables 115

Scripts and modules 116

Azure PowerShell development environment 116

Pester 120

Installing Pester 121

Writing tests with Pester 123

Pester real-time example 127

Desired State Configuration 130

DSC Push architecture 131

DSC Pull architecture 133

Pull configuration example 136

DscLocalConfigurationManager() attribute 138

||||||||||||||||||||

 [v]

||||||||||||||||||||

ConfigurationRepositoryWeb 140

Partial Configurations 141

Pushing LCM Configuration 142

Summary 136

Chapter 4: Nano, Containers, and Docker Primer

137

Virtualization 137

Containers 138

Docker 140

Container host 141

Container images 141

Docker Hub/Docker Registry 142

Installing a Windows Server 2016 Container on Azure 143

Provisioning Azure virtual machines 143

Installing Windows Nano Server on Azure 152

Provisioning Nano Server 152

Using Docker client 176

Container life cycle management 178

Docker run 179
Docker ps 180
Docker start 180
Docker stop 180
Docker rm 181
Docker restart 181
Docker pause 181
Docker unpause 181

Image management 181

Docker build 181
Docker commit 182
Docker images 182
Docker rmi 182
Docker tag 182

Monitoring commands 182

Docker logs 183

||||||||||||||||||||

 [vi]

||||||||||||||||||||

Docker stats 183
Docker inspect 183
Docker events 183

Docker registry management 184

Docker login 186
Docker push 186
Docker pull 187

Understanding Dockerfile 187

Docker build command 188

Shell and Exec instruction forms 189

Shell form 189
Exec form 189

Dockerfile instructions 190

COMMENT 190
FROM 190
MAINTAINER 191
COPY 191
ADD 192
WORKDIR 193
EXPOSE 193
ENV 193
VOLUME 194
RUN 195
CMD 196
ENTRYPOINT 197

Summary 199

Chapter 5: Building a Sample Application

200

Experiencing the application 201

Application architecture 203

Preparing development environment 204

Installing SQL Server Management Studio 206

Creating Azure SQL Server and SQL database 209

Creating database tables 212

Understanding database schema 214

Setting up Visual Studio solution 215

Modify web.config connection string 217
Publish profile for web application 217
Parameters.xml 220

||||||||||||||||||||

 [vii]

||||||||||||||||||||

Running the sample application 220
Understanding Visual Studio Solution 221

Entity Framework 221

Controllers and Views 223

Controllers 225

Views 226

Configuration management 227

Unit testing 228

Unit testing DrugController 230

Mocking Drug data access class 234

Drug controller unit tests 236

Summary 242

Chapter 6: Source Code Control

243

Configuration Management 243

Source Configuration Management 244

Centralized 245

Distributed 246

Visual Studio Team Services 248

Git 101 249

Git init 250

Git clone 251

Git add 251

Git commit 252

Git branch 252

Git merge 252

Git remote 253

Installing Git for Windows on the development environment

Adding Online Pharmacy to the VSTS Git repository using Visual

254

Studio 2015 256

Managing a Git Repository using VSTS 264

Submitting code changes to a Git repository 264

Pulling code changes from a Git repository 267

Onboarding another developer for the same application 269

||||||||||||||||||||

 [viii]

||||||||||||||||||||

Cloning and adding a solution to the VSTS Git repository

Adding a project to the VSTS Git repository using the command-line

273

tool

Cloning and adding a solution to VSTS Git repository using the Git

281

command-line tool 281

Summary 286

Chapter 7: Configuration Management

287

Infrastructure as Code 287

Objectives of Infrastructure as Code 289

Revisiting sample application architecture 290

Azure Key Vault 292

Operational Insights 292

Desired State Configuration Pull Server 293

Azure storage account 293

Azure virtual machines and containers 294

Azure public load balancer 294

Azure SQL 295

Security considerations 295

Storing secrets and credentials 296

Secure login to Azure subscription 296

Storage account keys and shared access signature tokens 297

Network Security Groups and firewalls 297

The IT administrator and deployment role 298

Steps for deployment for an IT administrator 299

PreCreate.ps1 299

GeneralServices.json 305

Parameters 306
Variables 309
Resources 309

Microsoft.OperationalInsights/workspaces 309
Microsoft.KeyVault/vaults 310
Microsoft.KeyVault/vaults secrets 311

Outputs 315
Steps for deployment of the operator or release pipeline 315

UploadScriptFiles.ps1 315

||||||||||||||||||||

 [ix]

||||||||||||||||||||

Test-ARMTemplate.ps1 318

New-TemplateDeployment.ps1 319

OnlineMedicine.parameters.json 320

OnlineMedicine.json 324

Parameters 324
Variables 328
Resources 329

Microsoft.Compute/availabilitySets 329
Microsoft.Storage/storageAccounts 329
Microsoft.Network/virtualNetworks 330
Microsoft.Network/networkSecurityGroups 331
Microsoft.Network/publicIPAddresses 334
Microsoft.Network/networkInterfaces 334
Microsoft.Compute/virtualMachines 335
Microsoft.Compute/virtualMachines/extensions – CustomScriptExtension 337
Microsoft.Compute/virtualMachines/extensions – MicrosoftMonitoringAgent 339

Microsoft.Network/publicIPAddresses – for load balancer 339
Microsoft.Network/loadBalancers 340
Microsoft.Network/publicIPAddresses – web application public IP addresses 342

Microsoft.Network/networkInterfaces – web application NICs 343
Microsoft.Compute/virtualMachines – web application virtual machines 344
Microsoft.Compute/virtualMachines/extensions – CustomScriptExtension 345
Microsoft.Compute/virtualMachines/extensions – MicrosoftMonitoringAgent 347
Microsoft.Sql/servers, databases, firewallRules 348

Outputs 351
Summary 353

Chapter 8: Configuration Management and Operational Validation

354

Steps for deployment through the release pipeline 354

PullServer.ps1 355

IISInstall.ps1 365

ContainerConfig.ps1 367

dockerfile 371

lcm.ps1 375

ChangeConnectionString.ps1 377

PreparePesterEnvironment.ps1 378

Execute-Pester.ps1 379

Environment unit tests 380

Unit testing availability set 381

||||||||||||||||||||

 [x]

||||||||||||||||||||

Unit testing virtual networks 382

Unit testing Network Security Groups 384

Unit testing load balancer 387

Unit testing Azure SQL 392

Unit testing Azure SQL Firewall 394

Unit testing the count of virtual machines 396

Unit testing virtual machine 01 397

Unit testing virtual machine 02 398

Unit testing the DSC Pull Server virtual machine 400

Unit testing the DSC Pull Server operating system 401

Unit testing the web application operating system 405

Environment operational validation 408

The operational validation folder structure

The operational validation of the web application on the first virtual

409

machine

The operational validation of the web application on the second virtual

410

machine

The operational validation of the web application using an Azure load

412

balancer 415

Unit and operational validation tests 417

Summary 418

Chapter 9: Continuous Integration

419

Continuous integration 419

Why continuous integration? 420

Fail fast and often 420

High confidence and cadence 420

Better collaboration 421

Reduction of technical debt 421

Principles of Continuous Integration 421

Automation 422

Single repository 423

Fast execution 423

Reporting 424

Security 424

||||||||||||||||||||

 [xi]

||||||||||||||||||||

Continuous integration process 424

Types of continuous integration 426

Scheduled builds 426

Continuous build 427

Gated builds 427

Integration with source code configuration management 428

Integration with work item management 429

Build definition 429

Defining variables 430

Build activities 431

NuGet installer activity 434
Visual Studio Build activity for the OnlinePharmacy project 435
Visual Studio Build activity for the OnlinePharmacy test project 437

The Visual Studio Test activity for OnlinePharmacy project binaries 438
Replace Tokens activity for updating the web application's name 439
Archive Files activity for deployment.zip 439
Copy and Publish Build Artifacts activity 440

Build options 441

Repository 443

Triggers 443

General, retention, and history 444

Build pipeline execution 447

Summary 449

Chapter 10: Continuous Delivery and Deployment

451

Understanding releases 452

Release management 452

Continuous delivery 453

Continuous deployment 453

Why continuous delivery and deployment? 454

Detecting deployment issues early 454

Eliminating surprises and risks 454

Reducing cost of change 455

Pushing frequent changes to production 455

Removing risky manual deployments 455

Moving away from human dependency 456

The principles of continuous deployment 456

||||||||||||||||||||

 [xii]

||||||||||||||||||||

Automation as an enabler 456

Infrastructure as Code 458

 Shortened execution time 458

 Reporting 458

 Secure deployments 458

 Continuous deployment process 459

 Continuous delivery process 460

 Alternate strategies 461

 Using Azure automation for DSC Pull Server 461

 Using Docker hub/Docker registry 462

 Using Docker compose 462

 Using Docker management tools such as Swarm or Kubernetes 462

 Types of releases 462

 Scheduled releases 463

 Continuous deployment 464

 Azure Resource Manager service endpoint 464

 Release pipeline definition 467

 Variables configuration 469

 Artifacts configuration 470

 Triggers configuration 471

 General, retention, and history 472

 Release environments 474

 Preparation environment 475

||||||||||||||||||||

 [xiii]

||||||||||||||||||||

 Azure file copy task 477

 Azure PowerShell 478

 Test environment 479

 Azure PowerShell – test ARM template deployment 482

 Azure PowerShell – deploy test environment 484

 PowerShell – prepare Pester environment 485

 Copy files – copy operational validation module 486

 Azure PowerShell – execute Pester and operational validation tests 487

 Production environment 488

 Azure PowerShell – test ARM template deployment 489

 Azure PowerShell – deploy test environment 491

 PowerShell – prepare Pester environment 492

 Copy Files – copy operational validation module 492

 Azure PowerShell – execute Pester and operational validation tests 493

 Release pipeline execution 494

 Release pipeline strategies 497

 A/B testing 497

 Blue/Green deployments 498

 Canary releases 498

 Summary 498

Chapter 11: Monitoring and Measuring 500

 Application Insights 501

 Provisioning 501

 Changes to sample application 506

||||||||||||||||||||

 [xiv]

||||||||||||||||||||

 Application Insights dashboard 507

 Operational Insights 509

 Provisioning 509

 OMS agents 512

 Search 514

 Solutions 514

 Summary 516

Index 517

||||||||||||||||||||

||||||||||||||||||||

Preface

With the adoption and popularity of cloud technology, DevOps has become the most

happening buzzword in the industry. The concepts of DevOps are not new and have been

implemented historically. In recent times, DevOps is getting implemented widespread in

enterprise world. Companies that have not yet implemented DevOps have started

discussing its potential implementation. In short, DevOps is becoming ubiquitous across

both big and small organizations. Organizations are trying to reach out to their customers

more often with quality deliverables. They want to achieve this while reducing the risks

involved in releasing to production. DevOps helps in releasing features more frequently,

faster, and better, in a risk-free manner. It is a common misconception that DevOps is either

about automation or technology. Technology and automation are enablers for DevOps and

help better and faster DevOps implementation. DevOps is a mindset and culture, it is about

how multiple teams come together for a common cause and collaborate with each other, it

is about ensuring customers can derive value from software releases, and it is about

bringing consistency, predictability, and confidence to overall application life cycle

processes. DevOps also has levels of maturity. The highest level of DevOps is achieved

when multiple releases can be made in an automated fashion with high quality through

continuous integration, continuous delivery, and deployment. It is not necessary that every

company should achieve this level of DevOps maturity. It depends on the nature of the

company and its projects. While fully automated deployment is a need for some companies,

it could be overkill for others. DevOps is a journey and companies typically start from a

basic level of maturity by implementing a few of its practices. Eventually, these companies

achieve high maturity as and when they keep improving and implementing more and more

DevOps practices. DevOps is not complete without appropriate infrastructure for

monitoring and measuring health of both environment and application. DevOps forms a

closed loop, with operations providing feedback to development teams about things that

work well in production and things that do not work well.

In this book, we will explore the main motivation for using DevOps and discuss in detail

the implementation of its important practices. Configuration management, source code

control, continuous integration, continuous delivery and deployment, monitoring and

measuring concepts and implementation will be discussed in depth with the help of a

sample application. We will walk through the entire process from scratch. On this journey,

we will also explore all the relevant technologies used to achieve the end goal of DevOps.

This book has relevant theory around DevOps, but is heavy on actual implementation using

tools and technologies available today. There are many ways to implement DevOps and

||||||||||||||||||||

Preface

 [2]

||||||||||||||||||||

this book talks about approaches using hands-on technology implementation. There is little

or no material that talks about end-to-end DevOps implementations, and this book tries to

fill this gap.

I have approached this book by keeping architects, developers and operations teams in

mind. I have played these roles, understand the problems they go through, and tried to

solve their challenges through practical DevOps implementation.

DevOps is an evolving paradigm and there will be advancements and changes in future.

Readers will find this book relevant even in those times.

What this book covers

Chapter 1, Introducing DevOps, introduces the motivation for implementing the DevOps

paradigm in any software development endeavor. The chapter focuses on practices and

principals at a high level, creating the context for other chapters in the book.

Chapter 2, DevOps Tools and Technologies, walks through the major technology components

important from a DevOps implementation perspective. It discusses cloud technologies,

build and release management services, Git, Windows Server 2016, Docker containers, and

Nano servers. This chapter provides a brief introduction to each of these technologies.

Chapter 3, DevOps Automation Primer, walks through major automation technologies,

enabling faster and better DevOps implementation. This chapter provides a brief

introduction to PowerShell, Azure Resource Manager templates, Pester, and Desired State

Configuration.

Chapter 4, Nano, Containers, and Docker Primer, focuses on new Windows Server 2016

features such as Nano servers, containers, and Docker. It provides an introduction to these

technologies with examples. The chapter shows how to provision Nano servers using

Azure PowerShell, containers using Azure Resource Manager template, and working with

Docker and dockerfiles.

Chapter 5, Building a Sample Application, introduces a sample application that helps in

showing and implementing DevOps practices. It is an ASP.NET MVC web application

consisting of a frontend and a database. The chapter also discusses important technical

components that are integral to the sample application.

||||||||||||||||||||

Preface

 [3]

||||||||||||||||||||

Chapter 6, Source Code Control, discusses the importance of using a version control system

and provides multiple ways to interact and work with Visual Studio Team Services using

Git. It shows ways to check-in the sample application into Git, and multiple ways to interact

and work with VSTS Git repositories using Visual Studio. It also provides a small primer

into working with Git using commands.

Chapter 7, Configuration Management, introduces one of the most important DevOps

practices and its implementation. It discusses the concept of Infrastructure as Code and its

importance. This chapter focuses on infrastructure and application configuration

management. It provides descriptions of the code, scripts, and configuration used for the

sample application. The sample application will be deployed using these configuration

management artifacts.

Chapter 8, Configuration Management and Operational Validation, continues where the last

chapter ended. It shows implementation of Infrastructure as Code, along with unit testing

and the operational validation of environments.

Chapter 9, Continuous Integration, discusses another important DevOps practice and

provides details about its importance, principles, benefits, and implementation. Visual

Studio Build pipelines are discussed extensively while providing details about a sample

build pipeline built for the sample application.

Chapter 10, Continuous Delivery and Deployment, discusses two of the most important

DevOps practices and provides details about their importance, principles, benefits, and

implementation. Visual Studio Release pipelines are discussed extensively while providing

details about a sample release pipeline consisting of multiple environments built for the

sample application.

Chapter 11, Monitoring and Measuring, discusses at length the concepts and implementation

related to monitoring and measuring the different aspects of applications and environments

in the production environment for the sample application.

What you need for this book

This book assumes a basic level knowledge on Windows operating system, cloud

computing and application development using a web programming language, and

moderate experience with the application development life cycle. The book will go through

deployment of a sample application on Azure within Windows Containers using a set of

virtual machine. This requires a basic understanding of cloud storage, computing,

||||||||||||||||||||

Preface

 [4]

||||||||||||||||||||

networking, and virtualization concepts on Azure. The book implements DevOps practices

using Visual Studio Team Services and basic knowledge of this is expected, although this

book tries to cover its foundations. If you have experience with Azure and Visual Studio

Team Services, this is a big plus.

A valid Azure subscription and Visual Studio Team Services subscription is needed to get

started with this book. They are both available free of cost on a trial basis.

As all deployments are made to the cloud, you will require a development environment on

a local computer, consisting of:

CPU: 4 cores

Memory: 8 GB RAM

Disk space: 250 GB

This should be enough for the development environment.

In this book, you will need the following software:

Azure subscription

Visual Studio Team Services subscription

Windows 10 OS build 14393 version 1607 or Windows Server 2016 build 14393

SQL Server Management Studio version 12 or 13

Git for Windows 64-bit 2.12.0

Visual Studio community 2015 SP 3 version 14.0

Docker 1.12.2-cs2-ws-beta

Internet connectivity is required to work with chapters in this book.

Who this book is for

The primary audience of this book are developers, IT professionals, enterprise architects,

and software and solution architects who are shaping, implementing and designing

strategies for their customers. DevOps engineers, IT operations professionals and students

interested in learning and implementing DevOps will find this book extremely useful.

To make full use of the content of this book, basic prior knowledge of a programming
language, scripting language, containers, and cloud computing is expected. If you feel you

do not have that knowledge, it is always possible to catch up on the basic requirements by

||||||||||||||||||||

Preface

 [5]

||||||||||||||||||||

quick reading the documentation available on the Internet at h t t p s ://d o c s . m i c r o s o f t . c o

m /e n - g b /.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds

of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,

pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Dockerfile is a file containing instructions to create an image"

A block of code is set as follows:

{
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('vhdStorageName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "StorageAccount"
 },
 "properties": {
 "accountType": "[variables('vhdStorageType')]"
 }
},

Any command-line input or output is written as follows:

PS C:> docker --version
Docker version 1.12.2-cs2-ws-beta, build 050b611

New terms and important words are shown in bold. Words that you see on the screen, for

example, in menus or dialog boxes, appear in the text like this: "Right-click on

*.westeurope.cloudapp.azure.com | Certificate | All Tasks and then Export."

https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/
https://docs.microsoft.com/en-gb/

||||||||||||||||||||

Preface

 [6]

||||||||||||||||||||

Warnings or important notes appear in a box like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this

book-what you liked or disliked. Reader feedback is important for us as it helps us develop

titles that you will really get the most out of. To send us general feedback, simply email

feedback@packtpub.com, and mention the book's title in the subject of your message. If

there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you

to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

Tips and tricks appear like this.

http://www.packtpub.com/authors
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

||||||||||||||||||||

Preface

 [7]

||||||||||||||||||||

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.

7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the

latest version of:

WinRAR / 7-Zip for Windows

Zipeg / iZip / UnRarX for Mac

7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /D e v O p s - w i t h - W i n d o w s - S e r v e r - 2016. We also have other code bundles from our

rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.

Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used

in this book. The color images will help you better understand the changes in the output.

You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /D e v O p s w i t h W i n d o w s S e r v e r 2016_ C o l o r I m a g e s . p d f .

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you find a mistake in one of our books-maybe a mistake in the text or the codewe

would be grateful if you could report this to us. By doing so, you can save other readers

from frustration and help us improve subsequent versions of this book. If you find any

errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting

your book, clicking on the Errata Submission Form link, and entering the details of your

errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded to our website or added to any list of existing errata under the Errata section of

that title.

https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/DevOps-with-Windows-Server-2016
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DevOpswithWindowsServer2016_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

||||||||||||||||||||

Preface

 [8]

||||||||||||||||||||

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At

Packt, we take the protection of our copyright and licenses very seriously. If you come

across any illegal copies of our works in any form on the Internet, please provide us with

the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated

material.

We appreciate your help in protecting our authors and our ability to bring you valuable

content.

Questions

If you have a problem with any aspect of this book, you can contact us at

questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

Introducing DevOps1

Change is the only constant in life is something I have been hearing since I was a child. I never

understood the saying; school remained the same, the curriculum was the same for years,

home was the same, and friends were the same. However, once I joined my first software

company, it immediately struck me that yes, Change is the only constant! Change is inevitable

for any product or service, and this is amplified many times over when related to a software

product, system, or service.

Software development is a complex undertaking comprising multiple processes and tools,

and involves people from different departments. They all need to come together and work

in a cohesive manner. With so much variability, the risks are high when delivering to the

end customer. One small omission or misconfiguration and the application might come

crashing down. This book is about adopting and implementing practices that reduce this

risk considerably and ensure that high-quality software can be delivered to the customer
again and again. This chapter is about explaining how DevOps brings people, processes,

culture, and technology together to deliver software services to the customer effectively and

efficiently. It is focused on the theory and concepts of DevOps. The remaining chapters will

focus on realizing these concepts through practical examples using Microsoft Windows

2016 and Visual Studio Team Services.

This chapter will answer the following questions:

What is DevOps?

Why is DevOps needed?

What problems are resolved by DevOps?

What are its constituents, principles, and practices?

Before we get into the details of DevOps itself, let's understand some of the problems

software companies face that are addressed by DevOps.

||||||||||||||||||||

Introducing DevOps

 [10]

||||||||||||||||||||

Software delivery challenges

There are inherent challenges when engaged in the activity of software delivery. It involves

multiple people with different skills using different tools and technologies with multiple

different processes. It is not easy to bring all these together in a cohesive manner. Some of

these challenges are mentioned in this section. Later, in subsequent chapters, we will see

how these challenges are addressed with the adoption of DevOps principles and practices.

Resistance to change

Organizations work within the realms of economic, political, and social backdrops, and they

have to constantly adapt themselves to a continuously changing environment. Economic

changes might introduce an increase in competition in terms of price, quality of products

and services, changing marketing strategies, and mergers and acquisitions. The political

environment introduces changes in legislation, which has an impact on the rules and

regulation for enterprise. The tax system and international trade policies are also examples

of areas in which change can have an impact. Society decides which products and services

are acceptable or preferred and which are discarded. Customers demand change on a

constant basis. Their needs and requirements change often and this manifests in the systems

they are using. Organizations not adept at handling changes in their delivery processes and

who resist making changes to their products and features eventually find themselves

outdated and irrelevant. These organizations are not responsive to change. In short, the

environment is ever changing and organizations perish if they do not change along with it.

Rigid processes

Software organizations with a traditional mindset release their products and services on a

yearly or multi-year basis. Their software development life cycle is long and their

operations do not have many changes to deploy and maintain. Customers demand more

but they wait till the next release from the company. The organization is either not

interested or does not have the capability to release changes faster. Meanwhile, if the

competitor is able to provide more and better features faster, customers will soon shift their

loyalty and start using them. The first organization will start losing customers, have

reduced revenues, and fade away.

||||||||||||||||||||

Introducing DevOps

 [11]

Farkiantech.com
||||||||||||||||||||

Isolated teams

Generally, there are multiple teams behind any system or service provided to the customer.

Typically, there is a development team and an operations team. The development team is

responsible for developing and testing the system, while the operations team is responsible

for managing and maintaining the system on production. The operations team provides

post-deployment services to the customer. These two teams have different skills,

experience, mindset, and working culture. The charter of the development team is to

develop newer features and upgrade existing ones. They constantly produce code and want

to see it in production. However, the operations team is not comfortable with frequent

changes. The stability of the existing environment is more important to them. There is a

constant conflict between these two teams.

There is little or no collaboration and communication between these two teams. The

development team often provides code artifacts to the operations team for deployment on

production without helping them to understand the change. The operations team is not

comfortable deploying the new changes since they are neither aware of the kind of changes

coming in as part of a new release nor have confidence deploying the software. There is no

proper hand-off between the development and operations teams. Often, the deployments

fail on production and the operations team has to spend sleepless nights ensuring that the

current deployment is either fixed or rolled back to a previous working release. Both the

development and operations teams are working in silos. The development team does not

treat the operations team as equivalent to itself. The operations team has no role to play in

the software development life cycle, while the development team has no role to play in

operations.

Monolithic design and deployments

Development goes on for multiple months before testing begins. The flow is linear and the
approach is Waterfall, where the next stage in software development life cycle happens

only when the prior stage is completed or nearing completion. Deployment is one giant

exercise in deploying multiple artifacts on multiple servers based on documented

procedures. Such practices have many inherent problems. There are a lot of features and

configuration steps for large applications and everything needs to be done, in order, on

||||||||||||||||||||

Introducing DevOps

 [12]

||||||||||||||||||||

multiple servers. Deploying a huge application is risky and fails when a small step is

missed during deployment. It generally takes weeks to deploy a system such as this in

production.

Manual execution

Software development enterprises often do not employ proper automation in their

application lifecycle management. Developers tend to check-in code only after a week, the

testing is manual, configuration of the environment and system is manual, and

documentation is either missing or very dense, comprising hundreds of pages. The

operations team follows the provided documentation to deploy the system manually on

production. Often this results in a lot of downtime on production because smaller steps

have been missed in deployment. Eventually, customers become dissatisfied with the

services provided by the company. Also, this introduces human dependencies within the

organization. If a person leaves the organization, their knowledge leaves with them and a

new person has to struggle significantly to gain the same level of expertise and knowledge.

Lack of innovation

Organizations starts losing out to competition when they are not flexible to meet customer

expectation with newer and upgraded products and services. The result is falling revenues

and profits, eventually making them nonexistent in the marketplace. Organizations that do

not innovate newer products and services consistently nor update them cannot provide

exponential customer satisfaction.

What is DevOps?

Today, there is no consensus in industry regarding the definition of DevOps. Every

organization has formulated their own definition of DevOps and has tried to implement it

accordingly. They have their own perspective and tend to think they have implemented

DevOps if they have automation in place, configuration management is enabled, they are

using agile processes, or any combination thereof.

DevOps is about the delivery mechanism of software systems. It is about bringing people

together, making them collaborate and communicate, working together toward a common

||||||||||||||||||||

Introducing DevOps

 [13]

Farkiantech.com
||||||||||||||||||||

goal and vision. It is about taking joint responsibility, accountability, and ownership. It is

about implementing processes that foster a collective and service mindset. It enables a

delivery mechanism that brings agility and flexibility within the organization. Contrary to

popular belief, DevOps is not about tools, technology, and automation .Automation acts as

an enabler to implement agile processes, induce collaboration within teams and help in

delivering faster and better.

There are multiple definitions of DevOps available on the Internet and they do not provide

complete definition. DevOps does not provide a framework or methodology. It is a set of

principles and practices that, when employed within an organization, engagement, or

project, achieve the goal and vision of both DevOps and the organization. These principles

and practices do not mandate any specific process, tools and technologies, or environment.

DevOps provides guidance which can be implemented through any tool, technology, and

process, although some of the technology and processes might be more appropriate than

others to achieve the vision of DevOps principles and practices.

Although DevOps practices can be implemented in any organization that provides services

and products to customers, for the purposes of this book, we will look at DevOps from the

perspective of a software development and operations department of any organization.

So, what is DevOps? DevOps is defined as follows:

It is a set of principles and practices

It brings both the developers and operations teams together from the start of the

software system

It provides faster and more efficient end-to-end delivery of a value to the end

customer again and again in a consistent and predictable manner

It reduces time to market, thereby providing a competitive advantage

If you look closely at this definition of DevOps, it does not indicate or refer to any specific

processes, tools, or technology. It does not prescribe any particular methodology or

environment.

The goal of implementing DevOps principles and practices in any organization is to ensure

that stakeholders' (including customers') demands and expectations are met efficiently and

effectively.

Customers' demands and expectations are met when:

||||||||||||||||||||

Introducing DevOps

 [14]

||||||||||||||||||||

The customer gets the features they want

The customer gets the features they want, when they want

The customer gets faster updates on features

The quality of delivery is high

When an organization can meet these expectations, customers are happy and remain loyal

to the organization. This in turn increases the market competitiveness of the organization,

which results in bigger brand and market valuation. It has a direct impact on the top and

bottom lines of the organization. The organization can invest more in innovation and

customer feedback, bringing about continuous changes to its system and services in order

to stay relevant.

The implementation of DevOps principles and practices in any organization is guided by its

surrounding ecosystem. This ecosystem is made up of the industry and domain the

organization belongs to.

Let us look in detail at these principles and practices later in this chapter.

The core principles of DevOps are as follows:

Collaboration and communication

Agility toward change

Software design

Failing fast and early

Innovation and continuous learning

Automating processes and tools

The core practices of DevOps are as follows:

Continuous integration

Configuration management

Continuous deployment

Continuous delivery

Continuous learning

DevOps is not a new paradigm. However, it has gained a lot of popularity and traction in

recent times. Its adoption is at its highest level so far, and more and more companies are

undertaking this journey. I purposely mentioned DevOps as a journey because there are

||||||||||||||||||||

Introducing DevOps

 [15]

Farkiantech.com
||||||||||||||||||||

different levels of maturity within DevOps. While successfully implementing continuous

deployment and delivery are considered the highest level of maturity in this journey,

adopting source code control and agile software development are considered among the

lowest.

One of the first things DevOps talks about is breaking the barriers between the development and

operations teams. It brings close collaboration between multiple teams. It is about breaking

the mindset that the development team is responsible only for writing code and passing it

on to operations for deployment once it is tested. It is also about breaking the mindset that

operations has no role to play in development activities. Operations should influence the

planning of the product and should be aware of the features coming up for release. They

should also continually provide feedback to development on any operational issues so that

they can be fixed in subsequent releases. They should have some influence in the design of

system to improve its overall functionality. Similarly, development should help the

operations team with the deployment of the system and solve incidents as and when they

arise.

The definition talks about faster and more efficient end-to-end delivery of systems to stakeholders.

It does not talk about how fast or efficient the delivery should be. It should be fast enough

depending on the organization's domain, industry, customer segmentation, and more. For

some organizations, fast enough could be quarterly, while for others it could be weekly.

Both types are valid from a DevOps point of view and they can deploy any relevant

processes and technology to achieve their particular goal. DevOps does not decide what

that goal is. Organizations should identify the best implementation of DevOps principles

and practices based on their overall project, engagement, and vision.

The definition also talks about end-to-end delivery. This means that everything from the

planning and delivery of the system to the services and operations should be part of the

DevOps implementation. The processes should be such that they allow for greater

flexibility, modularity, and agility in the application development life cycle. While

organizations are free to use a best-fit process such as Waterfall, Agile, Kanban, and more,

typically organizations tend to favor agile processes with an iterations-based delivery. This

allows for faster delivery in smaller units, which are far more testable and manageable

compared to a large delivery.

DevOps talks about delivering software systems to the end customer again and again in a

consistent and predictable manner. This means that organizations should continually deliver

||||||||||||||||||||

Introducing DevOps

 [16]

||||||||||||||||||||

newer and upgraded features to the customer using automation. We cannot achieve

consistency and predictability without the use of automation. Manual work should be

reduced to zero to ensure a high level of consistency and predictability. The automation

should also be end-to-end, to avoid failures. This also indicates that the system design

should be modular, allowing faster delivery while remaining reliable, available, and

scalable. Automated testing plays an important role in consistent and predictable delivery.

The result of implementing the previously mentioned practices and principles is that

organizations are able to meet the expectations and demands of their customers. Such an

organization can grow faster than its competition and further increase the quality and

capability of their products and services through continuous innovation and improvement.

DevOps principles

DevOps is based on a set of foundational beliefs and processes. These form the pillars on

which it is built and provide a natural ecosystem for the delivery of excellence within an

organization. Let's look briefly into some of these principles.

Collaboration and communication

One of the prime tenets of DevOps is collaboration. Collaboration means that different

teams come together to achieve a common objective. It defines clear roles and

responsibilities, overall ownership, accountability, and responsibility for the team. The team

comprises both development and operations people. Together they are responsible for

delivering rapid high-quality releases to the end customer.

Both teams are part of the end-to-end application life cycle process. The operations team

contributes to the planning process for features, providing their feedback on overall

operational readiness and issues regarding business application and services. Concurrently,

the development team must play a role in operational activities. They must assist in

deploying the release to production and provide support in terms of fixing any production

issues that arise. This kind of environment and ecosystem fosters continuous feedback and

innovation. There is a shared vision, where everyone in the team are working toward

common goals.

||||||||||||||||||||

Introducing DevOps

 [17]

Farkiantech.com
||||||||||||||||||||

Flexible to change

Agility refers to the flexibility and adaptability of people, processes, and technology. People

should have a mindset open to accepting change, playing different roles, and taking

ownership and accountability. Processes would generally refer to the following:

Application lifecycle management

Development methodology

Software design

Application lifecycle management

Wikipedia defines application lifecycle management as follows:

Application lifecycle management (ALM) is the product lifecycle management
(governance, development, and maintenance) of computer programs. It encompasses
requirements management, software architecture, computer programming, software
testing, software maintenance, change management, continuous integration, project
management, and release management.

Application lifecycle management (ALM) refers to the management of planning, gathering

requirements, building and hosting code, testing code in terms of code coverage, unit tests,

versioning of code, releasing code to multiple environments, tracking and reporting,

functional tests, environment provisioning, deployment to production, and operations for

business applications and services. The operational aspects include monitoring, reporting,

and feedback activities. Overall, ALM is a huge area and comprises multiple activities,

tools, and processes. Special attention should be given to crafting appropriate application

lifecycle steps to induce confidence in the final deployed system. For example, processes

can be implemented which mandate that code cannot be checked in the source code

repository if unit tests do not pass completely. ALM comprises multiple stages such as

planning, development, testing, deployment, and operations.

In short, ALM defines a process to manage an application from conception to delivery and

integrates multiple teams together to achieve a common objective. The phases of a typical

application lifecycle management process is shown in Figure 1. ALM is a continuous process

that starts with the planning of an iteration, building and testing the iteration, deploying it

on a production environment, and providing post-deployment services to the customer.

Feedback from customers and operations is passed on to the planning team, which

eventually incorporates them into subsequent iterations, and this process loop continues.

||||||||||||||||||||

Introducing DevOps

 [18]

||||||||||||||||||||

Development methodology

Development methodology should be flexible and elastic to enable multiple smaller

iterations or sprints of delivery. Each sprint and iteration must be functionally tested.

Smaller iterations help in completing specific smaller features and pushing them to

production. This provides the team with a clear sense of the direction and scope of the

work, raising expectations and giving them a sense of ownership over the release.

Software design

Software design should implement architectural principles that foster modularity,

decomposition of large functionality into smaller features, reliability, high availability,

scalability, audit capabilities, and monitoring, to name a few.

Automating processes and tools

Automation plays an important role in achieving overall DevOps goals. Without

automation, DevOps cannot achieve its end objectives. Automation should be implemented

for the entire application lifecycle management, from building the application, to delivery

||||||||||||||||||||

Introducing DevOps

 [19]

Farkiantech.com
||||||||||||||||||||

and deployment to the production environment. Automation brings trust and a high level

of confidence in the output from each phase of the software development life cycle.

The probability that deliverables are of high quality, robust, and relatively risk-free is quite

high. Automation also helps in the rapid delivery of a business application to multiple

environments because it is capable of running multiple build processes, executing

thousands of unit tests, figuring out code coverage comprising millions of lines of code,

provisioning environments, deploying applications, and configuring them at the desired

level.

Failing fast and early

At first glance, it seems weird to talk about failure in a DevOps book that is supposed to

assist with the successful delivery of software. Trust me, it is not! Failing fast and early

refers to the process of finding issues and risks as early as possible within application

lifecycle development. Not knowing the issues that arise toward the end of the ALM cycle

is an expensive affair because a lot of work has already been done on it. Such issues might

involve making design and architectural changes, which can jeopardize the viability of the

entire release. If the issues can be found at the beginning of the cycle, they can be resolved

without much impact to the release. Automation plays a big part in identifying the issues

early and fast.

Innovation and continuous learning

DevOps fosters a culture of innovation and continuous learning. There is a constant

feedback flow regarding the good and bad, and what's working and what's not working in

various environments. The feedback is used to try out different things, either to fix existing

issues or find better alternatives. Through this exercise, there is a constant information flow

about how to make things better and that in turn provides the impetus to find alternative

solutions. Eventually, there are breakthrough findings and innovation, which can be further

developed and brought to production.

||||||||||||||||||||

Introducing DevOps

 [20]

||||||||||||||||||||

DevOps practices

DevOps consists of multiple practices, each providing distinct functionality to the overall

process. Figure 2 shows the relationship between them. Configuration management,

continuous integration, and continuous deployment form the core practices that enable

DevOps. When we deliver software services that combine these three services, we achieve

continuous delivery. continuous delivery from an organization is a mature capability that

depends on the maturity of its configuration management, continuous integration, and

continuous deployment.

Continuous feedback at all stages forms the feedback loop that helps provide superior

services to customers. It runs across all DevOps practices. Let's take a closer look at each of

these capabilities and DevOps practices:

Configuration management

Software applications and services need a physical or virtual environment on which they

can be deployed. Typically, the environment is an infrastructure comprising both hardware

and operating system on which software can be deployed. Software applications are

decomposed into multiple services running on different servers, either on-premises or in

the cloud. Each service has its own application and infrastructure configuration

||||||||||||||||||||

Introducing DevOps

 [21]

Farkiantech.com
||||||||||||||||||||

requirement. In short, both infrastructure and application are needed to deliver software

systems to customers, and each has their own configuration. If the configuration drifts, the

application might not work as expected, leading to downtime and failure. Modern ALM

dictates the use of multiple stages and environments on which an application should be

deployed with different configurations. For example, the application will be deployed to a

development environment for developers to see the result of their work. It will also be

deployed to multiple test environments, with different configurations, for executing

different types of tests . It would also be deployed to a preproduction environment to

conduct user acceptance tests, and finally, it will be deployed on a production environment.

It is important to ensure that the application can be deployed to multiple environments

without undertaking any manual changes to its configuration.

Configuration management provides a set of processes and tools which help ensure that

each environment and application gets its own configuration. Configuration management

tracks configuration items, and anything that changes from environment to environment

should be treated as a configuration item. Configuration management also defines the

relationships between configuration items and how changes in one configuration item will

impact another.

Configuration management helps in the following ways:

 Infrastructure as Code: When the process of provisioning infrastructure and its

configuration is represented through code, and the same code goes through the

application lifecycle process, it is known as Infrastructure as Code. Infrastructure

as Code helps automate the provisioning and configuration of infrastructure. It

also represents the entire infrastructure in code that can be stored in a repository

and version-controlled. This allows you to use previous environment

configurations when needed. It also enables the provisioning of an environment

multiple times in a consistent and predictable manner. All environments

provisioned in this way are consistent and equal at all stages of the ALM process.
Deployment and configuration of an application: The deployment and

configuration of an application is the next step after provisioning the

infrastructure. An example of application deployment and configuration is to
deploy a WebDeploy package on a server, deploy SQL server schemas and data

(bacpac) on another server, and change the SQL connection string on the web

server to represent the appropriate SQL server. Configuration management stores

values for the application configuration for each environment on which it is

||||||||||||||||||||

Introducing DevOps

 [22]

||||||||||||||||||||

deployed.

The configuration settings applied to environments and application should also be

monitored. Records for expected and desired configuration along with the differences

should be maintained. Any drift from this expected and desired configuration can make the

application unavailable and unreliable. Configuration management is capable of finding the

drift and reconfiguring the application and environment to their desired state.

With automated configuration management in place, the team does have to manually

deploy and configure the environments and applications. The operations team is not

dependent on the development team for deployment activities.

Another aspect of configuration management is source code control. Software comprises

code, data, and configuration. Generally, team members working on an application change

the same files simultaneously. The source code should be up to date at any point in time

and should only be accessible by authenticated team members. The code and other artifacts

themselves are configuration. Source code control helps in increased collaboration and

communication within the team, since each team member is aware of other team members

activities. This ensures that conflicts are resolved at an early stage.

Continuous integration

Multiple developers write code stored and maintained in a common repository. The code is

normally checked-in or pushed to the repository when a developer has finished developing

a feature. This can happen in a day, or it might take days or weeks. Developers might be

working together on the same feature and they might also follow the same practices of

pushing/checking-in code in days or weeks. This can cause issues with code quality. One of

the tenets of DevOps is to fail fast. Developers should check-in/push their code to the

repository often and as soon as it makes sense to check-in. The code should be compiled

frequently to check that developers have not introduced any bugs inadvertently and the

complete code base can be compiled at any point of time. If a developer does not follow

such practices, then there is possibility of each developer having stale code in their local

workstation not integrated with other developer's code. Eventually, when such stale and

large codebase is integrated from all developers, it starts failing and becomes difficult and

time-consuming to fix issues arising from it.

||||||||||||||||||||

Introducing DevOps

 [23]

Farkiantech.com
||||||||||||||||||||

Continuous integration solves these kinds of challenges. Continuous integration helps with

the compilation and validation of any code pushed/checked-in by a developer by taking it

through a series of validation steps. Continuous integration creates a process flow

consisting of multiple steps and is comprised of continuous automated build and

continuous automated tests. Normally, the first step is the compilation of the code. After

successful compilation, each step is responsible for validating the code from a specific

perspective. For example, when unit tests are executed on the compiled code, code coverage

can be measured to check which code paths are covered. This could reveal whether

comprehensive unit tests have been written or whether there is scope to add further unit

tests. The result of continuous integration is deployment packages that can be used by

continuous deployment for deployment to multiple environments.

Developers are encouraged to check-in their code multiple times a day instead of after

multiple days or weeks. Continuous integration initiates the execution of the build pipeline

automatically as soon as the code is checked-in or pushed. When all activities comprising

the build execute successfully without any errors, the build-generated artifacts are

deployed to multiple environments. Although every system demands its own configuration

of continuous integration, a typical example is shown in Figure 3.

Continuous integration increases the productivity of developers. They do not have to

manually compile their code, run multiple types of tests one after another, and then create

packages out of it. It also reduces the risk of introducing bugs into the code. It also provides

early feedback to the developers about the quality of their code. Overall, the quality of

deliverables is high and deliverables are delivered faster by adopting a continuous

integration practice:

||||||||||||||||||||

Introducing DevOps

 [24]

||||||||||||||||||||

Build automation

Build automation consists of multiple tasks executing in sequence. Generally, the first task

is responsible for fetching the latest source code from the repository. The source code might

comprise multiple projects and files, which are compiled to generate artifacts such as

executables, dynamic link libraries, assemblies, and more. Successful build automation

indicates that there are no compile-time errors in the code.

There can be more steps to build automation depending on the nature and type of a project.

Test automation

Test automation consists of tasks that are responsible for validating different aspects of

code. These tasks are related to testing the code from a different perspective and are

executed in sequence. Generally, the first step is to run a series of unit tests on the code.

Unit testing refers to the process of testing the smallest denomination of a feature to

validate its behavior in isolation from other features. It can be automated or manual.

However, the preference is automated unit testing.

Code coverage is another aspect of automated testing that can be executed on code to find

out how much of the code is executed while running the unit tests. It is generally

represented as a percentage and refers to how much of the code is testable through unit

||||||||||||||||||||

Introducing DevOps

 [25]

Farkiantech.com
||||||||||||||||||||

testing. If code coverage is not close to 100 percent, it is either because the developer has not

written unit tests for that behavior or the uncovered code is not required at all.

There can be more steps to test automation depending on the nature and type of a project.

Successful execution of test automation resulting in no significant code failure should start

executing the packaging tasks.

Application packaging

Packaging is a process of generating deployable artifacts such as MSI, NuGet, web-deploy

packages, and database packages, as well as versioning them and storing them at a location

such that they can be consumed by other pipelines and processes.

Continuous deployment

By the time the process reaches the stage of deployment, continuous integration has

ensured that there is a functional application that can now be deployed to multiple

environment for further quality checks and testing. Continuous Deployment refers to the

capability to deploy applications and services to preproduction and production

environments through automation. For example, Continuous Deployment could provision

and configure an environment, deploy and configure an application on top of it. After

conducting multiple validations, such as functional tests and performance tests, on a

preproduction environment, the production environment is provisioned and configured,

and the application is deployed to production environments through automation. There are

no manual steps in the deployment process. Every deployment task is automated.

Continuous deployment should provision new environments or update existing

environments. It should then deploy applications with newer configuration on top of it.

All the environments are provisioned through automation using principle of Infrastructure

as Code. This will ensure that all environments, be it development, test, preproduction,

production, or any other environment, are similar. Similarly, the application is deployed

through automation, ensuring that it is also deployed uniformly across all environments.

The configuration across these environments could be different depending the application.

Continuous deployment is generally integrated with continuous integration. When

continuous integration has done its work by generating the final deployable packages,

||||||||||||||||||||

Introducing DevOps

 [26]

||||||||||||||||||||

continuous deployment kicks in and start its own pipeline. This pipeline is called the
release pipeline. The release pipeline consists of multiple environments, each consisting of

tasks responsible for the provision of the environment, configuration of the environment,

deploying applications, configuring applications, executing operational validation on

environments, and testing the application on multiple environments. We will look at the

release pipeline in greater detail in the next chapter and also in Chapter 10, Continuous

Delivery and Deployment.

Employing continuous deployment provides immense benefits. There is a high degree of

confidence in the overall deployment process, which helps ensure faster, risk-free releases

on production. The chance of anything going wrong is drastically reduced. The team will

have lower stress levels and rollback to a previous working environment is possible if there

are issues with the current release:

Although every system demands its own configuration of a release pipeline, a typical

example of is shown in Figure 4. It is important to note that, generally, provisioning and

configuring multiple environments is part of the release pipeline and approval should be

sought before moving to the next environment. The approval process might be manual or

automated, depending on the maturity of the organization.

Preproduction deployment

The release pipeline starts once drop is available from Continuous Integration. The steps it

should perform is to get all the artifacts from the drop, either create a new environment

from scratch or use an existing environment, deploy and configure applications on top of

it. This environment can then be used for all kinds of testing and validation purpose.

||||||||||||||||||||

Introducing DevOps

 [27]

Farkiantech.com
||||||||||||||||||||

Test automation

After deploying an application, a series of tests can be performed on the environment. One

of the tests executed here is a functional test. Functional tests are primarily aimed at

validating feature completeness and functionality of the application. These tests are written

from requirements gathered from the customer. Another set of tests that can be executed

are related to scalability and availability of the application. This typically includes load

tests, stress tests, and performance tests. It should also include operational validation of the

infrastructure environment.

Staging environment deployment

This is very similar to the test environment deployment, with only difference being that the

configuration values for the environment and application will be different.

Acceptance tests

Acceptance tests are generally conducted by stakeholders of the application and can be

manual or automated. This step is a validation from the customer's point of view regarding

the correctness and completeness of an application's functionality.

Deployment to production

Once customers provide their approval, the same steps as those of test and staging

environment deployment are executed, with the only difference being that the

configuration values for the environment and application are specific to the production

environment. Validation is conducted after deployment to ensure that the application is

running according to expectations.

Continuous delivery

Continuous delivery and continuous deployment might sound similar to many readers;

however, they are not the same. While continuous deployment talks about deployment to

multiple environments and finally to a production environment through automation.

Continuous delivery is the ability to generate application packages in a way that they are

readily deployable in any environment. To generate artifacts that are readily deployable,

||||||||||||||||||||

Introducing DevOps

 [28]

||||||||||||||||||||

continuous integration should be used to generate the application artifacts. A new or

existing environment should be used to deploy these artifacts, conduct functional tests,

performance tests, and user acceptance tests, through automation. Once these activities are

successfully executed with no errors, the application package is referred to as readily

deployable. It helps get feedback faster from both operations and the end user. This

feedback can then be implemented in subsequent iterations.

Continuous learning

With all the previously mentioned DevOps practices, it is possible to create stable, robust,

reliable, performant business applications and deploy them automatically to a production

environment. However, the benefits of DevOps will not last for long if a continuous

improvement and feedback principle is not in place. It is of utmost important that real-time

feedback about the application's behavior is passed on as feedback to the development team

from both end users and the operations team.

Feedback should be passed to the teams, providing relevant information about what is

going well and, importantly, what is not going well.

Applications should be built with monitoring, auditing, and telemetry in mind. The

architecture and design should support these. The operations team should collect telemetry

information from the production environment, capture any bugs and issues, and pass this

information on to the development team such that they can be fixed in subsequent releases.

This process is shown in Figure 5.

Continuous learning helps make the application robust and resilient to failures. It also helps

make sure that the application is meeting consumer requirements:

||||||||||||||||||||

Introducing DevOps

 [29]

Farkiantech.com
||||||||||||||||||||

Measuring DevOps

Once DevOps practices and principles are implemented, the next step is to find out whether

these DevOps practices and principles are providing any tangible benefits to the

organization. To find the impact of DevOps on delivering changes to customers,

appropriate monitoring, audit, and collection of metrics should be developed and

deployed. This telemetry should be measured on an ongoing basis. Also, there should be

regular baselining of data for effective comparisons in future. After implementing DevOps,

the metrics should be captured over a period of time and then compared with the baseline.

This comparison of data should uncover intelligence about effectiveness of DevOps in the

organization and appropriate corrective measures should be undertaken.

Some of the important metrics that should be tracked are as follows:

Metrics Impact

Number of deployments If the number of deployments is higher prior to DevOps

implementation, it means that continuous integration,

continuous delivery, and deployments favor the overall

delivery to production.

||||||||||||||||||||

Introducing DevOps

 [30]

||||||||||||||||||||

Number of daily code

checkins/pushes

If this number is comparatively high, it denotes that

developers are taking advantage of continuous integration and

the possibilities for code conflict and staleness are reduced.

Number of releases in a

month

A higher number is testimony the fact that there is higher

confidence in delivering changes to production and that

DevOps is helping to do that.

Number of

defects/bugs/issues on

production

This number should be lower than pre-DevOps

implementation numbers. However, if this number is

considerable, it reflects that testing is not comprehensive

within continuous integration and the continuous delivery

pipeline and needs to be further strengthened. Quality of

delivery is also low.

Number of failures in

continuous integration

This is also known as broken build. This indicates that

developers are writing improper code.

Number of failures in the

release pipeline / continuous

deployment

If the number is high, it indicates that code is not meeting

feature requirements. Also, automation of environment

provisioning might have issues.

Code coverage percentage If this number is less, it indicates that unit tests do not cover all

scenarios comprehensively. It could also mean that there are

code smells with higher cyclomatic complexity.

Summary

In this chapter, we have looked at some of the problems plaguing software organizations

with regard to delivery of services to its end users. We covered the definition of DevOps

and how DevOps helps eliminate these problems. We also went through the principles and

practices of DevOps, briefly explaining their purpose and usefulness. This chapter forms

the foundation and backbone for the remaining chapters. Later chapters in the book will be

a step-by-step realization of these principles and tenets. Although this chapter was heavy

on theory, subsequent chapters will start delving into technology and practical steps to

implement DevOps. You should by now have a good grasp of DevOps concepts. In the

following chapter, we will cover automation tools, languages, and technologies that will

help in implementing DevOps principles in practice.

||||||||||||||||||||

||||||||||||||||||||

2

DevOps Tools and

Technologies

In the previous chapter, we looked at the problems faced by organizations in delivering

software services to customers. We understood the meaning of DevOps and the way it

addresses the challenges of software delivery. We went through the principles on which

DevOps is based and discussed the practices through which DevOps achieves its end goal.

This book is about the practical implementation of DevOps through technology.

Technology is an enabler for DevOps. Technology helps DevOps in the following ways:

Enables faster collaboration and communication among teams, making them

more efficient and effective.

Helps in faster, better, and automated process implementation.

Consistent and predictable automated delivery. Brings higher cadence and

confidence in the delivery process.

Feedback backed up by telemetry.

Agile deployments.

This chapter and the following two chapters will introduce core platforms and technologies

instrumental in enabling and implementing DevOps practices.

These include:

 Technology stack for implementing configuration management, continuous

integration, continuous deployment, continuous delivery, and continuous

||||||||||||||||||||

DevOps Tools and Technologies

 [32]

||||||||||||||||||||

improvement. These form the backbone for DevOps processes and include source
code services, build and release service through Visual Studio Team Services

(VSTS).

 Platform and technology used to create and deploy a sample web application.

This includes technologies such as Microsoft .NET, ASP.NET, and SQL server

databases.

 Tools and technology for configuration management, testing of code and

application, authoring scripts and templates as part of Infrastructure as Code,

and deployment of environments. Examples of these tools and technology are
Pester for environment validation, environment provisioning through Azure

Resource Manager (ARM) templates, Desired State Configuration (DSC) and

PowerShell, application hosting on containers through Windows Containers and

Docker, application and database deployment through web deploy packages,

and SQL server BACPAC files.

Cloud technology

Cloud is ubiquitous. It is used throughout this book. Cloud is used in this book for hosting

all environments, implementation of DevOps practices, and deployment of applications.

Cloud is a relatively new paradigm in infrastructure provisioning, application deployment,

and hosting space. The only options prior to the advent of cloud was either self-hosted on

on-premises data centers or using services from a hosting service provider. However, cloud

is changing the way enterprises look at their strategy in relation to infrastructure and

application development, deployment, and hosting. In fact, the change is so enormous that

it has found its way into every aspect of an organization's software development processes,

tools, and practices.

Cloud computing refers to the practice of deploying applications and services on the

Internet with a cloud provider. A cloud provider provides multiple types of services on

cloud. They are divided into three categories based on their level of abstraction and degree

of control on services. These categories are as follows:

Infrastructure as a Service (also popularly known as IaaS)

Platform as a Service (also popularly known as PaaS)

||||||||||||||||||||

DevOps Tools and Technologies

 [33]

Farkiantech.com
||||||||||||||||||||

Software as a Service (also popularly known as SaaS)

These three categories differ based on the level of control a cloud provider exercises

compared to the cloud consumer. The services provided by a cloud provider can be divided

into layers, with each layer being a specific type of service. As we move higher in the stack

of layers, the level of abstraction increases in line with the cloud provider's control over

services. In other words, the cloud consumer starts to lose control over services as you

move higher in each column:

Figure 1: Cloud Services – IaaS, PaaS, and SaaS

Figure 1 shows the three categories of service available through cloud providers and the

layers that are comprised in each service. These layers are stacked vertically on each other

and each layer in the stack is colored differently depending on who manages it customer or

provider. From Figure 1, it is clear that for IaaS, a cloud provider is responsible for

providing, controlling, and managing layers from the network layer up to the virtualization

||||||||||||||||||||

DevOps Tools and Technologies

 [34]

||||||||||||||||||||

layer. Similarly, for PaaS, a cloud provider controls and manages from the hardware layer

up to the runtime layer, while the consumer controls only the application and data layers.

Infrastructure as a Service (IaaS)

As the name suggests, Infrastructure as a Service are infrastructure services provided by a

cloud provider. This service includes the physical hardware and its configuration, network

hardware and its configuration, storage hardware and its configuration, load balancers,

compute, and virtualization. Any layer above virtualization is the responsibility of the

consumer. The consumer can decide to use the provided underlying infrastructure in

whatever way best suits their requirements. For example, consumers can consume the

storage, network, and virtualization to provision virtual machines on top of it. It is then

consumer's responsibility to manage and control the virtual machines and the software

deployed within it.

Platform as a Service (PaaS)

Platform as a Service enables consumers to deploy their applications and services on the

provided platform, consuming the underlying runtime, middleware, and services. The

cloud provider provides the services from infrastructure to runtime. The consumers cannot

provision virtual machines as they cannot access and control them. Instead, they can only

control and manage their applications. This is a comparatively faster method of

development and deployment because now the consumer can focus on application

development and deployment. Examples of Platform as a Service include Azure

Automation, Azure SQL, and Azure App Services.

Software as a Service (SaaS)

Software as a Service provides complete control of the service to the cloud provider. The

cloud provider provisions, configures, and manages everything from infrastructure to the

application. It includes the provisioning of infrastructure, deployment and configuration of

applications, and provides application access to the consumer. The consumer does not

control and manage the application, and can use and configure only parts of the

application. They control only their data and configuration. Generally, multi-tenant

||||||||||||||||||||

DevOps Tools and Technologies

 [35]

Farkiantech.com
||||||||||||||||||||

applications used by multiple consumers, such as Office 365 and Visual Studio Team

Services, are examples of SaaS.

Advantages of using cloud computing

There are multiple distinct advantages of using cloud computing. The major among them

are as follows:

 Cost effective: Cloud computing helps organizations to reduce the cost of storage,

networks, and physical infrastructure. It also prevents them from having to buy

expensive software licenses. The operational cost of managing these

infrastructures also reduces due to lesser effort and manpower requirements.

Unlimited capacity: Cloud provides unlimited resources to the consumer. This

ensures applications will never get throttled due to limited resource availability.
Elasticity: Cloud computing provides the notion of unlimited capacity and

applications deployed on it can scale up or down on an as-needed basis. When

demand for the application increases, cloud can be configured to scale up the

infrastructure and application by adding additional resources. At the same time, it

can scale down unnecessary resources during periods of low demand.

 Pay as you go: Using cloud eliminates capital expenditure and organizations pay

only for what they use, thereby providing maximum return on investment.

Organizations do not need to build additional infrastructure to host their

application for times of peak demand.

 Faster and better: Cloud provides ready-to-use applications and faster

provisioning and deployment of environments. Moreover, organizations get

better-managed services from their cloud provider with higher service-level

agreements.

We will use Azure as our cloud computing provider for the purpose of demonstrating

samples and examples. However, you can use any cloud provider that provides complete

end-to-end services for DevOps.

We will use multiple features and services provided by Azure across IaaS and PaaS. We will
consume Operational Insights and Application Insights to monitor our environment and

application, which will help capture relevant telemetry for auditing and monitoring

||||||||||||||||||||

DevOps Tools and Technologies

 [36]

||||||||||||||||||||

purposes. Azure virtual machines running Windows Containers will be provisioned and

they will act as our hosting platform. We will use Windows Server 2016 as the target

operating system for our applications. Azure Resource Manager (ARM) and templates,

which we will look into in detail in the next chapter, as our choice of framework and

deployment automation. We will also use Desired State Configuration and PowerShell for

configuration management within virtual machines and containers.

We will use Visual Studio Team Services, a suite of PaaS services on cloud provided by

Microsoft, to set up and implement our end-to-end DevOps practices. Microsoft also
provides the same services as part of Team Foundation Services (TFS) as an on-premises

solution.

Technologies like Pester, DSC, and PowerShell can be deployed and configured to run on

any platform. These will help both in the validation of our environment and in the

configuration of both application and environment, as part of our configuration

management process.

We will introduce a sample application in Chapter 5, Building a Sample Application, and the

entire application lifecycle management will be implemented through DevOps practices.

Windows Server 2016 is our target platform for deploying the application. Windows Server

2016 is a breakthrough operating system from Microsoft also referred to as Cloud Operating

System. We will look into Windows Server 2016 in the following section.

Windows Server 2016

Windows Server 2016 has come a long way. All the way from Windows NT to Windows

2000 and 2003, then Windows 2008 (R2) and 2012 (R2), and now Windows Server 2016.
Windows NT was the first popular Windows server among enterprises. However, the true

enterprise servers were Windows 2000 and Windows 2003. The popularity of Windows

Server 2003 was unprecedented and it was widely adopted. With Windows Server 2008 and

2008 R2, the idea of the data center took priority and enterprises with their own data center

adopted it. Even the Windows Server 2008 series was quite popular among enterprises. In

2010, the Microsoft Cloud, Azure, was launched.

The first steps towards a cloud operating system were Windows Server 2012 and 2012 R2.

||||||||||||||||||||

DevOps Tools and Technologies

 [37]

Farkiantech.com
||||||||||||||||||||

They had the blueprints and technology to be seamlessly provisioned on Azure. Now,

when Azure and cloud are gaining enormous popularity, Windows Server 2016 is released

as a true cloud operating system. The evolution of Windows Server is shown in Figure 2:

Windows Server 2016 is referred to as a cloud operating system. It is built with cloud in

mind. It is also referred to as the first operating system that enables DevOps seamlessly by

providing relevant tools and technologies. It makes implementing DevOps simpler and

easier through its productivity tools. Let us look briefly into these tools and technologies.

Application platform

Windows Server 2016 comes with multiple options for deploying and hosting applications.

It provides the following:

Windows Server 2016

Nano Server

Windows and Docker Containers

Hyper-V Containers

Nested virtual machines

Windows Server as a hosting platform

Windows Server 2016 can be used for hosting applications and consuming server

functionalities. It provides the services necessary to make applications secure, scalable, and

highly available. It also provides services like virtualization, directory services, certificate

||||||||||||||||||||

DevOps Tools and Technologies

 [38]

||||||||||||||||||||

services, web server, databases that help in building enterprise scale applications and

services.

Nano servers

Windows Server provides a new option to host applications and services called Nano

servers. This is a new lightweight, scaled-down Windows Server containing only the kernel

and drivers necessary to run as an operating system. They are also known as headless

servers. They do not have any graphical user interface and the only way to interact and

manage them is through remote PowerShell. Out-of-the-box, they do not contain any

service or feature. The services need to be added to Nano servers explicitly before use. So

far, they are the most secure servers from Microsoft. They are very lightweight and their

resource requirements and consumption is less than 80% of a normal Windows server. The

number of services running, the number of ports open, the number of active processes

running and the amount of memory and storage required, are also less than 80% compared

to normal Windows servers.

Even though Nano Server out of box just has the kernel and drivers, its capabilities can be

enhanced by adding features and deploying any Windows application on it.

Windows Containers and Docker

Containers are one of the most revolutionary features added to Windows Server 2016 after

Nano Server. With the popularity and adoption of Docker Containers on Linux, Microsoft

has introduced container services in Windows Server 2016 and Windows 10.

Containers are operating system virtualization. This means that multiple containers can be

deployed on the same operating system and each one of them will share the host operating

system kernel. It is the next level of virtualization after server virtualization (virtual

machines). Containers generate the notion of complete operating system isolation and

independence, even though it uses the same host operating system underneath it. This is

possible through the use of namespace isolation and image layering. Containers are created

from images. Images are immutable and cannot be modified. Each image has a base

operating system and a series of instructions that are executed against it. Each instruction

creates a new image on top of the previous image and contains only the modification.

Finally, a writable image is stacked on top of these images.

||||||||||||||||||||

DevOps Tools and Technologies

 [39]

Farkiantech.com
||||||||||||||||||||

These images are combined into a single image, which can then be used for provisioning

containers. A container made up of multiple image layers is shown in Figure 3:

Namespace isolation helps provide containers with pristine new environments. The

containers cannot see the host resources and the host cannot view the container resources.

For the application within the container, a complete new installation of the operating

system is available. The containers share the host's memory, CPU, and storage.

Containers offer operating system virtualization, which means they can host only those

operating systems supported by the host operating system. There cannot be a Windows

||||||||||||||||||||

DevOps Tools and Technologies

 [40]

||||||||||||||||||||

Container running on a Linux host, and a Linux container cannot run on a Windows host

operating system.

Hyper-V containers

Another type of container technology Windows Server 2016 provides is Hyper-V

Containers. These containers are similar to Windows Containers. They are managed

through the same Docker client and extend the same Docker APIs. However, these

containers contain their own scaled down operating system kernel. They do not share the

host operating system but have their own dedicated operating system, and their own

dedicated memory and CPU assigned in exactly the same way virtual machines are

assigned resources.

Hyper-V Containers bring in a higher level of isolation of containers from the host. While

Windows Containers run in full trust on the host operating system, Hyper-V Containers do

not have full trust from the host's perspective. It is this isolation that differentiates Hyper-V

Containers from Windows Containers.

Hyper-V Containers are ideal for hosting applications that might harm the host server

affecting every other container and service on it. Scenarios where users can bring in and

execute their own code are examples of such applications. Hyper-V Containers provide

adequate isolation and security to ensure that applications cannot access the host resources

and change them.

Nested virtual machines

Another breakthrough innovation of Windows Server 2016 is that virtual machines can host

virtual machines. Now, we can deploy multiple virtual machines containing all tiers of an

application within a single virtual machine. This is made possible through software-defined

networks and storage.

Enabling microservices

Nano servers and Containers help provide advanced lightweight deployment options

through which we can now deconstruct the entire application into multiple smaller,

independent services, each with their own scalability and high availability configuration,

||||||||||||||||||||

DevOps Tools and Technologies

 [41]

Farkiantech.com
||||||||||||||||||||

and deploy them independent of each other. Microservices help in making the entire

DevOps lifecycle agile. With microservices, changes to services do not demand that every

other microservice undergo entire test validation. Only the changed service needs to be

tested rigorously, along with its integration with other services. Compare this to a

monolithic application. Even a single small change will result in having to test the entire

application. Microservices help in that it requires smaller teams for its development, testing

of a service can happen independently of other services, and deployment can be done for

each service in isolation.

Continuous integration, continuous deployment, and continuous delivery for each Micro

service can be executed in isolation rather than compiling, testing, and deploying the whole

application every time there is a change.

Reduced maintenance

Because of their intrinsic nature, Windows Nano servers and Containers are lightweight

and quick to provision. They help in quick provision and configuration of environments

and reduce overall time needed for continuous integration and deployment. Also, these

resources can be provisioned on Azure on-demand within a few minutes. Because of their

small footprint in terms of size, storage, memory, and features, they need less maintenance.

These servers are patched less often, have fewer hot-fixes, they are secure by default, and

have less chance of failing, which makes them ideal for development operations. The

operations team needs to spend fewer hours maintaining these servers compared to normal

servers. This reduces overall cost for the organization and help DevOps ensure a

highquality delivery.

Configuration management tools

Windows Server 2016 comes with Windows Management Framework 5.0 installed by
default. Desired State Configuration (DSC) is the new configuration management

platform available out-of-the-box in Windows Server 2016. It has a rich, mature set of

features that enables configuration management for both operating system and

applications. With DSC, the desired state and configuration of environments are authored

as part of Infrastructure as Code and executed on every server on a scheduled basis. They

help check the current state of servers with the documented desired state and bring them

back to the desired state. DSC is available as part of PowerShell and it helps with authoring

DSC configuration documents.

||||||||||||||||||||

DevOps Tools and Technologies

 [42]

||||||||||||||||||||

Windows Server 2016 provides a PowerShell unit testing framework known as PESTER.

Historically, unit testing for infrastructure environments was always missing as a feature.

PESTER enables the testing of infrastructure provisioned either manually or through

Infrastructure as Code using DSC configuration or ARM templates. These help with the

operational validation of the entire environment, bringing in a high level of cadence and

confidence in continuous integration and deployment processes.

Deployment and packaging

Package management helps in deployment of utilities and tools through automation. It is a

new concept in the Windows world. Package management has been ubiquitous in the Linux

world for a long time. Packing management helps search, save, install, deploy, upgrade,

and remove software packages from multiple sources and repositories on demand. There
are public repositories such as Chocolatey, NuGet, and PSGallery available storing readily

deployable packages. Tools such as NuGet can connect these repositories, download

packages and help in overall package management. They also help with the versioning of

packages. Applications that rely on a specific package version can download it on an

asneeded basis. Package management helps with the building of environments and

application deployment. Package deployment is much easier and faster with this out-of-

thebox Windows feature.

Visual Studio Team Services

Now it's time to focus on another revolutionary online service – Visual Studio Team

Services – that seamlessly enables continuous integration, continuous deployment, and

continuous delivery. In fact, it would be more appropriate to call it a suite of services

available under a single name. VSTS is a PaaS provided by Microsoft and hosted on cloud.
The same service is available as (Team Foundation Server (TFS) on on-premises data

centers. All examples used in this book use VSTS.

According to Microsoft, VSTS is a cloud-based collaboration platform that helps teams
share code, track work, and shipping software. It was previously known as Visual Studio

Online (VSO) and recently been renamed as VSTS. It is an enterprise software

development tool and service that enables organizations to provide automation facilities to

their end-to-end application lifecycle management process, from planning, to deployment,

to getting real-time feedback from software systems users. This increases the maturity and

||||||||||||||||||||

DevOps Tools and Technologies

 [43]

Farkiantech.com
||||||||||||||||||||

capability of an organization to deliver high quality software systems to their customers

again and again.

Successful software delivery involves bringing numerous processes and activities together

efficiently. These include executing and implementing various agile processes, increasing

collaboration among teams, seamless and automatic transition of artifacts from one phase of

SDLC to another phase, and deployment to multiple environments. It is important to track

and report on these activities, to measure and take action on these findings, and ultimately

improve the delivery process. VSTS makes it simple and easy. It provides a whole suite of

services that enable the following:

Collaboration among every team member by providing a single interface for the

entire application lifecycle management process

Collaboration among development teams using source code management

service

Collaboration among test teams using test management service

Automated validation of code and packaging through continuous integration

using Build Management service

Automated validation of application functionality and deployment, and

configuration of multiple environments through continuous deployment and

delivery using Release Management service

 Tracking and work item management using Work Management service

Figure 4 shows all the services available from the VSTS top navigation bar:

Source code management service

The source code management service, also known as Version control system, is one of the

flagship services from VSTS. Source code version control helps store the code in a

repository that can either be centralized or distributed. It also helps in versioning the code.

||||||||||||||||||||

DevOps Tools and Technologies

 [44]

||||||||||||||||||||

Versioning helps maintain multiple copies of the same files, with a new copy created when

the code gets updated. It helps with viewing the history of the code, comparing code

between different versions, and retrieving previous versions.

We will need a VSTS account to be created before it can be used. We will look into the

details of creating a VSTS account later in this chapter. Creating an account also creates a

team project collection in which team projects can be created. The team project collection is

a container that provides a security boundary and additional services such as agent pools.

After an account is created, the next step is to create a team project. After a team project is

created, the user is automatically redirected to the project dashboard. Each team project is
based on a type of process. This process was previously known as Process Templates in

VSO. The process determines how the requirements are broken down into features or user

stories and tasks. It also provides a mechanism to manage them through work-item

tracking. There are three types of processes available out-of-the-box in VSTS:

Scrum: The Scrum process is for teams who follow the Scrum framework for

their application development lifecycle.

Agile: The Agile process is for teams using Agile methodology.

CMMI: The Capability Maturity Model Integration (CMMI) process is a

comparatively more formal process for executing projects. It mainly focuses on

continuous improvement through telemetry.

Each of the processes, whether Scrum, Agile, or CMMI, involves different ways of executing

projects and demands a complete book for itself. We will not go into detail in this book.

The code link on the top navigation bar will take us to the source code management control

panel. This is shown in Figure 5:

A team project in VSTS is a security boundary and logical container that provides all the

services we mentioned in the previous section. VSTS allows for the creation of multiple

projects within a single account. By default, a repository is created with the creation of a

||||||||||||||||||||

DevOps Tools and Technologies

 [45]

Farkiantech.com
||||||||||||||||||||

project. However, VSTS allows for the creation of additional repositories within a single

project. The relationship between the VSTS account, projects, and repository is shown in

Figure 6:

VSTS provides two types of repositories, as follows:

Git

Team Foundation Version Control (TFVC)

It also provides the flexibility to choose between Git or TFVC source control repositories.

There can also be combination of Team Foundation Server (TFS) and TFVC repositories

available within a single project.

Team Foundation Version Control

TFVC is the traditional and centralized way of implementing version control in which there

is a central repository, which developers work on directly in connected mode to check-in

their changes. If the central repository is offline or unavailable, developers cannot check-in

their code and have to wait for it to go online and become available. Other developers can

||||||||||||||||||||

DevOps Tools and Technologies

 [46]

||||||||||||||||||||

see only the checked-in code. Developers can group multiple changes into a single change

set for checking-in code changes that are logically grouped to form a single change. TFVC

locks the code files that are undergoing edits. Other developers can read the locked file but

they cannot edit it. They have to wait for the prior edit to be complete and release the lock

before they can make their own edits. A history of check-ins and changes is maintained on

the central repository, while the developers have a working copy of the files but not the

history.

TFVC works very well with large teams that are working on the same projects. This allows

control over source code at a central location. It also works the best when the project is for a

long duration since the history is managed at a central location. TFVC has no issues

working with large and binary files.

Exploring Git

Git, on the other hand, is a modern distributed way of implementing version control where

the developers can work on their own local copies of code and history in offline mode. Each

developer has a local copy of the code and its entire history. They can make changes to the

code and can commit to the local repository. They can then connect to the central repository

in order to synchronize their local repository on an as-needed basis. This allows every

developer to work on any file since they will be working on their local copy only. Branching

in Git does not create another copy of the original code and is extremely quick to create.

Git works well with smaller teams. With larger teams, there is a substantial overhead to

manage multiple pull requests to merge the code on a central repository. It also works best

for smaller duration projects as the history will not get too large to be downloaded and

manageable on every developer's local repository. Branching and merging is a breeze with

advanced options.

Git is the recommended way of using source control because of the rich functionality it

provides. We will use Git as repository for our sample application in this book.

Build Management service

Another very important service in VSTS is the Build Management service. The main task of

the Build Management service is to provide continuous integration service to projects.

||||||||||||||||||||

DevOps Tools and Technologies

 [47]

Farkiantech.com
||||||||||||||||||||

As we already know by now, continuous integration is the process of compiling, building,

and validating code. It is about deploying code onto a test environment and validating the

code quality, code coverage, and whether the code bits are in working condition. Build

services help automate this entire process. Similar to source code management, the build

service is scoped at the team project level. In each team project, VSTS allows the creation of

multiple build definitions and templates. Each build definition is attached to a branch of a

repository. This could be a Git or a TFVC repository. Templates act as the basic building

blocks for definitions. They can be a starting place for the creation of custom build

definitions, with activities already defined in the definition. A build definition can also be

saved as a template and reused to create other build definitions. In this section, we will

introduce the concepts first and then show how it is implemented or configured.

The build definition consists of multiple activities that run in sequence, one after another,

like a pipeline. Each activity is responsible for executing a single task within the overall

build pipeline. Figure 7 shows an example of a build definition consisting of six tasks

created using a Visual Studio build template:

Figure 7: Sample build definition based on a Visual Studio template

These tasks are responsible for the following:

||||||||||||||||||||

DevOps Tools and Technologies

 [48]

||||||||||||||||||||

Restoring the NuGet packages needed by the solution

Building the entire solution, which in turn builds every project within it

Executing unit tests on the compiled code

Publishing a symbol path that helps in debugging

Copying the generated and compiled assemblies to a destination folder

Publishing the artifacts on the VSTS server

There are many more tasks available which can be used to augment the build definition

further. Figure 8 shows the tasks available for build definition. There is also a marketplace

where more tasks can be made available to the build definition. It is important to note at

this stage that the same tasks are available for both build and release definitions. There is no

difference in their configuration and execution, whether they are executed as part of a build

or release definition:

Figure 8: Build tasks

||||||||||||||||||||

DevOps Tools and Technologies

 [49]

Farkiantech.com
||||||||||||||||||||

Executing Build Definitions

Build definitions need build environments in order to be executed. Tasks in a build

definition have pre-requisites which should be available on build servers. VSTS provides

built-in build servers out-of-the-box with prerequisites already installed on them. They are

available to every account for the execution of build definitions. However, VSTS is flexible

enough to accept our own custom-built servers for the execution of build definitions.

Build architecture

Figure 9 depicts the VSTS build architecture. Every build server should have build agents

installed and running on it. Build agents are Windows services configured to interact and

work with the VSTS build service. The agents are grouped together to form an agent pool.

An agent pool is defined at the VSTS account level and there can be multiple agent pools
defined. VSTS provides a default agent pool, named Hosted. All VSTS-provided servers are

part of the hosted agent pool:

||||||||||||||||||||

DevOps Tools and Technologies

 [50]

||||||||||||||||||||

Figure 9: Relationship between agents, pools, and queues

Agents, agent pools, and agent queues

The relationship between build servers, agents, agent pools, and agent queues is shown in

Figure 9.

Multiples can be installed on a build server.

Each of these agents belongs to a single agent pool. An agent cannot belong to multiple

agent pools.

An agent queue is mapped to a single agent pool. A queue cannot be mapped to multiple

agent pools however a single agent pool can be used by multiple agent queues.

Queuing Build Definitions

Build definitions are queued before they can be executed. When queuing a build definition,

the name of the agent queue on which it should be queued should be provided. A queue is

tied and mapped to an agent pool. Any available agent in the pool that meets the

capabilities needed by the build definition eventually picks up the request and executes it.

Configuring a Build definition

The Build Management control panel can be reached via the Builds sub-menu in the Build

& Release link on the top navigation bar. Clicking on the + New button available at the

topright of the window will start a new build definition wizard. Figure 10 shows the Create

new build definition wizard:

||||||||||||||||||||

DevOps Tools and Technologies

 [51]

Farkiantech.com
||||||||||||||||||||

Figure 10: Creating a build definition

Selecting a Build template and providing an appropriate repository name, branch name,

and agent queue information will create a build definition in draft mode with a few

activities in it. The build definition control panel is shown in Figure 11:

 Figure 11: Build control Panel

||||||||||||||||||||

DevOps Tools and Technologies

 [52]

||||||||||||||||||||

There are two levels of configuration for each build definition – Build level and Task level

configuration.

 Build level configuration: These configurations affect the entire build definition

and execution process. It also provides the options to save and queue the build

definition from any tab:

 Build: This tab lists every task that comprises the build definition.

Configuration for every task can be done from this tab. Refer to

Figure 11 for a visual example.

 Options: This tab is used to build multiple configurations such as

debug, release, or any other configuration defined in the project.
Selecting Multi-Configuration shows further options. We can

provide comma-separated configuration names, select whether

each of these configurations should run in parallel or in sequence,

and select whether these configurations should stop if an error
occurs. It also allows us to create a new work item (Bug, Epic,

Feature, Task, Test case, User story, Issue) when the build fails by

checking the Create Work Item on Failure checkbox. This is shown

in Figure 12:

||||||||||||||||||||

DevOps Tools and Technologies

 [53]

Farkiantech.com
||||||||||||||||||||

Figure 12: Options tab for build definition

||||||||||||||||||||

DevOps Tools and Technologies

 [54]

||||||||||||||||||||

Repository: The options shown here are different based on the type of

repository. For a Git-based repository type, information about the
repository and its branch in the project should be provided. The Clean

option removes untracked files and branches from the repository.
Label sources helps provide labeling for the source code files and

versions them for easy identification. To report on the build status the

corresponding option should be checked. If code is reused from

another repository, the sub module should also be checked out. This is

shown in Figure 13:

Figure 13: Repository tab of build definition

Variables: This tab helps make the build definition generic and

reusable. It helps remove hard coding and changes the behavior of the

build definition during execution. It also helps use the same value in

multiple places within the same definition. There are a set of

predefined variables available out of box. In addition, new variables

can be defined by the user. Each variable has a name and a value. A

variables can also be encrypted using the secret lock button. Moreover,
Allow at Queue Time enables the availability of the same variable

||||||||||||||||||||

DevOps Tools and Technologies

 [55]

Farkiantech.com
||||||||||||||||||||

during manual queuing providing an opportunity to change its value

before execution. Figure 14 shows the Variables tab in a build

definition:

Figure 14: Variables tab of a build definition

Triggers: A build can be initiated manually as a scheduled activity

and/or as a continuous integration. When Continuous integration (CI)

is chosen, any commit or check-in of code will initiate the build process
by queuing it to an agent queue. Figure 15 shows the Triggers tab of

the build definition:

||||||||||||||||||||

DevOps Tools and Technologies

 [56]

||||||||||||||||||||

Figure 15: Triggers tab of the build definition

||||||||||||||||||||

DevOps Tools and Technologies

 [57]

Farkiantech.com
||||||||||||||||||||

General: This tab allows us to choose the queue for the submission of

our build definition. If the build needs access across projects in the
account, Project Collection should be chosen as the authorization

scope. Otherwise, Current Project should be chosen. Description

provides more information about the build definition. Each build is

given a unique number and if we want more useful names for the
build, Build number format can be used to define them. The Demands

section lists the capabilities a build agent must possess for successful

execution of the definition. A build will not execute if the demands are
not satisfied. Build job timeout in minutes provides control to VSTS

to cancel the build execution if it does not finish within the given time.

Figure 16 shows the General tab of a build definition:

||||||||||||||||||||

DevOps Tools and Technologies

 [58]

||||||||||||||||||||

Figure 16: General tab of a build definition

Retention: VSTS stores logs and other information for every build

execution. This tab allows setting the number of days to retain various

aspects of build output. Figure 17 shows the Retention tab:

||||||||||||||||||||

DevOps Tools and Technologies

 [59]

Farkiantech.com
||||||||||||||||||||

History: VSTS maintains the history of changes made to the build

definition. This was not possible in earlier versions of VSTS. It provides

version control for the build definition itself and allows reversion back

to a previous version and comparison between multiple versions of the

same definition:

Figure 18: History tab of the build definition

||||||||||||||||||||

DevOps Tools and Technologies

 [60]

||||||||||||||||||||

There are further configuration options available through the Build

Definition context menu. Among the most important of them is the

Security configuration. The Security configuration allows us to provide

contributor, administrator, and authoring permissions to users and

groups. This is shown in Figure 19:

The Queue build button lists a build definition to a queue and executes

it.

 Task level configuration: Each task has its own set of configurations to work on.

There are different requirements for different tasks. Figure 20 shows the Build

solution task. This is responsible for compiling every project within a solution. It

accepts the solution file path and multiple configurations related to NuGet. These

||||||||||||||||||||

DevOps Tools and Technologies

 [61]

Farkiantech.com
||||||||||||||||||||

include path to NuGet.config, whether to restore or install NuGet packages,

disabling the NuGet cache, and NuGet arguments. The advanced section accepts

the path to NuGet.exe:

 The Control Options section has an additional configuration that controls the

entire task. These configurations are common to all the tasks available in VSTS
build and release definitions. Control Options is shown in Figure 20.

 The Enabled check refers to whether this task participates in build execution. It is

not executed if the check is removed. By default, it is in the checked state.

 A build execution fails when any task within it fails. The Continue on error check

helps change this setting and allows us to continue executing the build even if

this tasks fails.

||||||||||||||||||||

DevOps Tools and Technologies

 [62]

||||||||||||||||||||

 Always run ensures that a given task always executes, even if there are build

failures from other tasks.

Release Management service

Now it's time to look at how VSTS can help with continuous deployment and continuous

delivery. We already know by now that continuous deployment refers to the deployment of

application on multiple environments, including pre-production and production

environments, through automation. This involves both the provisioning and configuration

of environments and applications.

The Release Management service helps automate the deployment and configuration to

multiple environments. It helps execute validation tests, such as functional tests, on these

environments. The Release Management service help implement both continuous

deployment and delivery. Similar to Source Code and Build mMnagement, the Release

Management service is scoped at the project level. For each project, VSTS allows the

creation of multiple release definitions.

Each release definition consists of multiple environment definitions, each environment

representing a deployment target. Test, staging, and production are examples of

environments. Release Management executes these environment definitions and each

environment can be configured to run in parallel or in sequence after a prior environment

execution. Each environment definition would typically consist of provisioning and

configuring multiple servers, deploying and configuring application components on these

servers, and validating the application. Although the configuration of environments within

a release definition could be different, from a DevOps perspective, they should be similar.

Each environment definition consists of multiple activities that run in sequence, one after

another, like a pipeline. Each activity is responsible for executing a single task within the

overall environment pipeline. Figure 21 shows a release definition example consisting of

two environments, authoring and production, each with multiple activities in its pipeline.

Each contains the same tasks. However, their configuration is different for each

environment:

||||||||||||||||||||

DevOps Tools and Technologies

 [63]

Farkiantech.com
||||||||||||||||||||

It may be recollected that tasks are available to both build and release definitions are

common in VSTS. Figure 8 in this chapter shows the rich set of tasks available for build and

release definitions.

The release pipeline gets its inputs in the form of artifacts. One of the final steps in

continuous integration is to drop the generated package to a specified location. Release

Management considers the output from a build execution as an artifact. It also considers

files stored in Git and TFVC repositories as artifacts.

Executing release definitions

Release definitions need release environments in order to be executed. The tasks in a release

and environment definition have pre-requisites, and those should be available on the

release servers. VSTS provides built-in release servers out-of-the-box, with prerequisites

installed on them. They are available to every account in VSTS for the purpose of executing

release definitions. However, at the same time, VSTS is flexible enough to accept our own

custom release servers for the execution of release definitions.

||||||||||||||||||||

DevOps Tools and Technologies

 [64]

||||||||||||||||||||

Release Management architecture

The Release Management architecture is the same as that of Build Management, which is

depicted in Figure 9. Every release server should have a release agent installed and running

on it. Release agents are Windows services that are configured to interact and work with

the VSTS Release Management service.

Executing a release definition in turn executes the environment definitions. Each release

environment is configured to use an agent queue. This agent queue selected during release

definition creation becomes the agent queue configuration for the first environment. Each

environment definition can be configured to use a particular agent queue and a request is

queued on the agent queue for each environment. An agent queue is formed at the

projectcollection level and multiple queues can be created. When queuing an environment

definition, VSTS expects the artifact that should be used within its pipeline.

Release definition configuration

The Release Management control panel can be reached through the Release sub-menu of

the Build & Release link on the top navigation bar. Clicking on the + New button available

in the top-right of the browser window will initiate the creation of a new release definition:

||||||||||||||||||||

DevOps Tools and Technologies

 [65]

Farkiantech.com
||||||||||||||||||||

Figure 22: Creating a new release definition

Figure 22 shows the Create new release definition user interface. Selecting a release

template and providing source artifacts and agent queue information will create a release

definition in draft mode. The queue agent selected here will become the default queue
agent for first environment within the release definition. If the Empty template is chosen,

VSTS will create an environment named Environment 1 with no tasks in it. The same

release definition is shown in Figure 23:

||||||||||||||||||||

DevOps Tools and Technologies

 [66]

||||||||||||||||||||

There are three levels of configuration for each release definition–Release level,

Environment level and Task level configuration.

 Release level configuration: This configuration affects the entire release

definition and execution. It also provides the option to save the release definition

from any tab.

 Environments: This tab lists every environment available in the

release definition. It also comprises all the tasks that are part of the

environment definition. Individual task configuration can be done

from this tab.

 Artifacts: This tab helps configure the link to the artifacts. The

artifacts can come from a build execution or from a repository.

Build artifacts can be chosen from any project in a Visual Studio

account and repository artifacts can choose any repository and

select project within the VSTS account. The artifacts type can be

Jenkins, Git, TFVC, and GitHub apart from VSTS Build. The
Artifacts user interface is shown in Figure 24:

||||||||||||||||||||

DevOps Tools and Technologies

 [67]

Farkiantech.com
||||||||||||||||||||

Figure 24: Artifacts tab in release definition

||||||||||||||||||||

DevOps Tools and Technologies

 [68]

||||||||||||||||||||

Variables: This tab helps make the release definition generic and

reusable. They help remove hard coding and change the behavior of a

release definition during execution. They also help use the same value

in multiple places within the same definition. There is a set of

predefined variables available. In addition, new variables can be

defined by the user. Each variable has a name and value. Variables can

also be encrypted using the secret lock button. These are release-level

variables. This is shown in Figure 25. There is another set of variables,
known as Environment variables, that are defined at the environment

level. We will look at them when we talk about environment level

configuration in the following section:

||||||||||||||||||||

DevOps Tools and Technologies

 [69]

Farkiantech.com
||||||||||||||||||||

Figure 25: Variables tab in release definition

Triggers: Release can be initiated manually or as a scheduled activity

or as continuous deployment. If Continuous Deployment is chosen as

an option, the availability of any new build version or any new

commit/check-in of code (if the continuous integration is configured

on the linked build) will start the release process by queuing it to the

agent queue. The artifacts configuration determines whether to use the

build output or new commits in the code repository to initiate the

release. The build version must be chosen manually as an artifact if

||||||||||||||||||||

DevOps Tools and Technologies

 [70]

||||||||||||||||||||

release is manually initiated. This is shown in Figure 26. Trigger

configuration is also available at the environment level and we will

look into it when we discuss environment-specific configuration in the

following section:

Figure 26: Triggers tab in release definition

General: This tab allows you to configure the release name. Every

release is given a unique number, and Release name format helps

provide more useful names for the releases. The General tab is shown

in Figure 27:

||||||||||||||||||||

DevOps Tools and Technologies

 [71]

Farkiantech.com
||||||||||||||||||||

Retention: VSTS stores logs and other information for every release

execution. This tab allows to set the number of days for which to retain

the release logs.

History: VSTS maintains the history of changes made to the release

definition, which was not possible in earlier versions of VSTS. This

provides version control for the release definition itself and allows

reversion back to a previous version and comparison between
multiple versions of same definition. The History details are shown in

Figure 28:

Figure 28: History tab in release definition

||||||||||||||||||||

DevOps Tools and Technologies

 [72]

||||||||||||||||||||

There is further configuration available through the release definition
context menu. Among the more important of them is the Security

configuration. Security configuration allows you to provide

contributor, administrator, and authoring permissions to different team

members. The steps to configure security for the release definition are

the same as those for the build definition.

Clicking on the Release button and then on the Create Release item

creates a new release, enlists the environments on agent queues, and

starts executing them.

Environment level configuration: This configuration affects an individual

environment's definition and execution. Each environment has a button with the
symbol: …. Clicking on it and then on any one of the menu items – Assign

approvers…, Agent queues, Configure variables, or Deployment conditions,

will show the user interface for configuring that environment. Environment

Context Menu is shown in Figure 29:

Figure 29: Environment contextual menu

||||||||||||||||||||

DevOps Tools and Technologies

 [73]

Farkiantech.com
||||||||||||||||||||

You can delete an environment definition from its contextual menu, as shown in

Figure 30:

Figure 30: Deleting an environment definition

Approvals: Approvals play a pivotal role in Release Management

because they affect multiple environments that are strategic and

important to applications and organizations. Approvals can be sought

prior to the execution of an environment definition from a user/group,

or they can be configured to be approved automatically. Similarly, we

can configure both pre-deployment and post-deployment approvals

for an environment. This is shown in Figure 31:

||||||||||||||||||||

DevOps Tools and Technologies

 [74]

||||||||||||||||||||

Figure 31: Approvals tab in environment definition

||||||||||||||||||||

DevOps Tools and Technologies

 [75]

Farkiantech.com
||||||||||||||||||||

Queue: This tab can override the default agent queue. The Demands

section lists the capabilities a release agent must have for successful

execution of the definition. Release will not execute if the demands are

not satisfied. The queue configuration is shown in Figure 32:

Figure 32: Queue configuration in environment definition

Variables: The concept of variables is the same as that discussed in the

release-level configuration section. Environment also provides the

||||||||||||||||||||

DevOps Tools and Technologies

 [76]

||||||||||||||||||||

same set of predefined variables as provided at the release level. In

addition, new variables can be defined by the user. The release-level

variables are accessible at the environment level and can also be

overridden here by declaring a variable with the same name.

Environment level variables are visible only within the environment

they are defined in. This is shown in Figure 33:

Figure 33: Variable configuration in environment definition

||||||||||||||||||||

DevOps Tools and Technologies

 [77]

Farkiantech.com
||||||||||||||||||||

General: This tab allows the configuration of e-mail notifications and

you may also provide a name for the owner of the environment. Skip

artifacts download ensures that the artifacts are not downloaded to

the agent prior to starting the deployment. Deployment timeout in

minutes provides control to VSTS to cancel the environment execution

if it does not finish within the time provided. This is shown in Figure

34:

||||||||||||||||||||

DevOps Tools and Technologies

 [78]

||||||||||||||||||||

Figure 34: General configuration in environment definition

||||||||||||||||||||

DevOps Tools and Technologies

 [79]

Farkiantech.com
||||||||||||||||||||

 Deployment conditions: Environment release can be initiated manually. It can be

triggered automatically, after the creation of a release from the release definition,

as a scheduled activity, or as part of continuous deployment. This is shown in

Figure 35:

 Task-level configuration: Release definitions have same tasks available for

configuration as those available to build definitions. We have already covered

this during our discussion about build task level configuration.

Setting up a cloud environment

Azure and VSTS accounts are crucial for implementing DevOps processes. In this chapter,

we will look at the steps to create both VSTS and Azure accounts, and in Chapter 5,

||||||||||||||||||||

DevOps Tools and Technologies

 [80]

||||||||||||||||||||

Building a Sample Application, we will set up the development environment for our

application.

Visual Studio Team Services

The primary prerequisite for creating an account with VSTS is to have a Microsoft account.

Microsoft accounts were previously known as Live accounts. This is a free account that can

be set up through h t t p s ://s i g n u p . l i v e . c o m / to access Microsoft services such as Skype,
OneDrive, Outlook, Hotmail, and more.

Another way to create a VSTS account is to have a Work or School account, which refers to

an enterprise and its e-mail accounts.

One account, either a Microsoft account or a Work or School account, is necessary to create

a VSTS account. After provisioning these accounts, browsing through

https://go.microsoft.com/fwlink/?LinkId=307137&clcid=0x409 will start a wizard to

create a VSTS account. It will ask you to log in with your Microsoft or Work account. After

login, pick a unique name through which your VSTS account is identified. This is shown in
Figure 36. You can also select the type of repository – Git or Team Foundation Version

Control. By clicking on the Change details link, select a preferred region and the process

types (CMMI, SCRUM, and Agile) to manage the work. This is shown in Figure 37:

https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://signup.live.com/
https://go.microsoft.com/fwlink/?LinkId=307137&clcid=0x409

||||||||||||||||||||

DevOps Tools and Technologies

 [81]

Farkiantech.com
||||||||||||||||||||

Figure 36: Creating a VSTS account

Click on the Continue button and in a few seconds, your account will be created as shown

in Figure 37.

||||||||||||||||||||

DevOps Tools and Technologies

 [82]

||||||||||||||||||||

Figure 37: Creating a VSTS account

Azure account

The primary prerequisite for creating an account with Microsoft Azure is to either have a

Microsoft or a Student/Work account. In the preceding section, we looked at how to create a

Microsoft account. Once you have a valid account, navigate to

||||||||||||||||||||

DevOps Tools and Technologies

 [83]

Farkiantech.com
||||||||||||||||||||

https://account.windowsazure.com from your browser. Click on the SIGN IN button in

the extreme top-right corner of the page. This is shown in Figure 38:

Figure 38: Azure start page for creating a subscription

This will navigate to the login page for your Microsoft or Work/School account. I used an

Outlook account to obtain a subscription and tenant from Azure. This is shown in Figure 39:

https://account.windowsazure.com/

||||||||||||||||||||

DevOps Tools and Technologies

 [84]

||||||||||||||||||||

Figure 39: Azure login screen

Logging into Azure will take you to the screen shown in Figure 40. Click on the Sign up

link:

||||||||||||||||||||

DevOps Tools and Technologies

 [85]

Farkiantech.com
||||||||||||||||||||

Figure 40: Sign up with Azure

This will show the details of your account. It will also ask you to verify your credit card and

validate your account via your phone. This is shown in Figure 41. Once you have accepted
the agreement terms, click on Sign up to create a tenant and subscription in Azure:

||||||||||||||||||||

DevOps Tools and Technologies

 [86]

||||||||||||||||||||

Figure 41: Azure subscription creation

Summary

We have covered a lot of ground in this chapter. The first chapter introduced DevOps

concepts and this chapter discussed mapping technology to those concepts. In this chapter,

we saw the impetus DevOps can get from technology. We looked at cloud computing and

the different services provided by cloud providers. From there, we went on to look at the

benefits Windows Server 2016 brings to DevOps practices and how Windows Server 2016

||||||||||||||||||||

DevOps Tools and Technologies

 [87]

Farkiantech.com
||||||||||||||||||||

makes DevOps easier and faster with its native tools and features. Towards the end of the

chapter, we explored VSTS, which forms the core for DevOps practices, by implementing

continuous integration, continuous deployment, and delivery. You should now have a

good grasp of the tools and technology used to implement DevOps. We created an account

in VSTS for our DevOps process and created a subscription on Azure used for hosting our

platform and application.

In the following chapter, we will get into the details of each of these technologies and use

them in practice.

||||||||||||||||||||

||||||||||||||||||||

DevOps Automation Primer3

Azure was launched in early 2010 with Azure Service Management (ASM) as its base

technology platform for provisioning, organizing, and managing IaaS and PaaS services.

During the Build 2014 event, Microsoft introduced a new Azure technology platform,

Azure Resource Manager (ARM). There are inherent issues with Azure Service

Management in terms of performance, concurrency, extensibility, and scalability of services.

It was becoming difficult for Microsoft to introduce newer, consistent, and scalable services

because of the way ASM was designed and architected. Azure Resource Manager was

introduced to overcome these challenges and provide an architecture that is extensible,

scalable, and provide additional advance features not available with ASM.

Before 2014, System Center Configuration Manager (SCCM) was the prime configuration

management software from Microsoft and with cloud gaining popularity, there was need of

a lightweight configuration management platform that could easily scale and run
everywhere including cloud and on-premises. Desired State Configuration (DSC) was

launched in 2014 as part of Windows Management Framework (WMF) 4.0 and has become

stable and robust with the release of WMF 5.0. Windows Server 2016 and Windows 10 come

with WMF 5.0 installed out-of-the-box. DSC is a lightweight configuration management

platform capable of running and configuring multiple operating systems, services, and

environments. PowerShell has long been a part of Windows. It is the de-facto standard and

used ubiquitously for administration and the management of infrastructure, environment,

and services.

In this chapter, I will introduce Azure Resource Manager, describe its concepts, benefits and

advantages, architecture, and show some of its features. The chapter will continue with

Azure Resource Manager templates. Templates are a deployment feature of ARM and

enables Infrastructure as Code and DevOps implementation. I will show how templates are

defined and authored, its features and components like linking, dependencies, expressions,

monitoring and auditing deployments, and tools for authoring them.

||||||||||||||||||||

DevOps Automation Primer

 [89]

Farkiantech.com
||||||||||||||||||||

Next, PowerShell will be introduced. It is a scripting language and command-line shell used

for automation, administration, and management of servers, services and environments. A

PowerShell-based utility Pester will be another important topic in this chapter. Pester is a

unit and integration testing tool for PowerShell scripts and environments. It helps in

validating infrastructure and environments through assertion, comparing desired with

actual output. The chapter ends with how all these technologies come together and help in

enabling DevOps. DSC is based on PowerShell. Azure templates use both DSC and

PowerShell for provisioning and management of Azure resources. I will try to cover these

technologies as much as possible in this chapter. However, because this book is on DevOps,

these topics will not be covered in complete detail as each of them demands their own book.

Subsequent sections will introduce DSC, describe its different architectures and concepts,

show its configuration features, how it manages environments using dependencies, partial

configuration, PowerShell cmdlets, and DSC resources.

Azure Resource Manager

ARM is the successor of ASM. Although both platforms are operational and available as of

writing this chapter, Microsoft is moving toward using ARM as a platform for all future

deployments.

ARM and ASM

ASM has inherent constraints and some of the major ones are discussed here:

ASM deployments are slow and blocking. Operations are blocked if an earlier

operation is already in progress.

Parallelism is a challenge in ASM. It is not possible to execute multiple

transactions successfully in parallel. The operations in ASM are linear and executed

one after another. Either there are parallel operation errors or they will get blocked.

 Resources in ASM are provisioned and managed in isolation from each other.

There is no relation between ASM resources. Grouping of services and resources,

configuring them together is not possible.

||||||||||||||||||||

DevOps Automation Primer

 [90]

||||||||||||||||||||

 Cloud services are the unit of deployment in ASM. They are reliant on affinity

groups and not scalable due to its design and architecture.

 Granular and discreet roles and permissions cannot be assigned to resources in

ASM. Users are either service administrators or co-administrators in the

subscription. They either get full control on resources or do not have access to

them at all.

ASM provides no deployment support. Deployments are either manual or

you will need to resort to writing procedural scripts in PowerShell or .NET.

ASM APIs were not consistent between resources.

ARM advantages

ARM provides distinct advantages and benefits over ASM. They are:

 Grouping: ARM allows grouping of resources together in a logical container.

These resources can be managed together and undergo a common lifecycle as a

group. This makes it easier to identify related and dependent resources.

Common lifecycle: Resources in a group have the same lifecycle. These

resources can evolve and be managed together as a unit.

Role-Based Access Control: Granular roles and permissions can be assigned to

resources providing discreet access to users. Users can have only those rights that

are assigned to them.

 Deployment support: ARM provides deployment support in terms of templates

enabling DevOps and Infrastructure as Code. The deployments are faster,

consistent, and predictable.

Superior technology: Cost and billing of resources can be managed as a unit.

Each resource group can provide their usage and cost information.

Manageability: ARM provides advance features such as security, monitoring,

auditing, and tagging features for better manageability of resources. Resources can

be queried based on tags. Tags also provide cost and billing information for

resources tagged similarly.

 Migration: Easier migration and update of resources within, as well as across,

resource groups.

||||||||||||||||||||

DevOps Automation Primer

 [91]

Farkiantech.com
||||||||||||||||||||

ARM concepts

With ARM, everything in Azure is a resource. Examples of resources are virtual machine,

network interfaces, public IP address, storage accounts, virtual networks, and more. ARM is

based on concepts related to resource providers and resource consumers. Azure provides

resources and services through multiple resource providers that are consumed and

deployed in groups.

Resource providers

These are services responsible for providing resource types through Azure Resource

Manager. The top level concept in ARM are resource providers. These providers are

containers for resource types. Resource types are grouped into resource providers. They are

responsible for deploying and managing the resources. For example, a virtual machine
resource type is provided by a resource provider called Microsoft.Compute Namespace.

The REST API operations are versioned in order to distinguish between them. The version

naming is based on the dates on which they are released by Microsoft. It is necessary that a

related resource provider is available to a subscription in order to deploy a resource. Not all

resource providers are available to a subscription out of the box. If a resource is not

available in the subscription, one has to check if the required resource provider is available

in a given region. If that is available, the user can explicitly register in the subscription.

Resource types

These are an actual resource specification defining its public API interface and

implementation. It implements the working and operations supported by the resource.

Similar to resource providers, resource types also evolve over time with regard to their

internal implementation and have multiple versions for its schema and public API interface.

The version names are based on dates that they are released on by Microsoft as a preview or

General Availability (GA). The resource types become available to a subscription after a

resource provider is registered to it. Also, not every resource type is available in every

Azure region. The availability of a resource is dependent on the availability and registration

of a resource provider in an Azure region and must support the API version needed for

provisioning it.

||||||||||||||||||||

DevOps Automation Primer

 [92]

||||||||||||||||||||

Resource groups
Resource groups are a unit of deployment in ARM. They are containers grouping multiple

resource instances in a security and management boundary. A resource group is uniquely

named in a subscription. Resources can be provisioned on different Azure regions yet

belong to the same resource group. It provides additional services to all resources within it.

Resource groups provide metadata services like tagging which enables categorization of

resources, policy-based management of resources, Role-Based Access Control, protection of

resources from accidental deletion or updates, and more. As mentioned before, they have a

security boundary and users not having access to a resource group cannot access resources

contained within it. Every resource instance needs to be part of a resource group or else it

cannot be deployed.

Resource and resource instances
Resources are created from resource types and should be unique within a resource group.

The uniqueness is defined by the name of the resource and its type together. In OOPS

parlance, resource instances can be referred to as objects while resource types can be

referred to as a class. The services are consumed through the operations supported and

implemented by resource instances. They define properties that should be configured

before usage. Some are mandatory properties while others are optional. They inherit the

security and access configuration from its parent resource group. These inherited

permissions and role assignments can be overridden for each resource. A resource can be

locked in such a way that some of its operations can be blocked and not made available to

roles, users, and groups even though they have access to it. They can be tagged for easy

discoverability and manageability.

Azure Resource Manager
Azure Resource Manager is the technology platform and orchestration service from

Microsoft that ties up all components discussed earlier. It brings Azure resource providers,

resources, and resource groups together to form a cohesive cloud platform. It helps in

registration of resource providers to subscriptions and regions, it makes the resource types

available to resource groups, makes the resource and resource APIs accessible to the portal

and other clients, and authenticates access to resources. It also enables features like tagging,

authentication, Role-Based Access Control, resource locking, and policy enforcement for

||||||||||||||||||||

DevOps Automation Primer

 [93]

Farkiantech.com
||||||||||||||||||||

subscriptions and its resource groups. It provides the same deployment and management

experience whether through portal or client-based tools like PowerShell or a command-line

interface.

Azure Resource Manager architecture
Figure 1 shows the architecture of Azure Resource Manager and its components. As shown

in the figure, Azure Subscription comprises of multiple resource groups. Each resource

group contains resource instances that are created from resource types available in the

resource provider.

Azure Resource Manager features
The following are some of the major features provided by Azure Resource Manager:

Role-Based Access Control
Azure Active Directory (AAD) authenticates users to provide access to subscriptions,

resource groups, and resources. ARM implements OAuth and RBAC within the platform,

enabling authorization and access control to resources, resource groups, and subscriptions

based on roles assigned to a user or group. A permission defines access to operations on a

resource. These permissions could allow or deny access to the resource. A role definition is

a collection of these permissions. Roles map AAD users and groups to the permissions.

Roles are subsequently assigned to a scope which can be an individual, collection of

resources, resource group, or subscription. The AAD identities (users, groups and service

||||||||||||||||||||

DevOps Automation Primer

 [94]

||||||||||||||||||||

principles) added to a role gain access to the resource according to permissions defined in

the role. ARM provides multiple roles out-of-the-box. It provides system roles like Owner,

Contributor, Reader, and more. It also provides resource-based roles like SQL DB

contributor, virtual machine contributor, and more. ARM allows the creation of custom

roles.

Tags
Tags are name value pairs that add additional information and metadata to resources. Both

resources and resource groups can be tagged with multiple tags. Tags help in categorization

of resources for better discoverability and manageability. Resources can be quickly searched

and identified easily. Billing and cost information can be fetched for resources that have the

same tags applied. While this feature is provided by ARM, an IT administrator defines its

usage and taxonomy with regard to resources and resource groups. Taxonomy and tags for

example, can be defined based on departments, resource usage, location, projects, or any

other criteria deemed fit from a cost, usage, billing, and search perspective. These tags can

then be applied to resources. Tags defined at the resource group level are not inherited by

its resources.

Policies
Another security feature provided by ARM are policies. Custom policies can be created to

control access to the resources. Policies are defined conventions and rules and must be

adhered to while interacting with resources and resource groups. The policy definition

contains explicit denial of actions on resources or access to resources. By default, every

access is allowed if it is not mentioned in the policy definition. These policy definitions are

assigned to resource, resource group, and subscriptions scope. It is important to note that

these policies are not replacements or substitutes for RBAC. In fact, they complement and

work together with RBAC. Policies are evaluated after a user is authenticated by AAD and

authorized by the RBAC service. ARM provides JSON-based policy definition language for

defining policies. Some of the examples of policy definition are that it must tag every

provisioned resource or resources can only be provisioned to specific Azure regions.

Locks
Subscriptions, resource groups, and resources can be locked to prevent accidental deletion

and updates by an authenticated user. Locks applied at higher levels flow downstream to

||||||||||||||||||||

DevOps Automation Primer

 [95]

Farkiantech.com
||||||||||||||||||||

child resources. Locks applied at subscription level, lock every resource group and

resources within it.

Multi-region
Azure provides multiple regions for the provisioning and hosting of resources. ARM allows

resources to be provisioned at different locations and yet reside within the same resource

group. A resource group can contain resources from different regions.

Idempotent
This feature ensures predictability, standardization, and consistency in resource

deployment by ensuring that every deployment will result in the same state of resources

and their configuration no matter the number of times it is executed.

Extensible
ARM architecture provides extensible architecture to allow creation and plugging of newer

resource providers and resource types into the platform.

Azure Resource Manager templates
In an earlier section, we witnessed deployment features such as multi-service, multi-region,

extensible, and idempotent provided by ARM. ARM templates are primary means of

provisioning resources in ARM. ARM templates provide implementation support for ARM

deployment features.

ARM templates provide a declarative model through which resources, their configuration,
scripts, and extensions are specified. ARM templates are based on JavaScript Object

Notation (JSON) format. They use the JSON syntax and conventions to declare and

configure resources. JSON files are text-based, human friendly, and easily readable files.

They can be stored in a source code repository and have version control. They are also a

means to represent Infrastructure as Code that can be used to provision resources in an

Azure resource group again and again, predictably, consistently, and uniformly. A template

needs a resource group for deployment. It can only be deployed to a resource group and the

resource group should exist before executing template deployment. A template is not

capable of creating a resource group.

||||||||||||||||||||

DevOps Automation Primer

 [96]

||||||||||||||||||||

Templates provide the flexibility to be generic and modular in their design and

implementation. Templates provide the ability to accept parameters from users, declare

internal variables, help in defining dependencies between resources, link resources within

same or different resource groups, and also execute other templates. They also provide

scripting language type expressions and functions that make them dynamic and

customizable at runtime.

Template basics
A bare minimum template that actually does nothing is shown here:

{

"$schema":
 "http://schema.management.azure.com/schemas/2015-01-01/
 deploymentTemplate.json#",

"contentVersion": "1.0.0.0",
 "parameters": {
 },
 "variables": {
 },
 "resources": [
],
 "outputs": {
 }
}

A template has four important sections–parameters, variables, resources, and outputs. In

the preceding template, there are no defined parameters, variables, resources, or outputs.

Resources is the only mandatory JSON section while the rest are optional. The schema
element defines the Uniform Resource Identifier (URI) that contains the model a template

should be bound and adhered to. It contains the definition for all elements that can be

defined in a template. The model itself contains references to all Azure resource schema

that can be defined in a template. Schemas help at the design time validation of the

template. Each template has a contentVersion element. This element defines the version of

the template. Template version numbers are used when invoking and executing nested

templates. The parameter, variable, and output sections are JSON objects while the

resources section is a JSON object array that can contain multiple JSON objects each

representing a resource.

||||||||||||||||||||

DevOps Automation Primer

 [97]

Farkiantech.com
||||||||||||||||||||

Parameters
Parameters help to create generic and customizable templates. Parameters are defined in

templates where the values are provided by the user as arguments as part of deployment.

This encourages the use of the same template for multiple different environments such as

development, test, production, and other types of environments. Multiple parameters can

be defined in a template. Let's look at a sample parameter definition containing two

parameters – firstParameter and secondParameter. The first parameter is of string

type and can hold any one of two allowed values. The default value is FirstValue and has

maxLength and minLength as validators. Metadata helps in adding additional context and

information. Description is added as part of the firstParameter metadata. Similarly,

secondParameter is of int type with validators on acceptable values, minimum values,

and maximum values:

"parameters": {
 "firstParameter": {
 "type": "string",
 "allowedValues": [
 "FirstValue",
 "SecondValue"
],
 "defaultValue": "FirstValue",
 "maxLength": 20,
 "minLength": 10,
 "metadata": {
 "description": "My first parameter"
 }
 },
 "secondParameter": {
 "type": "int",
 "allowedValues": [
 10,
 20
],
 "defaultValue": 10,
 "maxValue": 20,
 "minValue": 10,
 "metadata": {
 "description": "My second parameter"
 }
 }
 }

||||||||||||||||||||

DevOps Automation Primer

 [98]

||||||||||||||||||||

Templates provide attributes for defining parameters as shown in code. The explanation of

these attributes are mentioned in the following table:

Attribute Name Data type Mandatory Description

type A valid value from a

given list. See

description for valid

values

Required Valid data types are string, secureString,

int, bool, object, secureObject, and array.

defaultValue Depends on data

type

Optional Default values are used if the value is

not provided.

allowedValues Array Optional Valid values can only be one of the

provided values.

minValue Integer Optional Minimum value for int type parameter.

maxValue Integer Optional Maximum value for int type parameter.

minLength Integer Optional Minimum length for string or array type

parameter.

maxLength Integer Optional Maximum length for string or array

type parameter.

Metadata Object Optional Can be any valid JSON object.

Variables
Variables are similar to parameters but the values are defined internally, within the

template itself, and are not provided externally by a user. The value of a variable is part of

the variable declaration itself. Variables are declared once and should be unique within a

template. They can be placed anywhere within a template where a JSON string is expected.

They make templates dynamic, manageable, and changes can be done to it easily. The value

of a variable is substituted during deployment at all places it's used in the template.

Variables are of JSON object data type. Let's look at a sample definition of a variable as

shown here:

"firstVariable": {
 "networkName": "FirstNetwork",

||||||||||||||||||||

DevOps Automation Primer

 [99]

Farkiantech.com
||||||||||||||||||||

 "subnets": [
 {
 "subnetName": "FrontEnd",
 "subnetIPRange": "10.0.0.0/24"
 },
 {
 "subnetName": "BackEnd",
 "subnetIPRange": "10.0.1.0/24"
 }
]
 }

Resources
Resources are array types that can hold multiple resource declarations. Arrays in JSON are

represented by square brackets [] and objects by wriggly brackets {}. Each resource is an

object declaring its desired configuration. Each resource has two types of properties –

properties that provide information to ARM about the name, type, version, and location of

the resource and properties that configure the resource itself. The mandatory properties of a

resource are as follows:

name: It represents the name of the resource instance apiVersion: It specifies

the version of the REST API to be used for provisioning location: Azure

region of the resource type: The resource provider namespace along with

resource type name for creating a resource instance

Each resource has its specific configuration requirements and they will differ from one

resource to another. These configurations configure the resource and its inner working.

Let's look at how to define resources in a template. There are two resource declarations in

the resources section of the template.

The first resource instance is named storageaccount provisioned at the West Europe

Azure region based on the resource provider, Microsoft.Storage and resource type,

storageAccounts and its version is 2015-06-15.

"resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "storageaccount",
 "apiVersion": "2015-06-15",

||||||||||||||||||||

DevOps Automation Primer

 [100]

||||||||||||||||||||

 "location": "West Europe",
 "properties": {
 "accountType": "Standard_LRS"
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "myPublicIPAddress",
 "location": "West Europe",
 "properties": {
 "publicIPAllocationMethod": "Static",
 "dnsSettings": {
 "domainNameLabel": "mypublicipaddress"
 }
 }
 }
]

The first resource instance is named myPublicIPAddress provisioned at the West Europe

Azure region based on the resource provider, Microsoft.Network and resource type,

publicIPAddresses and its version is 2015-05-01-preview. Both the resources have a

properties element which describes the resource-specific configurations. The

StorageAccounts resource type has dependency on the accountType property which

defines whether the storage account should be Locally redundant, Zone redundant, Geo

redundant or Read-access Geo redundant. Similarly, PublicIpAddresses resource type

has dependency on the allocation method which can be dynamic or static. dnsSettings

provides a DNS name to the public IP address.

Outputs
Outputs represents the return values from templates as the result of executing or deploying

them. The outputs section can be customized to contain multiple objects, each returning

values. Each object in the outputs section has two properties – the type of return value and

the value of return type. type refers to data types which we saw in the previous section

and value refers to the actual data or object returned by the template. The output section is

executed and returns a value only if the template was executed and deployed successfully.

Let's look at how to define outputs in a template:

"outputs": {

||||||||||||||||||||

DevOps Automation Primer

 [101]

Farkiantech.com
||||||||||||||||||||

 "myOutput": {
 "type": "string",
 "value": "Resource Group deployed successfully !!"
 }
 }

In the code listing, a single output; myOutput is defined. It is of string type and will return

the text on successful execution of the template.

Expressions and functions
ARM extends JSON by adding additional features in terms of expressions and functions.

These are not available in JSON out-of-the-box and Microsoft added them to make

templates dynamic and customizable. Expressions and functions are evaluated at

deployment and they help in adding scripting language semantics to templates.

Expressions are defined using square brackets and can appear anywhere a JSON string is

expected in a template. The return value from an expression is always in JSON format.

There are numerous functions provided by ARM templates and can be categorized into

string functions, numeric functions, array functions, deployment functions, and resource

functions.

Numeric functions help when working with integers such as adding,

subtracting, and dividing numbers.

String functions help when working with string literals like concatenation of

strings, splitting of strings into arrays, replacing a part of a string, getting

substrings from original strings, and more.

 Array functions help in working with array values in a template such as

concatenating two arrays, splitting an array, retrieving sub-elements of an array,

and more.

Deployment functions help in getting values from variables, parameters, and

more.

Resource functions help in working with resources like getting their ID, current

location and subscription, getting properties of resources, and more. Some of the
important resource functions are reference, resourceId, subscription, and

resourceGroup. For a complete list of functions available for templates visit the

||||||||||||||||||||

DevOps Automation Primer

 [102]

||||||||||||||||||||

following URL: https://azure.microsoft.com/en-
in/documentation/articles/resource-grou
p-template-functions/#resource-functions

Nested resources
Resources can be nested within other resources. However, both the parent and the child

resource should support nesting. Not all resources can be nested. Examples of nested

resources are PowerShell extension resources within a virtual machine parent resource.

Other examples of nested resource are Service Bus queues, relays and topics resource and

they should reside within a Service Bus namespace resource. Nesting means that the child

resource is part of a parent resource although the declaration of child resources in a

template can be within the parent resource or outside of it. There is a special naming

consideration to be taken care of while declaring a child resource outside of a parent

resource. It is important to note that contained resources are dependent on the parent

resource and cannot exist without it.

Some examples of expressions and functions are shown for better understanding:

 Concatenating two strings

 [concat('String 1', 'string2')]

 Adding two numbers

 [Add (10, 20]

A minimal template
Let's look at a complete ARM template consisting of parameters, variables, resources, and

output. This template also uses expressions and functions. The purpose of this template is

to provision an Azure storage account. This template takes in one storageAccountName

parameter of string type. Storage names must be a minimum of three characters and

cannot be more than 24 characters in length. A couple of variables; storageApiVersion

and storageAccountType are defined with valid values. The resources section declares a

single resource. The value for the resource name is derived from the storageAccountName

parameter. The resource provider is Microsoft.Storage and resource type is

storageAccounts. The value for apiVersion is retrieved from the storageApiVersion

variable and the value for storage account resource-specific accountType property is

https://azure.microsoft.com/en-in/documentation/articles/resource-group-template-functions/#resource-functions
https://azure.microsoft.com/en-in/documentation/articles/resource-group-template-functions/#resource-functions
https://azure.microsoft.com/en-in/documentation/articles/resource-group-template-functions/#resource-functions

||||||||||||||||||||

DevOps Automation Primer

 [103]

Farkiantech.com
||||||||||||||||||||

retrieved from the storageAccountType variable. The storage account is provisioned at

the same location of resource group itself. ARM provides the resourceGroup function for

retrieving the current resource group on which the deployment is in progress. Finally, the

outputs section outputs the status of successful execution of deployment:

{

"$schema":

"http://schema

.management.az

ure.com/schema

s/2015-01-01/
 deploymentTemplate.json#",

"contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "type": "string",
 "minLength": 3,
 "maxLength": 24,
 "metadata": {
 "Description": "Storage account name"
 }
 }
 },
 "variables": {
 "storageApiVersion": "2015-06-15",
 "storageAccountType": "Standard_LRS"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[parameters('storageAccountName')]",
 "apiVersion": "[variables('storageApiVersion')]",
 "location": "[resourceGroup().location]",
 "properties": {
 "accountType": "[variables('storageAccountType')]"
 }
 }
],
 "outputs": {
 "TemplateOutput": {
 "type": "string",
 "value": "[concat(parameters('storageAccountName'),' storage
account was successfully created!!')]"
 }

||||||||||||||||||||

DevOps Automation Primer

 [104]

||||||||||||||||||||

 }
}

We will use this template in subsequent section for deployment to the Azure resource

group.

ARM template tools
Working with ARM templates requires tools for both authoring and deployment.

ARM templates are simple text-based JSON files. They can be authored using any textbased

editor however, for faster and easy authoring, IntelliSense support for template and its

resource configuration, Visual Studio Code, or Visual Studio 2013/2015 can be used. Visual

Studio provides a rich interface, project template, IntelliSense, and deployment script for

templates. This book uses Visual Studio 2015 for authoring of all ARM templates.

Although templates can be authored manually through the Azure portal, it is not

recommended as it is error prone and time consuming to author templates from there.

Authoring tools
In this book, we will use Visual Studio 2015 for authoring ARM templates. See the following

steps for creating a template:

1. The first step is to install Visual Studio 2015 community edition on the

development box. The development environment contains Windows server 2016
technical preview operating system. This is because Windows 10 does not yet

support Windows Containers and Docker. Eventually, when Windows 10 starts
supporting Windows Container and Docker, it should be used as a development

platform. Visual Studio community edition is available from h t t p s ://w w w . v i s u a

l s t u d i o . c o m /e n - u s /d o w n l o a d s /d o w n l o a d - v i s u a l - s t u d i o - v s . a s p x . Click on

Download Community Free button to start downloading Visual Studio. This is

shown here in Figure 2:

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

||||||||||||||||||||

DevOps Automation Primer

 [105]

Farkiantech.com
||||||||||||||||||||

Figure 2: Visual Studio site for downloading the community edition

2. A setup file is downloaded and executed. It will prompt a window asking for
installation location and type of installation. Accept Default and click on Install.

This is shown in Figure 3:

||||||||||||||||||||

DevOps Automation Primer

 [106]

||||||||||||||||||||

Figure 3: Installing Visual Studio 2015 community edition

3. After Visual Studio is installed, Azure tools for Visual Studio should be installed.

The installer is available at h t t p s ://a z u r e . m i c r o s o f t . c o m /e n - u s /t o o l s /

shown in Figure 4. Click on the button, Download Azure Tools for Visual

Studio:

https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/
https://azure.microsoft.com/en-us/tools/

||||||||||||||||||||

DevOps Automation Primer

 [107]

Farkiantech.com
||||||||||||||||||||

Figure 4: Site for Azure Tools for Visual Studio

4. This will invoke a Web Platform Installer for installing Microsoft Azure SDK

for .NET(VS 2015) as shown in Figure 5. Click on the Install button to install

Azure tools. Another prompt to accept the license agreement is shown. Click
Accept to start the installation of tools. This will also install Visual ARM Visual

Studio template for authoring ARM templates:

||||||||||||||||||||

DevOps Automation Primer

 [108]

||||||||||||||||||||

Figure 5: Web Platform Installer

5. Open Visual Studio and select New Project | Azure Resource Group from the

Cloud category. Name the project MinimalTemplate, provide C:\templates as

location, the Solution name defaults to the name of the project (you can change

the solution name to a different name from the project name) and click OK as

shown in Figure 6:

||||||||||||||||||||

DevOps Automation Primer

 [109]

Farkiantech.com
||||||||||||||||||||

Figure 6: Visual Studio project creation for Azure Resource Group

6. Select Blank Template from the list of templates and click OK as shown in Figure

7. This will create a solution and Azure Resource group project within it:

||||||||||||||||||||

DevOps Automation Primer

 [110]

||||||||||||||||||||

Figure 7: Selecting Blank Template for project

7. The resultant Blank Template is shown here in Figure 8:

||||||||||||||||||||

DevOps Automation Primer

 [111]

Farkiantech.com
||||||||||||||||||||

Figure 8: An empty blank Azure Resource Group Template

8. Modify the azuredeploy.json file to reflect the minimal template we created

earlier in this chapter as shown in Figure 9 and save the entire project:

||||||||||||||||||||

DevOps Automation Primer

 [112]

||||||||||||||||||||

9. More resources can be added to template by using the JSON Outline pane. It has

an Add Resource button that can be used for the same. Later, we will deploy this

template using PowerShell in this chapter.

Deployment tools
Templates can be deployed to a resource group in multiple ways, prominent among them

are:

PowerShell

Azure command-line interface

REST APIs

Azure portal

||||||||||||||||||||

DevOps Automation Primer

 [113]

Farkiantech.com
||||||||||||||||||||

This book uses PowerShell and the Azure Resource Manager module for deploying ARM

templates to resource groups. We will look into steps for using PowerShell for deployment

of templates when we discuss PowerShell in detail in the next section.

Deployments
PowerShell allows two modes of deployment of templates. They are as follows:

Incremental

Complete

Incremental deployment adds resources declared in the template that don't exist in a

resource group and leaves resources unchanged in a resource group that are not part of a

template definition, leaves resources unchanged in a resource group that exist in both the

template and resource group with the same configuration state.

Complete deployment on the other hand, adds resources declared in a template to the

resource group, deletes resources that do not exist in the template from the resource group,

and leaves resources unchanged that exist in both the resource group and template with the

same configuration state.

PowerShell
PowerShell is an object-based, command-line shell and scripting language used for

administration, configuration, and management of infrastructure and environments. It is

built on top of .NET framework and provides automation capabilities. PowerShell was

released in 2006 as version on Windows. PowerShell version 5 is the current version that is

available in Windows Server 2016 and Windows 10 out-of-the-box. PowerShell 5 is also

available as part of the WMF 5.0.

PowerShell has truly become a first class citizen among IT administrators and automation

developers for managing and controlling the Windows environment. Today, almost every

Windows environment and its components can be managed by PowerShell. Similarly,

almost every aspect of Azure subscription can also be managed by PowerShell.

PowerShell can be divided into two components:

||||||||||||||||||||

DevOps Automation Primer

 [114]

||||||||||||||||||||

 PowerShell engine: This is the core engine responsible for executing the

PowerShell commands executed through the command line, pipelines, scripts,

and functions. The engine provides the execution environment and context in

terms of security, concurrency, threading, base .NET framework, extended type

system, modules, logging, and auditing. The PowerShell engine exposes

runspace interfaces that are used by PowerShell hosts for interacting with it.

 PowerShell host: These are user-facing applications or command line interfaces

responsible for interacting with the user, accepting inputs from them and passing

them to the PowerShell engine for execution using the runspace interface provide

by the engine. The return values from the engine are displayed to the user using

the same host. Each PowerShell host has its own configuration that is accessible

through a host provided system variable; $Host. There are two hosts provided

out-of-the-box in Windows. They are:
PowerShell.exe

PowerShell Integrated Scripting Environment (ISE)

PowerShell ISE provided added functionality for authoring PowerShell scripts apart from

being a command line interface.

PowerShell features
PowerShell provides lots of features and capabilities and demands a complete book by

itself. In this book, we will look into some of the important aspects of PowerShell relevant

to us for DevOps.

Cmdlets
PowerShell provides small executable commands called cmdlets which execute a single task

or operation. There are hundreds and thousands of cmdlets available in PowerShell. My

own machine running Windows 8.1 has more than 3000 cmdlets available. There is a cmdlet

available for almost every administration and management activity in PowerShell. Cmdlet

names follow verb-noun naming conventions. For example, the Get-Process cmdlet is

responsible for retrieving all running processes in a system. Get refers to the verb or action

being performed and Process refers to the subject or noun under consideration.

||||||||||||||||||||

DevOps Automation Primer

 [115]

Farkiantech.com
||||||||||||||||||||

PowerShell accepts object-oriented objects as arguments for their parameters and returns

back well-defined objects as the return value.

Pipeline
PowerShell is an object-based language which helps in implementing the concepts of

pipelines. Pipelines refer to a series of cmdlets defined in a single statement, executed one

after another where the output of the previous cmdlet becomes the input of the next cmdlet.

Pipelines are defined using the pipe character |.

An example of a pipeline is shown here:

Get-Process -Name Notepad | Stop-Process

The code shows two cmdlets Get-Process and Stop-Process in a pipeline. Execution of

the statement executed the first cmdlet first. Get-Process outputs objects of type,

System.Diagnostics.Process. If Notepad is running on the system, it will return an

object containing details about its process. The same process object is sent to Stop-Process

cmdlets as input arguments which stops the Notepad process from running.

Variables
PowerShell provides support for variables which are temporary storage locations in

memory to store values that can be used and changed subsequently. They help in making

script granular, flexible, and maintainable. PowerShell does not mandate to specify data

types while defining variables. In such cases, PowerShell implicitly decides the data type

based on values assigned to the variable. When a variable is defined with a data types

qualifier, it can accept only those values that adhere to the rules of its data type. The native

PowerShell variable data types are string, char, byte, int, long, bool, decimal, single, double,

array, and hashtable. Variables in PowerShell are defined using the dollar symbol $.

Examples of variables are:

 The following code assigns a string value to the OSName variable:

 $OSName = "Windows Server 2016"

Note the sign prefixed to .

||||||||||||||||||||

DevOps Automation Primer

 [116]

||||||||||||||||||||

 The following code assigns the same string value to the OSName variable

however this time, the data type is provided explicitly:

 [string] $OSName = "Windows Server 2016"

Variables can be referred to by their names prefixed with the dollar $

symbol.

$OSName would print the value stored in OSName variable.

Scripts and modules
PowerShell is also a scripting language. We can use cmdlets, functions, pipelines, and

variables within scripts as well. Scripts are reusable code that can be executed multiple

times. They encapsulate code, function, data, and logic in a script file with the ps1

extension. The scripts can be loaded and executed in the current execution environment

using a technique called Dot-sourcing. Dot-sourcing refers to PowerShell syntax to load a

file using dot notation as shown here. Please note the . preceding the script path:

. ./SampleScript.ps1

PowerShell modules are the means to share scripts, functions, and cmdlets with others.

Modules are packaged in a specific format that can be readily deployed on any Windows

system. There are well defined locations in the Windows operating system that house

modules. System modules are available at:

C:\Windows\System32\WindowsPowershell\v1.0\Modules while modules from

thirdparty sources are available at C:\Program Files\WindowsPowershell\Modules .

The C:\ drive refers to the system drive here which might be different for you.

The Get-Module cmdlet provides information about all currently loaded modules while

Get-Module -ListAvailable provides information about all modules that are available

on the system but not loaded in the workspace.

Azure PowerShell development environment
PowerShell will be used heavily in this book throughout all chapters. Since all our

environments would be hosted on Azure, the Azure PowerShell module will be a core

||||||||||||||||||||

DevOps Automation Primer

 [117]

Farkiantech.com
||||||||||||||||||||

module for managing Azure through PowerShell. One of the ways to deploy ARM

templates is through PowerShell. Before we can use PowerShell to deploy templates in

resource groups, we need to install the Azure ARM PowerShell modules. These modules

provide the cmdlets, functions, and code to connect and authenticate to Azure, create

resource groups, and deploy templates in them. They also provide functionality to peek

into the Azure resource group logs to check the status of deployment and also troubleshoot

issues. The Azure PowerShell module is available through Web Platform Installer as well as

through PowerShell gallery. Windows Server 2016 and Windows 10 provides package

management and PowerShellGet modules for quick and easy downloading and

installation of PowerShell modules from PowerShell gallery. The cmdlets from these

modules are already configured with Powershell gallery source and repository information.

The PowerShellGet module provides the Install-Module cmdlet for downloading and

installing modules on system. Installation of modules is a simple activity. Simply, copy the

module files at well-defined module locations.

Before moving ahead in this section, there should be a PowerShell host, either PowerShell

or PowerShell ISE opened as an administrator. Downloading and installing modules

requires administrative privileges.

AzureRM modules enable working with Azure ARM from a client machine using

PowerShell. Let's download and install the AzureRM module using the Install-Module

cmdlet. Before using any cmdlet, we should explicitly import the module into the current

workspace as a good practice, although PowerShell will auto load the module if it's not

already loaded. This is shown here:

Import-module PowershellGet
Install-Module -Name AzureRM -Verbose

The Install-Module cmdlet is dependent on the NuGet provider to interact with

NuGetbased repository. The first time a package management cmdlet is used, it will ask to
download the same. Click on Yes to any prompts related to downloading NuGet provider.

This is shown in Figure 10:

||||||||||||||||||||

DevOps Automation Primer

 [118]

||||||||||||||||||||

There will be another prompt stating that the module is downloaded from an Untrusted

repository. PSGallery repository is not trusted by default. Click Yes to download the

provider. This is shown in Figure 11:

Figure 11: Permission to download from untrusted repository

These prompts can be disabled by using the Force switch as shown here:

Install-Module -Name AzureRM -Verbose -Force

The AzureRM module is a container module that references individual sub-modules each

representing a resource provider namespace. AzureRM functionality is divided into

multiple modules, each AzureRM sub-module representing an ARM resource provider and

they contain provider-specific cmdlets and functionality. AzureRM modules can be used to

install all sub-modules in one go and it can also be used to install individual sub-modules.

In the preceding code, AzureRM module is downloaded and installed on the machine it is

executed on. This will download all modules related to AzureRM. Similarly, to install only a

individual or set of modules, the following code can be used. To install individual modules,

the explicit names should be provided to this cmdlet. The first line installs a single

AzureRM.Compute module and the second one installs two sub-modules:

AzureRM.Storage and AzureRM.Network:

Install-Module -Name AzureRM.Compute -Verbose
Install-Module -Name AzureRM.Storage, AzureRM.Network -Verbose

Before we can do anything with resource groups and templates, we should authenticate

with Azure. This is done through the Login-AzureRMAccount cmdlet as shown here:

Login-AzureRmAccount

It is to be noted that cookies must be allowed on the computer from where the

authentication is initiated.

This cmdlet can be configured to use the username and password defined in code or it will

open a login window. This is shown in Figure 12. Please enter a valid username and

password to authenticate and login to Azure:

||||||||||||||||||||

DevOps Automation Primer

 [119]

Farkiantech.com
||||||||||||||||||||

Figure 12: Azure login window using PowerShell

As seen before, templates are deployed within a Resource group. We should be able to

create a resource group using PowerShell and then deploy a template within it after

successful login to Azure. The code to create a resource group is shown here:

Import-module AzureRM.Resources
New-AzureRmResourceGroup -Name "myResourceGroup" -Location "West Europe" -
Verbose

Here, the Name refers to the name of a newly-created resource group and Location refers

to a valid Azure region for the resource group to be created. Verbose provides additional

information while executing the cmdlet.

||||||||||||||||||||

DevOps Automation Primer

 [120]

||||||||||||||||||||

After the resource group is created, templates can be deployed into it.

To deploy a template, cmdlet New-AzueRmResourceGroupDeployment can be used and

this is shown here:

New-AzureRmResourceGroupDeployment -Name "FirstDeployment" -ResourceGroup
"myResourceGroup" -TemplateFile "C:\template\azureDeploy.json" -verbose

Here Name refers to the name of deployment which is any valid name that can be used to

identify the deployment, resource group refers to the name of resource group where this

deployment will provision resources and TemplateFile refers to the file location of the

ARM template.

To deploy the minimal template that was created earlier, execute the following command

from any PowerShell editor. It is to be noted that the storage name must be unique across

Azure, and resource group must be unique within a subscription. The resource group is

named azureRG provisioned at West Europe region. The Minimal Template takes

storageAccountName as a parameter. This parameter must be supplied while deploying

the template as shown here:

New-AzureRmResourceGroup -Name "azureRG" -Location "West Europe" -Force -
Verbose
New-AzureRmResourceGroupDeployment -Name "Deploy1" -ResourceGroupName
"azureRG"
-Mode Incremental -TemplateUri
"C:\templates\MinimalTemplate\MinimalTemplate
\Templates\azuredeploy.json" -Verbose -storageAccountName "auniquename"

Pester
Now, it's time to visit another PowerShell utility called Pester. Pester helps in defining and

executing tests on PowerShell scripts, functions, and modules. These could be unit tests,

integration tests, or operational validation tests. Pester is an open source utility freely

downloadable from GitHub as a PowerShell module. It is also available out-of-the-box on

Windows 10. We will use Pester to define unit tests and operational validation tests and

also execute them in continuous integration build pipelines and continuous deployment

release pipelines in this book. As of writing this book, Pester 3.0 is the latest stable version

available for download and the same is used.

||||||||||||||||||||

DevOps Automation Primer

 [121]

Farkiantech.com
||||||||||||||||||||

Pester helps in defining unit tests in a simple English style language using simple constructs

like Describe and It and validates them through assertions. Pester can be downloaded as

a ZIP file from https://github.com/pester/pester/archive/master.zip. After

downloading, the ZIP file should be unblocked and its content should be extracted to a

well-defined module location. We already know that modules live at both

$env:windir\system32\WindowsPowershell\v1.0\modules and

$env:ProgramFiles\WindowsPowershell\modules and Pester should be extracted to

any one of these folder locations. We will use the modules folder from

$env:ProgramFiles to store the Pester module.

Installing Pester
This step is not required to be performed on Windows Server 2016 or a Windows 10

machine since the Pester module is available on them by default.

On machines with WMF 5.0, package management module should be used to download

and install Pester instead of the next steps.

The code shown next should be executed on servers on which Pester is not available by

default. Pester is available by default only on Windows Server 2016 and Windows 10. The

code shown next is also depended on WMF 4.0.

The steps mentioned in the previous section will be automated through PowerShell for

installing Pester. The entire script Install-Pester.ps1 is shown here:

Param(
 # folder location for storing the temp pester downloaded files
 [string]$tempDownloadPath
)
create a temp folder for downloading pester.zip
New-Item -ItemType Directory -Path "$tempDownloadPath" -Force
download pester.zip from GitHub
Invoke-WebRequest -Uri https://github.com/pester/pester/archive/master.zip
-OutFile "$tempDownloadPath\pester.zip"

files from internet are generally blocked. unblocking the archive file
Unblock-File -Path "$tempDownloadPath\pester.zip"

extracting files from archive file to Well-defined modules folders
Expand-Archive -Path "$tempDownloadPath\pester.zip" -DestinationPath

https://github.com/pester/pester/archive/master.zip

||||||||||||||||||||

DevOps Automation Primer

 [122]

||||||||||||||||||||

"$env:ProgramFiles\WindowsPowershell\Modules" -Force

renaming the folder from pester-master to pester
Rename-Item -Path "$env:ProgramFiles\WindowsPowershell\Modules\Pestermaster"

-NewName "$env:ProgramFiles\WindowsPowershell\Modules\Pester" ErrorAction

Continue

test to check if pester module is available
Get-Module -ListAvailable -name pester

Use the code shown here to execute the script and install Pester on a system. This code

assumes that the Install-Pester.ps1 script is available at C:\temp

C:\Install-Pester.ps1 -tempDownloadPath "C:\temp"

Let me explain each line within the script.

The script starts with accepting a single parameter $tempDownloadPath of string type.

This path should be provided by the caller as argument to the script:

Param (
 # folder location for storing the temp pester downloaded files
 [string]$tempDownloadPath
)

The next statement creates a new folder at the location provided by the user. Force ensures

that an error is not generated even if a folder with the same name exists:

New-Item -ItemType Directory -Path "$tempDownloadPath" -Force

Then, the Invoke-WebRequest cmdlet is used to download the Pester archive file from

GitHub and store the downloaded file as pester.zip to the user's folder:

Invoke-WebRequest -Uri https://github.com/pester/pester/archive/master.zip
-OutFile "$tempDownloadPath\pester.zip"

By default, downloaded ZIP files are blocked and cannot be used without unblocking them.

Code shown next unblocks the downloaded pester.zip file using Unblock-File cmdlet.

Unblock-File -Path "$tempDownloadPath\pester.zip"

Next, the archive file is expanded and all its files and folders are extracted to the modules

folder which is a well-defined module location:

Expand-Archive -Path "$tempDownloadPath\pester.zip" -DestinationPath
"$env:ProgramFiles\WindowsPowershell\Modules" -Force

||||||||||||||||||||

DevOps Automation Primer

 [123]

Farkiantech.com
||||||||||||||||||||

The extracted folder name is Pester-master however; the name should be Pester. The

Rename-Item cmdlet is used to rename pester-master to pester. This cmdlet will throw

an error if the folder named Pester-master does not exist. Normally, the script will

terminate if an error occurs. With ErrorAction as continue, Rename-item will throw an

error but script execution will not stop:

Rename-Item -Path "$env:ProgramFiles\WindowsPowershell\Modules\Pestermaster"

-NewName "$env:ProgramFiles\WindowsPowershell\Modules\Pester" ErrorAction

Continue

Finally, a small test is conducted to ensure the Pester module is available using the

GetModule cmdlet. If this cmdlet outputs the name and version of the pester module, it

means that Pester is successfully installed on the machine:

Get-Module -ListAvailable -name pester

Writing tests with Pester
Pester provides an easy to use New-Fixture cmdlet. Executing this cmdlet creates two files.

The first file is for authoring PowerShell scripts and functions and the second file is for

authoring unit tests for code in the first file. This cmdlet also ties both the files together by

generating scaffolding code in such a way that the entire script in first file is loaded into the

workspace of the second file when the second file containing unit tests are executed using

the concept of Dot-sourcing. The scaffolding code ensures that PowerShell scripts and

functions are available to the test cases for invocation. Pester should be able to execute any

code from the first file that are referred to in test cases. It is important to understand that

New-Fixture cmdlet helps in importing a script into another workspace. This can be done

manually by Dot-sourcing the script files into the Pester unit tests file. In fact, New-fixture

cmdlet also dot-sources the script file into a unit tests file.

Understanding Pester is much easier by experiencing it rather than going through theory.

Let's understand Pester through a scenario of writing a simple function for adding two

numbers and corresponding tests for testing the same.

1. Let's create a folder at C:\ that will store script as well as tests. Let's name it

Addition.

2. From any PowerShell host execute the commands shown here to generate the

scripting files. The cd command changes the directory to the C: drive.

||||||||||||||||||||

DevOps Automation Primer

 [124]

||||||||||||||||||||

ImportModule cmdlet imports the Pester module into the current workspace

and NewFixture cmdlet from the Pester module creates the script files at the

Addition folder location. It will generate two files: Add-Numbers.ps1 and

AddNumbers.Tests.ps1:

 cd C:\
 Import-Module -Name Pester
 New-Fixture -Path "C:\Addition" -Name "Add-Numbers"

The script generated in Add-Numbers.ps1 will contain the logic that should be

tested and an empty Add-Numbers function created is shown here:

 function Add-Numbers {

}

The script generated in Add-Numbers.Tests.ps1 is shown here.

 $here = Split-Path -Parent $MyInvocation.MyCommand.Path
 $sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path)
 -replace '\.Tests\.', '.'
 . "$here\$sut"
 Describe "Add-Numbers" {
 It "does something useful" {
 $true | Should Be $false
 }
 }

The first three statements get the path of the add-Numbers.ps1 script file and

loads it in the current runspace using Dot-sourcing.

The variable, $here contains the parent folder of Add-Numbers.Tests.ps1 in

C:\Addition.

The second statement gets the file name of the tests script file as Add-

Numbers.Tests.ps1 and replaces the \.Tests\. with a single . then assigns it

to the variable, $sut. $sut contains the Add-Numbers.ps1 value which is actually

our script file containing application logic.

The third statement simply combines both the folder path and script file name

and loads it by Dot-sourcing it. This makes our Add-Numbers function available

to the test cases defined in the tests script file.

||||||||||||||||||||

DevOps Automation Primer

 [125]

Farkiantech.com
||||||||||||||||||||

The last three statements refer to a single test case generated by New-Fixture

cmdlet.

Describe refers to a collection of tests cases. It is a container that can contain

multiple tests. It is actually a function defined in the Pester module that accepts a

script block. It should reflect the component getting tested.

It refers to a single test case and its naming should indicate the nature of test

performed. It is also a function defined in the Pester module that accepts a script

block. This script block contains the actual tests and assertions. The assertions

determine whether the test is successful or not. A successful assertion is shown in

green color while failures are shown in red color. Should be is an assertion

command. There are multiple assertions provided by Pester such as Should be,

Should BeExactly, Should match, Should Throw and more.

3. Modify the Add-Number.ps1 script file with real code. The Add-Number script

looks like the following:

 function Add-Numbers {
 param (
 [int] $Num1,
 [int] $Num2
)
 return $Num1 + $Num2

}

The Add-Numbers function has been modified to accept two parameters, Num1

and Num2 both of integer data type. It adds both the numbers and returns back the

same to the caller.

4. The Add-Numbers.tests.ps1 script has been modified by removing the default

test provide by Pester and adding two test cases within the same Describe

section. The Describe section has been renamed to test cases adding two
numbers

The first test named checking when both the numbers are positive

declares two variables; $FirstNumber and $Secondnumber and assigns values
to them. It invokes the Add-Number function passing both the variables as

arguments to it. The return value from the function is piped and asserted (verified).
Similarly, the second test named checking when one number is positive

||||||||||||||||||||

DevOps Automation Primer

 [126]

||||||||||||||||||||

and another negative again declares two variables $FirstNumber and

$Secondnumber and assign values to them. However, this time the value of one of

the variables is negative. It invokes the Add-Number function passing both the
variables as arguments to it. The return value from the function is piped and

asserted:

 $here = Split-Path -Parent $MyInvocation.MyCommand.Path
 $sut = (Split-Path -Leaf $MyInvocation.MyCommand.Path)
 -replace '\.Tests\.', '.'
 . "$here\$sut"
 Describe "test cases adding two numbers" {
 it "checking when both the numbers are positive" {
 $FirstNumber = 10
 $SecondNumber = 20
 Add-Numbers -Num1 $FirstNumber -Num2 $SecondNumber |
 should be 30
 }
 it "checking when one number is positive and another negative"
 {
 $FirstNumber = -10
 $SecondNumber = 20
 Add-Numbers -Num1 $FirstNumber -Num2 $SecondNumber |
 should be 10
 }
 }

5. Its time now to run the tests. The test can be executed by using Invoke-Pester

cmdlet provided by the Pester module. This cmdlet takes the path of the Tests

scripts file. Execute the cmdlet as shown here to execute the tests written earlier:

 Invoke-Pester -Script "C:\Addition\Add-Numbers.Tests.ps1"

This will invoke the scripts and execute all the test cases described in it. The same

is shown in Figure 13. The green color denotes a successful test case and red one

means a failed test case.

||||||||||||||||||||

DevOps Automation Primer

 [127]

Farkiantech.com
||||||||||||||||||||

Pester real-time example
Let's work on another example on Pester. This time we will write tests for ensuring whether

a website and its related applications are in a working condition on a web server. This time

New-Fixture is not used for generating the script files. Instead, both the application code

and test cases are written from scratch using a PowerShell ISE editor.

Both the code for provisioning of web server artifacts and related tests are within the same

file although they can be in different files as seen before.

The entire code is shown here. The script is stored at C:\temp\Test-WebServer.ps1. A

CreateWebSite function is defined taking four parameters. These parameters capture

inputs for the application pool name ($appPoolName), website name ($websiteName), its

port number ($port), and the path referred by the website ($websitePath). The function
first creates an Internet Information Server (IIS) application pool first using New-

WebAppPool cmdlet and $appPoolName parameter and then creates a IIS website using

New-Website cmdlet using all the four parameters:

function CreateWebSite
{

param(
 [string] $appPoolName,
 [string] $websiteName,
 [uint32] $port,
 [string] $websitePath

)
 New-WebAppPool -Name $appPoolName
 New-Website -Name $websiteName -Port $port -PhysicalPath

||||||||||||||||||||

DevOps Automation Primer

 [128]

||||||||||||||||||||

 $websitePath -ApplicationPool $appPoolName -Force
}

Describe "Status of web server" {
 BeforeAll {
 CreateWebSite -appPoolName "TestAppPool"
 -websiteName "TestWebSite" -port 9999 -websitePath
 "C:\InetPub\Wwwroot"
 }
 AfterAll {
 Remove-Website -Name "TestWebSite"
 Remove-WebAppPool -Name TestAppPool
 }
 context "is Website already exists with valid values" {
 it "checking whether the website exists" {
 (Get-Website -name "TestWebSite").Name | should be "TestWebSite"
 }
 it "checking if website is in running condition" {
 (Get-Website -name "TestWebSite").State | should be "Started"
 }
 }
}

The test cases are written in the same file. A Describe named Status of web server is

defined and represents a group of test cases. A special construct BeforeAll and AfterAll

is used within the Describe block. BeforeAll runs the script within it just once for all test

cases in a Describe block before the execution of the first it block. Similarly, the script

within AfterAll is executed after all the test cases (it blocks) are executed. They are

typically used for setting up and cleaning up the environment. Here, we invoke our

CreateWebSite function within the BeforeAll block to provision our application pool

and website. Both the application pool and website is removed in the AfterAll block. This

ensures that the environment is in the same state as before the start of the tests.

Context is also a new container construct that can contain and group multiple test cases

(it blocks). Context does not affect the execution of tests. They remain the same as before

however it adds additional metadata and groups tests based on condition. For example, a

context is a group of test cases with different valid values while another context is a group

of test cases with invalid values.

There are two test cases implemented. The test case checking whether the website
exists uses the Get-Website cmdlet to get the name of the website and asserts on it. The

||||||||||||||||||||

DevOps Automation Primer

 [129]

Farkiantech.com
||||||||||||||||||||

test case, checking if website is in running condition again uses the same cmdlet
but checks its status property and compares with Started value for assertion.

Executing the above script with Invoke-Pester cmdlet shows the result as shown in

Figure 14.

Invoke-Pester -Script "C:\temp\Test-WebServer.ps1"

Figure 14: Executing Pester tests

It is important to note the naming pattern of Describe, Context, and it blocks. They have

been named in such a way that the result of executing the unit tests can be read as simple

English which is meaningful and provide enough context about the tests that are successful

and ones that failed.

||||||||||||||||||||

DevOps Automation Primer

 [130]

||||||||||||||||||||

Desired State Configuration
Desired State Configuration is a new configuration management platform from Microsoft

built as an extension to PowerShell. DSC was originally launched as part of WMF 4.0. It is

available as part of WMF 4.0 and 5.0 for all Windows Server operating systems above

Windows 2008 R2. WMF 5.0 is available out-of-the-box on Windows Server 2016 and
Windows 10. It uses the core infrastructure of Web Services for Management (WSMan)

and Windows Remote Management (WinRM) for its working. It is an extension to

PowerShell and adds language constructs, features, and cmdlets for easy authoring and

execution of configuration across heterogeneous environments.

DSC is a declarative language enabling Infrastructure as Code by representing and

describing the entire infrastructure and its configuration through code. DSC configuration

files are simple .ps1 script files that can be stored in source control repositories for version

control.

DSC represents the target state and configuration for environments through code. It

represents what the environment state and configuration should look like. The how part is

not required because it is taken care of by DSC internally.

DSC will be used in the release pipeline to configure multiple environments and application

configuration.

||||||||||||||||||||

DevOps Automation Primer

 [131]

Farkiantech.com
||||||||||||||||||||

DSC Push architecture

Figure 15: Desired State Configuration Push architecture

A simple DSC is shown here:

Configuration EnableWebServer
{
 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
 Node WebServer01
 {
 WindowsFeature IIS
 {
 Name = "Web-Server"
 Ensure = "Present"
 }
 }
}
EnableWebServer -OutputPath "C:\DSC-WebServer" -Verbose
Start-DscConfiguration -Path "C:\DSC-WebServer" -Wait -Force -Verbose

Figure 15 depicts a DSC Push architecture.

||||||||||||||||||||

DevOps Automation Primer

 [132]

||||||||||||||||||||

The code declares EnableWebServer configuration. This configuration is responsible for

ensuring the presence of the Web-Server (IIS) Windows feature on a WebServer01

computer. The node name should be changed reflecting an actual computer name in your

network. Notice that the configuration does not use any scripting or programming to

provision a web server. The configuration is merely providing the intent and its

configuration values, the rest is taken care of by DSC resources internally. The node section

comprises of names of computers that this configuration is applicable to. WindowsFeature

mentioned in Configuration is a DSC resource that actually provides the logic for

provisioning of Windows features on a target computer. The how part is taken care of by

these DSC resources.

Executing the above configuration as shown in the code, generates the configuration
Management Object Format (MOF) file for each node name in configuration at the folder

location provided to the path parameter. If the path parameter is omitted, the MOF files will

be generated in the current working folder. These MOF files are pushed to target nodes by

DSC using the Start-DscConfiguration cmdlet. This cmdlet takes the path parameter as

input representing the folder containing MOF files, loads all MOF files, and sends them to

their respective computer nodes using the MOF file names.

Alternatively, you can also provide the ComputerName parameter to Start-

DSCConfiguration cmdlet which will load a MOF file matching the ComputerName and

push it to that node only. This is shown here:

Start-DscConfiguration -Path "C:\DSC-WebServer" -ComputerName WebServer01 -
Wait -Force -Verbose

Installing WMF 4.0 or 5.0 on client nodes ensures the installation of DSC Local

Configuration Manager (LCM). It is the responsibility of LCM on these client nodes to

accept the configuration sent to it and execute them on the local machine. LCM treats the

received configuration as Golden configuration. LCM is configured to run periodically,

checking the current state of configuration with a Golden desired state of configuration. If it

finds any deviation, it brings back the configuration and environment back to a desired

state. This ensures that target servers and their configuration can be auto-remediated in

case there are changes applied to them.

DSC resources must be available at the client nodes for LCM to periodically check and

autoremediate the configuration. They help LCM in validating the current resource

configuration with desired configuration, bringing back the current configuration to a

desired configuration. Earlier we witnessed a single DSC resource in configuration. There

||||||||||||||||||||

DevOps Automation Primer

 [133]

Farkiantech.com
||||||||||||||||||||

are more than 300 DSC resources available to be used within configurations. While DSC

comes with few out-of-the-box DSC resources, it is possible to author custom DSC

resources. DSC provided resources are:

WindowsProcess

WindowsFeature

Service

Environment

File

Archive

User

Group

Package

Log

Script

DSC Pull architecture
We've seen one of the DSC architecture implementations called the Push mode. DSC comes

in two architectural implementation modes:

DSC Push mode

DSC Pull mode

In Pull mode, the configurations are not pushed to client nodes. Instead, LCM on client

nodes are configured with appropriate endpoint information through which it is able to

connect and download configuration from DSC Pull servers and execute them on a local

server. It is needless to say that DSC Pull servers need to be created and available with

appropriate published configuration files before they are fetched by LCM.

DSC Pull mode is a decentralized and a scalable way of enabling configuration

management. Hundreds and thousands of client nodes can simultaneously pull

configurations automatically without any manual intervention. DSC resources can also be

downloaded along with configuration files eliminating the need to preinstall resources on

client nodes before executing the configuration. It is much more manageable and flexible

||||||||||||||||||||

DevOps Automation Primer

 [134]

||||||||||||||||||||

compared to DSC Push mode. We will be using DSC Pull server and configuration to create

our base container images.

The DSC Pull architecture is shown in Figure 16:

Initially, DSC configuration is authored as PowerShell scripts. Then DSC MOF file is

generated based on authored PowerShell scripts, and eventually the MOF files are

published to a Pull server. The LCM of the client node then downloads the configuration

and reconfigures the node according to the configuration.

Figure 17 shows the DSC Pull mode request flow between client node and Pull server.

||||||||||||||||||||

DevOps Automation Primer

 [135]

Farkiantech.com
||||||||||||||||||||

The following sequence of operations happens during Pull mode

1. The configuration developer creates the configuration, generates MOF files and

other artifacts, and copies them to a pre-defined folder location on the DSC Pull

server. This is simply a copy-paste operation.

2. The DSC administrator configures the LCM of every client node with information

about Pull server endpoint, configuration details, and frequency to pull

configuration.

3. The client node sends requests to the Pull server for fetching configuration.

4. The Pull server on receiving the request, responds by sending configuration

information.

5. Steps 2 to 4 are repeated based on configured frequency.

6. For every request received, a response is sent with configuration information to

the client nodes.

||||||||||||||||||||

DevOps Automation Primer

 [136]

||||||||||||||||||||

Pull configuration example
This chapter assumes that you already have a working Pull server in your network. In case,

you do not have a Pull server available, complete steps for creating a Pull server is provided

in appendix 1 in this book which would create a Pull server with endpoint URL

https://10.4.0.4:9100/PSDSCPullServer.svc/ on port 9100:

The following configuration will to explain how to set up DSC Pull configuration:

Configuration EnableWebServer
{
 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
 Node EnableWebServer
 {
 WindowsFeature IIS
 {
 Name = "Web-Server"
 Ensure = "Present"
 }
 }
}

You will notice that the name of Node is no longer a computer node name. This is because

any node can pull this configuration from the Pull server. The node name is of high

significance in DSC. The Node name decides the name of the generated MOF file. With pull

architecture, even the name of configuration has impact on the way these configurations are

downloaded by the target node. The name used reflects the intent of the configuration.

You will also notice that start-DscConfiguration cmdlet is not used for this

configuration. Start-DscConfiguration is used to push configuration to target nodes.

For Pull server configurations, there are two additional requirements:

 Instead of pushing, configurations are deployed to a well-known folder path
known to Pull server. Pull server can be an IIS website or a Server Message

Block

(SMB) share. In this book, IIS websites will be configured as a Pull server. The

Pull server is configured with this folder path in its web.config file. When a

request for configuration arrives at the Pull server, the website accesses this

folder path, loads and sends back the configuration. By default, this folder

location is

$env:ProgramFiles\WindowsPowershell\DSCService\Configuration.

||||||||||||||||||||

DevOps Automation Primer

 [137]

Farkiantech.com
||||||||||||||||||||

We generate MOF files as we did in the Push scenario by executing the

configuration with output path as

$env:ProgramFiles\WindowsPowershell\DSCService\Configuration.

This would generate the MOF file within the output path folder. This is shown

here:

 EnableWebServer -OutputPath "$env:ProgramFiles\
 WindowsPowershell\DSCService\
 Configuration" -Verbose

 A checksum/hash should be generated for each MOF file. This hash is saved in a

.mof.checksum file along with the original MOF file. Each .mof file should have

a corresponding .mof.checksum file with same name. This checksum is

important for LCM to validate and decide if it needs to download the

configuration from the Pull server. Every time a LCM on a node pulls a

configuration, it sends the hash it already has to the Pull server. If the hash is

different on the Pull server, the configuration is downloaded otherwise it would

mean the configuration on the node is the same as that on Pull server. To

generate the checksum and write it to a file, DSC provides a cmdlet

NewDscChecksum. Its usage is shown here. It takes configuratioPath as the

path to the configuration MOF file and Outpath as the folder location to generate

the corresponding checksum file:

 New-DSCCheckSum -ConfigurationPath
 "$env:ProgramFiles\WindowsPowershell\DSCService\
 Configuration\
 EnableWebServer.mof" -OutPath
 "$env:ProgramFiles\WindowsPowershell\DSCService\
 Configuration" -Force

 It is to be noted that if the ConfiguationPath parameter refers to a folder rather

an MOF file, the checksum file will be generated for all MOF files at location

referred to by the ConfiguationPath parameter. This is shown here:

 New-DscCheckSum -ConfigurationPath "$env:ProgramFiles\
 WindowsPowershell\DSCService\Configuration"
 -OutPath "$env:ProgramFiles\WindowsPowershell\DSCService\
 Configuration" -Force

||||||||||||||||||||

DevOps Automation Primer

 [138]

||||||||||||||||||||

The configuration can now be pulled by any authorized and configured computer node.

After storing configurations on the Pull server, the LCM of computer nodes should be

configured so that they can pull configurations from the Pull server.

To configure LCM on a target node, DSC configuration should be created containing

resources specific to LCM. The MOF file should be generated, pushed to target nodes, and

executed locally on target nodes. The approach to push LCM configuration to the target

node is the same as that of any other configuration using Start-DscConfiguration

cmdlet. However, there are differences in the way the configurations are authored. This is

explained next.

DscLocalConfigurationManager() attribute
LCM configuration has the DscLocalConfigurationManager() attribute at a

configuration level. This attribute ensures and enforces that only configuration related to

LCM are allowed within the configuration. There are three resources used in this example:

Settings

ConfigurationRepositoryWeb

PartialConfiguration

The Settings resource configures the LCM with multiple properties. If you want to view

LCM properties, use Get-DscLocalConfigurationManager cmdlet to list all properties

along with their values. The properties used in this example are explained here:

Property Name Description

ConfigurationModeFrequencyMins Represents the frequency (in minutes) at which the

LCM attempts to execute and apply the current

configuration on the target node. The default value

is 15. It should be either set to an integer multiple of

RefreshFrequencyMins or vice-versa.

||||||||||||||||||||

DevOps Automation Primer

 [139]

Farkiantech.com
||||||||||||||||||||

RefreshMode Possible values are Push (the default), Disabled,

and Pull. In the Push configuration, the

configuration must be pushed to each target node. In

the Pull mode, a Pull server should be available in

hosting configurations, for LCM to contact, access,

download, and apply the configurations.

RefreshFrequencyMins Represents the frequency (in minutes) at which the
LCM contacts the Pull server to download the
current configuration. This value can be set in
conjunction with

ConfigurationModeFrequencyMins. When

RefreshMode is set to PULL, the target node

contacts the Pull server at an interval set by

RefreshFrequencyMins and downloads the

current configuration. At the interval set by

ConfigurationModeFrequencyMins, LCM

applies the latest configuration that was

downloaded onto the computer node. The default

value is 30.

||||||||||||||||||||

DevOps Automation Primer

 [140]

||||||||||||||||||||

ConfigurationMode This property has three possible values. This
property determines how LCM should behave in
the event of configuration drifts or availability of
newer configuration. It can take the following
values:

ApplyAndAutoCorrect: LCM keeps executing

the configuration on a regular basis (specified by

ConfigurationModeFrequencyMins) without

checking whether the configuration is different or
not.
ApplyAndMonitor: In this mode, which is the
default, LCM compares the configuration
specified on the Pull server with the configuration
file on the target node. If a difference is detected,
the discrepancy is reported in logs, but does not
apply the new configuration.

ApplyOnly: In this mode, LCM does not

automatically run in the background. If a Pull

server is configured, it will check with the server

periodically and only if a new configuration is

present, it will apply that configuration to the

target node.

RebootNodeIfNeeded Certain configuration changes on a target node

might require it to be restarted. Computer node will

restart if value is $true. If value of this property if

$false (the default value), the configuration will

complete, but the node will not be restarted

automatically. It should be restarted manually.

ConfigurationRepositoryWeb
ConfigurationRepositoryWeb defines details about web-based Pull server. The three

properties of this resource used in this example provide enough information to connect to

the Pull server. CertificateID and AllowUnsecureConnection are other available

properties but not used in this example. CertificateID refers to the certificate

||||||||||||||||||||

DevOps Automation Primer

 [141]

Farkiantech.com
||||||||||||||||||||

thumbprint for authenticating to Pull server and AllowUnsecureConnection accepts a

Boolean value determining whether unauthenticated access to Pull server is allowed.

Property Name Description

ServerURL The URL of the Web-based Pull server. A dummy URL is provided

in code shown next and should be changed to a valid Pull server url.

RegistrationKey This registers target node with the Pull server. It is a common key

used by both pull server and target nodes. The key is defined on Pull

server and only an IT administrator should have knowledge about it.

The key has been masked in code shown next. The reader should

provide their registration key. The RegistrationKey is used in

conjunction with ConfigurationNames. It is ignored when using

ConfigurationID

ConfigurationNames The names of configuration files that are to be pulled by target node

are available on Pull server at a well-defined folder accessible by the

Pull server website. Here, the sample configuration available on Pull

server is WebFeatures

Partial Configurations
The PartialConfiguration section defines the Configuration source that should be used

to deploy the configuration on a computer node. PartialConfiguration help in

downloading multiple configurations from different Pull servers and apply all of them

together on a local node. In this example, we have used a single configuration in

ConfigurationRepositoryWeb and a single PartialConfiguration section, but more

configurations can be added to the ConfigurationNames property of

ConfigurationRepositoryWeb and multiple partial configuration sections can be defined

corresponding to those configurations. It is important to note that the name of partial

configuration must available in ConfigurationNames property of

ConfigurationRepositoryWeb. Moreover, the name must also match to the name of the

original configuration based on which MOF file is generated. We mentioned at the

beginning of this section that ConfigurationNames are quite important in Pull scenarios.

||||||||||||||||||||

DevOps Automation Primer

 [142]

||||||||||||||||||||

In short, the PartialConfiguration names should match the name of the original

configuration, the name of MOF file, and the name should also be available as part of

ConfigurationNames property of ConfigurationRepositoryWeb. If these names do not

match, LCM on computer nodes will not be able to pull configuration information from Pull

servers. The RefreshMode property defined in settings section can be overridden in this

section with a different value.

Pushing LCM Configuration
Finally, the configuration is pushed to the localhost computer node (in this case the

configuration is authored on local computer) and executed to effect changes to LCM

configuration using Set-DSCLocalConfigurationManager cmdlet. This cmdlet is

responsible for pushing and updating only Local Configuration Manager configuration. It

cannot be used for pushing other types of configuration.

The configuration assumes that the LCM configuration is authored on the node that would

act as a client to Pull server. This is the reason the node name is localhost in code shown

next. However, if you want the following configuration to be authored on any other server,

it is possible to do so. In that case, the node name in code should change to the actual name

of the node and start-DscConfiguration should either, not use the computer name

altogether, or should provide the actual node name to ComputerName parameter as

argument.

Pull server information like RegistrationKey, endpoint URL, and ConfigurationNames

should be gathered before the following script is executed. The RegistrationKey is

available from the RegistrationKeys.txt file available in the

$env:ProgramFiles\WindowsPowerShell\DscService folder on Pull server. The

endpoint URL of Pull server can be obtained from IIS.

 [DscLocalConfigurationManager()]

configuration PartialConfigurationDemo
{
 Node localhost
 {
 Settings
 {
 ConfigurationModeFrequencyMins = 30
 RefreshMode = 'Pull'
 RefreshFrequencyMins = 30
 ConfigurationMode = "ApplyandAutoCorrect"
 RebootNodeIfNeeded = $true

||||||||||||||||||||

DevOps Automation Primer

 [143]

Farkiantech.com
||||||||||||||||||||

 }

 ConfigurationRepositoryWeb IISConfig
 {
 ServerURL = "https://10.4.0.4:9100/PSDSCPullServer.svc/"
 RegistrationKey = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 ConfigurationNames = @("EnableWebServer")
 }
 PartialConfiguration EnableWebServer
 {
 Description = 'Configuration for installing Web server'
 ConfigurationSource = '[ConfigurationRepositoryWeb]IISConfig'

RefreshMode = 'Pull'
 }
 }
}
PartialConfigurationDemo -OutputPath "C:\LCMConfiguration" -Verbose
Set-DscLocalConfigurationManager -path "C:\LCMConfiguration" -force -
verbose
Update-DscConfiguration -Wait -Verbose
Start-DscConfiguration -UseExisting -Wait -Force -Verbose

After the LCM settings are configured, it's time to connect to Pull server, download, and

execute the configuration on the target node. The configuration is pulled using

UpdateDscConfiguration cmdlet. It does not accept any parameters and runs as a job by

default. To execute this cmdlet in synchronous mode, the -wait switch can be used as

shown before. Verbose switch provides additional execution steps when this cmdlet is

executed.

After pulling configuration the configuration is executed and applied using

StartDscConfiguration cmdlet. It is asked to use existing configuration through

UseExisting switch, wait switch runs the cmdlet in synchronous mode, force switch

pushes configuration to target nodes even when the LCM on target node is configured with

pull configuration and verbose switch provides additional information about the execution.

If there are no errors while executing the code shown here, IIS will be installed, available

and configured on target node. This can be verified by accessing http://localhost/

using browser in your local machine. You should see IISStart screen.

||||||||||||||||||||

DevOps Automation Primer

 [144]

||||||||||||||||||||

Summary

This was a technology-heavy chapter and we covered different technologies that will help

in automation of provisioning and managing environments. We started with Azure

Resource Manager and its features and concepts. Then, we moved on to Azure Resource

Manager templates, described various components of templates and how to author them,

constructed a simple minimal template, used tools for authoring templates and then

deployed them through PowerShell. Then, we discussed PowerShell as a command-line

and scripting language that helps in automation and administration of infrastructure and

environment. We also discussed some of its most important concepts like variables,

pipelines, cmdlets, scripts, and modules. We covered the PowerShell script unit testing tool,

Pester. We tried to understand Pester and its concepts using two examples. Finally, we

discussed Desired State Configuration as a configuration platform with its Pull and Push

architecture, their process flow, and ways to use configuration files to configure target

computer nodes.

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

Nano, Containers, and

Docker4

Primer

May you live in interesting times - translation from a Chinese proverb

We are in the midst of revolutionary changes in the technology world. Over the last few

years, the pace of innovation has been so rapid that anything that is new today becomes old

in a few days. Even though the change is fast, there are innovations that rewrite history and

change the way we look at providing and consuming computing services. Container

technology and Nano Servers are major among these innovations.

In this chapter, we will explore the basic concepts of WindowsContainers and NanoServer,

provision them on Azure, look at their differences, and explore the building blocks related

to them on the Windows platform. Windows Containers is a new technology introduced

with Windows Server 2016. Containers are not a new technology in Linux world; they have

been available on the Linux platform for more than a decade and are highly successful.

Windows Containers are managed through Docker binaries. Docker tools are used to

manage Windows Containers on the Windows platform similar to the way they manage

Docker Containers on the Linux platform.

Virtualization

If we look back at the history of computing, the 1970s were dominated by mainframe

computing. During the 80s and 90s, personal computing and client-server technology was

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [146]

||||||||||||||||||||

the flavor. The first decade of this century was characterized by two major trends:

virtualization and mobile computing. Today, we are again in midst of trend-changing

phenomena with the concept of containerization of applications and services.

To understand Containers better, let's take a step back and understand virtualization.

Virtualization was a breakthrough innovation that completely changed the way physical

servers were looked at. It refers to the abstraction of a physical object into a logical object.

Virtualization of physical servers enabled the creation of multiple virtual servers, better

known as virtual machines. These virtual machines consumed and shared the same

physical CPU, memory, storage, and other hardware with the physical server on which

they were hosted. This enabled faster and easier provisioning of application environments

on demand, providing high availability and scalability with reduced cost. One physical

server was enough to host multiple virtual machines, each virtual machine containing its

own operating system and hosting services on it. There was no longer any need to buy

additional physical servers for deploying new applications and services. The existing

physical servers were sufficient to host more virtual machines. Furthermore, as part of

rationalization, many physical servers were consolidated into a few with the help of

virtualization.

Each virtual machine contains the entire operating system and each virtual machine is

completely isolated from other virtual machines, including the physical hosts. Although a

virtual machine uses the hardware provided by the host physical server, it has full control

over its assigned resources and its environment. These virtual machines can be hosted on a

network similar to a physical server with its own identity.

One of the drawbacks of virtual machines is that each virtual machine contains the

complete operating system. This means that running multiple virtual machines will run

multiple operating systems on a physical host. Each operating system consumes a major

portion of hardware resources, the same resources that could be utilized by applications

and services if they were hosted on a physical server. Another issue with virtual machines

is that it still consumes a lot of time to provision them. Although the time required to

provision them is less than provisioning a physical server, it is still considerably high in this

fast-paced world. Furthermore, the footprint of a virtual machine runs in gigabytes and has

the potential to be reduced significantly.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [147]

Farkiantech.com
||||||||||||||||||||

Containers

Containers are also a virtualization technology; however, they do not virtualize a physical

server. Instead, a Container is an operating-system-level virtualization. What this means is

that Containers share the operating system kernel provided by the host among themselves

along with the host. Multiple containers running on a host (physical or virtual) share the

host operating system kernel. Containers ensures that they reuse the host kernel instead of

each having a dedicated kernel to themselves.

Containers are also completely isolated from the host and other Containers, much like a

virtual machine. Containers use Windows storage filter drivers and session isolation for

providing isolation of operating system services such as the filesystem, registry, processes,

and networks. Each Container gets its own copy of operating system resources. The

Container has the perception that it has a complete new, untouched operating system and

resources. This arrangement provides lots of benefits, as follows:

Containers are faster to provision. They do not need to provision the operating

system and its kernel services. They are available from the host operating

system. Containers are lightweight and require fewer computing resources

compared to virtual machines. The operating system resource overhead is no

longer required in Containers.

Containers are much smaller in size compared to virtual machines.

Containers help in solving the problems related to managing multiple

application dependencies in an intuitive, automated, and simple manner.

Containers provide infrastructure to define all application dependencies in a single

place.

Containers are an inherent part and feature of Windows Server 2016 and Windows 10;

however, they are managed and accessed using a Docker client and Docker daemon.

Windows provides PowerShell cmdlets for managing Containers but they are in alpha

phase at the time of writing.

Each Container has a single main process that must be running for the Container to exist. A

Container will stop when this process ends. Also, a Container can either run in interactive

mode or in detached mode like a service.

Figure 1 shows all the technical layers that enable Containers. The bottommost layer

provides the core infrastructure in terms of network, storage, load balancers, and network

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [148]

||||||||||||||||||||

cards. At the top of the infrastructure is the compute layer, consisting of either a physical

server or both physical as well as virtual servers on top of a physical server. This layer

contains the operating system with the ability to host Containers. The operating system

provides the execution driver that the layers above use to call kernel code and objects to
execute Containers. Microsoft has created Host Container System Shim (HCSShim) for

managing and creating Containers and uses Windows storage filter drivers for image and

file management. The Container environment isolation ability is provided to Windows

session. Windows Server 2016 and Nano Server provide the operating system and enable

the Container features and also execute the user-level Docker client and Docker engine.

The Docker engine uses the services of HCSShim, storage filter drivers, and sessions to

spawn multiple Containers on the server, each containing a service, application, or

database:

The next section will navigate through some of the important concepts related to

Containers.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [149]

Farkiantech.com
||||||||||||||||||||

Docker

Docker provides management features to Windows Containers. It comprises two

executables:

Docker daemon

Docker client

The Docker daemon is the workhorse for managing Containers. It is a Windows service

responsible for managing all activities on the host related to Containers. The Docker client

interacts with the Docker daemon and is responsible for capturing inputs and sending them

across to the Docker daemon. The Docker daemon provides the runtime, libraries, graph

drivers, and engine to create, manage, and monitor Containers and images on the host

server. It also provides capabilities to create custom images that are used for building and

shipping applications to multiple environments.

Container host

The Container host is the host operating system with the capability and features of

Windows Containers turned on. It also hosts the Docker daemon and its client. The Docker

daemon must be present on the Container host although the Docker client can be used from

another server connecting remotely to the daemon. The Container host can be a physical or

a virtual server running either on the cloud like Azure or deployed on-premises.

Container images

Images are one of the most important concepts to understand in Container technology.

Every Container is based on an image. Images contains a base operating system, system

libraries, drives for interacting with the hardware and operating system, system

applications, services, and utilities. They also contain configured applications and services.

An analogy to understand images better is to compare them with object-oriented classes.

Images are similar to object-oriented classes implenting behavior and properties while

Containers are similar to objects created from those classes. An image is a blueprint based

on which Containers are created. Docker provides a centralized registry and repository for

public images. Microsoft also provides its own repository and registry for Windows-based

images. These base images can be used to create custom images. All custom images should

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [150]

||||||||||||||||||||

be based on a base image. Windows Containers uses a Windows storage filter driver for

managing images. Images are read-only files. Once created, they cannot be modified. An

image from which Containers are created in turn consists of multiple sub images. Every

image consists of a stack of these layers linked together. These sub layers are reusable and

can be part of multiple images. A layer can comprise a new configuration, a modified

configuration provided from the layer underneath it, deployment of an application or

service, or a combination of any of these. Each layer of an image is stored as a file. Windows

uses the storage filter driver technology to combine all the layer files to create the final

image. When a Container is created, a read/write image layer is added on top of all the

layers. It is this topmost layer that is used by the Container for all its write operations.

Images are stored in a local repository referred to by a name.

They also have tag information associated to them that helps in assigning versions to them.

This enables multiple images with different versions to be available on the same Container

host. The image architecture is shown in Figure 2. In this architecture, a base image is used

and a couple of instructions are executed on a base image one after another to create a final

image through Dockerfile. Each instruction creates an image layer represented through

an identifier on top of the previous layer. Dockerfile will be explained in considerable

detail later in this chapter. The code for Dockerfile is also available in the same section:

Microsoft provides two base images – WindowsServerCore and NanoServer. We will be

creating our own custom images in Chapter 7, Configuration Management, discussing

configuration management. There are two ways to create images. Dockerfile is a file

containing instructions to create an image. Dockerfile approach should be used to define

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [151]

Farkiantech.com
||||||||||||||||||||

images from sctrach while existing running Containers can also be saved as an image. We

will introduce Dockerfile and its instruction commands later in this chapter.

Docker Hub/Docker Registry

This is the centralized registry for hosting and sharing images. The registry is hosted at

https://hub.docker.com/ and anyone having access to it can search, find, and download

images. It helps in sharing images with co-workers, customers, and others. A registry

contains multiple repositories and they can be either public or private repositories.

Installing a Windows Server 2016 Container

on Azure

There are multiple ways to install and create a Container environment on Windows Server

2016 on Azure. The environment can be provisioned through pure PowerShell scripting,
.NET, Azure Command Line Interface (CLI) or through ARM templates. The ARM

templates can be deployed through multiple technologies, including PowerShell. We will

create development, testing, and pre-production environments coding, running, testing,

and deploying our custom web-based application on Windows Containers. We will

describe the step-by-step process to create a Container environment using Windows Server

2016. The steps for building a Container environment on Windows 10 are exactly the same

as for Windows Server 2016. All our environment apart from the development environment

will be based on Windows Server 2016. The development environment will be on Windows
10. Docker is also introducing a Docker for Windows installer for creating a Docker

environment on the Windows platform; however, at the time of writing, Docker for

Windows creates and deploys a Linux Moby virtual machine that hosts the Docker daemon

and manages the Container environment. In this book, we will enable the Docker Container

environment using Windows 10 as the development environment and deploy our

application in Containers for development. All our environments will be provisioned on

Azure cloud virtual machines, and so before creating a Container environment, we will

provision the virtual machine.

Provisioning Azure virtual machines

https://hub.docker.com/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [152]

||||||||||||||||||||

Azure virtual machines will be provisioned through PowerShell. For creating virtual
machines on Azure using PowerShell, follow these steps using the PowerShell Integrated

Scripting Environment (ISE):

1. Log in to the Azure subscription as shown here. You should have a valid Azure

subscription with credentials to log in. A login screen appears when using

Login-AzureRmAccount without any parameters. There are ways to overcome
the appearance of the login screen using the concept of Service Principal in

Azure which will be explained in Chapter 7, Configuration Management:

 Login-AzureRmAccount

2. This step is optional and should be executed only if the account used to log in to

Azure has access to multiple subscriptions and you want to use a particular

subscription for creating the virtual machine. You should provide the

subscription name and send it as argument to the set-AzureRmContext cmdlet.

This is shown here and <<xxxxxxxx>> should be replaced with your

subscription name:

 Set-AzureRmContext -SubscriptionName <<xxxxxxxx>>

3. Declare a few variables to hold names for the storage account, resource group,

location of Azure resources, and virtual machine name, as shown here. The name

of the resource group should be unique within the subscription, the name of

virtual machine must be unique within a resource group, and the name of the

storage account must be unique on the Internet. The majority of Azure cmdlets

define both location and resource group name as parameters and $locationRG

and $rgName variables should be used for them:

 $storageAccountName = "myContainerstore"
 $locationRG = "westus"
 $rgName = "ContainerRG"
 $vmName = "myContainerVM"

4. Create a new resource group using New-AzureRmResourceGroup cmdlet,

passing the resource group and location names as arguments:

 New-AzureRmResourceGroup -Name $rgName -Location $locationRG

5. Virtual machine files must reside on the storage account. Create a new storage

account using New-AzureRmStorageAccount cmdlet, providing storage account

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [153]

Farkiantech.com
||||||||||||||||||||

name and location as values to its parameters. The return value from the cmdlet

is stored in $storageAccount variable. This is shown here:

 $storageAccount = New-AzureRmStorageAccount -ResourceGroupName
 $rgName -Name
 $storageAccountName -Type "Standard_GRS" -Location $locationRG

6. Virtual machines must also reside on a virtual network. The code shown next

creates a virtual network and a subnet within it. After creation, the subnet object

passed as argument to virtual network. The subnet object is created using

NewAzureRmVirtualNetworkSubnetConfig cmdlet providing 10.0.0.0/24

as the value for AddressPrefix parameter. This subnet IP range must be part of

the overall virtual machine IP addressing scheme. The virtual network is created

using New-AzureRmVirtualNetwork with 10.0.0.0/16 value as

AddressPrefix parameter . AddressPrefix is the IP range of the network and

also subnets together must have IP ranges as subset of this range. This is shown

here:

 $singleSubnet = New-AzureRmVirtualNetworkSubnetConfig -Name
 singleSubnet -AddressPrefix 10.0.0.0/24
 $vnet = New-AzureRmVirtualNetwork -Name TestNet -ResourceGroupName
 $rgName
 -Location $locationRG -AddressPrefix 10.0.0.0/16 -Subnet
 $singleSubnet

7. Create a public IP address and DNS name used to connect to the newly created

virtual machine over the Internet. A public IP address is dynamically allocated to

the virtual machine using New-AzureRmPublicIpAddress cmdlet. This is

shown here:

 $pip = New-AzureRmPublicIpAddress -Name TestPIP -ResourceGroupName
 $rgName -Location $locationRG -
 AllocationMethod Dynamic -DomainNameLabel $vmName

8. Create a network interface card for the virtual machine. This network card is

attached to the virtual machine at one end and the virtual network subnet on the

other end. New-AzureRmNetworkInterface accepts the name, resource group,

location, and subnet ID as parameter. This is shown here:

 $nic = New-AzureRmNetworkInterface -Name TestNIC -ResourceGroupName
 $rgName -Location $locationRG
 -SubnetId $vnet.Subnets[0].Id -PublicIpAddressId $pip.Id

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [154]

||||||||||||||||||||

9. Create a credential object using the Get-Credential cmdlet. This cmdlet will

open a login window accepting the username and password. The provided

username and password will be stored in the $cred variable. This variable will

be used while provisioning the virtual machine. This credential object will be

used to create an administrator user within new virtual machine. This is shown

here:

 $cred = Get-Credential -Message "Type the name and password

of the local administrator account."

10. Create a new virtual machine configuration object using the New-

AzureRmVMConfig cmdlet. It accepts the Virtual Machine (VM) name, size of

the VM, and availability set information. We are not using availability sets.

VMName and the size of the VM are provided as values to the cmdlet and the

config object is stored in the $vm variable. This is shown here:

 $vm = New-AzureRmVMConfig -VMName $vmName -VMSize "Standard_A4"

11. The next step is to provide operating system configuration to the VM

configuration created in the earlier step. The Set-AzureRmVMOperatingSystem

cmdlet accepts operating system name, credentials for the operating system, and

also accepts switches to determine whether it's a Windows or a Linux operating

system, whether VM agents must be installed while creating the virtual machine

and whether Windows updates should be configured. It is important to note that

the previously created $vm config object is used as a parameter to this cmdlet.

This enables this cmdlet to add operating system information to the config object

as shown here:

 $vm = Set-AzureRmVMOperatingSystem -VM $vm -Windows -ComputerName
 $vmName -Credential $cred -ProvisionVMAgent -EnableAutoUpdate

12. In this step, Azure image information is provided to the previously created

config object. Virtual machines are based on images maintained by Azure. Each

virtual machine is based on an image. The Set-AzureRmVMSourceImage cmdlet

accepts PublisherName, Offer, and Sku as parameters. It is here we provide the

information that Windows Server 2016 should be used as our virtual machine

operating system. The Sku value 2016-Datacenter-with-Containers will

provision a Windows Server 2016 at the time of writing this chapter. This is

shown here:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [155]

Farkiantech.com
||||||||||||||||||||

 $vm = Set-AzureRmVMSourceImage -VM $vm -PublisherName
 MicrosoftWindowsServer
 -Offer WindowsServer -Skus 2016-Datacenter-with-Containers -Version
 "latest"

13. Add the previously created network interface card to the virtual machine using

the Add-AzureRmVMNetworkInterface cmdlet that accepts the virtual machine

config object and ID of network card. This is shown here:

 $vm = Add-AzureRmVMNetworkInterface -VM $vm -Id $nic.Id

14. Add operating system and data disk information to the virtual machine. We will

only create the operating system disk in this guide. The first statement creates a

complete URL for storing the virtual machine disk file. The location of this disk

file is within the storage account we created earlier. Files stored in Azure storage

accounts are referred using
https://<<storageaccountname>>.blob.core.windows.net/<<Containe

rname>>/<<blobname>> format.. The expression

$storageAccount.PrimaryEndpoints.Blob.ToString() provides the

domain name for the newly created storage account. The vhd is the Container
used by default for storing virtual machine Virtual Hard Disk (VHD) files. The

Set-AzureRmVMOSDisk cmdlet accepts the name of the virtual machine, the

storage location where the virtual machine disk file should be created, and the

source from where the base disk information should be copied. This is shown

here:

 $osDiskUri = $storageAccount.PrimaryEndpoints.Blob.ToString() +
 "vhds/WindowsVMosDisk.vhd"
 $vm = Set-AzureRmVMOSDisk -VM $vm -Name $vmName -VhdUri $osDiskUri
 -CreateOption fromImage

15. Create the virtual machine using the $vm config object through the

NewAzureRmVM cmdlet. This is shown here:

 New-AzureRmVM -ResourceGroupName $rgName -Location $locationRG
 -VM $vm

The newly created resource group should now contain all the resources we

created, including the virtual machine. This is shown in Figure 3:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [156]

||||||||||||||||||||

Connect to the newly created virtual machine and log in to it. All the steps

mentioned henceforth should be executed from within the virtual machine.

16. Containers infrastructure can be installed on Windows Server 2016 using the

PackageManagement module. Microsoft recently developed a new package

provider DockerMsftProvider that will be used for installing Docker and

container infrastructure. However, to make DockerMsftProvider provider

available on Windows Server 2016, NuGet provider must be available. To install

NuGet provider, execute the following PowerShell statement on the server using

the PowerShell console:

 Install-PackageProvider -Name "NuGet" -MinimumVersion 2.8.5.201
 -force -ForceBootstrap -Confirm:$false -Verbose

17. Now DockerMsftProvider can be installed by executing the following

PowerShell statement:

 Install-Module -Name DockerMsftProvider -RequiredVersion "1.0.0.1"
 -Force -verbose
 -Confirm:$false -SkipPublisherCheck

18. Next, using the newly downloaded DockerMsftProvider provider, a new

package docker should be downloaded and installed. This will internally enable

the Container Windows feature, download the Docker engine and Docker client

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [157]

Farkiantech.com
||||||||||||||||||||

binaries, install them in the Program files folder location, and enable them for

usage. This is shown next:

 Install-Package -Name docker -ProviderName DockerMsftProvider
 -Force -ForceBootstrap
 -confirm:$false -Verbose

Installing Container features requires a restart of the server, which can be done

using the following command:

 Restart-Computer

19. After the server reboot, again open the PowerShell ISE. At this moment, the

container infrastructure is ready; however, there are no images available on the

server using which Containers can be created. To download the

windowsservercore image, execute the following statement. Please note the

image name, it is case-sensitive:

 docker pull microsoft/windowsservercore

20. To search all available images for the Windows environment provided by

Microsoft, execute the following command:

 docker search microsoft

The table following shows all images available on public repository having

Microsoft within their names:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [158]

||||||||||||||||||||

21. To verify the Container environment, execute the docker command as shown

here:

 docker --version

This should show the current version and build of the Docker engine as shown

here:

 PS C:> docker --version
 Docker version 1.12.2-cs2-ws-beta, build 050b611

Execute the following command to check whether there are any Containers

available. ps refers to the listing of Containers. The -a switch denotes all

Containers in any state (stopped, running, paused):

 docker ps -a

Since we have not created any Containers, the results should show an empty list

as shown here:

 docker ps -a CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

Finally, execute the command shown here to check whether there are any images

available:

 docker images

Since we have downloaded a single image, the result should show an empty

image list as shown here:

 REPOSITORY TAG IMAGE ID CREATED SIZE
 microsoft/windowsservercore latest 7baaa272ad7d 3 weeks ago 9.42 GB

22. To create and start a container, execute the following command. It runs a

container in daemon mode and also maps port 8080 on docker host with port

80 on the Container.

 docker run -d -p 8080:80 microsoft/windowsservercore ping

-t localhost

23. We have already seen that Containers are created from images and every image

has a base image on which it is based. Microsoft has provided two base images

for Containers.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [159]

Farkiantech.com
||||||||||||||||||||

 WindowsServerCore: This image should be used for creating Windows

Server Core based Containers. It does not have any GUI but still has

full-blown Windows features for deploying any enterprisescale

application.

 NanoServer: This image should be used to create Containers on Nano

Server virtual machines or Hyper-V Containers on any Windows

server.

Installing Windows Nano Server on Azure

Similar to Windows Server 2016, there are multiple ways to install and create a Nano Server

environment on Azure. Nano Server can be provisioned on Azure through pure PowerShell

scripting or through ARM templates. The ARM templates can be deployed through

PowerShell. The Windows Server Container environment was provisioned through

PowerShell. We will use ARM templates to deploy Nano Server on Azure. The template

will remain almost the same as the one used to create a Windows Server 2016 environment

with small differences. I will point out these differences as we go along in this section. Nano

Server is a new technology on the Windows platform and is introduced with Windows

Server 2016. At the time of writing, there are not many features available on Nano Servers

since it is an evolving technology with newer features getting introduced frequently. We

will describe step by step the process to create a Nano Server and you will be able to create

them using the same steps when Nano Server is released and feature-rich. Nano Server

does not have a GUI and can be only managed remotely.

A valid asymmetric certificate should be deployed in Nano Server to securely access it from

remote machines. Certificates are not created by default within an Azure virtual machine

when provisioned through ARM. We will use Azure Key Vault for storing our certificate.

The certificate will be generated on a local machine and uploaded to Key Vault, and the

ARM template will have elements to connect, access, and deploy a certificate in Nano

Server.

Provisioning Nano Server

Nano Servers are lightweight operating systems and their creation steps are similar to those

of virtual machines. For creating a Nano Server on Azure using the Azure Resource

Manager template, follow these steps:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [160]

||||||||||||||||||||

1. Open any PowerShell ISE editor as an administrator and log in to the Azure

subscription as shown here. This step of connecting to an Azure subscription is

the same as when the Windows Server 2016 Container environment was created:

 Login-AzureRmAccount

2. Select an appropriate Azure subscription:

 Set-AzureRmContext -SubscriptionName <<xxxxxxxx>>

3. Declare variables to hold names for the resource group and Azure location.

Create a new resource group using New-AzureRmResourceGroup and passing

the resource group and location name as arguments:

 $locationRG = "westeurope"
 $rgName = "NaNoServerRG"
 New-AzureRmResourceGroup -Name $rgName -Location $locationRG

4. Since this section shows the steps to create a Nano Server, a self-signed certificate

is used. In an actual scenario and environment, a valid certificate should be

purchased and deployed instead of using a self-signed certificate. Create a

selfsigned wildcard certificate using the New-SelfSignedCertificate cmdlet

as shown here. A certificate has a subject name that represents the certificate. It

must be same as that of our Nano Server or a wildcard name that can be used for

multiple subjects. We will create TestNanoServer in the West Europe region

and Azure will generate the DNS name as

TestNanoServer.westeurope.cloudapp.azure.com for our Nano Server.

The certificate is stored in the local machine certificate store of the machine

running this command and can be used for any virtual machine in the West

Europe region:

 New-SelfSignedCertificate -DnsName *.westeurope.cloudapp.azure.com
 -CertStoreLocation
 Cert:LocalMachineMy

Export the certificate from the local store and save it on the local filesystem as a

.pfx file. A .pfx file contains the certificate's private key and is secured using a

password. This is shown in Figure 5:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [161]

Farkiantech.com
||||||||||||||||||||

Figure 5: Certificate in local computer personal store

Right-click on *.westeurope.cloudapp.azure.com|Certificate|All Tasks and

then Export. It will open a wizard to export the certificate as a .pfx file. This is

shown in Figure 6:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [162]

||||||||||||||||||||

Figure 6: Certificate Export Wizard start screen

Click the Next button as shown in Figure 6.

Select the Yes, export the private key option in the Export Private Key screen as

shown in Figure 7:

Figure 7: Export certificate with private key

Leave the default values in this screen as is and click Next as shown in Figure 8:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [163]

Farkiantech.com
||||||||||||||||||||

Figure 8: Certificate file format

Select the Password checkbox and provide both password and confirm password

values as shown in Figure 9. This password will be needed when storing the

certificate in Azure Key Vault. Click Next to move further:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [164]

||||||||||||||||||||

Figure 9: Certificate password

Provide the file location for storing the exported certificate as shown in Figure 10.

Clicking Next should provide the message that the export was successful.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [165]

Farkiantech.com
||||||||||||||||||||

Figure 10: Export file path for certificate

5. Create a new Azure Key Vault in the selected subscription using the

NewAzureRmKeyVault cmdlet as shown here. NanoSecrets is the name of the

vault

and this vault can be used within the template as well as PowerShell

deployments. Vaults come in two flavors:

Standard

Premium

 New-AzureRmKeyVault -VaultName NanoSecrets
 -ResourceGroupName $rgName
 -Location $locationRG

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [166]

||||||||||||||||||||

 -EnabledForTemplateDeployment
 -EnabledForDeployment
 -Sku standard

6. Load the contents of nanocert.pfx and convert it into base64 encoding as

shown here:

 $certFile = "C:nanocert.pfx"
 $certContent = get-content $certFile -Encoding Byte
 $encodedCertContent =
 [System.Convert]::ToBase64String($certContent)

7. Create a JSON object containing the encoded certificate content, the type of

content and password that was provided while exporting the certificate. Azure

Key Vault expects these details in JSON format. This is shown here.

jsonObject is assigned a multiline string containing name value pairs:

 $jsonObject = @"
 {
 "data": "$encodedCertContent",
 "dataType" :"pfx",
 "password": "<<Your password>>"
 }
 "@

8. Convert the jsonObject to byte encoding and then convert the bytes into

Base64 encoding. This is shown here:

 $jsonObjectBytes =
 [System.Text.Encoding]::UTF8.GetBytes($jsonObject)
 $jsonEncoded =
 [System.Convert]::ToBase64String($jsonObjectBytes)

9. Convert the Base64.JSON object into a secure string using the

ConvertToSecureString cmdlet. This secure string is stored in Azure Key

Vault as a secret using the Set-AzureRmKeyVaultSecret cmdlet. Now this

certificate can be used in ARM templates while provisioning a Nano Server in

the West Europe region. A name is provided to the secret for identification. It

has been named as NanoCert. This is shown here:

 $secret = ConvertTo-SecureString -String $jsonEncoded -AsPlainText
 -Force
 Set-AzureKeyVaultSecret -VaultName "NanoSecrets" -Name "NanoCert"

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [167]

Farkiantech.com
||||||||||||||||||||

 -SecretValue $secret

This cmdlet will output the unique URL for accessing the certificate. Take note of

this URL as it will be needed while authoring the ARM template.

10. Open Visual Studio 2015 and select New Project. From the resultant window,

select the AzureResourceGroup template from the Cloud template. Provide a

name and location for the project (C:templates in my computer) and select
Blank Template. This will generate an empty template named

azuredeploy.json, which is shown in Figure 11:

11. We will modify this file and it will eventually be used to create a Nano Server

on Azure.

12. The parameters section should look as shown here:

 "parameters": {
 "adminUsername": {
 "type": "string",
 "defaultValue": "<<your nano server username>>",
 "minLength": 1,
 "metadata": {
 "description": "Username for the Nano Server."
 }
 },
 "adminPassword": {
 "type": "securestring",
 "defaultValue": "<<your nano server password>>",

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [168]

||||||||||||||||||||

 "metadata": {
 "description": "Password for the Nano Server."
 }
 },
 "dnsNameForPublicIP": {
 "type": "string",
 "minLength": 1,
 "defaultValue": "nanoserver123",
 "metadata": {
 "description": "Globally unique DNS Name for the
 Public IP used to access the Nano Server."
 }
 },
 "windowsOSVersion": {
 "type": "string",
 "defaultValue": "2016-Nano-Server",
 "allowedValues": [
 "2016-Nano-Server"
],
 "metadata": {

"description": "The Windows version for the VM.
 This will pick Nano Server by default.
 Allowed values: 2016-Nano-Server."
 }
 }
 },

Four parameters are added to the parameters section of the template. The first

parameter refers to the username for the Nano Server, the second one refers to

the password for the Nano Server. The password cannot be more than 20

characters

long, end with a period(.), or contain the following characters: / ” [] : | < > + = ; , ? *

@. The default values for both username and password must be changed before

using the template. These two are used for authenticating and connecting to the

Nano Server. This server will be available and accessed from the Internet. It is

good practice to provide a DNS name through which this server can be addressed

globally. It should be uniquely named in an Azure region. The OS version

2016Nano-Server-Technical-Preview is the sku that creates a Nano Server

virtual machine on Azure. This name changes in future and so it must be checked

before using it.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [169]

Farkiantech.com
||||||||||||||||||||

It is to be noted that by changing the value of this variable, it is possible to

provision a Windows Server 2016 instead of a Nano Server. The

WindowsServer-Technical-Preview should be used instead of the 2016-
Nano-

Server-Technical-Preview. These names will undergo changes when they are

generally available to everyone.

13. The variables section should look as shown here:

 "variables": {
 "imagePublisher": "MicrosoftWindowsServer",
 "imageOffer": "WindowsServer",
 "OSDiskName": "osdiskforwindowssimple",
 "nicName": "myVMNic",
 "addressPrefix": "10.0.0.0/16",
 "subnetName": "Subnet",
 "subnetPrefix": "10.0.0.0/24",
 "vhdStorageType": "Standard_LRS",
 "publicIPAddressName": "myPublicIP",
 "publicIPAddressType": "Static",
 "vhdStorageContainerName": "vhds",
 "vmName": "MyNanoVM",
 "vmSize": "Standard_A4",
 "virtualNetworkName": "MyVNET",
 "vnetId": "[resourceId('Microsoft.Network/virtualNetworks',
 variables('virtualNetworkName'))]",
 "subnetRef": "[concat(variables('vnetId'), '/subnets/',
 variables('subnetName'))]",
 "vhdStorageName": "[concat('vhdstorage',

uniqueString(resourceGroup().id))]" },

The following table provides description for each of these variables:

Variable name Description

imagePublisher The publisher of the Nano Server image.

imageOffer The offer for the Nano Server image.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [170]

||||||||||||||||||||

vhdStorageName The name of the storage account for hosting Container and

vhd files as blobs.

vhdStorageContainerName Name of the Container in the storage account for storing the

Nano Server vhd file.

vhdStorageType Storage is of multiple types – Local redundant, Zone

redundant, Geo redundant and Read-access Geo redundant.

virtualNetworkName The name of the virtual network creating for hosting the Nano

Server.

subnetName The subnet name on which the Nano Server is created.

Subnets are part of the virtual network.

addressPrefix The address range for the virtual network divided into

multiple subnets.

subnetPrefix Address range that is a subset of the virtual network address

range.

vnetId The ID of the virtual network used for referencing it in the

template. Declaring it as a variable makes cleaner templates

and it can be used at multiple places.

subnetRef The ID of the virtual network subnet for referencing it in the

template. Declaring it as a variable makes cleaner templates

and it can be used at multiple places.

publicIPAddressName The name of the public IP resource declared in the resources

section.

publicIPAddressType Static or dynamic public IP address.

VMName The name of the Nano Server.

VMSize The size of the Nano Server.

nickname The name of the network interface card attached to the Nano

Server.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [171]

Farkiantech.com
||||||||||||||||||||

OSDiskName The name of the Nano Server vhd file.

14. After defining parameters and variables, now let's focus on adding resources.

Add the StorageAccount resource from Microsoft.Storage provider

namespace as shown here:

 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('vhdStorageName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "StorageAccount"
 },
 "properties": {
 "accountType": "[variables('vhdStorageType')]"
 }
 },

The following table provides description for each of these properties:

Resource property

name

Description

type The resource type from the provider namespace based on which the

resource instance is created. The resource provider is

Microsoft.Storage and the resource type is storageAccounts.

name The name of the resource instance.

apiVersion The version of the provider REST API.

location Location of the provisioned resource instance. The location is

obtained through the location property returned by the

resourceGroup() function that returns its current location.

tags The displayName tag added. More tags can be added based on

multiple criteria, as discussed in Chapter 3, DevOps Automation

Primer.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [172]

||||||||||||||||||||

properties:

accountType:
This is a storage account specific property. The type of storage

account type is defined in the variable section.

15. Add the publicIPAddresses resource from the Microsoft.Network provider

namespace as shown here:

 {
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "[variables('publicIPAddressName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "PublicIPAddress"
 },
 "properties": {

"publicIPAllocationMethod":
 "[variables('publicIPAddressType')]",
 "dnsSettings": {

"domainNameLabel":
 "[parameters('dnsNameForPublicIP')]"
 }
 }
 },

The following table provides description for each of these properties:

Resource property name Description

type The resource provider is Microsoft.Network and

resource type is publicIPAddresses.

name The name of the resource instance.

apiVersion The version of the provider REST API.

location Location of the provisioned resource instance. The location is

obtained through the location property returned by the

resourceGroup() function that returns its current

location.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [173]

Farkiantech.com
||||||||||||||||||||

tags The displayName tag added. More tags can be added

based on multiple criteria, as discussed in Chapter 3,

DevOps Automation Primer.

publicIPAllocationMethod This is a public IP address specific property. The allocation

of a public IP address is static as defined in the variables

section.

domainNameLabel This is a resource specific property, part of the

dnsSettings property. Its value is derived from

parameters provided by the user. If the user does not

provide a value, a default value is used.

16. Add the networkSecurityGroups resource from the Microsoft.Network
provider namespace as shown here. A Network Security Group (NSG)

containing three inbound rules is added in the template. The NSG rules open the
Remote Desktop Protocol (RDP) port (3389), Remote PowerShell port (5985),

and Secure Remote PowerShell port (5986). This NGS will be applied to all

virtual machines and Nano Servers hosted on the virtual network subnet created

in this template later:

 {
 "type": "Microsoft.Network/networkSecurityGroups",
 "name": "[concat(variables('vmName'),'_nsg1')]",
 "apiVersion": "2015-05-01-preview",
 "location": "[resourceGroup().location]",
 "properties": {
 "securityRules": [
 {
 "name": "RDP",
 "properties": {
 "description": "RDP",
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "3389",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 200,
 "direction": "Inbound"
 }

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [174]

||||||||||||||||||||

 },
 {
 "name": "WinRM",
 "properties": {
 "description": "WinRM",
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "5985",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 400,
 "direction": "Inbound"
 }
 },
 {
 "name": "WinRMs",
 "properties": {
 "description": "WinRMs",
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "5986",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 500,
 "direction": "Inbound"
 }
 }
]
 }
 },

The following table provides description for each of these properties:

Resource property

name

Description

type The resource provider is Microsoft.Network and resource type is

networkSecurityGroups.

name The name of the resource instance. The name is defined as a

combination of vmname defined in variables and _nsg.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [175]

Farkiantech.com
||||||||||||||||||||

apiVersion The version of the provider REST API.

location Location of the provisioned resource instance. The location is obtained

through the location property returned by the resourceGroup()

function that returns its current location.

Properties ->
securityRules

This is an array type resource specific property that defines multiple

NSG rules objects. Three rules are defined in this example. Each rule

has a name and rule specific properties.

Properties ->

securityRules ->

properties

Each NSG rule object contains its name, description,

protocol(tcp), sourcePortRange (* denotes from any source

port), desintationPortRange (3389, 5985, 5986),

sourceAddressPrefix (* denotes from any source IP address),

destinationAddressPrefix (* denotes to any destination IP

address), access is allowed, each rule having a distinct priority and

direction is Inbound.

17. Add the virtualNetworks resource from the Microsoft.Network provider

namespace as shown here:

 {
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[variables('virtualNetworkName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "dependsOn": [
 "[concat('Microsoft.Network/

networkSecurityGroups/', concat(variables('vmName'),'_nsg1'))]"
],
 "tags": {
 "displayName": "VirtualNetwork"
 },
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('addressPrefix')]"
]
 },
 "subnets": [
 {
 "name": "[variables('subnetName')]",

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [176]

||||||||||||||||||||

 "properties": {

"addressPrefix":
 "[variables('subnetPrefix')]",
 "networkSecurityGroup": {

"id":
 "[resourceId('Microsoft.Network/

networkSecurityGroups',
 concat(variables('vmName'),'_nsg1'))]"
 }
 }
 }
]
 }
 },

The following table provides description for each of these properties:

Resource property

name

Description

type The resource provider is Microsoft.Network and resource type

is virtualNetworks.

name The name of the resource instance.

apiVersion The version of the provider REST API.

location Location of the provisioned resource instance. The location is

obtained through the location property returned by the

resourceGroup() function that returns its current location.

dependsOn It contains the name of the resource this resource is dependent on.
The current resource will start provisioning only after the
dependent resources are successfully provisioned.

VirtualNetwork is dependent on the networkSecurityGroup

resource defined earlier. Resources can be referred to other

resources defined within the same template using their provider

name combined with resource type and resource instance name.

tags The displayName tag added. More tags can be added based on

multiple criteria, as discussed in Chapter 3, DevOps Automation

Primer.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [177]

Farkiantech.com
||||||||||||||||||||

Properties ->
addressSpace ->

addressPrefixes

This is a virtual network specific property. This is an array that can

contain multiple address prefixes. In this example, a single

addressPrefix is defined referred from the variables section.

Properties -> subnets This is an array type resource specific property that defines
multiple subnet objects for a virtual network. We have defined
just one subnet.

The subnet object contains its name, addressPrefix, that gets

its value from the variables section and reference to the NSG

created earlier. Resources can be referred to other resources

defined within the same template using the resourceId

function that accepts the target resource provider name, resource

type, and resource instance name.

18. Add the networkInterface resource from the Microsoft.Network provider

namespace as shown here:

 {
 "type": "Microsoft.Network/networkInterfaces",
 "name": "[variables('nicName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "NetworkInterface"
 },
 "dependsOn": [
 "[concat('Microsoft.Network/publicIPAddresses/',
 variables('publicIPAddressName'))]",
 "[concat('Microsoft.Network/virtualNetworks/',
 variables('virtualNetworkName'))]"
],
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Static",
 "PrivateIpAddress": "10.0.0.4",
 "publicIPAddress": {

"id":
 "[resourceId('Microsoft.Network/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [178]

||||||||||||||||||||

 publicIPAddresses',
 variables('publicIPAddressName'))]"
 },
 "subnet": {
 "id": "[variables('subnetRef')]"
 }
 }
 }
]
 }
 },

The following table provides description for each of these properties:

Resource property name Description

type The resource provider is Microsoft.Network and resource type

is networkInterfaces.

name The name of the resource instance. The name is defined in the

variables (nicName).

apiVersion The version of the provider REST API.

location Location of the provisioned resource instance. The location is

obtained through the location property returned by the

resourceGroup() function that returns its current location.

dependsOn It contains the name of the resource this resource is dependent on.

The NetworkInterface resource is dependent on both public IP

address and virtual network. The current resource will start

provisioning only after the dependent resources are successfully

provisioned.

tags The displayName tag added. More tags can be added based on

multiple criteria as discussed in Chapter 3, DevOps Automation

Primer.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [179]

Farkiantech.com
||||||||||||||||||||

Properties ->
ipConfigurations

This is an array type resource specific property that defines

multiple IP configurations. Each network interface can have

multiple IP configurations assigned. In this example, a single IP

configuration is provisioned. Each IP configuration has a name

property.

Properties ->

ipConfigurations ->

properties

Each IP configuration object contains its name,
privateIPAllocationMethod (static internal IP is assigned to

Nano Server), PrivateIPAddress (10.0.0.4 is assigned to

Nano Server), PublicIPAddress (refers to the

PublicIPAddress resource created in earlier step) and subnet

(refers to subnet in virtual network on which Nano Server will be

hosted).

19. Add the virtualMachines resource from the Microsoft.Compute provider

namespace as shown here:

 {
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[variables('vmName')]",
 "apiVersion": "2015-06-15",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "VirtualMachine"
 },
 "dependsOn": [
 "[concat('Microsoft.Storage/storageAccounts/',
 variables('vhdStorageName'))]",
 "[concat('Microsoft.Network/networkInterfaces/',
 variables('nicName'))]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[variables('vmSize')]"
 },
 "osProfile": {
 "secrets": [
 {
 "sourceVault": { "id": "/subscriptions/

xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/

resourceGroups/NaNoServerRG/

providers/Microsoft.KeyVault/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [180]

||||||||||||||||||||

vaults/nanoSecrets" },

"vaultCertificates": [
 {

"certificateUrl":
 "https://nanoSecrets.vault.

azure.net:443/

secrets/NanoCert/

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx",
 "certificateStore": "My"
 }
]
 }
],
 "computerName": "[variables('vmName')]",

"adminUsername":
 "[parameters('adminUsername')]",

"adminPassword":
 "[parameters('adminPassword')]",
 "windowsConfiguration": {
 "provisionVMAgent": true,
 "enableAutomaticUpdates": true,
 "winRM": {
 "listeners": [
 {
 "protocol": "Https",

"certificateUrl":
 "https://nanoSecrets.vault.

azure.net:443/

secrets/NanoCert/

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx"
 }
]
 }
 }
 },
 "storageProfile": {
 "imageReference": {

"publisher":
 "[variables('imagePublisher')]",
 "offer": "[variables('imageOffer')]",

"sku": "[parameters('windowsOSVersion')]",
 "version": "latest"
 },

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [181]

Farkiantech.com
||||||||||||||||||||

 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat('http://',

variables('vhdStorageName'),

'.blob.core.windows.net/',
 variables('vhdStorageContainerName'),
 '/', variables('OSDiskName'),
 '.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {

"id":
 "[resourceId('Microsoft.Network/
 networkInterfaces',

variables('nicName'))]"
 }
]
 }
 }
 }

The following table provides description for each of these properties:

Resource property

name

Description

type The resource provider is Microsoft.Compute and resource type is

virtualMachines.

name The name of the resource instance. The name is defined in variables

(vmName).

apiVersion The version of the Microsoft.Compute provider REST API.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [182]

||||||||||||||||||||

location Location of provisioned resource instance. The location is obtained

through the location property returned by the resourceGroup()

function that returns its current location.

dependsOn It contains the name of the resource this resource is dependent on. The

virtual machine resource is dependent on both storage account and

virtual network. The current resource will start provisioning only after

the dependent resources are successfully provisioned.

tags The displayName tag added. More tags can be added based on

multiple criteria, as discussed in Chapter 3, DevOps Automation Primer.

hardwareProfile It contains the vmSize property and determines the physical resource

of the Nano Server in terms of number of CPUs and RAM. It gets its

value from vmSize variable.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [183]

Farkiantech.com
||||||||||||||||||||

osProfile There are five important properties in the osProfiles element.

• Secrets: It contains the reference to secrets available in
Azure Key Vault. It is necessary that we define secret references here
for it to be used in subsequent sections in the template. It contains a
reference to the Azure Key Vault created earlier using PowerShell and
certificate URL uploaded to the same Key Vault. Values must be
replaced for only subscription id in the template if all the steps are
followed as shown in this section. The value for certificateURL is
available from the output of Step 9 after executing the Set-
AzureKeyVaultSecret. • computerName: It refers to the name of
the operating system in the Nano Server. It is this name the Nano
Server will be referred by. It gets its value from the vmName variable.
• Username for the Nano Server: The value is obtained from the
adminUsername parameter.

• Password for Nano Server: The value is obtained fromthe
adminPassword parameter.

• WindowsConfiguration: It configures the operating system

with additional configuration. These include WinRM listener settings

to use https and certificates. The certificate is downloaded from

Azure Key Vault. It also provides configuration options to provision the

virtual machine agent and options to enable Windows update after

provisioning of the virtual machine. The Nano Server will have both

the VM agent enabled and Windows update set as automatic. The

value for the certificateURL is available from the output of step 9

after executing Set-AzureKeyVaultSecret.

Properties ->
storageProfile

Storage profile deals with the source image used to create the virtual
machine and storage location for storing the new operating system and
data disks created for the virtual machine. The image reference
includes the publisher name, offer name, and SKU details. There is no
data disk for the Nano Server in this example. It has an operating
system disk that is needed to host the operating system. The storage

details are in the form https://<<storage account
name>>.blob.core.windows.net/<<Container

name>>/<<blob name>>. These values are obtained from variables.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [184]

||||||||||||||||||||

Properties ->
networkProfile

Network profile references the network interface card that should be

attached to the virtual machine.

20. By this time, the Azure resource group, the ARM template, as well as the Key

Vault have been constructed. The Key Vault also contains the certificate that will

be deployed within the Nano Server and used for accessing it from a client. In

this step, the ARM template will be deployed to provision all resources in the

ARM template including the Nano Server. This first cmdlet Test-

AzureRmResourceGroupDeployment validates the syntax and correctness of the

template, and the second cmdlet New- AzureRmResourceGroupDeployment

deploys the resource in the resource group. These concepts were covered in

Chapter 3, DevOps Automation Primer and should be revisited as a reference:

 Test-AzureRmResourceGroupDeployment -ResourceGroupName $rgName
 -Mode Incremental
 -TemplateFile "C:templatesazuredeploy.json" -Verbose
 New-AzureRmResourceGroupDeployment -Name "Deployment1"
 -ResourceGroupName $rgName -Mode
 Incremental -TemplateFile "C:templatesazuredeploy.json" -Verbose

The path of the Azure resource manager template is C:templates in my

development environment and it could be different in the reader's environment.

21. There is no user interface in a Nano Server and it should be administered

remotely. PowerShell remoting should be used for accessing Nano Servers. The

following code helps in connecting to the Nano Server from a remote machine.

The first two lines of code declare variables to store the public IP address of the

Nano Server and secure PowerShell remoting port:

 $hostName= "<<public ip address of nano server>>"
 $winrmPort = "5986"

The next three lines of code declare the username for connecting to the Nano

Server, converting it to a secure string, and constructing a PSCredential object

using them. This credential object is used for authenticating with the Nano Server

using PowerShell remoting:

 $username = "<<provide your nano server username>>"
 $pass = ConvertTo-SecureString -string "<<provide your nano server
 password>>"
 -AsPlainText -Force

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [185]

Farkiantech.com
||||||||||||||||||||

 $cred = New-Object -typename
 System.Management.Automation.PSCredential
 -argumentlist $username, $pass

Though optional when using a certificate from a known certificate authority, the

next line of code is mandatory when using a self-signed certificate. It configures

the PowerShell remoting session configuration for not checking certificate

authority, common name, and revocation list:

 $soptions = New-PSSessionOption -SkipCACheck -SkipCNCheck
 -SkipRevocationCheck

The next line of code uses an interactive PowerShell remoting session to connect

to the Nano Server using its public IP address on port 5986, credentials, and

session configuration. It also uses the UseSSL switch to ensure that the certificate

is used for the exchange of information. If this command executes successfully,

you should be able to see a prompt that refers to a remote shell on the Nano

Server:

 Enter-PSSession -ComputerName $hostName -Credential $cred -port
 $winrmPort -SessionOption $soptions -UseSSL

Using Docker client

Now that we have provisioned virtual machines and ensured that Docker infrastructure is

available on them, it's time to focus on the myContainervm machine a Windows Server

2016 with Container on Azure that was provisioned using PowerShell. Docker client is used

for interacting with Docker daemon by sending commands and arguments. Docker client is

used for all Container, image, and network related operations.

Executing the docker command on the cmd command line or PowerShell.exe will show

all Docker commands. This is shown here:

 PS C:> docker
 Usage: docker [OPTIONS] COMMAND [arg...]

docker [--help | -v | --version] A self-

sufficient runtime for Containers.

Options:
 --config=%USERPROFILE%.docker Location of client config
 file

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [186]

||||||||||||||||||||

 -D, --debug Enable debug mode
 -H, --host=[] Daemon socket(s) to

connect to -h, --help Print

usage
 -l, --log-level=info Set the logging level
 --tls Use TLS; implied by
 --tlsverif
 --tlscacert=%USERPROFILE%.dockerca.pem Trust certs signed only
 by thi
 --tlscert=%USERPROFILE%.dockercert.pem Path to TLS certificate
 file
 --tlskey=%USERPROFILE%.dockerkey.pem Path to TLS key file
 --tlsverify Use TLS and verify the
 remote
 -v, --version Print version information
 and quit
 Commands: attach Attach to a running Container

build Build an image from a Dockerfile commit Create a

new image from a Container's changes cp Copy

files/folders between a Container and the local
 filesystem

create Create a new Container
 diff Inspect changes on a Container's filesystem

events Get real time events from the server exec

Run a command in a running Container export Export a

Container's filesystem as a tar archive
 history Show the history of an image
 images List images
 import Import the contents from a tarball to create a
 filesystem image
 info Display system-wide information
 inspect Return low-level information on a Container or image
 kill Kill a running Container
 load Load an image from a tar archive or STDIN
 login Log in to a Docker registry

logout Log out from a Docker registry

logs Fetch the logs of a Container

network Manage Docker networks
 pause Pause all processes within a Container

port List port mappings or a specific mapping for the
 CONTAINER

ps List Containers
 pull Pull an image or a repository from a registry

push Push an image or a repository to a registry

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [187]

Farkiantech.com
||||||||||||||||||||

 rename Rename a Container restart

Restart a Container rm Remove one or more

Containers rmi Remove one or more images

run Run a command in a new Container save

Save one or more images to a tar archive search

Search the Docker Hub for images start Start

one or more stopped Containers
 stats Display a live stream of Container(s) resource usage
 statistics stop Stop a running

Container tag Tag an image into a repository

top Display the running processes of a Container

unpause Unpause all processes within a Container

update Update configuration of one or more Containers
 version Show the Docker version information
 volume Manage Docker volumes
 wait Block until a Container stops, then print its exit code
 Run 'docker COMMAND --help' for more information on a command.
 PS C:>

Docker commands can broadly be classified into the following categories:

Container life cycle management

Image management

Monitoring commands

Docker registry management

This chapter will delve into some of the important commands in each of these categories.

Container life cycle management

This category consists of commands that help in managing the Container life cycle. This

includes starting, stopping, restarting, killing, pausing, and unpausing Containers.

Docker run

This is perhaps the most important command among all commands that start a Container

based on an image. This command itself has a lot of options for configuring a Container

while starting it. Before a Container can be created and made available from an image,

Docker daemon performs a series of operations. These include:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [188]

||||||||||||||||||||

Loading the specified image from a global repository after downloading it, if it is

not available in the local repository

Creating a read/write image layer and adding it on top of all other image layers

Attaching the Container to a network and assigning it an IP address

Creating a Container and executing the default or RUN command provided

application within it

The RUN command provides options to open and expose ports in the Container and map

them to ports on the Container host. This allows the Container host to forward requests on

its port to the Container port using port forwarding. The -p flag is used for mapping ports

between Container and Container host. This is shown here: docker run -i -t -p 8080:80
microsoft/windowsservercore powershell

In this example, port 8080 on the Container host is mapped to port 80 on a Container based

on microsoft/windowsservercore image. Any request that comes on port 8080 on the

Container host is forwarded to port 80 in the Container.

The RUN command also provides options to share files and folders between the Container

host and Containers using volumes. The -v flag is used for mapping folders on a Container

host with Containers. This is shown here:

docker run -i -t -p 8080:80 -v /c/users:/c/ microsoft/windowsservercore

powershell

In this example, the C:users folder on the Container host is mapped to c: on the

Container.

The RUN command provides an option to name the Container using the -name option.

When the Container name is not provided explicitly, Docker provides a dynamically

generated name to it. This is shown here, with the Container name being testContainer:

Docker run -i -t --name testContainer -p 8080:80 -v /c/users:/c/ testimage

powershell

The RUN command also provides a provision to start a Container in an interactive manner

by attaching a console to it. -i and -t are used to make a Container interactive and

PowerShell at the end of the command attaches a PowerShell console to the Container.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [189]

Farkiantech.com
||||||||||||||||||||

Containers can also start in detached mode. In this mode, the Container runs in the

background and there is no active interaction with the Container. Use -d instead of -i and

-t for running a Container in detached mode.

There are many more options, such as linking Containers, assigning networks, and

assigning values to environment variables, which are not covered in this chapter; you

should refer to the online documentation on the docker run command at

https://docs.docker.com/engine/reference/run/.

Docker ps

The ps lists all the running Containers on a Container host.

Docker ps

Using the same command with the -a flag lists all the Containers in running as well as

stopped state:

Docker ps -a

Docker start

The start command starts a stopped Container:

Docker start <<name or id of Container>>

Docker stop

The stop command stops a running Container:

Docker stop <<name or id of Container>>

Docker rm

The rm command removes a stopped Container:

Docker rm <<name or id of Container>>

Docker restart

https://docs.docker.com/engine/reference/run/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [190]

||||||||||||||||||||

The restart command stops and starts a running Container:

Docker restart <<name or id of Container>>

Docker pause

The pause command freezes a running Container:

Docker pause <<name or id of Container>>

Docker unpause

The unpause command starts a paused Container:

Docker unpause <<name or id of Container>>

Image management

This category consists of commands that help in managing images. This includes building

and removing images.

Docker build

This command helps in creating a new image from a Dockerfile. Its use is shown here:

Docker build -t <<name of image>> <<path of folder containing Dockerfile>>

This command sends the Dockerfile in a given folder along with other files in it to Docker

daemon as build context. The instructions in the Dockerfile are executed to generate a

new image. The -t flag provides a name for the image. There is a complete section on

Dockerfile later in this chapter.

Docker commit

This command creates a new image by saving an existing Container. It is to be noted that

the container should be in stopped state before it can be committed to an image. Its use is

shown here:

Docker commit <<Container id>> <<Image name>>

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [191]

Farkiantech.com
||||||||||||||||||||

Docker images

This command lists all the available images in the local repository. Its use is shown here:

Docker images

Docker rmi
This command removes an image from the local repository:

Docker rmi <<image id>>

Docker tag

This command tags an image into the local repository. The tag name helps in versioning

images. Its use is shown here:

Docker tag <<image id or name>> <<tag name>> docker tag

[image-id] microsoft/windowsservercore:1.0.0.0

The image ID can be obtained by running the docker images command.

Monitoring commands

These commands help in getting information log and configuration information about

Containers.

Docker logs

This command helps in getting the log information of a Container. Its use is shown here:

Docker logs <<Container id or name>>
Docker logs 51be6169e12a

Docker stats

This command helps in getting the resource usage of Containers. It includes information on

CPU, memory, and network usage. This command does not produce results at the time of

writing this book but eventually it should return values for resource usage. It is shown here:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [192]

||||||||||||||||||||

Docker stats <<Container id or name>>
Docker stats 51be6169e12a

For getting resource usage for all Containers, run the same command without any

Container information:

Docker stats

Docker inspect

This command helps in getting Container configuration details. It is shown here:

Docker inspect <<Container id or name>>
Docker inspect 51be6169e12a

Docker events

This command helps in getting real-time events and information from Docker Containers

and images. To see it working, two consoles are needed. Within one of the shells, execute

the command as shown here:

Docker events

This will capture all events from Containers, images, networks, and volumes. On another

shell, work with Docker client to manage Containers, images, networks, and volumes. This

will result in real-time updates to the previous shell with activities happening on this shell.

Docker registry management

Docker provides commands that make working with registries easier from the command

line. There are many centralized registries available, such as Docker Hub and h t t p s ://q u a y

. i o /. This book uses Docker Hub for all its registry purposes. Docker Hub is available at

https://hub.docker.com and an account must be created before it can be used. Creating an

account is simple and after its creation, log in to the account to create repositories.

These repositories store images and their metadata. For the purpose of this book, an account
windowsdevops is created as shown in Figure 12:

https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://quay.io/
https://hub.docker.com/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [193]

Farkiantech.com
||||||||||||||||||||

Figure 12: Signing up at hub.docker.com

After creating an account and logging in to it, repositories can be created as shown in Figure

13 and Figure 14:

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [194]

||||||||||||||||||||

Figure 14: Create Docker Hub public repository

After a public repository is created, Docker client can be used to push, pull, and search it.

Docker login

User credentials must be supplied before any activity is performed on the Docker Hub

registry. Docker client provides a login command for creating a session with the registry.

After entering this command, it will prompt for username and password and after

successful validation with the registry will allow you to push and pull images. Its use is

shown here:

PS C:> docker login
Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head

over to https://h

ub.docker.com to create one.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [195]

Farkiantech.com
||||||||||||||||||||

Username: windowsdevops

Password:
Login Succeeded

A valid username and password should be supplied for successful login. In the example

above, the windowsdevops registry name is the username used to log in.

Docker push

Docker push uploads local images to the Docker registry. Docker images must be tagged

appropriately before they can be pushed to the windowsdevops registry.

To tag an image that can be pushed to a particular registry, use the command as shown

here: docker tag testcmdandentrypoint windowsdevops/testcmdandentrypoint

The testcmdandentrypoint image is created later in the chapter. This is a custom image

created later in this chapter. You should refer to the ENTRYPOINT section in this chapter to

create this image. It must be tagged as registryname/imagename for it to be pushed to

the registry. Here, the name of registry is windowsdevops.

To push the newly tagged image, use the command as shown here:

PS C:> docker push windowsdevops/testcmdandentrypoint
The push refers to a repository
[docker.io/windowsdevops/testcmdandentrypoint]
316ecd2d4f65: Pushed d19041b142ff: Pushed latest: digest:

sha256:c2a845685b3883706e2fbb31addc7f3f36e13a19f63bfccf64401886a926c0a8

size: 733

Docker pull
Docker images can be pulled into local repository using this command. A valid login

session must exist before images can be pulled from a registry.

To pull an image from repository, use the command as shown here:

PS C:> docker pull windowsdevops/testcmdandentrypoint
Using default tag: latest
latest: Pulling from windowsdevops/testcmdandentrypoint

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [196]

||||||||||||||||||||

Digest:

sha256:c2a845685b3883706e2fbb31addc7f3f36e13a19f63bfccf64401886a926c0a8
Status: Downloaded newer image for

windowsdevops/testcmdandentrypoint:latest

Here, the Pull command supplies the name of the registry and image for download.

Understanding Dockerfile

Dockerfile is the primary building block for creating Windows Container images. It is a

simple text-based, human-readable file without any extension and is named Dockerfile.

Although there is the mechanism to name it differently, generally it is named Dockerfile.

We have already seen that every Container image is based on a base image; Dockerfile

contains instructions to create a custom Container image from a base image. These

instructions are executed sequentially from top to bottom by Docker daemon, the engine

behind all activities related to Windows Containers. The instructions refer to the command

and their parameters understood by Docker daemon. Dockerfile enables Infrastructure as

Code practices by converting the application deployment and configuration into

instructions that can be versioned and stored in a source code repository.

When building an image from Dockerfile, the file is sent to Docker daemon. For each

instruction within Dockerfile, Docker daemon creates an intermediate transient

shortlived Container, executes the instruction within it, and commits the Container as an

image layer referable through a unique identifier. Finally, after the last instruction is

executed, there will be a stack of image layers built from individual instruction, each added

on top of the previous resultant layer. They are linked together to form an image from

which a Windows Container can be created.

It is important to note that each image layer records and represents just the modification or

changes induced as a result of executing a single instruction. This intermediate image layer

is a reusable layer that can be referred by multiple Docker Images if those Docker images

contains similar Dockerfile instruction.

Windows Containers implement an aggressive caching mechanism to provide improved

user experience while building and generating images. Docker caches the intermediate

image layer in memory while executing Dockerfile. Caching of layers is implemented for

those instructions that are idempotent in nature. A layer is cached if the result of an

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [197]

Farkiantech.com
||||||||||||||||||||

instruction is deterministic and is the same every time it is executed. Repeated execution of

the same Dockerfile can benefit from caching behavior as the instructions are not

executed, instead it uses the cache layer. Caching helps in faster generation of images

during iterative repeated execution of Dockerfile.

Docker build command

Docker provides a command to create an image from Dockerfile as shown here:

Docker build -t <<Name of image>> .

The build command takes a tag name referred by -t flag as input. This name is used to

refer to the image. The period . specifies the current working directory in the shell prompt.

As good practice, there should be a single Dockerfile in a directory. Other files needed to

build a Container image can be stored within this directory and they will be sent to Docker

daemon as part of the build context. These files are available and used by daemon if they

are referred in Dockerfile.

Shell and Exec instruction forms

Instructions in Dockerfile can be authored in two forms.

Shell form

Exec form

Shell form

On Windows Server, PowerShell is used for executing shell commands. In Shell form, the

arguments to instructions are provided similar to the way they are executed on a shell

prompt as shown here:

RUN Powershell -Command Install-WindowsFeature web-server

In this example, RUN is the instruction provided by Docker, PowerShell is an executable that

accepts the command parameter, and everything on the line after command parameter is

argument to it. In this case, Install-WindowsFeature Web-server is the argument sent
to the command for installing Internet Information Service (IIS) in the Container image.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [198]

||||||||||||||||||||

When using this form, cmd /s /c is appended to every command by default.

Exec form

In the Exec form, the arguments to instructions are provided in JSON array format as

shown here:

RUN ["Powershell", "Install-WindowsFeature", "web-server"]

In this form, the command is executed in the same way as it is executed in the shell prompt.

There is no default command added to it. This form ensures the execution of instructions in

their pure form without any modification. The Exec form is generally preferred and used as

best practice. All Dockerfile instructions can be executed in shell as well as Exec form.

Dockerfile instructions

Docker provides a large number of instructions that can be used in Dockerfile for the

generation of images. In this section, we will look at some of the important instructions at

an introductory level. For complete information about all instructions in detail, refer to the

Docker site at https://docs.docker.com/engine/reference/builder/. As a general rule,

all Docker instructions are authored in capital letters to distinguish them easily from

commands and their parameters.

COMMENT

Dockerfile provides support for comments. Comments are not executed by Docker

daemon. They are meant for providing additional information about instructions to anyone

reading the Dockerfile. Comments are represented through instructions starting with a

hash symbol (#). Any text mentioned after the hash symbol is treated as a comment. A

simple example of a comment in shown here in the first line:

This image is based on microsoft/windowsservercore image
From microsoft/windowsservercore:latest

FROM

https://docs.docker.com/engine/reference/builder/

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [199]

Farkiantech.com
||||||||||||||||||||

Every custom Docker must start with the FROM instruction. Every image must have a base

image referenced on which it is based. Microsoft provides two base images for Windows

Containers. They are:

WindowsServerCore: It contains the complete Windows Server 2016 core

NanoServer: It contains the Nano Server

Each image can have multiple tags in the local repository and this information should be

provided in the Dockerfile FROM instruction for the daemon to pick up the correct image.

If a tag is not provided, the daemon tries to load the latest image tag. The image must be

tagged as latest before it can be used by the daemon.

The FROM instruction loads images from the local repository using name and version. If it

cannot find an image matching this combination in the local repository, it tries to pull the

image from a global registry. If it finds the image, it will download it along with any further

dependent images it refers to. The two aforementioned Windows-based base images are not

hosted on the default Docker public registry. They are hosted by Microsoft on Azure blob

storage and they must be available in the local repository before the custom Dockerfile

can use them. An example of using FROM instructions are shown here:

This image is based on microsoft/windowsservercore image with latest
version FROM

microsoft/windowsservercore:latest

MAINTAINER

The MAINTAINER instruction helps in providing the author name for the generated image.

Its use is shown here:

FROM microsoft/windowsservercore:latest
This image is created and maintained by Ritesh Modi
MAINTAINER "Ritesh Modi"

COPY

It is to be noted that the first statement in a dockerfile should start from
the command.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [200]

||||||||||||||||||||

The COPY instruction copies files and directories from the host (source) to the destination

path in the Container environment. These files and directories must be available to the

build context sent to Docker daemon while initiating the build. In other words, these files

and folders must be placed in the same directory as that of Dockerfile to make them

available to the build context.

It is to be noted that the destination path should use forward slashes instead of back slashes.

It takes the format shown here:

Shell form
COPY <<source file or folder>> <<destination file or folder>>
Exec form
COPY ["<<source file or folder>>", "<<destination file or folder>>"]

And its use is shown here. This example copies samplefile.txt to the C: drive in the

Container:

This image is created and maintained by Ritesh Modi
It shows the usage of COPY instruction
FROM microsoft/windowsservercore
COPY samplefile.txt C:/

ADD

The ADD instruction is similar to the COPY instruction with additional capabilities. It not

only allows copying files and folders from the build context but also from remote locations

including the Internet.

The ADD instruction copies files and directories from the host (source) to the destination

path in the Container environment. These files and directories must be available to the

build context sent to Docker daemon while initiating the build. It can also download files

from the Internet.

It is to be noted that the destination path should use forward slashes instead of back slashes.

It takes the format as shown here:

Shell form
ADD <<source file or folder>> <<destination file or folder>>
Exec form
ADD ["<<source file or folder>>", "<<destination file or folder>>"]

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [201]

Farkiantech.com
||||||||||||||||||||

An Exec form should be used if there are spaces in either the source or destination path. Its

use is shown here. This example copies samplefile.txt to the C: drive in the Container:

This image is created and maintained by Ritesh Modi
It shows the usage of ADD instruction
FROM microsoft/windowsservercore
ADD samplefile.txt C:/

The next example downloads a file from the Internet:

ADD https://www.python.org/ftp/python/3.5.1/python-3.5.1.exe
/C:/python-3.5.1.exe

WORKDIR

WORKDIR helps in setting the current working folder in the Container environment. All

instructions after using this instruction will execute within the context of the current

working folder unless it is changed again using the WORKDIR instruction. By default, the

current working directory in the Windows Container is C:. In the example shown next, the

current working directory is C:Windows.

It takes the format shown here:

WORKDIR <<Path to current working folder>>
And its usage is shown here
This image is created and maintained by Ritesh Modi
It shows the usage of WORKDIR instruction
WORKDIR "C:windows"

EXPOSE

This instruction informs Docker daemon that any Container created from this image would

listen on the network port specified as part of its argument. The port would not be

accessible during the building of an image but would be available at runtime while creating

the Container. The port is accessible at Container creation time only when using the -p flag

in Docker run command. The -p flag take the source port on the host machine and

destination port in Container environment, and maps them such that any request arriving

on the host machine with the source port is forwarded to the Container on the destination

port.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [202]

||||||||||||||||||||

It takes the format shown here:

EXPOSE <<Port number>>

And its use is shown here:

It shows the usage of EXPOSE instruction
EXPOSE 1433

ENV

ENV refers to environment variables in Windows Containers. This instruction helps in

setting up environment variables in Containers that are available during runtime. It also

helps in passing values to Containers while starting them. They help in making Containers

generic and configurable.

Docker run provides an -ENV option that can be used to override the value provided in

Dockerfile.

It takes two different formats as shown here:

In first statement, the entire string after Key and first blank is
treated as value
ENV <<Key>> <<Value>>
ENV <<Key>> = <<Value>>

And its sample usage is shown here:

This image is created and maintained by Ritesh Modi
It shows the usage of E instruction. A default value is provided that can
be overridden using -e option of docker run command

ENV "DomainName" "DefaultDomainName"

To override the value of an environment variable defined in a Dockerfile, use the -e option

while executing the docker run command as shown here. The image name must be replaced

with an actual image name before executing the following command: docker run -it -e

DomainName=WindowsServer <<ImageName>> powershell

VOLUME

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [203]

Farkiantech.com
||||||||||||||||||||

VOLUME helps in sharing a directory on the host with the Container environment. Every

write action to the filesystem and data stored in the Container is written on the topmost

layer of the Container image. This image layer is volatile, and gets deleted when the

Container is stopped and removed. Every time a Container starts, a new fresh environment

is created and previous stored data is not available. To persist and make data available

across the Container life cycle, volumes should be used. The shared folder available in the

Container environment is actually stored on the host machine at the

C:ProgramDatadockervolumes folder location. In a running Container, any data stored in

this folder gets stored on the host and is available irrespective of the state of the Container.

It takes the format shown here:

VOLUME "<<path in Container>>"
VOLUME ["<<path in Container>>"]

And its use is shown here. Anything stored in the logs directory in a container will be

available on the host machine:

It shows the usage of VOLUME instruction
VOLUME C:logs

VOLUME can also be created using the Docker run command with a -v flag. The advantage

of using volumes with the run command is that both the source on the host and the

destination in the Container paths can be provided. With Dockerfile, only the Container

mount point can be specified, which gets mapped to a folder determined by Docker on the

host. This is shown here. The folder C:logs on the host is shared within the container as

data directory at the C: drive. The image name must be replaced with an actual image

name before executing the following command:

docker run -it -v c:logs:C:data <<image name>> powershell

RUN

RUN instruction specifies commands that are executed in intermediate Containers during the

build process and the results of which are captured into the new Container image. These

commands can include anything that is possible using PowerShell and a command-line

utility tool, such as installing and configuring software, configuring operating systems, and

building file and folder layouts.

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [204]

||||||||||||||||||||

It takes the format shown here:

Shell form
RUN <<Executable and its arguments>>
Exec form
RUN ["<<Executable>>", "<<param1>>", "<<param2>>"]

And its use is shown here. It installs IIS using a Shell form:

It shows the usage of RUN instruction using shell form
It shows the usage of RUN instruction using shell form
RUN Powershell Install-WindowsFeature Web-Server

PowerShell is the executable that would execute the Install-WindowsFeature cmdlet to

install the Web-Server feature in the Container image. The next example shows the same

activity using an Exec form:

It shows the usage of RUN instruction using Exec form
RUN ["Powershell", "Install-WindowsFeature", "Web-Server"]

It is to be noted that when using any filesystem path with an Exec form, it must be escaped

using double back slashes instead of a single back slash:

RUN ["Powershell", "New-Item", "C:NewFolder"]

CMD

CMD instruction specifies the default command to be executed when creating a Container .

Multiple CMD instructions can be present in a Dockerfile; however, only the last CMD

instruction is relevant and executed as part of the creation of a Container. The CMD

instruction provides a default executable to run when no explicit executable is provided

while starting a Container through the Docker run command. At the same time, Docker

provides flexibility to be override the default CMD executable in Dockerfile and execute

the executable provided through Docker run command.

It takes the format shown here:

Shell form
CMD <<Executable and its arguments>>
Exec form
CMD ["<<Executable>>", "<<param1>>", "<<param2>>"]

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [205]

Farkiantech.com
||||||||||||||||||||

And its use is shown here. It installs IIS using a Shell form:

It shows the usage of CMD instruction using shell form
CMD Powershell

PowerShell is the executable that would execute in the Container image. The next example

shows the same activity using the Exec form:

It shows the usage of CMD instruction using Exec form
CMD ["Powershell"]

The console parameter in run command becomes optional while creating a container in an

interactive mode for an image containing this instruction as shown here. The image name

must be replaced with an actual image name before executing the following command:

docker run -it <<Image name>>

ENTRYPOINT

ENTRYPOINT instruction is similar to the CMD instruction in that it provides a default

executable with arguments when starting a Container. However, there is a slight difference.

The ENTRYPOINT instruction does not allow overriding of the executable command

through the Docker run command. This instruction makes the Container look like an

executable and as if the executable is hardcoded in the Container image.

It takes the format shown here:

Shell form
ENTRYPOINT <<Executable and its arguments>>
Exec form
ENTRYPOINT ["<<Executable>>", "<<param1>>", "<<param2>>"]

And its use is shown here. It pings the local machine using the Shell form:

It shows the usage of ENTRYPOINT instruction using shell form
ENTRYPOINT Powershell ping 127.0.0.1 -t

PowerShell is the executable that would execute the ping executable continuously. The

next example shows the same activity using the Exec form:

It shows the usage of ENTRYPOINT instruction using Exec form
ENTRYPOINT ["Powershell","ping", "127.0.0.1", "-t"]

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [206]

||||||||||||||||||||

ENTRYPOINT can work together with the CMD instruction to bring flexibility in providing

arguments to ENTRYPOINT at runtime while creating a Container through the Docker run

command. When CMD is used with the ENTRYPOINT instruction, CMD provides arguments

to the executable mentioned in the ENTRYPOINT instruction. This is shown here:

It shows the usage of ENTRYPOINT and CMD instruction working together
ENTRYPOINT ["ping","-4"]
CMD ["localhost"]

The image can be built for Dockerfile using the following command:

Docker Build -t testcmdandentrypoint "<<path to Dockerfile folder>>"

If the Dockerfile is available in the C:df folder, the command will look as shown here:

Docker Build -t testcmdandentrypoint "C:df"

And the result would look as shown here. The identifiers in this example would be different

for readers:

PS C:> docker build -t testcmdandentrypoint "c:df"
Sending build context to Docker daemon 2.048 kB
Step 1 : FROM microsoft/windowsservercore
---> 5bc36a335344
Step 2 : ENTRYPOINT ping -4
---> Running in 4529614439e8
---> 0b66180d227a
Removing intermediate Container 4529614439e8
Step 3 : CMD localhost
---> Running in 6fbbfcf5f08a
---> a317a8345283
Removing intermediate Container 6fbbfcf5f08a
Successfully built a317a8345283
PS C:>

Creating a Container from an image built from this Dockerfile will output the ping result

from the localhost. The value localhost is provided as argument by the CMD instruction to

the ENTRYPOINT instruction. The command to start a Container from the test image is

shown here:

Docker run -i -t testcmdandentrypoint

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [207]

Farkiantech.com
||||||||||||||||||||

And the result is shown here:

Pinging WIN-SHSNAVDV03B [127.0.0.1] with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
PS C:>

However, if a Container is starting with explicit values after the image name in the Docker

run command, these values replace the default CMD instruction values and are used as

argument to the ENTRYPOINT instruction. This is shown here with bing.com being used as

value to use for ping:

Docker run -i -t testcmdandentrypoint bing.com

And the result is shown here.
Pinging bing.com [204.79.197.200] with 32 bytes of data:
Reply from 204.79.197.200: bytes=32 time<1ms TTL=120
Reply from 204.79.197.200: bytes=32 time=1ms TTL=120
Reply from 204.79.197.200: bytes=32 time=1ms TTL=120
Reply from 204.79.197.200: bytes=32 time=1ms TTL=120

Ping statistics for 204.79.197.200:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 1ms, Average = 0ms
PS C:>

Summary

This chapter again covered a lot of ground from a technology perspective. It introduced

some of the most important and latest technologies that make DevOps easier and relevant.

The industry is adopting Containers as part of its deployment strategies and baking them

into its DevOps practices. In this chapter, Containers, along with some of their important

concepts, were introduced. Steps to create a Container-enabled virtual machine on Azure

were illustrated using PowerShell. Next, steps to create a Nano Server virtual machine on

Azure were provided using ARM templates. This took care of two different ways to deploy

Container-enabled environments on Azure. After this, Docker clients and Docker engines

||||||||||||||||||||

Nano, Containers, and Docker Primer

 [208]

||||||||||||||||||||

were introduced. Some of the important commands were explained using the Docker client

to manage the Container life cycle, images, monitoring, and registries. Finally, Dockerfile

was discussed at length, along with its instructions. They help in creating custom images.

This chapter will form the backbone to the rest of the chapters, as environments, Docker

client, and Dockerfile are used extensively in this book.

||||||||||||||||||||

||||||||||||||||||||

Building a Sample

Application5

In previous chapters, we briefly delved into multiple technologies that enable and help

implement DevOps. We discussed tools like Visual Studio Team Services providing

continuous integration, deployment, and delivery services; Azure Infrastructure as a

Service, providing infrastructure and platform services to provision and host environments

needed during software development phases like development, testing, pre-production,

and production; declarative and imperative scripting languages such as JSON, ARM

Templates, PowerShell, Desired State Configuration, and Pester to automate provisioning,

configuration and the testing of environments. We experienced newer platforms introduced

with Windows Server 2016 including Nano Server and Windows Containers for hosting

applications as well.

This chapter will provide an overview of a sample web-based application named Online

Pharmacy built using ASP.NET MVC and Azure SQL. The goal of application is to enable

readers to quickly deploy it with minimal changes on the development environment. It is

not a full-fledged functional production-ready application implementing the best practices

of web development. It is just good enough to help in decoding and implementing DevOps

principles and practices.

This chapter is accompanied with complete source code for this sample application, and

readers are encouraged to use it to experience it. They can also modify and extend it

according to their need. This chapter is not step-by-step guide to create this application, but

it explores major concepts and components used during building this application.

Now, it's time to get an overview of sample application that can be used as medium to

implement and showcase DevOps principles and practices throughout this book in

subsequent chapters.

||||||||||||||||||||

Building a Sample Application

 [210]

||||||||||||||||||||

Experiencing the application

Online Pharmacy is a simple data-based application built for fictional pharmacy shops with

three user stories:

Create, edit, delete, view history, and the details of drugs

Add, edit, delete, and view history, and the details of drugs inventory

Add, edit, delete, and view history, and the details of drug sales

The home page of sample application is shown in Figure 1.

There are three important links at the left-hand side navigation pane. The Drug Master

button leads to the drug management landing page, which by default lists all drugs.

Specific drug information can be managed by editing, deleting, and creating new medicines

from here. This is shown in Figure 2.

Figure 2: A sample application drug management page

||||||||||||||||||||

Building a Sample Application

 [211]

Farkiantech.com
||||||||||||||||||||

After a drug is on boarded, its inventory can be added and managed using the Drug

Inventory button on the left navigation pane. Each inventory item can be individually

edited, deleted, and details can be viewed from here. This is shown in Figure 3.

Once both drugs and their inventory are added, the application enables selling them to
customers. The All Sales button in the left-hand side navigation pane is an entry point to

sales functionality and helps in navigating to sales landing page, which by default lists all

the sales done till date. This is shown in Figure 4.

Figure 4: The sample application drug sale management page

There can be multiple drugs sold as part of every sale. Drug line items can be managed
using the Edit link available to each sale. This is shown in Figure 5.

||||||||||||||||||||

Building a Sample Application

 [212]

||||||||||||||||||||

Readers are free to add additional functional features, security features such as

authentication, authorization, advance validation, and technology components such as

caching.

Application architecture

It is a simple two-tier architecture with web application deployed in Internet Information

Service (IIS) as a frontend database and Azure SQL Server as backend database. The

application connects to the database using connection string defined in web.config. The

connection string is generated and stored in web.config using the Entity Framework.

IIS web application is hosted on Windows Containers on multiple load balanced Azure

Virtual Machines. This is shown in Figure 6.

||||||||||||||||||||

Building a Sample Application

 [213]

Farkiantech.com
||||||||||||||||||||

Preparing development environment

In Chapter 3, DevOps Automation Primer, we installed Visual Studio 2015 Community

Edition on Windows Server 2016 machine. It is to be noted that the development

environment can be Windows 10 machine as well. Windows Server 2016 environment will

be used as development environment in this book. Next step in setting up the development

environment is provision Azure SQL Server and Database. SQL Server 2014 Management

Studio is needed to work with Azure SQL and it can be downloaded from

https://www.microsoft.com/en-us/download/details.aspx?id=42299.

Select MgmtStudio 64BITSQLManagementStudio_x64_ENU.exe as shown in Figure 7 here.

https://www.microsoft.com/en-us/download/details.aspx?id=42299

||||||||||||||||||||

Building a Sample Application

 [214]

||||||||||||||||||||

Save the executable and extract the setup files to an appropriate location.

One of the prerequisite of SQL Server 2014 Management Studio is the availability of .NET 3.5
runtime on development box. Since our development box is an Azure virtual machine, the

Windows Server 2016 image files are not available to install additional features like .NET 3.5.

There are multiple ways to install .NET 3.5. When installing .NET 3.5, it asks for the physical
location of binaries. Windows server binaries are not available within the virtual machine by

default on Azure. The binaries for .NET 3.5 should be downloaded or copied over to the
virtual machine. In this case, we download a Windows Server 2016 image on to the local

machine, mount it and extract the binaries related to .NET 3.5. To install .NET 3.5, a Windows

Server 2016 server image must be downloaded from h t t p s ://w w w . m i c r o s o f t . c o m /e n - u s

/e v a l c e n t e r /e v a l u a t e - w i n d o w s - s e r v e r - 2016, mounted on a drive,

and sxs folder in sources folder containing microsoft-windows-netfx3-

ondemandpackage.cab should be copied to development environment. The sxs folder is

copied to C: drive on development virtual machine. This is shown in Figure 8.

Figure 8: .NET 3.5 runtime source file in mounted ISO image

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016

||||||||||||||||||||

Building a Sample Application

 [215]

Farkiantech.com
||||||||||||||||||||

Now, .NET 3.5 can be installed using Server manager by providing the copied folder as

alternate path. This is shown in Figure 9.

The step of installing .NET 3.5 runtime is needed only for the development environment. It

is not needed in test, pre-production, production or any other environment because these

environments would be hosted within windows containers and SQL Server Management

Studio is not required on these environments.

After the .NET 3.5 pre-requisite is installed, start the SQL Server Management Studio

installation process by executing the extracted Setup.exe file.

Installing SQL Server Management Studio

On development environment, developers will frequently work with databases. This

requires installation of SQL Server Management Studio to connect to Azure SQL databases.

1. SQL Server Management Studio is only required on development box for

connecting to Azure SQL and authoring of database tables. It is not required on

test, authoring, pre-production or production environments. Start installation

using SQLManagementStudio_x64_ENU.exe.

2. Select SQL Server stand-alone installation option and Accept the license terms

as shown in Figure 10. The setup will install necessary files and run rules to check

||||||||||||||||||||

Building a Sample Application

 [216]

||||||||||||||||||||

whether there are potential problems while installing SQL Server. It will show

warnings and failures, and they should be rectified before proceeding.

Figure 10: SQL Server Management Studio installation

3. Select the features as shown in Figure 11 on the Feature Selection screen.

||||||||||||||||||||

Building a Sample Application

 [217]

Farkiantech.com
||||||||||||||||||||

Figure 11: SQL Server Management tool feature selection

4. The installation process will take some time to complete and once complete

should show the status as shown in Figure 12.

||||||||||||||||||||

Building a Sample Application

 [218]

||||||||||||||||||||

Creating Azure SQL Server and SQL database

After Installing SQL Server Management Studio, its time to provision Azure SQL Server

and database. Following steps should be executed for the same:

1. Login into Azure subscription using appropriate credentials. Navigate to SQL

Database and create a new SQL server and database as shown in Figure 13.

Figure 12: The successful installation of the SQL Server Management Studio

||||||||||||||||||||

Building a Sample Application

 [219]

Farkiantech.com
||||||||||||||||||||

2. Name the Database as medicine, select appropriate subscription, provide

resource group name, Blank database as source, devopswin2016-dev as server

name, provide credentials and location. Click the Create button on database

blade to start creating both server and database.

3. After the server and database are provisioned, navigate to the server properties
blade and click on Firewall menu item. The next Figure 14 shows the Firewall

Figure 13: Provision Azure SQL server and database

||||||||||||||||||||

Building a Sample Application

 [220]

||||||||||||||||||||

configuration blade. Click on Add client IP to add the development machine IP

address to the list of IP addresses allowed to connect to Azure SQL and database.

Figure 14: Adding client IP as to Azure SQL Server Firewall list

Creating database tables

Now that both Management Studio and SQL Database are provisioned, the provided

OnlineMedicine.sql script can be executed within Management Studio to create the

database structure on SQL Database.

||||||||||||||||||||

Building a Sample Application

 [221]

Farkiantech.com
||||||||||||||||||||

Open Management Studio and connect to Azure SQL using its DNS name. The DNS

information is available from Azure SQL server blade as shown here in Figure 15.

Figure 15: Finding the Azure SQL server DNS name and IP address

The onlinePharmacy.sql file contains the entire SQL script for the creation of table. It is

important to note that this script does not contain script to create a database. Both Azure

SQL server and database should be available before executing this script. On all

environments apart from development environment, both the server and database are

created using Azure Resource Manager Templates.

||||||||||||||||||||

Building a Sample Application

 [222]

||||||||||||||||||||

Also, if a developer changes any database object on development environment should

add/remove/change the relevant script in this file to ensure that database schema in

development and all other environments are same.

The steps for the same are shown here:

1. Open SQL Server Management Studio and open OnlinePharmacy.sql file from

location storing this file.

2. Ensure that medicine is shown as current database. Run the entire script using F5

key or Run command from toolbar. It will create the database and table structure

with appropriate relationships as shown in Figure 16.

Figure 16: Executing sample SQL script on Azure SQL Server

Next, it's time to understand the database schema.

Understanding database schema

||||||||||||||||||||

Building a Sample Application

 [223]

Farkiantech.com
||||||||||||||||||||

Defining and designing database schema requires a complete book by itself. They are

fullblown topics, and we will make it simple for the purpose of our sample application and

book. With this in perspective, a single database with four tables are defined. The important

point here is to show how a database and its objects are deployed and configured in

containers rather than the complexity of designing a database schema.

The database schema containing four tables and its columns are shown in Figure 17.

Figure 17: SQL database schema for Online Pharmacy sample application

The Drug table holds information about drugs/medicines and its attributes. The DrugID

column is auto-generated identity column. The value for this column is not provided by

frontend web application or any other source. It is auto generated when an entry is made

||||||||||||||||||||

Building a Sample Application

 [224]

||||||||||||||||||||

into the table. The DrugInventory table holds the available stock of a drug. It is related to

DrugID column of Drug table through referential integrity constraints (primary and

foreign keys). The Sale table contains details about Patient, Doctor and is related to

SaleItems table that contains details about all drugs sold as part of sale process. SaleItem is

also linked to the Sale table through primary-foreign key referential integrity constraints.

The SaleItem table also references Drug table to ensure that only drugs available in this

table can be sold. The database schema OnlinePharmacy.sql is available as part of

accompanied source code.

Setting up Visual Studio solution

After creating database structure, it's time to focus on visual studio solution. As mentioned

before, the code accompanied with chapter should be used as application under DevOps

practices.

A Visual Studio solution OnlinePharmacy with three projects is available for use.

The first project OnlinePharmacy is an ASP.NET MVC Web Application, the second project

OnlinePharmacy.Configuration consists of templates and scripts related to configuration

management and Infrastructure as code for the application and the last project
OnlinePharmacy.Tests is unit testing project for the web application project.

The entire source code for all three projects is accompanied with this chapter. Next, let's

explore the solution and its contained projects

Open Visual Studio 2015 Community edition, select and open OnlinePharmacy solution.

The entire solution structure is shown in Figure 18.

||||||||||||||||||||

Building a Sample Application

 [225]

Farkiantech.com
||||||||||||||||||||

Figure 18: Visual Studio solution structure

Modify web.config connection string

||||||||||||||||||||

Building a Sample Application

 [226]

||||||||||||||||||||

Web application needs a connection string to connect to Azure SQL. This connection string

is stored in web application's web.config file as shown here. Readers are advised to

change the connection string highlighted in bold before running the application.

<connectionStrings>
<add name="medicineEntities"
connectionString="metadata=res://*/Models.PharmacyModel.csdl|res://*/Models

.PharmacyModel.ssdl|res://*/Models.PharmacyModel.msl;provider=System.Data.S
qlClient;provider connection string="data

source=tcp:devopswin2016.database.windows.net,1433;initial
catalog=medicine;Password=xxxxxxxxxx;User
ID=xxxxxxxxxx;MultipleActiveResultSets=True;App=EntityFramework""
providerName="System.Data.EntityClient" />

</connectionStrings>

The web.config connection string change is the only change needed to be performed

within the solution to make it work on development environment. The changes in

connection string should reflect appropriate password, user ID, data source and initial

catalog.

I want to provide emphasis that IP address of your development environment must be

registered with Azure SQL server Firewall rules. Missing this step will result in exceptions

from the application.

Publish profile for web application

The OnlinePharmacy web application will eventually be deployed using web deploy

packages generated in build pipeline for all the environments apart from development

environment. For development environment, these packages are generated using a publish

profile.

A publish profile named Release is already created within the project. You can view the

profile by right clicking on the project and select Publish from context menu as shown in

Figure 19.

||||||||||||||||||||

Building a Sample Application

 [227]

Farkiantech.com
||||||||||||||||||||

Figure 19: Viewing Publish profile

On the resultant wizard, you can change the location of web deploy packages currently at

C:Packages.

||||||||||||||||||||

Building a Sample Application

 [228]

||||||||||||||||||||

The packages get generated while building the project. Web deploy packages generates five

files as shown in Figure 20.

 A [project name].zip file: This package contains all the assemblies, files,

database scripts, and resources required to recreate your web application on a IIS

web server.

 A [project name].deploy.cmd file: This contains a set of parameterized web

deploy commands that publish your web deployment package to a IIS web

server.

 A [project name].SetParameters.xml file: This provides a set of parameter

values to the MSDeploy.exe command. This file gets the values from the project
configuration and Publish profile. Values in this file can be changed manually or

can use Parameters.xml file to change the values at runtime which is discussed

next.

More details on this subject is available at h t t p s ://w w w . a s p . n e t /w e b - f o r m s /o v e r v i e w /d e

p l o y m e n t /w e b - d e p l o y m e n t - i n - t h e - e n t e r p r i s e /c o n f i g u r i n g - p a r a m e t e r s - f o r - w e b - p a c

k a g e - d e p l o y m e n t .

You should not change other settings in this profile because they are consumed in Chapter

9, Continuous Integration, in build pipeline.

Parameters.xml

As mentioned before, the web application will be deployed using web deploy packages

using build pipeline on IIS. The Website name in IIS can be different for different

environment. This file helps in parameterizing properties and settings that vary between

destination environments. The build pipeline in Chapter 9, Continuous Integration, changes

the website name dynamically. Parameters.xml file works along with web deploy

https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
https://www.asp.net/web-forms/overview/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment

||||||||||||||||||||

Building a Sample Application

 [229]

Farkiantech.com
||||||||||||||||||||

packages and help pass website name values at runtime. Readers are recommended to view

code for this file available at root of web application. For more understanding with regard

to usage of Parameters.xml file refer to link h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a

r y /f f 398068(v =v s . 110). a s p x .

Running the sample application

The OnlinePharmacy web application should already be set as startup project. If not set it

as a startup project as shown here in Figure 21 and start the application using F5 key or
Start command from toolbar.

Figure 21: Setting up startup project in Visual Studio

Understanding Visual Studio Solution

The steps mentioned in the sections till the end of unit testing are provided with two

purposes in mind.

Explain the MVC and Entity Framework concepts.

https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff398068(v=vs.110).aspx

||||||||||||||||||||

Building a Sample Application

 [230]

||||||||||||||||||||

Discuss important aspects of how this sample application is created. This

knowledge will be useful to create your own MVC application.

You may ignore to perform these steps in your development environment as Setting up

Development Environment to run Sample Web App section has already explained steps to

consume the accompanying code.

Entity Framework

Web application interacts and stores data in SQL Server database. Microsoft provides Entity

Framework as object-relationship mapping tool to fast track data access development.

Entity Framework 6.0 is the most recent version available and is used in this application.

Entity Framework provides multiple approaches to access data. There is a code first

approach where database schema is generated from models and code in an application.

There is also a database first approach in which necessary models, entities, database
context, and plumbing code is generated from database schema. The OnlinePharmacy

application uses the database approach. However, readers are free to use any approach they

are comfortable and their design demands. More details about steps used to create Entities

and model is provided at h t t p s ://w w w . a s p . n e t /m v c /o v e r v i e w /g e t t i n g - s t a r t e d /d a t a b a

s e - f i r s t - d e v e l o p m e n t /c r e a t i n g - t h e - w e b - a p p l i c a t i o n .

The application model and entities used in this application are available in Models folder of

web application. These entities are Drug, DrugInventory, Sale, and SaleItem are generated

as a result of Entity Framework usage. These entities are shown in Figure 22.

https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application
https://www.asp.net/mvc/overview/getting-started/database-first-development/creating-the-web-application

||||||||||||||||||||

Building a Sample Application

 [231]

Farkiantech.com
||||||||||||||||||||

Both the connection string and entities are generated through Entity Framework wizard. If

there are subsequent changes in database schema after generating the model, either the

model needs to be updated using Visual Studio or the existing model should be deleted

before regenerating the model.

There are no changes done to the generated entities apart from a single change. A custom

validator InventoryCheckValidator is added as an attribute to quantity property of

SaleItem class. This validator class checks the availability of a drug/medicine in inventory

before it can be sold. The code for this class is available in accompanied source code. The

class implements the ValidateAttribute abstract class and the IsValid method. This

method queries and sums all inventories added for a medicine as well as sums up all

quantities sold in past and compares the difference between them with current sale

quantity. It returns an appropriate message with success or failure as result. Readers are

encouraged to look into the code from available source code.

Controllers and Views

||||||||||||||||||||

Building a Sample Application

 [232]

||||||||||||||||||||

Now that database, model, and data connection has been set up, it's time to look into
controllers and views. The web application uses the ASP.NET Web Application template

from Web section as shown in Figure 23.

Figure 23: Selecting ASP.NET Web Application project template

.NET framework 4.5.2 is selected as framework selection. Application Insights checkbox is

checked. The project name is OnlinePharmacy. The type of project as shown in Figure 24

selected is MVC from ASP.NET 4.5.2 Templates with Add unit tests project added. By

default, the name of the project would be the name of ASP.NET MVC project with tests

appended as suffix and the default name is used for unit test project.

||||||||||||||||||||

Building a Sample Application

 [233]

Farkiantech.com
||||||||||||||||||||

Figure 24: Selecting MVC as project template and adding unit tests project

Alternatively, these two projects could be created after starting from a blank template and

adding new projects to it.

Controllers

Both the controllers sand views are generated using the scaffolding feature provided by

visual studio and MVC project template. Steps used for generating controllers and views

are provided at h t t p s ://w w w . a s p . n e t /m v c /o v e r v i e w /g e t t i n g - s t a r t e d /d a t a b a s e - f i r s t

- d e v e l o p m e n t /g e n e r a t i n g - v i e w s . There are four controllers, DrugsController,

https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views
https://www.asp.net/mvc/overview/getting-started/database-first-development/generating-views

||||||||||||||||||||

Building a Sample Application

 [234]

||||||||||||||||||||

DrugInventoriesController, SalesController and SaleItemsController, one corresponding

to each model and five views for each controller. There is an additional controller
IndexController that forms the Home page of the application. The controllers are shown

next in Figure 25.

Figure 25: Controllers in visual studio sample web project

Views

As mentioned, there are five major views per controller. These views are used while

creating, deleting, editing, listing and homepage for each controller and model. These are

shown next in Figure 26.

||||||||||||||||||||

Building a Sample Application

 [235]

Farkiantech.com
||||||||||||||||||||

Figure 26: Views in visual studio sample web project

After the code is generated, appropriate changes in views and controllers are done to

compose the application.

Readers are advised to refer to accompanied source code to understand
the code changes.

||||||||||||||||||||

Building a Sample Application

 [236]

||||||||||||||||||||

By default, the application shows the index view related to the index controller. This is

achieved by modifying the Start Action project properties as shown in Figure 27.

Configuration management

A new class library project is added to host all configuration management related scripts, templates and

configuration. It has four folders

DSCScripts: This folder contains all Desired State Configuration related

scripts

PSScript: This folder contains all PowerShell scripts

Templates: This folder contains Azure Resource Manager Templates and

DockerFile

Tests: This folder contains Pester unit and Operational Validation tests

All these files in the project are discussed in details from Chapter 7, Configuration

Management, to Chapter 10, Continuous Delivery and Deployment.

Unit testing

Controllers are the core for working of the ASP.NET MVC application. They are the first

point of contact for request and coordinates both with models and views to send response

back to user. Unit testing refers to the process of testing every code path in isolation to

||||||||||||||||||||

Building a Sample Application

 [237]

Farkiantech.com
||||||||||||||||||||

verify its actual working compared with an expected result. Unit test are written as part of

unit testing process and includes multiple small and discrete tests.

Although a fully functional application consists of hundreds and thousands of unit tests, for
the purpose of OnlinePharmacy sample application, few unit test are written and executed

to demonstrate unit testing process as part of DevOps continuous integration practice and

validate the correctness of code.

In general, controllers invoke data access operations either directly in its class or indirectly

by delegating data access operations to some dedicated class. In both cases, the calls are

time-consuming and resource intensive in nature. Having hundreds of tests each creating

database connection, working on data, and eventually tearing them down takes

considerable long time to execute them. As a general rule, it should not considerable long

time to execute unit test in a continuous integration pipeline. Every commit or check-in of

code will execute unit test, and they should execute without any time lag. To overcome and

execute tests quickly, mock and fake objects should be used through dependency injection

to simulate data access from controllers rather than invoking them directly.

Both the approaches of accessing data directly or working through mock and fake objects

are correct in their own right and can be used depending on how many tests are to be

executed, whether data is allowed to be accessed for unit testing and time consumed for

data operations.

In this chapter, mock objects are used for unit testing along with controllers for a single

Entity. Readers should complete unit test for other entities as an exercise after referring to
source code for unit test. The sample application has five controllers, and DrugController is

used for the purpose of showcasing the approach of mocking data access objects.

Also, readers should judge the best approach for themselves based on guidelines provided

here.

The unit test project was already created while creating the OnlinePharmacy solution. The

project structure is shown here in Figure 28.

||||||||||||||||||||

Building a Sample Application

 [238]

||||||||||||||||||||

The unit testing project OnlinePharmacy.Tests by default creates a Controllers folder.

The unit test code for controllers should be hosted in this folder.

Furthermore, the unit test will be testing controllers and instantiating objects from

controller and model classes. To make these classes available to a unit testing project, a
reference to OnlinePharmacy assembly must be taken. This is shown in Figure 29.

Rightclick on references item and select Add Reference. Select Project and ensure that the

OnlinePharmacy project is selected.

Figure 29: Setting up references to OnlinePharmacy project assembly

Right-click on the Controllers folder, click on Add and select the unit test menu item.

||||||||||||||||||||

Building a Sample Application

 [239]

Farkiantech.com
||||||||||||||||||||

This will create a new class UnitTest1 in file UnitTest1.cs. Rename the file to

DrugUnitTests.cs. Also rename the class to DrugControllerTests and remove all code

within the class.

Unit testing DrugController

The code generated by Visual Studio for controllers accesses the data context directly by

default. The implementation of DrugController is modified such that it no more accesses

data context directly. Instead a new interface, IDrug is declared with methods that

performs data access operations within the Model folder. The code for IDrug interface is

shown here:

public interface IDrug
 {
 IEnumerable<Drug> GetAllDrugs();

void CreateDrug(Drug newDrug);

void EditDrug(Drug oldDrug);

void DeleteDrug(Drug oldDrug);

Drug GetDrugDetails(int? id);
 }

The GetAllDrugs method returns all drugs available in Drug table

The CreateDrug method should create a new Drug entry in Drug table

The EditDrug method should update and modify existing Drug in Drug table

The DeleteDrug method should delete a Drug from Drugs table

The GetDrugDetails method should provide details about a particular drug

represented by DrugID

A class DrugRepository is defined in the same class file implementing the IDrug

interface. The code for DrugRepository is shown here:

public class DrugRepository : IDrug
 {
 private medicineEntities db = new medicineEntities();
 public void CreateDrug(Drug newDrug)
 {
 db.Drugs.Add(newDrug);

db.SaveChanges();
 }

||||||||||||||||||||

Building a Sample Application

 [240]

||||||||||||||||||||

 public void DeleteDrug(Drug oldDrug)
 {
 db.Drugs.Remove(oldDrug);

db.SaveChanges();
 }
 public void EditDrug(Drug oldDrug)
 {
 db.Entry(oldDrug).State = EntityState.Modified;
 db.SaveChanges();
 }
 public IEnumerable<Drug> GetAllDrugs()
 {
 return db.Drugs.ToList();
 }
 public Drug GetDrugDetails(int? id)
 {
 Drug drug = db.Drugs.Find(id);
 return drug;
 }
 }

The code for interacting with data context is the same as that witnessed in controller class.

The data context code has been removed from controller and placed in five discreet

methods in the DrugsController class. The DrugsController class instead of accessing

data context will access DrugRepository class.

DrugsController is further modified by adding a new parameterized constructor. This

constructor accepts any object derived from the IDrug interface and stores it in a private

variable. All methods in the DrugsController class uses this object to perform its

databased operations. A new mock repository class will be created implementing the IDrug

interface and passed to controller class using parameterized constructor. When the methods

of the DrugsController class are invoked, they will invoke the mock repository methods

instead of the DrugRepository class.

The code for the DrugsController class is shown here:

using System;
using System.Collections.Generic;
using System.Data; using

System.Data.Entity; using

System.Linq; using

System.Net; using

System.Web; using

||||||||||||||||||||

Building a Sample Application

 [241]

Farkiantech.com
||||||||||||||||||||

System.Web.Mvc; using

OnlinePharmacy.Models; using

System.Web.Routing;
namespace OnlinePharmacy.Controllers
{
 public class DrugsController : Controller
 {
 private IDrug _drugObject;

public DrugsController()
 {
 _drugObject = new DrugRepository();
 }
 public DrugsController(IDrug _drug)
 {
 _drugObject = _drug;
 }
 // GET: Drugs
 public ActionResult Index()
 {
 return View("Index",_drugObject.GetAllDrugs());
 }
 // GET: Drugs/Details/5
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Drug drug = _drugObject.GetDrugDetails(id);
 if (drug == null)
 {
 return HttpNotFound();
 }
 return View("Details",drug);
 }
 // GET: Drugs/Create

public ActionResult Create()
 {
 return View("Create");
 }
 // POST: Drugs/Create
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Create([Bind(Include =

||||||||||||||||||||

Building a Sample Application

 [242]

||||||||||||||||||||

 "DrugID,Name,Form,Route,IsRestricted,Purpose,
 Description,Rate")] Drug drug)
 {
 if (ModelState.IsValid)
 {
 _drugObject.CreateDrug(drug);

return new RedirectToRouteResult(new
 RouteValueDictionary(new {
 action = "Index", controller = "Drugs" }));
 }
 return View("Create",drug);
 }
 // GET: Drugs/Edit/5
 public ActionResult Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Drug drug = _drugObject.GetDrugDetails(id);
 if (drug == null)
 {
 return HttpNotFound();
 }
 return View("Edit",drug);
 }
 // POST: Drugs/Edit/5
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Edit([Bind(Include =
 "DrugID,Name,Form,Route,IsRestricted,Purpose,
 Description,Rate")] Drug drug)
 {
 if (ModelState.IsValid)
 {
 _drugObject.EditDrug(drug);

return new RedirectToRouteResult(new
 RouteValueDictionary(new {
 action = "Index", controller = "Drugs" }));
 }
 return View("Edit", drug);
 }
 // GET: Drugs/Delete/5
 public ActionResult Delete(int? id)

||||||||||||||||||||

Building a Sample Application

 [243]

Farkiantech.com
||||||||||||||||||||

 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 /* Drug drug = db.Drugs.Find(id); */
 Drug drug = _drugObject.GetDrugDetails(id);
 if (drug == null)
 {
 return HttpNotFound();
 }
 return View("delete", drug);
 }
 // POST: Drugs/Delete/5
 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 public ActionResult DeleteConfirmed(int id)
 {
 Drug drug = _drugObject.GetDrugDetails(id);
 _drugObject.DeleteDrug(drug);

return new RedirectToRouteResult(new
 RouteValueDictionary(new {
 action = "Index", controller = "Drugs" }));
 }
 }
}

It can be seen that by default DrugsController uses the data access DrugRepository

class, but using the new constructor, the data access class can be overridden with a mock

object that instead of accessing database would provide in-memory data to the controller.

Mocking Drug data access class

A new class file MockDrugRepository.cs is added to the Controllers folder in the unit

test project, and a class MockDrugRepository is defined in this file. This class implements

the IDrug interface and implements all the methods provided by it. However, instead of

accessing database context, this class creates a list data structure in-memory and uses it as

its database. The entire code for this class is shown here:

using System;
using System.Collections.Generic;

||||||||||||||||||||

Building a Sample Application

 [244]

||||||||||||||||||||

using System.Linq; using

System.Text; using

System.Threading.Tasks; using

OnlinePharmacy.Controllers; using

OnlinePharmacy.Models;
namespace OnlinePharmacy.Tests.Controllers
{
 public class MockDrugRepository : IDrug
 {
 private List<Drug> drugs = new List<Drug>();
 public MockDrugRepository()
 {
 drugs = new List<Drug>
 {
 new Drug {
 DrugID = 1,
 Description = "Paracetamol drug",
 Form = "tablet",
 IsRestricted = false,
 Name = "Paracetamol",
 Purpose = "Body pain killer",
 Rate = 10,
 Route = "Oral"
 },

new Drug {
 DrugID = 2,
 Description = "Percocet drug",
 Form = "tablet",
 IsRestricted = true,
 Name = "Percocet",
 Purpose = "Body pain killer",
 Rate = 20,
 Route = "Oral"
 }
 };
 }
 public void CreateDrug(Drug newDrug)
 {
 drugs.Add(newDrug);
 }
 public void DeleteDrug(Drug oldDrug)
 {
 drugs.Remove(oldDrug);
 }

||||||||||||||||||||

Building a Sample Application

 [245]

Farkiantech.com
||||||||||||||||||||

 public void EditDrug(Drug oldDrug)
 {
 var drug = drugs.Where(d => d.DrugID ==

oldDrug.DrugID).FirstOrDefault();
 drugs.Remove(drug);

drugs.Add(oldDrug);
 }
 public IEnumerable<Drug> GetAllDrugs()
 {
 return drugs;
 }
 public Drug GetDrugDetails(int? id)
 {
 return drugs.SingleOrDefault(d => d.DrugID == id);
 }
 }
}

Objects created from this class will be injected into the controller using its parameterized

constructor in all our unit test for DrugsController.

Drug controller unit tests

Any class decorated with the [TestClass] attribute is treated as a class containing a unit

test and any method within a unit test class with the [TestMethod] attribute is treated as a

single discreet unit test. For the purpose of testing the drug controller class with mock data

access, 13 unit test are written. There can be more unit tests for this controller, but these unit

tests are good representation.

A common pattern in all the tests is that each of them creates a new instance of mock data

repository class MockDrugRepository and passes it as argument to the new

DrugsController class. Methods of controller classes are invoked, which eventually

invokes the methods within the mock object.

The unit test cases along with their code is shown here:

 IndexViewNameCheck: This unit test tests the name of the view returned by

controller's Index action method:

 [TestMethod]
 public void IndexViewNameCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();

||||||||||||||||||||

Building a Sample Application

 [246]

||||||||||||||||||||

 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Index() as ViewResult;
 Assert.AreEqual("Index", result.ViewName);
 }

 IndexObjectsCheck: This unit test tests that the collection returned by the

controller's Index action method returns the expected objects:

 [TestMethod]
 public void IndexObjectsCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Index() as ViewResult;
 IEnumerable<Drug> data = (IEnumerable<Drug>)result.Model;
 List<Drug> list = new List<Drug>(mock.GetAllDrugs());
 CollectionAssert.Contains(data.ToList(), list[0]);
 CollectionAssert.Contains(data.ToList(), list[1]);
 }

||||||||||||||||||||

Building a Sample Application

 [247]

Farkiantech.com
||||||||||||||||||||

IndexNotNullCheck: This unit test checks that the return value from the

controller's Index action method is not null:

 [TestMethod]
 public void IndexNotNullCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Index() as ViewResult;
 Assert.IsNotNull(result);
 }

 DetailsValidDrugIDCheck: It checks that the DrugID returned by the

Details action method is the same as expected:

 [TestMethod]
 public void DetailsValidDrugIDCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Details(1) as ViewResult;
 Assert.AreEqual(1, ((Drug)result.Model).DrugID);
 }

 DetailsValidNameCheck: It checks that the Name returned by the Details

action method is the same as expected.

 [TestMethod]
 public void DetailsValidNameCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Details(1) as ViewResult;
 Assert.AreEqual("Paracetamol", ((Drug)result.Model).Name);
 }

DetailsNotNullCheck: It checks that data returned by the controller's Detail

action method is not null:

 [TestMethod]
 public void DetailsNotNullCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();

||||||||||||||||||||

Building a Sample Application

 [248]

||||||||||||||||||||

 DrugsController drug = new DrugsController(mock);
 ViewResult result = drug.Details(1) as ViewResult;
 Assert.IsNotNull(result);
 }

 DeleteViewNameCheck: This unit test tests the name of the view returned by

controller's Index action method. It first creates a new Drug object and then

deletes the same:

 [TestMethod]
 public void DeleteViewNameCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 Drug newDrug = new Drug
 {
 DrugID = 10,
 Description = "A dummy medicine",
 Form = "Capsule",
 Route = "Oral",
 IsRestricted = false,
 Name = "Dummy",
 Purpose = "Does not do anything",
 Rate = 100
 };
 drug.Create(newDrug);
 RedirectToRouteResult result =
 (RedirectToRouteResult)drug.DeleteConfirmed(10);
 Assert.AreEqual("Index", result.RouteValues["action"]);
 }

DeleteNullCheck: This unit test tests that no Drug object is returned after

deleting it using the controller's DeleteConfirmed action method:

 [TestMethod]
 public void DeleteNullCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 ViewResult deleteResult = drug.DeleteConfirmed(1) as
ViewResult;
 ViewResult result = drug.Details(1) as ViewResult;
 Assert.IsNull(result);

||||||||||||||||||||

Building a Sample Application

 [249]

Farkiantech.com
||||||||||||||||||||

 }

 CreateNoNullCheck: This unit test tests that controller's Create action method

creates a new Drug object and that invoking Details method returns an object:

 [TestMethod]
 public void CreateNotNullCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 Drug newDrug = new Drug {
 DrugID = 3,
 Description = "Insulin injection",
 Form = "Inject",
 Route = "Injection",
 IsRestricted = false,
 Name = "Insulin",
 Purpose = "Sugar control",
 Rate = 100
 };
 ViewResult createResult = drug.Create(newDrug) as
 ViewResult;
 ViewResult result = drug.Details(3) as ViewResult;
 Assert.IsNotNull(result);
 }

 CreateSuccessCheck: This unit test tests that controller's Create action

method creates a new Drug object and that invoking Details method returns

the same object:

 [TestMethod]
 public void CreateSuccessCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);

||||||||||||||||||||

Building a Sample Application

 [250]

||||||||||||||||||||

 Drug newDrug = new Drug {
 DrugID = 5,
 Description = " Amoxicillin antibiotic",
 Form = "Liquid",
 Route = "Oral",
 IsRestricted = false,
 Name = "Amoxil",
 Purpose = "cold and cough",
 Rate = 50
 };
 ViewResult createResult = drug.Create(newDrug) as ViewResult;
 ViewResult result = drug.Details(5) as ViewResult;
 Assert.AreEqual(5, ((Drug)result.Model).DrugID);
 }

 CreateViewNameCheck: This unit test tests the name of the view returned by

controller's Create action method. It creates a new Drug object:

 [TestMethod]
 public void CreateViewNameCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 Drug newDrug = new Drug {
 DrugID = 4,
 Description = "Pencillin",
 Form = "Inject",
 Route = "Injection",
 IsRestricted = true,
 Name = "Pencillin",
 Purpose = "Antibiotic",
 Rate = 200
 };
 RedirectToRouteResult result =
(RedirectToRouteResult)drug.Create(newDrug);
 Assert.AreEqual("Index", result.RouteValues["action"]);
 }

 EditViewNameCheck: This unit test tests the name of the view returned by

controller's Edit action method. It creates a new Drug object and then edits it:

 [TestMethod]
 public void EditViewNameCheck()
 {

||||||||||||||||||||

Building a Sample Application

 [251]

Farkiantech.com
||||||||||||||||||||

 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 Drug newDrug = new Drug {
 DrugID = 15,
 Description = "Galvus",
 Form = "tablet",
 Route = "Oral",
 IsRestricted = true,
 Name = "Galvus",
 Purpose = "Diabetes",
 Rate = 150
 };
 drug.Create(newDrug);
 newDrug.Purpose = "controls diabetes and sugar level";
 RedirectToRouteResult result =
(RedirectToRouteResult)drug.Edit(newDrug);
 Assert.AreEqual("Index", result.RouteValues["action"]);
 }

 EditValidCheck: This unit test tests that controller's Edit action method to

return its updated object. It creates a new Drug object and then edits it:

 [TestMethod]
 public void EditValidCheck()
 {
 MockDrugRepository mock = new MockDrugRepository();
 DrugsController drug = new DrugsController(mock);
 Drug newDrug = new Drug {
 DrugID = 16,
 Description = "Lucentis",
 Form = "tablet",
 Route = "Oral",
 IsRestricted = true,
 Name = "Lucentis",
 Purpose = "Eye Blindness",
 Rate = 150
 };
 drug.Create(newDrug);
 newDrug.Purpose = "Eye Blindness and color blindness";
 drug.Edit(newDrug);
 ViewResult result = drug.Details(16) as ViewResult;
 Assert.AreEqual("Eye Blindness and color blindness",
 ((Drug)result.Model).Purpose);
 }

||||||||||||||||||||

Building a Sample Application

 [252]

||||||||||||||||||||

This unit test are executed in Visual Studio through the Tests menu as shown in Figure 30.

Summary

This chapter introduced a sample web-based application, OnlinePharmacy. We need an

application on which DevOps practices and principles can be applied and implemented.

You as a reader will be working on a real application and need to understand the way

DevOps can be applied to a sample application. This chapter talked about the concepts,
components, and steps that were used to create an ASP.NET MVC web application that

were also used to create the sample application. You are encouraged to refer to source

code accompanying this chapter to understand the application and at the same time can

create their own application in order to implement DevOps practices.

The next chapter will introduce a source code control mechanism for this sample

application and show how it can be used to maintain source code for teams with multiple

members across regions.

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

Source Code Control6

In this chapter, we will learn one of the most important DevOps practices. Until now, we

have explored the context around technology and a sample application was created to

facilitate the implementation of DevOps practices. This and the next chapter collectively

deal with Configuration Management. Although the next chapter deals with infrastructure

and application Configuration Management, this chapter is about Source Code and Version
Control Management, also known as Source Configuration Management (SCM).

Configuration Management

Configuration Management is the process of applying code and configuration changes to

services and applications while maintaining the history of those changes. Maintaining the

history helps in reverting back to any previous valid version, helps in auditing and

facilitates Release Management. Although Source Code and Configuration can be managed

manually by developers by keeping multiple copies of code, it is a tedious and error-prone

exercise. It is recommended to use and deploy automation tools for Configuration

Management.

Configuration Management helps in three major aspects:

 Change management: Changes to application code and configuration should be

managed and controlled. Code should be baselined, and any new development

or changes should happen with reference to the baseline. Once the change is

approved, developed, tested, and released, it becomes the new baseline and

reference point. Developers working on these changes should have a replica of

the baseline for their development environment. They should not work on the

baseline version directly. These developments could be for bug fixes or new

feature development. Adequate testing, validation, and verification are

||||||||||||||||||||

Source Code Control

 [254]

||||||||||||||||||||

performed and, after management's approval, the changes should be pushed as a

release to production.

 Developing with multiple teams: When multiple teams and developers are

involved, it is recommended to have a common code repository and enabling

collaboration. This common repository enables simultaneous and parallel

changes and it should be capable of performing branching, merging, and conflict

resolution for the source code. This directly improves productivity and

collaboration among developers and teams. Such a repository also helps in

auditing and security control.

 Release management: It is an absolute must for development and operations

team to know the current configuration of applications and services on

production and details about newer changes being developed as part of the next

future release. Configuration management helps in recording these configuration

changes as part of its history logs, and can help in rolling back releases to earlier

valid working specific versions of configuration.

Source Configuration Management

Source Configuration Management and Version Control Management refer to the process of

managing and controlling access and changes to Source Code. It involves storing source

code and configurations within a repository with restrictive access, allowing authorized

users to create, modify, update, and delete the source code and configurations in a

controlled manner, and maintain the history of all such changes. It provides appropriate

automation for code conflict resolution, parallel development paths, comparison of files,

and reverting to previous specific versions. It records all changes to source code in its

history logs over a period of time. Source Configuration Management and Version Control

System helps in eliminating and maintaining multiple copies of the same files by

developers and make them more productive by providing tools to identify their changes

over a period of time and increase collaboration.

There are many SCM tools and products available today. Some are open source, whereas

others are proprietary in nature. Some of the major tools are:

||||||||||||||||||||

Source Code Control

 [255]

Farkiantech.com
||||||||||||||||||||

Git

VSTS

TFS

SVN

CVS

Perforce

There are two types of Source Configuration Management and version control:

Centralized

Distributed

Centralized

In a Centralized Source Configuration Management and Version Control System, a

Centralized Server is designated as a version control server to which multiple developers

can connect, interact, and collaborate. It helps in managing and controlling distributed

teams dispersed across geographies. Centralized version control stores the source code files

and manages all its version over a period of time in a centralized location. Developers

normally are connected to this centralized repository on an continuous basis. They checkout

files to modify them and check them in to commit changes within the repository.

Developers only have a working copy of source code on their local system; however, they

do not have the history of all changes made to the source code by every developer. The

main advantage of this kind of Version Control System is full control lies with

administrators and every developer is aware of the work done by other developers. It also

helps collaboration among multi-location teams across geographies.

The main drawback of such a Version Control System is that they are a single point of

failure. Any downtime can seriously affect productivity of and collaboration among

developers. Also, it is suitable for smaller teams as they all are always connected to the

central repository. A pictorial representation of Centralized Version Control System is

shown in Figure 1.

||||||||||||||||||||

Source Code Control

 [256]

||||||||||||||||||||

Some major Centralized Version Control Systems are TFVC, Perforce, and CVS.

Distributed

A Distributed Version Control System is an evolution from Centralized Version Control

System. In a Distributed Version Control System, although a centralized repository is

designated as a remote repository with which multiple developers can work, they are not

continuously connected to it. In fact, developers have entire copy of the source code and

version history on their local workstation. They work on this local copy and connect back to

the central repository to synchronize their changes. In effect, every developer's machine is a

mirror copy of the remote repository. A Distributed Version Control System has all the

features of a Centralized Version Control System; however, there is no single point of

repository failure and it provides a highly scalable ecosystem to developers. They connect

to the remote repository when they need to synchronize their changes with it.

The Distributed Version Control Management system is shown in Figure 2:

||||||||||||||||||||

Source Code Control

 [257]

Farkiantech.com
||||||||||||||||||||

Git is one of the most used and famous Distributed Version Control System.

Visual Studio Team Services

Figure 2: Distributed Version Control System

||||||||||||||||||||

Source Code Control

 [258]

||||||||||||||||||||

Visual Studio Team Services (VSTS) provides Software Configuration Management and

control services for source code. It has two types of repositories and teams can select them

based on their needs:

Team Foundation Version Control (TFVC)

Git

TFVC is the traditional Centralized Source Code Management System, whereas Git is a

relatively new distributed Source Code Management System. Git is the default repository in

VSTS when creating a new repository. There was already an introduction to both Git and

TFVC in Chapter 2, DevOps Tools and Technologies, and readers are advised to read it for a

better understanding.

The main differences between TFVC and Git are shown in Table 1:

Type Git TFVC

Branching Advance branching is possible
through Git. Very fast to create
branches. Does not copy files to
create new branches. Supports

branches on developer's local

machine

Supports basic branching techniques.

Copies files to create new branches.

Creating branches is a

timeconsuming process, especially

when the repository is large. Does

not support local branching.

File size Not suitable for large files Supports large files

Merging Supports advance merging

strategies, such as fast forward,

recursive, or resolve

Supports basic merging

Is Connected Disconnected Connected

Team size Suitable for large teams. Highly

scalable

Suitable for smaller teams

History

availability

Repository history is available on

every developer workstation

Repository history is not available on

every developer workstation

Identifiers Apply tags to commits Apply labels to batch check-in

||||||||||||||||||||

Source Code Control

 [259]

Farkiantech.com
||||||||||||||||||||

Table 1: Git versus TFVC

In this book, Git repository in VSTS is used for the sample application as a Source Code

Management System.

Git 101

As mentioned before, Git is a Distributed Version Control Management System. Any folder

on disk can be a Git repository. The only requirement to be a Git repository is that it should

be Initialized or Cloned using the Git command-line. A Git repository contains files and

folders along with a complete history of changes made to them. It also contains information

about active, passive branches along with tags. All files and folders under the control of the
Git repository are collectively called a working tree.

The Git repository can be either remote or local. Remote repositories are repositories hosted

on the Internet and can be accessed from anywhere while local repositories are repositories

hosted on the developer's workstation and accessible only to that developer. Remote

repositories can be cloned as local repositories. When remote repositories are cloned, all

files and folders (also known as the working tree) along with the entire repository history

are copied to the developer's workstation. Developers work with this local repository

actively and are not connected to the remote repository. When they have finished working

on their code, the local repository can be synchronized with the remote repository. This

synchronization updates the local repository with changes made in the remote repository

from other developers but not available on the local repository and also update the remote

repository with changes from the local repository. If there are conflicts, the developer can

resolve them during this synchronization process.

It is to be noted that a Git remote repository is needed when multiple developers are

working together and collaborating among themselves. It is also needed when the code

needs to be highly available on a more stable hardware compared to the developer's

workstation. A remote repository is not needed when the developer is working on a local

repository and does not want those changes to be available on any other developer.

A remote Git repository can be created in VSTS within a Team Project. The local Git

repository can be created using two different methods.

Git init

||||||||||||||||||||

Source Code Control

 [260]

||||||||||||||||||||

Git init initializes an empty Git repository with an empty history. The command can be

executed using Git for Windows and is shown next:

Git init

It initializes a Git repository at the current folder location and adds a hidden .Git folder to

it. This .Git folder is known as the Git repository and maintains the entire history of code

changes over a period of time.

Git init <<folder location>>

It initializes a Git repository at given folder location and adds a hidden .Git folder to it.

Files or folders in a Git initialized repository can be either in a tracked or untracked state.

The mere presence of a file or folder in the Git initialized directory does not mean that it is

part of the Git repository. These files and folders are referred to as untracked files and

folders. Git is not aware of any changes to untracked files.

Git follows a two-phase approach to ensure that files or folders can be tracked and are
under the control of Git. The first phase is known as staging. When files and folders are

staged, they are added and recorded in the Git repository but not yet committed to it. Blob

(Binary large objects) objects are generated by Git for each added file and recorded in Git's

index file within the .Git folder. The next phase is to commit the staged changes.

Committing generates a commit object, which refers to the object graph of the working tree

and stores the same in the Git repository. The Git commit object uniquely identifies a

revision or version of all files and folders in a repository using an ID. The Git repository

keeps track of all commit objects. The repository always points to the most recent Git

commit object and when a new commit object is created, it moves the pointer to the new

commit object. Each commit object also has a reference to its parent commit object. The

commit graph is shown in Figure 3.

||||||||||||||||||||

Source Code Control

 [261]

Farkiantech.com
||||||||||||||||||||

The command Git commit creates and commits a new commit object.

Git clone

A Git repository can also be created by cloning an existing Git local or remote repository.

The command for cloning a Git repository is shown here:

Git clone <<url of remote repository>>

or like this:

Git clone <<path to local Git repository>>

Git add

After a Git repository is created either using Git init or Git clone, to add a file or folder

to the staging area, the Git add command is used. Using . with this command means that

all tracked files with changes and untracked files are added to the staging area. The

command is shown here:

Git add .

Figure 3: Git commit graph

||||||||||||||||||||

Source Code Control

 [262]

||||||||||||||||||||

Git commit

The command Git commit creates and commits a new commit object. All files from

staging are part of this commit object. The m parameter refers to a descriptive message

associated with each commit object. The command is shown here:

Git commit -m "This is first commit"

The preceding command is committing a new commit.

Git branch

A branch in SCM is referred to as an independent path of development. A branch in Git is a

pointer to a specific commit object. A separate copy is not created when creating a branch in

Git. There can be multiple branches in a repository, each pointing to the same or different

commit objects. Branching in Git does not copy, instead a pointer is created pointing to a

particular version of files and folders by means of a commit object. Git branches are

extremely lightweight and fast to create.

The command Git branch creates a new branch. This is shown here:

Git branch <<Branch name>>

Git merge

Branches are created for multiple purposes. Generally, the main branch is called the master

branch. Multiple branches from the master branch are created for independent parallel

development paths such as bug fixing, the development of new features, and releases. After

these independent lines of development are complete, they are merged back to the main
master branch. The process of synchronizing a branch into another branch is called

merging. It not only merges file and folder content but also modifies the history of the

repository. Merging can be as simple as copying or updating files and folders to the target

branch without any conflicts. However, it can be complex when the same files and contents

are changed in both the branches. In such cases, conflicts should be resolved by accepting

the changes. Git provides multiple strategies for merging including fast-forward, resolve,

rebasing, and recursive.

||||||||||||||||||||

Source Code Control

 [263]

Farkiantech.com
||||||||||||||||||||

The command Git merge merges a branch referred by a branch name to a current branch.

The command is shown here:

Git merge <<Branch name>>

Git remote

As mentioned earlier, a Git repository can be provisioned as a remote repository. The

purpose of Git remote is to maintain up-to-date history from all developers with regard to

content, hosted on the Internet. Developers will clone the remote repository to get the entire

working tree and its history. Developers will periodically pull changes from the remote

repository, which are committed and pushed by other developers, and push their own

committed changes to the remote repository.

The command to pull changes from the remote repository is shown next:

Git pull origin master

Here, origin is an alias that refers to the URL of the remote repository and master refers

to the branch name that needs to be pulled and merged into a local branch. It is to be noted

that the pull command internally executes multiple commands. It first uses the fetch

command to fetch the content and history into a local workstation and then executes the

merge command to merge the remote changes to local changes:

The command to push changes to the remote repository is shown next:

Git push origin master

Here, origin is an alias that refers to the URL of the remote repository and Master refers

to the branch name that needs to be pushed and merged into the remote branch:

Installing Git for Windows on the

development environment

Visual Studio needs the Git toolkit to manage local repositories and interact with remote

repositories. The Git for Windows tool available at https://Git-scm.com/ is used in this

book to work with the Git repository. This utility is not available on Windows operating

systems and not installed along with Visual Studio. It can be downloaded and installed

https://git-scm.com/

||||||||||||||||||||

Source Code Control

 [264]

||||||||||||||||||||

separately on the development environment from the provided URL. This is also shown in

Figure 4.

Figure 4: Git for Windows download URL

The setup can be executed after having been saved on a local disk or run directly. Figure 5

shows the major steps for installing Git for Windows on a Windows 10 development

workstation.

||||||||||||||||||||

Source Code Control

 [265]

Farkiantech.com
||||||||||||||||||||

Figure 5: Git for Windows installation steps

Adding Online Pharmacy to the VSTS Git

repository using Visual Studio 2015

In Chapter 5, Building a Sample Application a sample application Online Pharmacy was

introduced. In this section, we will add the same to Visual Studio Team Service's Git

repository. There are multiple different ways to add source code to the VSTS Git repository

and interact with it. We will also look into some of these different ways to interact and add

source code to the VSTS Git repository in this chapter.

||||||||||||||||||||

Source Code Control

 [266]

||||||||||||||||||||

Before source code can be added to the VSTS Git repository, a VSTS account must exist and

be available. A VSTS account was provisioned in Chapter 2, DevOps Tools and Technologies.

There must also be a VSTS project available in which a Git repository can be created.

The steps to create a VSTS Team Project are provided here:

1. Open your preferred browser and navigate to the VSTS account provisioned
earlier. The VSTS account we used in this book can be found at: h t t p s ://d e s i r e

d s t a t e . v i s u a l s t u d i o . c o m /

Readers are advised to create their own account.

2. Click on the drop-down list at the extreme top-left corner of the page as shown in

Figure 6.

Figure 6: Selecting a new project in VSTS

3. The name of the Team Project used in this book is Win2016DevOps. Provide the

project name, select Agile as the process template, and Git as the version control,

and then click on the Create project button as shown in Figure 7.

https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/
https://desiredstate.visualstudio.com/

||||||||||||||||||||

Source Code Control

 [267]

Farkiantech.com
||||||||||||||||||||

Figure 7: Creating a new VSTS project with a Git repository

From the resultant screen, note down the URL as shown in Figure 8. This URL will

be needed in subsequent steps to configure Visual Studio Remotes in the

development environment.

||||||||||||||||||||

Source Code Control

 [268]

||||||||||||||||||||

The first step is to configure Git on the local workstation with a user email ID and

name. The 64-bit version of Git is by default installed in the %Program files%

folder. Open Git-bash.exe and configure it with the user's e-mail and user

name as shown here:

The prompt by default is made up of the currently logged-in user and machine

name separated by @ symbol.

 citynextadmin@DevVS MINGW64
 $ Git config --global user.email "desiredstate@outlook.com"
 citynextadmin@DevVS MINGW64
 $ Git config --global user.name "DesiredState"

4. Once the e-mail and user configuration are done, Git can be used for managing

repositories. Copy the Win2016DevOps folder from the Chapter 5, Building a

Sample Application source code to your preferred file system location. This

location will become your local Git repository. We have created this at

C:Projects. This is shown as follows:

 Navigate to the copied folder Win2016DevOps.

 citynextadmin@DevVS MINGW64 ~

$ cd /c/projects/Win2016DevOps

The init command to initialize the Git repository.

||||||||||||||||||||

Source Code Control

 [269]

Farkiantech.com
||||||||||||||||||||

 citynextadmin@DevVS MINGW64 /c/projects/Win2016DevOps

$ Git init

This will initialize an empty Git repository.

Add all the copied files to the Git staging using the Git add command. Notice

that master is appended to the path to show that it is a Git repository.

 citynextadmin@DevVS MINGW64 /c/projects/Win2016DevOps (master)

$ Git add

5. Commit the newly add files to the local Git repository using the Git commit

command as shown next.

 citynextadmin@DevVS MINGW64 /c/projects/Win2016DevOps (master)
 $ Git commit -m "adding DevOpsWin2016 artifacts to Git"

6. Now, we can start working with Visual Studio 2015. Open Visual Studio 2015
and click on Team Explorer as shown in Figure 9. There is no active connection

to any project in VSTS.

||||||||||||||||||||

Source Code Control

 [270]

||||||||||||||||||||

Figure 9: Team Explorer window in Visual Studio 2015

7. Within the Local Git Repositories section, click on Add to add the

OnlinePharmacy solution to Visual Studio. The Add link allows us to add an

existing local repository. Navigate to the folder DevOpsWin2016 was copied to.

In this case, it is C:projectsWin2016DevOps. Provide the location of the

project folder and click on the Add button as shown on the left-hand of the

||||||||||||||||||||

Source Code Control

 [271]

Farkiantech.com
||||||||||||||||||||

screenshot in Figure 11. Right-click on the resulting repository and click on Open

as shown on the right-hand screenshot in Figure 10.

8. The preceding step will open the Home dashboard for the repository. Click on

the Settings button from the Home screen, to the Settings screen in Team

Explorer. Click on Repository Settings on the Settings page to modify settings

for the newly created local repository as shown in Figure 11. It is to be noted that

no connection has yet been created to VSTS from a local repository.

Figure 11: Setting a Repository Settings

9. Add a new remote to the Repository Settings. Provide origin as the name and

the URL of the VSTS project that was copied earlier, as the Fetch and Push

values. The Fetch and Push URL values should in general be the same. Click on

the Save button as shown in Figure 12:

||||||||||||||||||||

Source Code Control

 [272]

||||||||||||||||||||

10. Now that we have a local Git repository with a master branch and remotes

configured with a remote VSTS account, it's time to push and publish the branch

itself to the VSTS Git repository. Publishing the first branch will create the

branch itself if it does not yet exist. In order to publish a branch, click on the
Home button in Team Explorer and click on the Branch button as shown in

Figure 13. Right-click on the master branch and select Publish Branch from the

context menu. This will start the process of publishing the entire branch along

with its source code to the VSTS account. Provide the appropriate credentials, if

prompted.

||||||||||||||||||||

Source Code Control

 [273]

Farkiantech.com
||||||||||||||||||||

11. Publishing process takes a few minutes to push the local branch to the remote
repository. Once it is complete, the Team Explorer screen should show that it

has successfully published the source code in the master branch, and the VSTS

Code hub shows that code has moved to the Git repository named

Win2016DevOps as shown in Figure 14.

||||||||||||||||||||

Source Code Control

 [274]

||||||||||||||||||||

Figure 14: Source code in VSTS

Managing a Git Repository using VSTS

After onboarding the OnlinePharmacy solution on the VSTS Git repository, it's time to

work on it as a developer. A developer typically will push his/her code to the repository

and pull code submitted by others as well. This involves merging code and solving any

arising conflict resolution.

Submitting code changes to a Git repository

This section provides steps for some of the common tasks performed by developers on an

ongoing basis while they are building an application and changing code frequently.

1. Modify the OnlinePharmacy code in Visual Studio after opening the solution. In

Figure 15, a sample modification is done to Details.cshtml file by adding a

<h2> tag and some text along with it. Save the code changes.

Figure 15: Modifying code

||||||||||||||||||||

Source Code Control

 [275]

Farkiantech.com
||||||||||||||||||||

2. From the Team Explorer home screen, click on the Changes button. It will

navigate to the Changes screen, listing modifications to all files in the local

repository. Since there is a single change in our case, the Details.cshtml file is

shown in Changes section of the screen. These represent files that are not tracked

by Git. This is shown in Figure 16. Click on the + button corresponding to the

Changes section.

||||||||||||||||||||

Source Code Control

 [276]

||||||||||||||||||||

Figure 16: Staging changes to local Git repository

3. Clicking on the + button will stage the changes in a local repository. Staging files

is when Git starts tracking them. This is shown in Figure 17:

Figure 17: Committing staged changes to the local Git repository

4. Now the staged changes can be committed to the local Git repository. Provide a
description/message and select the Commit Staged and Push command from the

drop-down list. This action will connect to a remote Git repository and send the

changes as a commit object to it. This commit object is then recorded in the

remote repository. This is shown in Figure 18.

||||||||||||||||||||

Source Code Control

 [277]

Farkiantech.com
||||||||||||||||||||

Pulling code changes from a Git repository

Pulling refers to fetching the latest code from a remote repository and merging it with a

local repository.

Pulling source code changes from a Git repository before publishing changes is always a

good practice. This ensures that there are no difficult merge conflicts to be resolved later.

The two methods in VSTS for pushing changes to remote repository are

Synchronization

Pull

Team Explorer home screen provides the Sync button for synchronization. This is a more

involved approach where a pull operation is first executed before pushing changes.

Synchronization refers to fetching the latest code from a remote repository, merging it with

the local repository and local changes and pushing the updated source code to the remote

||||||||||||||||||||

Source Code Control

 [278]

||||||||||||||||||||

repository. Synchronization works with commit object. Synchronization not only pulls the

source code but also pushes it to the remote repository.

The Changes button is another way to push changes and provides more options than

synchronization. With this option, changes can just be committed to the local repository

without being pushed to the remote repository; they can be committed to the local

repository and pushed to the remote repository. It can also commit and perform a

synchronization, that is, it can pull changes before pushing them to the remote repository.

If you choose the option of committing changes only without pushing them to the remote

repository, the changes can be synchronized later using the option shown in Figure 19 using

the Sync button from the home window. It will show Outgoing Commits. Clicking on the

Sync link will pull commits not available locally from the remote repository, merge the

changes locally, and send the updated commits to a remote repository.

Figure 19: Visual Studio synchronization option

Alternatively, the Pull button can be used to pull changes that would internally fetch and

merge remote changes with local changes. The fetch command in VSTS will simply fetch

the changes but not merge them with the local code. The merge command should be used

to merge the fetched code with the local repository. The merge command has been

explained before in this chapter in the Git 101 section.

||||||||||||||||||||

Source Code Control

 [279]

Farkiantech.com
||||||||||||||||||||

Onboarding another developer for the same

application

By this time, the OnlinePharmacy source code is on the VSTS Git repository and more

developers are getting added to the project. To enable newer developers to be on boarded

to the project so they can start working on the same code repository requires the following

steps to be performed:

1. The developer should open Visual Studio 2015, navigate to Team Explorer, and

click on the connection icon on its top navigation bar. Clicking on Manage

Connection and selecting Connect to Team project will start the process of

creating a connection to the remote VSTS Git project. Click on the Servers button,

add the URL for the VSTS account created earlier, and finally close the

connection dialog. This step might demand credentials to log in to VSTS, and

they should be provided to successfully establish a connection. This is shown in

Figure 20.

Figure 20: Creating new VSTS connection in Visual Studio

2. A new window with a list of all projects available in the provided account is

shown in Figure 21. Select the Win2016DevOps project from the list.

||||||||||||||||||||

Source Code Control

 [280]

||||||||||||||||||||

Figure 21: Selecting a VSTS project in Visual Studio

3. After successful connection, the project should be cloned into a local repository.

This is shown in Figure 22. The first screenshot on left is suggesting that the

remote repository should be cloned. Cloning refers to the process of copying the

entire remote repository along with its history to a local repository. There are two

links provided for cloning the remote repository. There is a prompt on the top of
the Team Explorer window, and there is a Clone Repository link in the Project

section. The result is the same no matter which option is used. Clicking on the

link will prompt for the remote repository URL and local repository folder
location as shown in the central screenshot. Clicking on the Clone button here

will start the process of cloning the remote repository. The screenshot on the

right shows the successful cloning:

||||||||||||||||||||

Source Code Control

 [281]

Farkiantech.com
||||||||||||||||||||

Figure 22: Cloning VSTS Git repository

4. After cloning, a developer should open the Solutions windows from Team

Explorer. Right-click on the project and select the Open menu item from the

Team Explorer – Home window. This will open the solution in Visual Studio.

This is shown in Figure 23.

||||||||||||||||||||

Source Code Control

 [282]

||||||||||||||||||||

Now the developer can start working on the code and pull, push, and synchronize changes

to a remote repository.

Cloning and adding a solution to the VSTS Git

repository

||||||||||||||||||||

Source Code Control

 [283]

Farkiantech.com
||||||||||||||||||||

Previous sections in this chapters provided the steps to onboard an existing project by

means of publishing to a remote repository from a local workstation. In this section, we will

look into another way of onboarding a Visual Studio solution to the VSTS Git repository. In

this example, a VSTS project is created, a clone of this empty repository is made on a local

machine, and a new or existing project is added and pushed to a remote repository. The

steps for the same are provided here:

1. Navigate to your already created VSTS account, log in, and create a new project

by clicking on the New team project menu item. This is shown in Figure 24.

Figure 24: Creating a new VSTS project

2. Provide ProjectCloneExample as the Project name, an appropriate Description,

Agile as the Process template value and Git as the Version control value. Click

on the Create project button as shown in Figure 25.

||||||||||||||||||||

Source Code Control

 [284]

||||||||||||||||||||

Figure 25: A project with a Git repository

3. On a local machine, start Visual Studio 2015, connect to your Team Service's
account through Team Explorer, and select the newly created

ProjectCloneExample project from the list of projects available in the account.

This is shown in Figure 26.

||||||||||||||||||||

Source Code Control

 [285]

Farkiantech.com
||||||||||||||||||||

Figure 26: Selecting a VSTS project in Visual Studio

4. From the Connect screen in Team Explorer, click on the Clone link available at

the Local Git Repositories section. In a previous section, we used the Add link

instead of the Clone link. Values for the remote URL and local path should be

provided as shown in Figure 27. Readers should provide their own

environmentrelated values for both remote and local repositories. Click on the
Clone button to create an empty local repository. The result is shown in the right-

hand screenshot:

||||||||||||||||||||

Source Code Control

 [286]

||||||||||||||||||||

Figure 27: Cloning a Git repository

5. The URL for a remote repository is available from VSTS as shown in Figure 28.

||||||||||||||||||||

Source Code Control

 [287]

Farkiantech.com
||||||||||||||||||||

6. Open Visual Studio 2015 and create a new ASP.NET Web Application as shown

in Figure 29. The location of the solution is the same path that was used for the
local repository in step 4 while cloning a remote repository. Select a Project

template (in this case, MVC template is selected) to create a new project. Instead

of creating a new project, another option is to copy existing solution, projects,

and code files to this folder.

Figure 29: Creating a new ASP.NET MVC web application project in Visual Studio

||||||||||||||||||||

Source Code Control

 [288]

||||||||||||||||||||

7. After a new project is created, navigate to Team Explorer and click on the Home

icon from its top navigation bar. From the Home window, click on the button.

This will show all the files added to the working folder. This is shown in Figure

30 Changes button. This will show all the files added to the working folder. This

is shown in Figure 30.

Figure 30: Untracked project files

8. Click on the + button corresponding to the Staged Changes section to add them

to the staging area and commit the changes in the staging are into a local Git

||||||||||||||||||||

Source Code Control

 [289]

Farkiantech.com
||||||||||||||||||||

repository as shown in Figure 31. Provide an appropriate commit message and
select the Commit Staged and Push menu item to push the changes to the remote

repository after committing to a local repository.

Figure 31: Staging, committing, and pushing changes

9. The screen after successfully committing and pushing code to a remote

repository is shown in the left-hand screenshot of Figure 32 and the right-hand
screenshot shows the VSTS Code | Explorer with files recently published from a

local repository.

||||||||||||||||||||

Source Code Control

 [290]

||||||||||||||||||||

Figure 32: Updated code in the VSTS Git repository

Adding a project to the VSTS Git repository

using the command-line tool

Since we already have the base code developed, this section will provide the steps to add

existing source code to a GIT repository in VSTS.

||||||||||||||||||||

Source Code Control

 [291]

Farkiantech.com
||||||||||||||||||||

Cloning and adding a solution to VSTS Git

repository using the Git command-line tool

This example is similar to the previous example as explained in the Adding Online Pharmacy

to the VSTS Git repository using Visual Studio 2015 section of this chapter; the difference

between these two examples is that the previous example used the Visual Studio user

interface while this example uses the Git for Windows tool to work with the VSTS Git

repository. The steps are shown here:

1. Navigate to your VSTS account, log in, and create a new project by clicking on

the New team project menu item. This is shown in Figure 33.

Figure 33: Creating a new VSTS project

2. Provide ProjectCloneExampleGIT as the Project name, an appropriate

Description, Agile as the Process template value, and Git as Version control

value. Click on the Create project button as shown in Figure 34.

||||||||||||||||||||

Source Code Control

 [292]

||||||||||||||||||||

3. Open the Git utility and navigate to the c:projects folder as shown next:

 citynextadmin@DevVS MINGW64 ~
 $ cd /c/projects/

4. Clone the remote repository into a local folder as follows:

 citynextadmin@DevVS MINGW64 /c/projects
 $ Git clone

||||||||||||||||||||

Source Code Control

 [293]

Farkiantech.com
||||||||||||||||||||

 https://desiredstate.visualstudio.com/

DefaultCollection/_Git/ProjectCloneExampleGIT The

output from executing this command is shown next.
 Cloning into 'ProjectCloneExampleGIT'...
 warning: You appear to have cloned an empty repository.

Checking connectivity... done.

5. The clone command creates a folder at the C:projects location named

ProjectCloneExampleGIT. This is shown in Figure 35.

6. Create a new Visual Studio project as shown in Figure 36 and Figure 37. An
MVCASP.NET Web application with associated unit test projects is created for

this example. Alternatively, readers can copy existing projects to this newly

created folder instead of creating a new project.

Figure 36: Creating new project in Visual Studio

||||||||||||||||||||

Source Code Control

 [294]

||||||||||||||||||||

Note the project location. It is the same folder we created in step 3. This

will generate project files at a given folder location. These files are still not

a part of the Git repository.

The solution and project files should now be staged similar to the way Visual

Studio was used to stage changed files. This is shown in here. The first command

navigates to the newly created folder using the cd command. The add command

adds the changes to the staging area, and . refers to all changes in the current

folder:

 citynextadmin@DevVS MINGW64 /c/projects/ProjectCloneExampleGIT
 (master)
 $ cd ProjectCloneExampleGIT/
 citynextadmin@DevVS MINGW64 /c/projects/ProjectCloneExampleGIT

(master) $ Git add .

7. Commit the staged changes to a local Git repository. This is done using the

commit command. It accepts a message parameter to provide a description for

the commit object. This is shown next. Multiple lines will be output with a few

warning-related line feeds converted to carriage returns and line feeds but

eventually the commit should succeed. The warning arises due to the differences

in the way line feeds are interpreted in the Windows and Linux operating

system.:

||||||||||||||||||||

Source Code Control

 [295]

Farkiantech.com
||||||||||||||||||||

 citynextadmin@DevVS MINGW64 /c/projects/ProjectCloneExampleGIT
 (master)
 $ Git commit -m "commit of sample project using GIT"

The output from executing this command is shown next.
 [master (root-commit) 7ed1a40] commit of sample project using GIT

8. Finally, the local repository should push its changes to the remote repository.

This is performed using the push command as shown next. The origin refers to
the remote repository, and master refers to the master branch:

 citynextadmin@DevVS MINGW64 /c/projects/ProjectCloneExampleGIT
 (master)
 $ Git push origin master The output from

executing this command is shown next.
 Counting objects: 294, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (250/250), done.
 Writing objects: 100% (294/294), 12.77 MiB | 233.00 KiB/s, done.
 Total 294 (delta 37), reused 0 (delta 0)

remote: Analyzing objects... (294/294) (56086 ms)

remote: Storing packfile... done (944 ms) remote:

Storing index... done (199 ms)
 To https://desiredstate.visualstudio.com/
 DefaultCollection/_Git/ProjectCloneExampleGIT
 * [new branch] master -> master

9. At this point, navigating to the ProjectCloneExampleGIT project in VSTS will

show the code published in step 9. This is shown in Figure 39.

Summary

||||||||||||||||||||

Source Code Control

 [296]

||||||||||||||||||||

This chapter introduced Configuration Management from the SCCM perspective, which is

one of the important DevOps practices. It discussed various aspects of Version Control

System including the types of version control and capabilities provided by VSTS for both

Centralized and Distributed Version Control System. Git is the focus of this book from the

Version Control System point of view. Differences between Git and TFVC were discussed.

We also gave a short introduction to Git, followed by adding our sample application
OnlinePharmacy to the VSTS Git repository. We explored the steps to work with the VSTS

Git repository, such as adding, committing, pushing, and synchronizing changes using

Visual Studio and the Git command-line. We described how to onboard a new developer

for the project published earlier and different ways to use Visual Studio to interact with the

VSTS Git repository. In the next chapter, we will focus on Software Configuration

Management related to Infrastructure as Code and application configuration.

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

Configuration Management7

The previous chapter introduced Source Code Configuration Management (SCCM). This

chapter is a continuation of the earlier chapter, and it introduces infrastructure and

application configuration management. An emerging concept in infrastructure
configuration management is Infrastructure as Code (IaC). It helps in bringing a high

degree of consistency, predictability, and standardization not only in designing,

developing, provisioning, and deployment of infrastructure but also in easing maintenance

and upgrades on an ongoing basis. One of the major DevOps principles is configuration

management related to infrastructure and application. Chapter 5, Building a Sample

Application introduced Online Medicine as a sample application. The same application will be

provisioned, deployed, and configured end to end as part of this chapter.

Infrastructure as Code

I am sure most of the readers would have come across situations where suddenly

applications stop working. Servers containing application crash due to hardware failure,

environment changes on servers which make applications unusable, and when IT

administrators are trying to fix the problem using a trial and error strategy. There have been

situations where a new environment needs to be built for applications and services but

there is no automated way to provision them. The entire environments are built manually.

The Operations teams have sleepless nights because they might have missed steps while

building the environment manually. There is even the possibility of a wrong configuration

being applied. It might be that documentation and automation scripts exist but still there is

no way to have a high level of confidence, predictability, and consistency in deployment.

If you and your team have experienced such situations, DevOps with its configuration

management principles implementing Infrastructure as Code can help overcome them.

||||||||||||||||||||

Configuration Management

 [298]

||||||||||||||||||||

Infrastructure as Code is a method, approach, and process to provision, deploy, and

configure infrastructure and applications. It brings in high level of confidence and a faster

understanding of overall steps and process. It suggests and recommends that provisioning,

deployment, and configuration of infrastructure and applications should be done through

automation. Scripts, templates, and code for automating should be treated as software code

undergoing the same application life cycle management just like any other software,

application, or service. They should be designed, built, tested, and deployed as general

software, and all practices related to application development and testing should be applied

to them. They should be version controlled and subjected to change management.

Infrastructure as Code converts the manual deployment and configuration steps in discreet

reusable automation processes and scripts. It helps in maintaining the scripts as source code

and develops them over a period of time through version control. They are tested for their

functional accuracy and unit tested before they can be used for the purposes of

provisioning, deployment, and configuration of any environment. After deployment,

operational validation is conducted to ensure that the environments will function and

behave as intended.

The success of Infrastructure as Code to a large extent depends on the level of automation

implemented for provisioning, deployment, and configuration of infrastructure and

applications. Without automation, it is difficult to achieve the purpose and principles of

Infrastructure as Code.

Unit, integration and operational validation tests are integral to Infrastructure as Code. The

scripts and templates should be tested for their behaviors usually through unit tests, in

desired configuration states through integration and they should also be tested to check

that they are working as expected functionally through operational validation. It should be

part of continuous delivery and deployment process ensuring that these scripts and

templates are always in a ready state to be used for deployment and configuration.

Objectives of Infrastructure as Code

Some of the major objectives of Infrastructure as Code are:

 Predictability: Components and resources provisioned, deployed, and configured

as part of Infrastructure as Code should be in a good state and behave according

to their intended configuration as stated in templates and scripts. There should

not be any element of surprise in their intended state and behavior.

||||||||||||||||||||

Configuration Management

 [299]

Farkiantech.com
||||||||||||||||||||

 Deterministic: Environments provisioned, deployed, and configured should be

the same or similar across all environments, provided similar inputs are provided

to resources and components. There should be one successful outcome which can

be tested and measured appropriately whether they are executed on the same

environment or on different environments

 Consistency: Infrastructure as Code should bring in a high level of consistency in

components no matter how many times they are used to provision, deploy, and

configure environments.

 Idempotent/repeatability: Infrastructure as Code should provision, deploy, and

configure environments in the same manner and steps, and should leave them in

the same state every time they executed.

 Security: Infrastructure as Code converts the manual steps into code and during

this process there is a possibility that secrets and credentials may creep in within

code, templates, and scripts. It is of the utmost importance that there should be

no mention or hard-coding of any secrets and credentials in any scripts,

templates, and code in any form.

Revisiting sample application architecture

Our sample application Online Medicine is a web based application with Azure SQL as its

backend database. The frontend part of the web application is deployed within Windows

Containers on Azure virtual machines. This is shown in Figure 1:

||||||||||||||||||||

Configuration Management

 [300]

||||||||||||||||||||

Figure 1: Sample application architecture

The component and deployment design of the sample application is depicted in Figure 2:

||||||||||||||||||||

Configuration Management

 [301]

Farkiantech.com
||||||||||||||||||||

The chapter is accompanied with source code that demonstrates the end-to-end

Infrastructure as Code for our Online Medicine sample web application. The code is

completely parameterized and almost all aspects of deployment and configuration can be

customized. These parameterizations will be discussed along with code descriptions as we

move along this chapter.

There are two resource groups created as part of the configuration management of the

sample application. The first resource group contains a storage account storing scripts and
code for enabling Infrastructure as Code, Azure Key Vault, and Operational Insights. All

these three resources provide services to the application deployed in another resource

group. The second resource group contains all application specific resources such as virtual

machines, a storage account for storing vhd files for virtual machines, virtual networks, and

more. It is technically possible to put all resources in a single resource group but it is a good

practice to group resources in a single resource group having the same development life

cycle. The major components in deployment architecture are explained next.

Azure Key Vault

||||||||||||||||||||

Configuration Management

 [302]

||||||||||||||||||||

Azure Key Vault is a secure service provided by Azure to store and manage secrets, keys,

credentials, and any other information that should be treated as confidential. It stores all

these confidential data in an encrypted format and is available to those users, groups, and

service applications that have been provided explicit permissions to view or use them. For

the purpose of the sample application, we will store information related to the following:

Azure directory tenant ID

Service application ID

Azure SQL username

Azure SQL password

Azure SQL server name

Azure SQL database name

Operational Insights workspace ID

Operational Insights workspace key

Storage account keys

Storage account secure access token

VSTS username

VSTS password

Virtual machine username

Virtual machine password

Operational Insights

Operational Insights is an audit and monitoring service provided by Azure to get real-time

information about all changes, drifts, and events occurring within virtual machines. It

provides a centralized workspace and dashboard for IT administrators for viewing, filtering

and conducting drill-down searches on all changes, drifts, and events occurring on these

virtual machines. It deploys agents on target virtual machines. Once deployed, these agents

start sending all changes, events, and drifts information to the centralized workspace. All

our web front virtual machines along with Pull Server virtual machines will be attached to

Operational Insights as part of the configuration management.

Desired State Configuration Pull Server

This is a service that holds configuration documents (MOF files) for the sample application. It

also maintains the database of all containers that are configured, registered with Pull

||||||||||||||||||||

Configuration Management

 [303]

Farkiantech.com
||||||||||||||||||||

Server, and pull configuration documents from it. The local configuration manager on these

target containers periodically checks the availability of new configurations as well as drifts

in the current configuration and reports back to Pull Server. It also has inbuilt reporting

capabilities that provide information about nodes that are compliant as well as those which

are non-compliant. A Pull Server is a IIS web application hosting Desired State

Configuration Pull Server endpoint in our case. For the purpose of our sample application,

a PowerShell script is executed to open relevant firewall ports, download appropriate

packages, and install local certificates. It also downloads the SQL Server script for creating

tables in Azure SQL for the purpose of the sample application. This virtual machine is

based on Windows Server 2016 image. Pull Server is configured to run on port 9100 on

these virtual machines for the purpose of demonstration using the sample application. The

port number for Pull Server is dynamically assigned and can be changed while executing

the accompanying source code.

For the purpose of this book, a single virtual machine designated to Pull Server is created.

However, for the enterprise scenario, multiple virtual machines attached to a load balancer

in a high availability configuration should be created for Pull Server. Pull Server is created

from scratch, showing the details behind creating a Pull server. Azure provides a Desired

State Configuration pull service through its Azure automation service and can be utilized as

well as an alternative. In both the cases, the end result remains the same; however, the

management of pull service is responsibility of Azure team. A Pull Server typically should

have a certificate deployed and this is left as an exercise for the readers.

Azure storage account

Azure storage is a service provided by Azure to store files as Blobs. All scripts and code for

automating the provisioning, deployment, and configuration of infrastructure and the

sample application are stored in a VSTS Git repository and are packaged and deployed in

the Azure storage account. Azure provides PowerShell script extension resources that can

automatically download DSC and PowerShell scripts and execute them on virtual machines

while executing Azure resource manager templates. This will be shown in detail in

subsequent pages of this chapter. There are two Azure storage accounts provisioned for the

purpose of the sample application. One is for storing the reusable scripts and templates and

the other for storing virtual machine vhd files. They are defined in separate resource

groups. This is to ensure that even when deprovisioning the resource group containing the

sample application the scripts remain intact in their own storage account.

||||||||||||||||||||

Configuration Management

 [304]

||||||||||||||||||||

Azure virtual machines and containers

Two Azure virtual machines hosting containers for our sample Online Medicine web

application are provisioned. Each virtual machine has a network card with a public IP

assigned to it. They are attached to a virtual network with a private IP address assigned on

the same network. The public IP for virtual machines is optional since they are attached to a

public load balancer; however, for the purpose of demonstration and easier debugging,

they are assigned to both the virtual machines. They should be removed in enterprise or

production deployments. These virtual machines are based on a Windows Server 2016

image with a containers feature. The virtual machines host windows containers and Docker

binaries to manage containers and images. Operational Insights agents are installed on

virtual machines for monitoring the virtual machines. These agents could have been added

to containers as well but that has been left as an exercise for the readers. To add an OMS

agent to containers, dockerfile should be edited to download the agent and executed

with the appropriate OMS workspace key and ID. PowerShell scripts are also executed on

these virtual machines downloaded from the storage account to open relevant firewall

ports, create container images, download appropriate packages, and install local certificates.

The web application is configured to run on port 8080 on these virtual machines and

containers for the purpose of demonstration using the sample application. The port number

for the web application is dynamically assigned and can be changed while executing the

accompanying source code.

Azure public load balancer

A public load balancer is attached to all web application virtual machines for sending

requests to them in a round robin fashion. A public IP address and DNS name is assigned

to a load balancer for accepting Internet requests. Although it can accept requests on any

viable port, for the purpose of the sample application, it accepts HTTP web requests on port

8080 and routes the same to the virtual machines. It also probes on port 8080 on

HTTP protocol with /newapp/Index as its path. The sample Online Medicine application

can be browsed using the http://<<public ip address of load
balancer>>/newapp/Index URL. Couple of Network Address Translation (NAT) rules

are also opened so that they can be used to log in to the virtual machines using a remote

desktop.

||||||||||||||||||||

Configuration Management

 [305]

Farkiantech.com
||||||||||||||||||||

An alternative resource to the Azure public load balancer is the Azure application gateway,

and depending on the scenario, this can be used and deployed. Again, it should be noted

that port 8080 is configurable and used for demonstration purpose; however, any port can

be used with the accompanied source code.

Azure SQL

Azure SQL is SQL Platform as a Service (PaaS) provided by Azure to host databases. Azure

provides a secure platform to host databases and takes complete ownership to manage the

availability, reliability, and scalability of the service. With Azure SQL, there is no need to

provision custom virtual machines, or deploy SQL server, configure, and patch it. Instead,

the Azure team does these activities behind the scene and also manages them on our behalf.

It also provides firewall services enabling security and only IP addresses allowed by the

firewall are allowed to connect and access it. The two virtual machines that will be

provisioned to the host sample application in containers have distinct public IP addresses

assigned to them and they are added to the Azure SQL firewall rules dynamically so that

the web application can access its database seamlessly. The Azure SQL server and its

database are created while executing the Azure resource manager template; however, tables

in the database are created during the provisioning of Pull Server. It is to be noted that

generally management virtual machines should execute such tasks but, for the sake of

simplicity, the Pull Server virtual machine is used. In a real life scenario, it is recommended

to use a separate virtual machine.

Security considerations

One of the most important consideration for Infrastructure as Code and configuration

management is security. When representing infrastructure and applications for the

provisioning, deployment, and configuration as code, it is quite possible to hardcode secrets

and credentials within the scripts and templates, and they become part of the codebase.

Even if not hardcoded within scripts and configuration documents, they might be supplied

as parameters during the runtime execution by the Operations team. Either they would

know the secrets beforehand or would get them from an IT administrator. In both cases,

there is a possibility of security compromise.

Security is an inherent component of Infrastructure as Code for our sample application. To

ensure that there are no security leaks, enough consideration and best practices are

||||||||||||||||||||

Configuration Management

 [306]

||||||||||||||||||||

deployed while designing the artifacts. These are enterprise-scale security considerations

and should be used in almost all cases. This chapter will also point out areas where security

is not implemented for readers to implement them as an exercise.

Storing secrets and credentials

All secrets, credentials, and sensitive data are stored in an Azure Key Vault by an IT or

security administrator. These secrets and confidential data are not known to anyone apart

from the IT or security administrator creating them. This confidential information is fetched

and pulled from the Azure Key Vault at runtime while provisioning and configuring

infrastructure and is passed on to relevant resources and components. All secrets and

credentials related to virtual machine, VSTS, Azure SQL, Azure active directory, storage

accounts, and Operational Insights information are stored in the Azure Key Vault.

Secure login to Azure subscription

In Chapter 3, DevOps Automation Primer, we looked at using PowerShell cmdlet

LoginAzureRmAccount to log in to the Azure subscription. Most of the provisioning,

deployment, and configuration of environments happens through unattended execution

using the VSTS release pipeline. It is imperative that the credentials parameter is used along

with Login-AzureRmAccount. This parameter can only be used along with the Azure

work subscription and is not allowed for Microsoft accounts. Even when using it along with
a work subscription, it would fail if Multi-Factor Authentication (MFA) is enabled on the

subscription. In short, the credentials parameter with Login-AzureRMAccount will work

when MFA is not enabled and is working with the Azure work subscription. In the rest of
the cases, credentials parameter will not work. To overcome all these limitations, Active

Directory (AD) credential authentication along with service principals can be used to log in

into Azure subscription. This solution works with any Azure subscription, whether it is a

work or Microsoft account and it also does not matter if MFA is enabled or not. This is also

a secure way to login to the Azure subscription without comprising any security. This book

uses this approach for the purpose of configuration management and Infrastructure as

Code.

The steps to use an AD password along with service principals to log in to the Azure

subscription is shown later in this chapter. The service application will have owner rights

on the subscription, and adequate permissions should also be provided to it in order to

access and retrieve credentials and secrets from the Azure Key Vault. These concepts will

||||||||||||||||||||

Configuration Management

 [307]

Farkiantech.com
||||||||||||||||||||

become clearer once the readers go through the step-by-step guidance later in order to

enable AD password authentication with service principals.

Storage account keys and shared access

signature tokens

All code and scripts are treated as first-class citizens from a source code control perspective

and stored in a Git VSTS repository. During the build stage, the build pipeline publishes

these configuration scripts and code into an Azure storage account container as blobs.

Storage account containers can be opened for access to the public on the Internet or can be

kept private so that only privileged users can access them. To ensure that no-one has access

to these configuration scripts and code, access to storage containers is kept private. Azure
storage accounts help generate a Shared Access Signature (SAS) token that can be used to

access private containers by anyone holding that token. Appropriate SAS tokens are

generated and stored in the Azure Key Vault. This ensures that only the service application

used to provision, deploy, and configure both the infrastructure and application can access

the token and download scripts and code on virtual machines using the same.

Network Security Groups and firewalls

(NSGsNetwork Security Groups (NSGs) allow or disallow access to virtual machines on

Azure at the network level. By way of whitelisting or blacklisting IP addresses and

associated ports with them, NSGs help increase the security footprint of the servers.

Firewalls allow access or remove access to ports at an operating system level. Both NSG and

firewall configuration are used in the sample application to ensure that only authorized

access is allowed to the server.

These security measures ensure that only privileged users can access the virtual machines,

containers, storage accounts, and Azure SQL database, while, they can be accessed during

installation by a service application. There is no hardcoding of any secret or credential in

any form in code, templates, and scripts. No secrets or credentials are supplied as

parameters to the scripts and templates not visible to the Operations team and release

management team.

The IT administrator and deployment role

||||||||||||||||||||

Configuration Management

 [308]

||||||||||||||||||||

The IT administrator is responsible for provisioning infrastructure and services that are

reused and consumed by multiple applications within the enterprise. The services

provisioned by the IT administrator include centralized monitoring and log management,

provisioning of Key Vaults, storage accounts, and service accounts that are consumed by

individual application and release management to perform their deployment and

management operations in their environments. Access to these services are constrained and

limited to authorized administrators only.

An IT administrator will log in to the Azure subscription with his credentials and create a

new Azure AD application, an Azure AD service application, and provide the owner's

permissions to the service application on the subscription. Individual application owners

and release management will use this Azure AD service application to log in to Azure and

perform management actions to deploy, update, and configure their infrastructure and

applications. They should not be using their individual account IDs to perform any action

related to application and infrastructure management.

The IT administrator is responsible for storing secrets and credentials in the Azure Key

Vault. A specific ARM template has been designed and build specifically for this purpose.

The IT administrator will execute the template to store the secrets and confidential

information in the Azure Key Vault. An IT administrator will pass on these credentials and

secrets as a parameter to the ARM template. These secrets and credentials are neither

available nor visible to the application and release teams. They would consume these

credentials and secrets by consuming directly from the Key Vault. They do not have

permissions to view these secrets and credentials.

The IT administrator is also responsible for provisioning a storage account for storing

scripts, templates, and code.

The Operational Insights workspace is also provisioned so that application owners can use

this service for centralized monitoring and application logging. The administrator can get

intelligent information from this workspace about the availability, performance, scalability,

and security aspects of every application using this service.

An release or deployment role is another important role responsible for provisioning,

deploying, and configuring the infrastructure and application. They are also responsible for

maintaining, managing, and monitoring both the infrastructure and application.

Deployment is typically executed as part of the VSTS release pipeline by a VSTS release

||||||||||||||||||||

Configuration Management

 [309]

Farkiantech.com
||||||||||||||||||||

management user or manually by these operators. They do not have access to an Azure

storage account, Azure Key Vault, Azure SQL, VSTS repositories, and virtual machines.

They can log in to the Azure subscription using a service principal created by the IT

administrator and perform management operations on their workloads.

Steps for deployment for an IT administrator

Before an IT administrator can provision centralized resources, he should be aware of the

Azure tenant and subscription ID. He must also have owner privileges on the subscription.

All common and centralized services are provisioned within an Azure resource group.

These services are provisioned by executing PowerShell scripts and Azure resource

manager templates. The GeneralServices.json template is deployed by an IT

administrator to provision the Key Vault and Operational Insights workspace. The

following steps should be executed for successful end-to-end provisioning, deployment,

and configuration of common services. The administrator starts with

the PreCreate.ps1 PowerShell script and executes the ARM template for provisioning of

resources. PreCreate.ps1 is the starting script for an administrator to start the

provisioning process. Before executing any of the steps mentioned next in this and the next

chapter, please ensure that the latest Azure SDK and modules are installed on the machine

used to configure the environment. Refer to Chapter 3, DevOps Automation Primer, for the

steps to install Azure PowerShell modules. Azure SDK 2.9.6 can be installed from h t t p s

://g o . m i c r o s o f t . c o m /f w l i n k /?L i n k I d =518003&c l c i d =0x 409.

PreCreate.ps1

PreCreate.ps1 script is responsible for provisioning common and shared resources in a

dedicated resource group. Resources in other resources group consume these resources.

1. Open any PowerShell console and execute the PreCreate.ps1 script. It is

available within the OnlinePharmacy.ConfigurationPSScripts folder in the

accompanied code for Chapter 5, Building a Sample Application. The command to

execute the script is shown here. The path must be replaced with actual path to
the file. The script is executed using the concept of dot-sourcing which brings the

entire script in to current scope.

https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409
https://go.microsoft.com/fwlink/?LinkId=518003&clcid=0x409

||||||||||||||||||||

Configuration Management

 [310]

||||||||||||||||||||

 C:UsersrimodiSourceWin2016DevOpsOnlinePharmacy.
 ConfigurationPSScripts
 Precreate.ps1
 -location "West Europe"
 -resourceGroupName "dimdum"
 -subscriptionID "xxxxxxxxxx"
 -tenentID "xxxxxxxxxxxx"
 -storageAccountName "dimdadumnns"
 -containerName "armt"
 -workspaceName "dimdadumOMS"
 -sqlServerName "dimdadumsqlsd"
 -principalName "verify2101"
 -passwordforServicePrincipal "xxxxxxxxxx"
 -templatePath "

C:SourceWin2016DevOpsOnlinePharmacy.
 ConfigurationTemplatesGeneralServices.json"
 -keyVaultName "dimdadumvault"
 -resourceUsername "xxxxxxxxxxxxx"
 -resourcepassword "xxxxxxxx"

It is important to note is that the values provided for resourceGroupName,

storageAccountName, containerName, and StorageSAS should be used to

update release pipeline variables. Furthermore, OMSWorkspaceName,

containerName, and wsResourceGroup values should be updated in the

environment level variables within a release pipeline. Any mismatch in the values

of these variables will result in errors while executing the release pipeline. The

details for release and environment variables are provided in Chapter 10,

Continuous Delivery and Deployment. The value of StorageSAS variable is

displayed on the console while executing the script. You should make a note of it

and use it in the release pipeline in Chapter 10, Continuous Delivery and

Deployment. If you forget to note down the SAS token, you can re-run the script to

get the SAS token.

2. PreCreate.ps1 accepts a few parameters. Parameters are declared for the

deploy location, resource group name, subscription ID, tenant ID, storage

account name, storage container name, OMS workspace name, and SQL server

name. The values for these parameters are filled by the values in the previous

step. These parameters are used across this script file and also sent as parameters

to Azure resource manager templates. It logs in to the Azure subscription as an

account administrator using Login-AzureRmAccount in interactive mode.

||||||||||||||||||||

Configuration Management

 [311]

Farkiantech.com
||||||||||||||||||||

 param
 (
 [string] $location,
 [string] $resourceGroupName,
 [string] $subscriptionID,
 [string] $tenantID,
 [string] $storageAccountName ,
 [string] $containerName ,
 [string] $workspaceName ,
 [string] $sqlServerName,
 [string] $principalName,
 [string] $passwordforServicePrincipal ,
 [string] $templatePath ,
 [string] $keyVaultName ,
 [string] $resourceUsername ,
 [string] $resourcepassword
)
 Login-AzureRmAccount

After logging in, selecting a subscription is a good practice using the

SetAzureRmContext cmdlet, especially if there are multiple subscriptions

available for a given login:

 Set-AzureRmContext -SubscriptionId $subscriptionID

3. Create a new Azure resource group using the New-AzureRmResourcegroup

cmdlet and resourceGroupName variable. The next line creates a new storage

account using the New-AzureRmStorageAccount cmdlet and

storageAccountName variable This storage account is the storage for all

automation scripts and code that are used by the Azure resource manager

template to automatically download them on virtual machines during their

provisioning. The storage account is created using PowerShell instead of the

ARM template to demonstrate multiple approaches for the provisioning of

resources.

 New-AzureRmResourceGroup -Name $resourceGroupName -Location
 $location -Force
 if((Get-AzureRmStorageAccount -ResourceGroupName $resourceGroupName
 -Name
 $storageAccountName -ErrorAction SilentlyContinue) -eq $null)
 {
 New-AzureRmStorageAccount -ResourceGroupName

||||||||||||||||||||

Configuration Management

 [312]

||||||||||||||||||||

 $resourceGroupName -Name
 "$storageAccountName" -Location $Location -Type
 Standard_LRS -Verbose
 }

4. Retrieve the storage account and its primary key for subsequent usage in the

script. This storage key will be passed on to the Azure resource manager

template to be stored in the Azure Key Vault. Scripts and templates stored in the

storage account are accessible to only those who possess this key.

 $storage = Get-AzureRmStorageAccount -ResourceGroupName
 $resourceGroupName -Name
 "$storageAccountName"
 $storageKey = Get-AzureRmStorageAccountKey -ResourceGroupName
 $resourceGroupName -Name
 "$storageAccountName"

5. A new container should be created within the newly created storage account with

no public access. This container is like a folder storing script files and templates

needed for infrastructure and application deployment using configuration
management. Access to this container is constrained using the Access Control

List (ACL). This ensures that only privileged users holding either the account key

or SAS token can access it. A new SAS token is generated with a 2-year expiry

date. This token is stored in the Azure Key Vault. Any application deployment

dependent on these scripts should use this token along with the blob URL to

access the files during the provisioning of virtual machines. The token is also

shown on the console and should be copied over to release management, as

shown in Chapter 10, Continuous Delivery and Deployment.

 if((Get-AzureStorageContainer -Name $containerName -Context

$storage.Context -ErrorAction SilentlyContinue) -eq $null)
 {
 New-AzureStorageContainer -Name "$containerName"
 -Permission Container
 -Context $storage.Context
 -Verbose
 }
 Set-AzureStorageContainerAcl -Permission Off -Name "$containerName"
 -Context $storage.Context -Verbose
 $sas = New-AzureStorageContainerSASToken -Name $containerName
 -Permission rwdl
 -ExpiryTime (Get-Date).AddYears(2) -Context $storage.Context
 "********important********"

||||||||||||||||||||

Configuration Management

 [313]

Farkiantech.com
||||||||||||||||||||

 "*** Note down the SAStoken that should be updated in release
 management ***"
 $sas
 "********important********"

6. The next step is to create an Azure service principal and service application.

However, if both the application and principal preexist then instead of trying to

create them, their configuration values are retrieved. The release and operations

team uses this service principal to authenticate to the Azure subscription. It helps

in logging in to Azure in a non-interactive manner which is a requirement to

conduct a deployment in a release pipeline. There are multiple ways to

authenticate to the Azure subscription using a service principle. These includes

mechanism to use certificates, username-password combination, key credentials,

and AD credentials. We have used the AD credentials approach for

authenticating but readers can use a different approach if they so wish. A

variable to hold the service principal name is declared and its placeholder value

should be replaced with actual value. A .NET object of type

PSADPasswordCredential is created and configured. The password value

should be replaced with the actual password. It represents the credential object

for the service application. PSADPasswordCredential type is defined in

Microsoft.Azure.Commands.Resource.dll assembly as shown in the

following code. This assembly should be loaded using the Add-Type cmdlet

The code queries Azure to find if a service principal with the given name exists

already. If the service principal exists, it obtains its configuration and stores it in

sp and app variables; otherwise, it creates them and stores them in these

variables. These variables are used to store values in the Azure Key Vault.

The sp variable is of special interest because it contains the ID of the service

principal. This IP is the username to be used in conjunction with the password

provided to authenticate with the Azure subscription.

 # path to assembly containing PSADPasswordCredential type
 Add-Type -LiteralPath "${env:ProgramFiles(x86)}Microsoft
 SDKsAzurePowerShellResourceManagerAzureResourceManager
 AzureRM.ResourcesMicrosoft.Azure.Commands.Resources.dll
 $psadCredential = New-Object

Microsoft.Azure.Commands.Resources.Models.ActiveDirectory.
 PSADPasswordCredential
 $startDate = Get-Date
 $psadCredential.StartDate = $startDate

||||||||||||||||||||

Configuration Management

 [314]

||||||||||||||||||||

 $psadCredential.EndDate = $startDate.AddYears(1)
 $psadCredential.KeyId = [guid]::NewGuid()
 $psadCredential.Password = $passwordforServicePrincipal
 $homePage = "https://www." + $principalName + ".org"
 $identifierUri = $homePage + "/example" if((Get-

AzureRmADServicePrincipal
 -ServicePrincipalName $identifierUri)
 -eq $null)
 {
 $app = New-AzureRmADApplication -DisplayName
 $principalName -HomePage $homePage -IdentifierUris
 $identifierUri -PasswordCredentials $psadCredential
 $sp = New-AzureRmADServicePrincipal -ApplicationId
 $app.ApplicationId.Guid
 Start-Sleep -Seconds 30
 New-AzureRmRoleAssignment -RoleDefinitionName Owner
 -ServicePrincipalName $app.ApplicationId.Guid
 }

else
 {
 $sp = Get-AzureRmADServicePrincipal
 -ServicePrincipalName $identifierUri
 $app = Get-AzureRmADApplication -ApplicationId
 $sp[0].ApplicationId.Guid
 }

7. Deploy the GeneralServices.json ARM template after testing for its validity.

For the sake of simplicity, the same username and password are used for Azure

SQL, VSTS accounts, and virtual machines. Readers should declare different

usernames and passwords for each of them and also provide their specific details

for placeholder values. Username and password for SQL server, VSTS, and

virtual machines are stored in the Azure keyVault. They are stored as secure

strings. The first two lines converts the username and password into their secure

string equivalent. The GeneralServices.json file accepts parameters and the

same are supplied to it using Test-AzureRmResourceGroupDeployment and

New-AzureRmResourceGroupdeployment cmdlets. The Test-

AzureRmResourceGroupDeployment cmdlet helps in validating the ARM

template for its correctness and validity while New-

AzureRmResourceGroupdeployment does the actual deployment of the

resources in a resource group. The GeneralServices.json file is available

||||||||||||||||||||

Configuration Management

 [315]

Farkiantech.com
||||||||||||||||||||

within the OnlinePharmacy.ConfigurationTemplates folder of the

accompanying code and its path must be replaced in the next lines of code.

 $username = ConvertTo-SecureString -String $resourceUsername
 -Force -AsPlainText
 $password = ConvertTo-SecureString -String $resourcepassword
 -Force -AsPlainText
 Test-AzureRmResourceGroupDeployment
 -ResourceGroupName $resourceGroupName
 -TemplateFile $templatePath
 -keyVaultName $keyVaultName
 -tenantId "$tenentID"
 -sqlUserName $username
 -sqlPasswordName $password
 -VSTSUserName $username
 -VSTSPasswordName $password
 -VMUserName $username
 -VMPasswordName $password
 -deployLocation $location
 -workspaceName "$workspaceName"
 -objectId $sp.Id
 -storageKey $storageKey[0].Value
 -sasToken $sas
 -storageName "$storageAccountName"
 -sqlServerName "$sqlServerName"
 -Verbose
 New-AzureRmResourceGroupDeployment
 -Name Deploy1
 -ResourceGroupName $resourceGroupName
 -TemplateFile $templatePath
 -keyVaultName $keyVaultName
 -tenantId "$tenentID"
 -sqlUserName $username
 -sqlPasswordName $password
 -VSTSUserName $username
 -VSTSPasswordName $password
 -VMUserName $username
 -VMPasswordName $password
 -deployLocation $location
 -workspaceName "$workspaceName"
 -objectId $sp.Id
 -storageKey $storageKey[0].Value
 -sasToken $sas

||||||||||||||||||||

Configuration Management

 [316]

||||||||||||||||||||

 -storageName "$storageAccountName"
 -sqlServerName "$sqlServerName"
 -mode Incremental -Verbose

GeneralServices.json

Now it's time to look into the details of the GeneralServices.json ARM template.

GeneralServices.json provisions the Operational Insights workspace and Azure Key

Vault along with the secrets and credentials needed by the Online Medicine sample

application. The PowerShell script, PreCreate.ps1, sends parameters to the template and

the definitions of those parameters are shown here.

Parameters

GeneralServices.json is a generic template defining multiple parameters as shown

here:

"parameters": {
 "keyVaultName": {
 "type": "string",
 "metadata": {
 "description": "Name of the key vault"
 }
 },
 "tenantId": {
 "type": "string",
 "metadata": {
 "description": "Tenant ID for the subscription for access
 to the vault"
 }
 },
 "sqlServerName": {
 "type": "string",
 "metadata": {
 "description": "Name of Azure SQL server"
 }
 },
 "objectId": {
 "type": "string",
 "metadata": {

||||||||||||||||||||

Configuration Management

 [317]

Farkiantech.com
||||||||||||||||||||

 "description": "Guid id of service principal"
 }
 },
 "keysPermissions": {
 "type": "array",
 "defaultValue": ["all"],
 "metadata": {
 "description": "Permissions to grant user to keys in
 the vault."
 }
 },
 "secretsPermissions": {
 "type": "array",
 "defaultValue": ["all"],
 "metadata": {
 "description": "Permissions to grant user to secrets in
 the vault."
 }
 },
 "vaultSku": {
 "type": "string",
 "defaultValue": "Standard",
 "allowedValues": [
 "Standard",
 "Premium"
],
 "metadata": {
 "description": "SKU for the vault"
 }
 },
 "enabledForDeployment": {
 "type": "bool",
 "defaultValue": true,
 "metadata": {
 "description": "Specifies if the vault is enabled for VM
 or Service Fabric deployment"
 }
 },
 "enabledForTemplateDeployment": {
 "type": "bool",
 "defaultValue": true,
 "metadata": {
 "description": "Specifies if the vault is enabled for
 ARM template deployment"

||||||||||||||||||||

Configuration Management

 [318]

||||||||||||||||||||

 }
 },
 "enableVaultForVolumeEncryption": {
 "type": "bool",
 "defaultValue": true,
 "metadata": {
 "description": "Specifies if the vault is enabled for volume
 encryption"
 }
 },
 "sqlUserName": {
 "type": "securestring",
 "metadata": {
 "description": "SQL username secret to store in the vault"
 }
 },
 "sqlPasswordName": {
 "type": "securestring",
 "metadata": {
 "description": "SQL password secret to store in the vault"
 }
 },
 "VMUserName": {
 "type": "securestring",
 "metadata": {
 "description": "VM username secret to store in the vault"
 }
 },
 "VMPasswordName": {
 "type": "securestring",
 "metadata": {
 "description": "VM password secret to store in the vault"
 }
 },
 "VSTSUserName": {
 "type": "securestring",
 "metadata": {
 "description": "VSTS username secret to store in the vault"
 }
 },
 "VSTSPasswordName": {
 "type": "securestring",
 "metadata": {
 "description": "VSTS password secret to store in the vault"

||||||||||||||||||||

Configuration Management

 [319]

Farkiantech.com
||||||||||||||||||||

 }
 },
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "OMS workspace name"
 }
 },
 "sasToken": {
 "type": "string",
 "metadata": {
 "description": "storage account SAS token"
 }
 },
 "storageKey": {
 "type": "string",
 "metadata": {
 "description": "storage account Key"
 }
 },
 "storageName": {
 "type": "string",
 "metadata": {
 "description": "storage account Name"
 }
 },
 "deployLocation": {
 "type": "string",
 "metadata": {
 "description": "Azure region for deployment"
 }
 },
 "serviceTier": {
 "type": "string",
 "defaultValue": "Free",
 "allowedValues": [
 "Free",
 "Standard",
 "Premium"
],
 "metadata": {
 "description": "Service Tier: Free, Standard, or Premium"
 }
 }

||||||||||||||||||||

Configuration Management

 [320]

||||||||||||||||||||

},

Variables

There are no variables defined in the template.

The Resources section is the main section of the template where all resources are defined

along with their properties.

Resources

The resources provisioned in this template are mentioned next.

Microsoft.OperationalInsights/workspaces
This resource gets the values for its name, location, and sku properties from parameters

passed to the template by PreCreate.ps1.

{
 "apiVersion": "2015-11-01-preview",
 "type": "Microsoft.OperationalInsights/workspaces",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('deployLocation')]",
 "properties": {
 "sku": {
 "Name": "[parameters('serviceTier')]"
 }
 }
}

Microsoft.KeyVault/vaults
The vault gets its name and location from parameters. By default, it is enabled for

deployment for virtual machines and ARM template deployment. The access policy defines

access and permissions to the Key Vault. In the code shown next, all permissions to keys

and secrets are provided to the service principal defined earlier. The value of all comes

from the keysPermissions and secretsPermissions parameters defined earlier. Valid

permission values for the keys are all, create, import, update, get, list, delete, backup,

||||||||||||||||||||

Configuration Management

 [321]

Farkiantech.com
||||||||||||||||||||

restore, encrypt, decrypt, wrapkey, unwrapkey, sign, and verify. Valid permission values

for secrets are all, get, set, list, and delete.

{
 "type": "Microsoft.KeyVault/vaults",
 "name": "[parameters('keyVaultName')]",
 "apiVersion": "2015-06-01",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "KeyVault"
 },
 "properties": {
 "enabledForDeployment": "[parameters('enabledForDeployment')]",

"enabledForTemplateDeployment":
 "[parameters('enabledForTemplateDeployment')]",

"enabledForVolumeEncryption":
 "[parameters('enableVaultForVolumeEncryption')]",
 "tenantId": "[parameters('tenantId')]",
 "accessPolicies": [
 {
 "tenantId": "[parameters('tenantId')]",
 "objectId": "[parameters('objectId')]",
 "permissions": {
 "keys": "[parameters('keysPermissions')]",
 "secrets": "[parameters('secretsPermissions')]"
 }
 }
],
 "sku": {
 "name": "[parameters('vaultSku')]",
 "family": "A"
 }
}

Microsoft.KeyVault/vaults secrets
Secrets are nested resources within the Microsoft.KeyVault/Vaults resource. These

resources are dependent on the parent resource for its provisioning.

The SQL server username nested resource is declared as shown here. The dependson

property states that this resource should be provisioned only after the given parent resource

is completely provisioned:

 {
 "type": "secrets",

||||||||||||||||||||

Configuration Management

 [322]

||||||||||||||||||||

 "name": "sqlusername",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('sqlUserName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The SQL server password nested resource is declared as shown here:

 {
 "type": "secrets",
 "name": "sqlpassword",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('sqlPasswordName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The virtual machine username resource is declared as shown here:

 {
 "type": "secrets",
 "name": "vmusername",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('VMUserName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The virtual machine password resource is declared as shown here:

 {
 "type": "secrets",
 "name": "vmpassword",

||||||||||||||||||||

Configuration Management

 [323]

Farkiantech.com
||||||||||||||||||||

 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('VMPasswordName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The VSTS username resource is declared as shown here:

 {
 "type": "secrets",
 "name": "vstsusername",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('VSTSUserName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The VSTS password resource is declared as shown here:

 {
 "type": "secrets",
 "name": "vstspassword",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('VSTSPasswordName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The OMS workspace ID resource is declared as shown here. The reference function is an

ARM template built-in function and helps in retrieving resource values. Here, it gets the

value of the customerId value of the OMS workspace resource.

 {

||||||||||||||||||||

Configuration Management

 [324]

||||||||||||||||||||

 "type": "secrets",
 "name": "WorkspaceID",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[reference(parameters('workspaceName')).customerId]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The storage account SAS token resource is declared as shown here:

 {
 "type": "secrets",
 "name": "sasToken",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('sasToken')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The storage account key resource is declared as shown here:

 {
 "type": "secrets",
 "name": "storageKey",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('storageKey')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The storage name resource is declared as shown here:

 {
 "type": "secrets",

||||||||||||||||||||

Configuration Management

 [325]

Farkiantech.com
||||||||||||||||||||

 "name": "storageName",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('storageName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

The SQL server name resource is declared as shown here:

 {
 "type": "secrets",
 "name": "sqlServerName",
 "apiVersion": "2015-06-01",
 "properties": {
 "value": "[parameters('sqlServerName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.KeyVault/vaults/',

parameters('keyVaultName'))]"
]
 }

Outputs

There are no outputs defined for this template.

Steps for deployment of the operator or

release pipeline

After the IT administrator has provisioned the common services on which the sample

application is dependent on, an operator or release team can execute the step to provision,

deploy, and configure the infrastructure and sample application.

The scripts described next are intended to run in the VSTS release pipeline. However, they

can also be run manually using a PowerShell editor such as ISE. The script has code

commented for authenticating to the Azure subscription using the service principal created

earlier. They should remain commented while using them in the release pipeline and can

||||||||||||||||||||

Configuration Management

 [326]

||||||||||||||||||||

be uncommented while executing the script manually. The release pipeline uses the concept

of service endpoint which will be discussed in Chapter 10, Continuous Delivery and

Deployment.

UploadScriptFiles.ps1

The first step in provisioning the sample application is to upload the PowerShell scripts,

templates, and configuration files to the Azure storage provisioned by the IT administrator.

These files are available as part of the sample application code files in the

OnlinePharmacy.Configuration project folder. The purpose of this script is to upload

the relevant files to the Azure storage so that they are available to Azure virtual machines

while provisioning them.

This PowerShell script will be executed as part of continuous deployment through the

VSTS release pipeline. It is to be noted that placeholder values should be provided before

executing the scripts.

1. If you are executing the script interactively then log in to the Azure subscription

using the service principal created earlier. The login needs the service principal

ID and password along with the TenantId and Subscription ID. This step is

not needed in the release management process and the code should remain

commented.

 #$(username) = "[xxxxxxxxxxxxxxxx]"
 #$(passsword) = "[xxxxxxxxxxxxxxxxxxxxx]"
 #$pass = ConvertTo-SecureString -String $passsword
 -AsPlainText -Force
 #$cred = New-Object System.Management.Automation.PSCredential
 $username, $pass
 #Login-AzureRmAccount -Credential $cred -TenantId $(TenantID)
 -SubscriptionId $(SubscriptionID) -ServicePrincipal
 #Set-AzureRmContext -SubscriptionId "[xxxxxxxxxxxxxxxxxxxxxx]"

Retrieve the storage account and its primary key for uploading files to the storage

account. The rest of the commands upload scripts to the storage account. These

scripts are available in the Git repository while running in the release pipeline.

 $storage = Get-AzureRmStorageAccount

||||||||||||||||||||

Configuration Management

 [327]

Farkiantech.com
||||||||||||||||||||

 -ResourceGroupName
 $resourceGroupName -Name "$storageAccountName"
 $storageKey = Get-AzureRmStorageAccountKey
 -ResourceGroupName
 $resourceGroupName -Name "$storageAccountName"

 #This cmdlet publishes a dsc configuration to
 Azure storage account after zipping it along with

all its dependent resources.

 Publish-AzureRMVMDscConfiguration -ConfigurationPath
 "$scriptsFilePathDSCScriptsInstallContainer.ps1"
 -ContainerName "$containerName" -ResourceGroupName
 $resourceGroupName -StorageAccountName $storageAccountName
 -Force -Verbose

 #This PowerShell script converts a virtual machine into
 Pull Server. It also generates the DSC MOF configuration

documents by executing IISInstall.ps1 and # also the

OnlineMedicine.sql sql script for generating the database tables.

 Set-AzureStorageBlobContent -File "$scriptsFilePath
 PSScriptspullserver.ps1" -Container "$containerName"
 -Blob "pullserver.ps1" -BlobType Block -Force -Context
 $storage.Context

 #This PowerShell script is executed on Pull Server and

responsible for generating DSC MOF document. These MOF

files are downloaded by containers to configure themselves.

 Set-AzureStorageBlobContent -File "$scriptsFilePath
 DSCScriptsIISInstall.ps1" -Container "$containerName"
 -Blob "IISInstall.ps1" -BlobType Block -Force -Context

$storage.Context

 #This PowerShell script is executed on all web application

related virtual machines to provision custom windows container

images based on dockerfile and generate containers from them.

These containers host the web application

 Set-AzureStorageBlobContent -File "$scriptsFilePathPSScripts
 ContainerConfig.ps1" -Container "$containerName"
 -Blob "ContainerConfig.ps1" -BlobType Block -Force -Context
 $storage.Context

||||||||||||||||||||

Configuration Management

 [328]

||||||||||||||||||||

 # This command uploads the OnlinePharmacy.sql sql script file

to azure storage container and executed by Pull Server virtual

machine for provisioning table # structure

 Set-AzureStorageBlobContent -File "$sqlFilePath"
 -Container "$containerName" -Blob "OnlinePharmacy.sql"
 -BlobType Block -Force -Context $storage.Context

 # This command uploads the dockerfile to azure storage

container. This file is responsible for creating a custom

image for our sample web application.

 Set-AzureStorageBlobContent -File "$scriptsFilePathTemplates

dockerfile" -Container "$containerName" -Blob "dockerfile" -

BlobType Block -Force -Context $storage.Context

 # This PowerShell script is run within a windows container

and responsible for updating the sql connection string in

web.config file of web application based on data supplied

to it from Azure Key Vault.

 Set-AzureStorageBlobContent -File "$scriptsFilePathPSScripts
 ChangeConnectionString.ps1" -Container "$containerName"
 -Blob "ChangeConnectionString.ps1" -BlobType Block -Force
 -Context $storage.Context

 # This zip file contains all the artifacts related to the

frontend aspect of ASP.NET MVC web application. It will be

used in conjunction with webdeploy utility for deploying in

IIS within windows container.

 Set-AzureStorageBlobContent -File "$scriptsFilePathPSScripts

lcm.ps1" -Container "$containerName" -Blob "lcm.ps1" -BlobType
 Block -Force -Context $storage.Context

2. Create a new Azure resource group named OnlineMedicine. Deploy the

OnlineMedicine.json ARM template after testing for its validity. Parameters

to this template are passed using another json file named

OnlineMedicine.parameters.json. We will look into the details of both

OnlineMedicine.json and OnlineMedicine.parameters.json in the next

section:

 New-AzureRmResourceGroup -Name OnlineMedicine
 -Location "West Europe"

||||||||||||||||||||

Configuration Management

 [329]

Farkiantech.com
||||||||||||||||||||

 Test-AzureRmResourceGroupDeployment -ResourceGroupName testingDev6
 -TemplateFile "C:Templates
 OnlineMedicine.json"
 -TemplateParameterFile
 "C:Templates
 OnlineMedicine.parameters.json"
 -verbose
 New-AzureRmResourceGroupDeployment -Name test1
 -ResourceGroupName testingDev6
 -TemplateFile "C:Templates
 OnlineMedicine.json"
 -TemplateParameterFile
 "C:Templates
 OnlineMedicine.parameters.json"
 -Verbose

Test-ARMTemplate.ps1

After preparing the common services and uploading the relevant scripts and templates to

the Azure storage, it's time to start the process of deployment of the sample application. The

entire infrastructure and application deployment is done through ARM template. The ARM

template is responsible for provisioning resources on Azure and running scripts on virtual

machines to configure them with the DSC Pull Server, Docker container, deploying the

application and connecting it to the Azure SQL Server. However, before the ARM template

is executed, it should be tested for its validity. The purpose of Test-ARMTemplate is to

create a new resource group for the sample application and validate the

OnlineMedicine.json ARM template. This script is executed from the release pipeline.

The code for the entire script is shown next.

param(
 [string] $ARMTemplatePath,
 [string] $ARMTemplateParametersPath,
 [string] $resourceGroupName,
 [string] $OMSWorkspaceName,
 [string] $skuName,
 [string] $deploymentName,
 [string] $pullserverRegKey,
 [string] $pullserverPort,
 [string] $webAppPort,
 [string] $deployLocation,

||||||||||||||||||||

Configuration Management

 [330]

||||||||||||||||||||

 [string] $wsResourceGroup,
 [string] $containerName
)
New-AzureRmResourceGroup -Name $resourceGroupName -Location
$deployLocation -Force -Confirm:$false -Verbose
Test-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -TemplateFile "$ARMTemplatePath"
-TemplateParameterFile "$ARMTemplateParametersPath"
-workspaceName "$OMSWorkspaceName" -skuName $skuName
-pullserverRegKey $pullserverRegKey -pullserverPort
$pullserverPort -webAppPort $webAppPort -wsResourceGroup
$wsResourceGroup -deployLocation "$deployLocation"
-containerName "$containerName" -Verbose

The script action has multiple parameters and passes them to the Test-

AzureRmResourceGroupDeployment cmdlet for verifying the validity of the template.

New-TemplateDeployment.ps1

After ensuring that the ARM template has no errors, it's time to execute the template and

provision environment along with the application deployment. This script is very similar to

Test-ARMTemplate.ps1. It takes the same parameters but instead of testing the template,

this script starts the actual deployment process using the New-

AzureRmResourceGroupDeployment cmdlet. This script is executed from the release

pipeline. The entire script is shown here.

param(
 [string] $ARMTemplatePath,
 [string] $ARMTemplateParametersPath,
 [string] $resourceGroupName,
 [string] $OMSWorkspaceName,
 [string] $skuName ,
 [string] $deploymentName,
 [string] $pullserverRegKey,
 [string] $pullserverPort,
 [string] $webAppPort,
 [string] $deployLocation,
 [string] $wsResourceGroup,
 [string] $containerName
)

||||||||||||||||||||

Configuration Management

 [331]

Farkiantech.com
||||||||||||||||||||

New-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name $deploymentName -TemplateFile
"$ARMTemplatePath" -TemplateParameterFile "$ARMTemplateParametersPath"
-workspaceName "$OMSWorkspaceName" -skuName $skuName
-pullserverRegKey $pullserverRegKey -pullserverPort
$pullserverPort -webAppPort $webAppPort -wsResourceGroup
$wsResourceGroup -deployLocation "$deployLocation"
-containerName "$containerName" -Mode Incremental -verbose

OnlineMedicine.parameters.json

There are multiple ways to send parameters to ARM templates. One of the ways we saw

earlier was by sending parameters using PowerShell. Another option is to send parameters

to the ARM template is by way of the json file. In this json file, the parameters section

contains all the parameters with their corresponding values. While deploying the template,

New-AzureRMResourceGroupDeployment. TemplateParameterFile argument can be

used to specify the parameters file. All parameters defined in the parameters file will be

passed as parameters to the ARM template. Also, this is an ideal approach to send Azure

Key Vault-related parameters and their values to the template.

The OnlineMedicine.parameters.json file contains only parameters related to values

that are stored in the Azure Key Vault. The vault is referred using its unique identifier, and

there is a special capability provided by templates to refer to the Azure Key Vault using

reference keywords.

It is to be noted that placeholder values should be replaced before executing the scripts and

templates. The xx values should be replaced with an appropriate subscription ID, the ??

values should be replaced with the resource group name created by the IT administrator

containing the Azure Key Vault, and the ** value should be replaced with the actual name

of the Key Vault.

The parameters defined in the parameters file are as follows:

 SQL server username:

 "sqlUserName": {
 "reference": {
 "keyVault": {
 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 /resourceGroups/???????/providers/

||||||||||||||||||||

Configuration Management

 [332]

||||||||||||||||||||

 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "sqlUserName"
 }
 }

 SQL server password:

 "sqlPassword": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "sqlPassword"
 }
 } VSTS

username:
 "vstsUserName": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "vstsUserName"
 }
 }

 VSTS password:

 "vstsPassword": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "vstsPassword"
 }
 }

||||||||||||||||||||

Configuration Management

 [333]

Farkiantech.com
||||||||||||||||||||

Virtual machine user name:

 "vmUserName": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "vmUserName"
 }
 }

 Virtual machine password:

 "vmPassword": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "vmPassword"
 }
 }

 OMS workspace ID:

 "WorkspaceID": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "WorkspaceID"
 }
 }

Storage account SAS token:

 "sasToken": {
 "reference": {

||||||||||||||||||||

Configuration Management

 [334]

||||||||||||||||||||

 "keyVault": {
 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "sasToken"
 }
 }

 Storage account key:

 "storageKey": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "storageKey"
 }
 }

 Storage account name:

 "storageName": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },
 "secretName": "storageName"
 }
 }

Azure SQL server name:

 "sqlServerName": {
 "reference": {
 "keyVault": {

 "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx

xxxxxxxxxxxx/resourceGroups/???????/providers/
 Microsoft.KeyVault/vaults/*****"
 },

||||||||||||||||||||

Configuration Management

 [335]

Farkiantech.com
||||||||||||||||||||

 "secretName": "sqlServerName"
 }
 }

OnlineMedicine.json

The ARM template, OnlineMedicine.json, is the main template for deploying both the

infrastructure and application for the sample application. It reuses the storage account,

OMS workspace, and Azure Key Vault provisioned by an IT administrator . The

PowerShell script, New-TemplateDeployment.ps1, executes the template in combination

with the parameters file.

Parameters

OnlineMedicine.json is a generic template defining multiple parameters as shown

following:

"workspaceName": {
 "type": "string",
 "defaultValue": "OnlineMedicineOMS",
 "metadata": {
 "description": "OMS workspace Name"
 }
 },
 "pullserverPort": {
 "type": "string",
 "defaultValue": "9100"
 },
 "webAppPort": {
 "type": "string",
 "defaultValue": "8080",
 "metadata": {
 "description": "Port number for web application"
 }

||||||||||||||||||||

Configuration Management

 [336]

||||||||||||||||||||

 },
 "skuName": {
 "type": "string",
 "defaultValue": "om",
 "metadata": {
 "description": "om - shot form for Online Medicine.

used to uniquify names"
 }
 },
 "deployLocation": {
 "type": "string",
 "defaultValue": "West Europe",
 "metadata": {
 "description": "Location for provisioning of resources"}
 },
 "countVMs": {
 "type": "int",
 "defaultValue": 2,
 "metadata": {
 "description": "The name of the new Web application
 virtual machines."
 }
 },
 "vmSize": {
 "type": "string",
 "defaultValue": "Standard_D3",
 "metadata": {
 "description": "The size of virtual machines."
 }
 },
 "osSKU": {
 "type": "string",
 "defaultValue": "2016-Datacenter-with-Containers",
 "metadata": {
 "description": "Image SKU of virtual machines"
 }
 },
 "databaseName": {
 "type": "string",
 "defaultValue": "medicine",
 "metadata": {
 "description": "Name of SQL server database"
 }
 },

||||||||||||||||||||

Configuration Management

 [337]

Farkiantech.com
||||||||||||||||||||

 "sqlUserName": {
 "type": "securestring",
 "metadata": {
 "description": "SQL server username passed from Azure key vault"

}
 },
 "sqlPassword": {
 "type": "securestring",
 "metadata": {
 "description": "SQL server password passed from Azure key vault"
 }
 },
 "vstsUserName": {
 "type": "securestring",
 "metadata": {
 "description": "VSTS username passed from Azure key vault"
 }
 },
 "vstsPassword": {
 "type": "securestring",
 "metadata": {
 "description": "VSTS password passed from Azure key vault"
 }
 },
 "vmUserName": {
 "type": "securestring",
 "metadata": {
 "description": "Virtual Machine username passed from Azure key
vault"

}
 },
 "vmPassword": {
 "type": "securestring",
 "metadata": {
 "description": "Virtual Machine password passed from Azure key
vault"

}
 },
 "WorkspaceID": {
 "type": "securestring",
 "metadata": {
 "description": "OMS workspace ID passed from Azure key vault"
 }
 },

||||||||||||||||||||

Configuration Management

 [338]

||||||||||||||||||||

 "sasToken": {
 "type": "securestring",
 "metadata": {
 "description": "Storage account SAS token passed from Azure key
vault"

}
 },
 "storageKey": {
 "type": "securestring",
 "metadata": {
 "description": "Storage Account key passed from Azure key vault"
 }
 },
 "storageName": {
 "type": "securestring",
 "metadata": {
 "description": "Storage account name passed from Azure key vault"
 }
 },
 "containerName": {
 "type": "string",
 "metadata": {
 "description": "Storage container name passed from Azure key vault"
 }
 },
 "sqlServerName": {
 "type": "securestring",
 "metadata": {
 "description": "SQL Server name passed from Azure key vault"
 }
 },
 "wsResourceGroup": {
 "type": "string",
 "defaultValue": "win2016devops",
 "metadata": {
 "description": "Name of resource group hosting key vault,
 storage account and OMS workspace"
 }
 },
 "collation": {
 "type": "string",
 "defaultValue": "SQL_Latin1_General_CP1_CI_AS",
 "metadata": {
 "description": "The database collation for governing

||||||||||||||||||||

Configuration Management

 [339]

Farkiantech.com
||||||||||||||||||||

 the proper use of characters."
 }
 },
 "edition": {
 "type": "string",
 "defaultValue": "Basic",
 "allowedValues": [
 "Basic",
 "Standard",
 "Premium"
],
 "metadata": {
 "description": "The type of database to create."
 }
 },
 "maxSizeBytes": {
 "type": "string",
 "defaultValue": "1073741824",
 "metadata": {
 "description": "The maximum size, in bytes, for the database"
 }
 },
 "pullserverRegKey": {
 "type": "string",
 "defaultValue": "11111111-1111-1111-1111-111111111111",
 "metadata": {
 "description": "GU"
 }
 },
 "requestedServiceObjectiveName": {
 "type": "string",
 "defaultValue": "Basic",
 "allowedValues": [
 "Basic",
 "S0",
 "S1",
 "S2",
 "P1",
 "P2",
 "P3"
],
 "metadata": {
 "description": "Describes the performance level for Edition"
 }

||||||||||||||||||||

Configuration Management

 [340]

||||||||||||||||||||

}

Variables

Multiple variables are defined for internal working of the template. The following code

shows all the declared variables in the template:

"storageAccountName": "[concat(parameters('skuName'),
uniqueString(resourceGroup().id))]",
"storageApiVersion": "2015-05-01-preview",
"storageType": "Standard_LRS",
"networkName": "[concat(parameters('skuName'), '-network')]",
"networkApiVersion": "2015-05-01-preview",
"networkAddressSpace": "10.0.0.0/16",
"publicIpName": "[concat(parameters('skuName'), '-publicIP')]",

"publicIPApiVersion": "2015-05-01-preview",
"PublicIpType": "Static",
"nicName": "[concat(parameters('skuName'), '-nic')]",
"nicApiVersion": "2015-05-01-preview",
"nicIpType": "Dynamic",
"vmName": "vm",
"vmApiVersion": "2015-05-01-preview",
"NSGName": "[concat(parameters('skuName'),'-NSG')]",
"NSGApiVersion": "2015-05-01-preview",
"accountid": "[concat('/subscriptions/',

subscription().subscriptionId,'/resourceGroups/',

parameters('wsResourceGroup'),'/providers/',

'Microsoft.OperationalInsights/workspaces/',
parameters('workspaceName'))]",
"sqlServerName": "[concat(parameters('sqlServerName'),
'-', parameters('skuName'))]"

Resources

The Azure resources provisioned through the template are shown here.

Microsoft.Compute/availabilitySets

Availability sets are required for multiple virtual machines to be attached to a load

balancer. It provides high availability for applications associated with them. Azure will

||||||||||||||||||||

Configuration Management

 [341]

Farkiantech.com
||||||||||||||||||||

patch one server at a time, ensuring that an instance is always available to serve the

requests.

 {
 "type": "Microsoft.Compute/availabilitySets",
 "name": "webappAVSet",
 "apiVersion": "2015-05-01-preview",
 "location": "[parameters('deployLocation')]"
 }

Microsoft.Storage/storageAccounts

This storage account is needed to store the vhd files of Pull Server and virtual machines.

The code is self-explanatory. All of its properties get values from either variables or

parameters.

 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "[variables('storageApiVersion')]",
 "location": "[parameters('deployLocation')]",
 "properties": {
 "accountType": "[variables('storageType')]"
 }
 }

Microsoft.Network/virtualNetworks

All virtual machines and load balancers are attached to a virtual network in the Azure

resource manager. The network has two subnets with distinct address spaces. It is possible

to create more subnets and readers are free to create them based on their preference.

 {
 "name": "[variables('networkName')]",
 "type": "Microsoft.Network/virtualNetworks",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.Network/networkSecurityGroups/',
 variables('NSGName'))]"
],

||||||||||||||||||||

Configuration Management

 [342]

||||||||||||||||||||

 "apiVersion": "[variables('networkApiVersion')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('networkAddressSpace')]"
]
 },
 "subnets": [
 {
 "name": "subnetad",
 "properties": {
 "addressPrefix": "10.0.0.0/24"
 }
 },
 {
 "name": "frontend",
 "properties": {
 "addressPrefix": "10.0.1.0/24",
 "networkSecurityGroup": {
 "id": "[resourceId('Microsoft.Network/

networkSecurityGroups', variables('NSGName'))]"
 }
 }
 }
]
 }
 }

Microsoft.Network/networkSecurityGroups

Network security groups help in filtering the requests and allow only those that match the

rules in the allowed list based on a combination of both IP address and ports. The ports

opened through NSG are 80,443, 1433, 5985, 5986, 3389, 2375, and 2376, for Pull Server

and the web application.

 {
 "apiVersion": "[variables('NSGApiVersion')]",
 "type": "Microsoft.Network/networkSecurityGroups",
 "name": "[variables('NSGName')]",
 "location": "[resourceGroup().location]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },

||||||||||||||||||||

Configuration Management

 [343]

Farkiantech.com
||||||||||||||||||||

 "properties": {
 "securityRules": [
 {
 "name": "rule80",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "80",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 101,
 "direction": "Inbound"
 }
 },
 {
 "name": "rule443",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "443",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 102,
 "direction": "Inbound"
 }
 },
 {
 "name": "rule1433",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "1433",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 103,
 "direction": "Inbound"
 }
 },
 {
 "name": "rulePSUnsecured",
 "properties": {

||||||||||||||||||||

Configuration Management

 [344]

||||||||||||||||||||

 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "5985",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 104,
 "direction": "Inbound"
 }
 },
 {
 "name": "rulePSsecured",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "5986",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 105,
 "direction": "Inbound"
 }
 },
 {
 "name": "RDP",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "3389",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 106,
 "direction": "Inbound"
 }
 },
 {
 "name": "docker",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "2375",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",

||||||||||||||||||||

Configuration Management

 [345]

Farkiantech.com
||||||||||||||||||||

 "access": "Allow",
 "priority": 107,
 "direction": "Inbound"
 }
 },
 {
 "name": "dockers",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "2376",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 108,
 "direction": "Inbound"
 }
 },
 {
 "name": "pullserver",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "[parameters('pullserverPort')]",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 109,
 "direction": "Inbound"
 }
 },
 {
 "name": "webserver",
 "properties": {
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "[parameters('webAppPort')]",

"sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 110,
 "direction": "Inbound"
 }
 }

||||||||||||||||||||

Configuration Management

 [346]

||||||||||||||||||||

]
 }
 }

Microsoft.Network/publicIPAddresses

The public IP address resource makes a virtual machine accessible on the Internet. This IP

address will also be passed to SQL server database firewall rules to allow access from

virtual machines.

 {
 "apiVersion": "[variables('publicIPApiVersion')]",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "[concat('pipPS',variables('publicIpName'))]",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "properties": {
 "publicIPAllocationMethod": "Static",
 "dnsSettings": {
 "domainNameLabel": "[concat(parameters('skuName'),
 'pullserver01')]"
 }
 }
 }

Microsoft.Network/networkInterfaces

Every virtual machine needs a Network Interface Card (NIC) for communication with a

virtual network and other resources. This NIC is provisioned for the Pull Server virtual

machine. A public IP address and a dynamic internal IP address from a frontend subnet

and are assigned to NIC.

 {
 "name": "[concat('nicPS',variables('nicName'))]",
 "type": "Microsoft.Network/networkInterfaces",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "dependsOn": [
 "[concat('Microsoft.Network/virtualNetworks/',

||||||||||||||||||||

Configuration Management

 [347]

Farkiantech.com
||||||||||||||||||||

 variables('networkName'))]",
 "[concat('Microsoft.Network/publicIPAddresses/','pipPS',
 variables('publicIpName'))]"
],
 "apiVersion": "[variables('nicApiVersion')]",
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfigps",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "subnet": {

"id":
"[resourceId('Microsoft.Network/virtualNetworks/subnets/',

variables('networkName'), 'frontend')]"
 },
 "publicIPAddress": {

"id":
 [resourceId('Microsoft.Network/publicIPAddresses',

concat('pipPS',variables('publicIpName')))]"
 }
 }
 }
]
 }
 }

Microsoft.Compute/virtualMachines

This resource provisions a virtual machine based on a Windows Server 2016 image. This

sku of Windows has a containers feature enabled by default. It is dependent on the Azure

storage account on which its vhd will be stored , the virtual network, and SQL server. It is

dependent on the SQL server because the Pull Server is also responsible for provisioning

the table structure within the Azure SQL database. The NIC provisioned earlier is also

assigned to it.

 {
 "apiVersion": "[variables('vmApiVersion')]",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[concat(variables('vmName'),'-pulls')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },

||||||||||||||||||||

Configuration Management

 [348]

||||||||||||||||||||

 "location": "[parameters('deployLocation')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts',
 variables('storageAccountName'))]",
 "[resourceId('Microsoft.Network/networkInterfaces',
 concat('nicPS',variables('nicName')))]",
 "[resourceId('Microsoft.Sql/servers',

variables('sqlServerName'))]",
 "[resourceId('Microsoft.Sql/servers/databases',

variables('sqlServerName'), parameters('databaseName'))]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[parameters('vmSize')]"
 },
 "osProfile": {
 "computerName": "[concat(variables('vmName'),'-pulls')]",
 "adminUsername": "[parameters('vmUserName')]",
 "adminPassword": "[parameters('vmPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "[parameters('osSKU')]",
 "version": "latest"
 },
 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat('http://',variables('storageAccountName')
 ,'.blob.core.windows.net/vhds0/','psvmdisk.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 },
 "dataDisks": [
 {
 "vhd": {
 "uri": "[concat('http://',variables('storageAccountName')
 ,'.blob.core.windows.net/vhds0/', 'pullserver-data-
 disk1.vhd')]"
 },
 "name": "pullserver-data-disk1",

||||||||||||||||||||

Configuration Management

 [349]

Farkiantech.com
||||||||||||||||||||

 "caching": "None",
 "diskSizeGB": "1023",
 "lun": 0,
 "createOption": "empty"
 }
]
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces',
 concat('nicPS',variables('nicName')))]"
 }
]
 }
 }
 }

Microsoft.Compute/virtualMachines/extensions – CustomScriptExtension

This is a nested resource of the virtualMachines resource. CustomScriptExtension

helps in executing PowerShell scripts during the provisioning of virtual machines and

provides an opportunity to deploy, provision, and configure additional services and

utilities within the virtual machine. This resource has the capability of downloading scripts

from Azure storage accounts on to virtual machines using Azure storage keys. This

extension downloads two PowerShell scripts – PullServer.ps1 and IISInstall.ps1 on

the Pull Server virtual machine.

Scripts running using this extension is responsible for provisioning Pull Server and

deploying configurations.

 PullServer.ps1 is responsible for provisioning of the DSC Pull Server on the

virtual machine. It is also responsible for executing the SQL script for the

application to generate table structures in Azure SQL as well as generating

appropriate virtual machine certificates for accessing its security through

PowerShell. This script will be discussed in depth in the next chapter.

 IISInstall.ps1 is responsible for generating DSC configured documents and

deploying them in Pull Server so that they can be accessed and downloaded by

the local configuration manager of the target containers and configure

themselves. This script will be discussed in the depth in next chapter.

||||||||||||||||||||

Configuration Management

 [350]

||||||||||||||||||||

Since it is a nested resource, it is dependent on its parent virtual machine resource. This

extension is dependent on the successful provisioning of the virtual machine.

 {
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(variables('vmName'),'-pulls','/powershellscript')]",
 "apiVersion": "2015-05-01-preview",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "location": "[parameters('deployLocation')]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/',
 variables('vmName'),'-pulls')]"
],
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.4",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": [
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/pullserver.ps1')]",
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/IISInstall.ps1')]",
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/OnlinePharmacy.sql')]"
],
 "timestamp": "11",
 "commandToExecute": "[concat('powershell.exe -ExecutionPolicy
 Unrestricted -File pullserver.ps1', ' -port ',

parameters('pullserverPort') , ' -sqlUsername ',

parameters('sqlUserName') , ' -sqlPassword ',

parameters('sqlPassword') , ' -sqlDatabaseName ',

parameters('databaseName') , ' -servername ',

variables('sqlServerName'), ' -webport ' ,

parameters('webAppPort') , ' -regKey ' ,

parameters('pullserverRegKey'))]"
 },
 "protectedSettings": {

||||||||||||||||||||

Configuration Management

 [351]

Farkiantech.com
||||||||||||||||||||

 // "storageAccountName": "[parameters('storageName')]",
 "storageAccountKey": "[parameters('storageKey')]"
 }
 }
 }

Microsoft.Compute/virtualMachines/extensions – MicrosoftMonitoringAgent

This is again a nested resource of the virtualMachines resource.

MicrosoftMonitoringAgent helps in installing OMS agents on the virtual machine and

also in configuring it to connect to the OMS workspace defined in another resource group.

Since it is a nested resource, it is dependent on its parent virtual machine resource:

 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(variables('vmName'),'-pulls','/omsscript')]",
 "location": "[resourceGroup().location]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/',
 variables('vmName'),'-pulls')]",
 "[resourceId('Microsoft.Compute/virtualMachines/extensions',

concat(variables('vmName'),'-pulls') ,'powershellscript')]"
],
 "properties": {
 "publisher": "Microsoft.EnterpriseCloud.Monitoring",
 "type": "MicrosoftMonitoringAgent",
 "typeHandlerVersion": "1.0",
 "settings": {
 "workspaceId": "[parameters('WorkspaceID')]"
 },
 "protectedSettings": {
 "workspaceKey": "[listKeys(variables('accountid'),
 '2015-11-01-preview').primarySharedKey]"
 }
 }
 }

Microsoft.Network/publicIPAddresses – for load balancer

||||||||||||||||||||

Configuration Management

 [352]

||||||||||||||||||||

The public IP address resource makes a virtual machine accessible on the Internet. This IP

address is statically provisioned for the load balancer. A unique name should be provided

and replaced for domainNameLabel.

 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "lbPublicIP",
 "location": "[resourceGroup().location]",
 "properties": {
 "publicIPAllocationMethod": "Static",
 "dnsSettings": {
 "domainNameLabel": "[concat(parameters('skuName'), '[xxxxx]')]"
 }
 }
 }

Microsoft.Network/loadBalancers

This resource provisions a public load balancer with a public IP address so that it can be

accessed from the Internet. Two virtual machines would be connected to it, and it opens a

load balancing rule to access the web application deployed within the containers on both

the virtual machines. It also declares a couple of NAT rules so that both virtual machines

can be reached using a remote desktop. There is also a probe element declared to

continuously check whether the web application is alive on a provided port on both the

virtual machines:

 {
 "apiVersion": "2015-05-01-preview",
 "name": "containerLB",
 "type": "Microsoft.Network/loadBalancers",
 "location": "[resourceGroup().location]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/publicIPAddresses','lbPublicIP')]"
],
 "properties": {
 "frontendIPConfigurations": [
 {
 "name": "ContainerLBFE",
 "properties": {
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses',

||||||||||||||||||||

Configuration Management

 [353]

Farkiantech.com
||||||||||||||||||||

 'lbPublicIP')]"
 }
 }
 }
],
 "backendAddressPools": [
 {
 "name": "ContainerLBBE"
 }
],
 "loadBalancingRules": [
 {
 "name": "WebAppList",
 "properties": {
 "frontendIPConfiguration": {
 "id": "
 [resourceid('Microsoft.Network/loadBalancers/
 frontendIPConfigurations','containerLB','ContainerLBFE')]"
 },
 "backendAddressPool": {
 "id": "[resourceid('Microsoft.Network/loadBalancers/

backendAddressPools', 'containerLB','ContainerLBBE')]"
 },
 "probe": {

"id":
 "[resourceid('Microsoft.Network/

loadBalancers/probes',
 'containerLB','WebLBPROBE')]"
 },
 "protocol": "tcp",
 "frontendPort": "[parameters('webAppPort')]",
 "backendPort": "[parameters('webAppPort')]",
 "enableFloatingIP": true
 }
 }
],
 "probes": [
 {
 "name": "WebLBPROBE",
 "properties": {
 "protocol": "http",
 "port": "[parameters('webAppPort')]",
 "requestPath": "/newapp/Index",
 "intervalInSeconds": "100",

||||||||||||||||||||

Configuration Management

 [354]

||||||||||||||||||||

 "numberOfProbes": "100"
 }
 }
],
 "inboundNatRules": [
 {
 "name": "NAT0",
 "properties": {
 "frontendIPConfiguration": {
 "id": "[resourceid('Microsoft.Network/loadBalancers/

frontendIPConfigurations','containerLB','ContainerLBFE')]"
 },
 "protocol": "tcp",
 "frontendPort": "3389",
 "backendPort": 3389,
 "enableFloatingIP": false
 }
 },
 {
 "name": "NAT1",
 "properties": {
 "frontendIPConfiguration": {
 "id": "[resourceid('Microsoft.Network/loadBalancers/

frontendIPConfigurations','containerLB','ContainerLBFE')]"
 },
 "protocol": "tcp",
 "frontendPort": "13389",
 "backendPort": 3389,
 "enableFloatingIP": false
 }
 }
]
 }
 }

Microsoft.Network/publicIPAddresses – web application public IP addresses

The public IP address resource makes a virtual machine accessible on the Internet. An IP

addresses are provisioned for each virtual machine.

 {
 "apiVersion": "[variables('publicIPApiVersion')]",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "[concat('pip',copyIndex(1),variables('publicIpName'))]",

||||||||||||||||||||

Configuration Management

 [355]

Farkiantech.com
||||||||||||||||||||

 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "location": "[parameters('deployLocation')]",
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "piploop"
 },
 "properties": {
 "publicIPAllocationMethod": "[variables('PublicIpType')]",
 "dnsSettings": {
 "domainNameLabel": "[concat('webapponlmed',

parameters('skuName'), copyIndex(1))]"
 }
 }
 }

Microsoft.Network/networkInterfaces – web application NICs

Multiple NICs are provisioned based on the number of virtual machines created for the web

application. Each NIC has a public IP address as well and an internal IP assigned by its

hosted network. The successful provisioning of the NIC is dependent on the successful

provisioning of public IP addresses, load balancers, and availability sets. Both the NICs are

bound to the load balancer so that requests from the load balancer can be routed to them.

 {
 "name": "[concat('nic',copyIndex(1),variables('nicName'))]",
 "type": "Microsoft.Network/networkInterfaces",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "nicloop"
 },
 "dependsOn": [
 "[concat('Microsoft.Network/publicIPAddresses/','pip'
 ,copyIndex(1),variables('publicIpName'))]",
 "[concat('Microsoft.Network/virtualNetworks/',
 variables('networkName'))]",
 "[concat('Microsoft.Network/loadBalancers/',
 'containerLB')]",

||||||||||||||||||||

Configuration Management

 [356]

||||||||||||||||||||

 "[resourceId('Microsoft.Compute/availabilitySets',
 'webappAVSet')]"
],
 "apiVersion": "[variables('nicApiVersion')]",
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig",
 "properties": {
 "privateIPAllocationMethod": "[variables('nicIpType')]",
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/

subnets/', variables('networkName'), 'frontend')]"
 },
 "publicIPAddress": {
 "id": " [resourceId('Microsoft.Network/publicIPAddresses',

concat('pip',copyIndex(1),variables('publicIpName')))]"
 },
 "loadBalancerBackendAddressPools": [
 {
 "id": "[resourceid('Microsoft.Network/loadBalancers/

backendAddressPools', 'containerLB','ContainerLBBE')]" }
],
 "loadBalancerInboundNatRules": [
 {

"id":
 "[resourceId('Microsoft.Network/

loadBalancers/inboundNatRules',
 'containerLB',concat('NAT', copyindex()))]"
 }
]
 }
 }
]
 }
 }

Microsoft.Compute/virtualMachines – web application virtual machines

This resource provisions multiple virtual machines based on the value of the NumVMs

parameter. Virtual machines have the Windows Server 2016 operating system installed

with the size determined by the vmSize template parameter. This Sku of Windows has a

||||||||||||||||||||

Configuration Management

 [357]

Farkiantech.com
||||||||||||||||||||

containers feature enabled by default. It is dependent on the Azure storage account, the

virtual network, SQL server, NICs, and the availability set.

 {
 "apiVersion": "[variables('vmApiVersion')]",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[concat(variables('vmName'),copyIndex(1))]",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "vmloop"
 },
 "dependsOn": [
"[resourceId('Microsoft.Storage/storageAccounts',variables('storageAccountN
ame'))]",
 "[resourceId('Microsoft.Network/networkInterfaces',

concat('nic',copyIndex(1),variables('nicName')))]",
 "[resourceId('Microsoft.Compute/availabilitySets', 'webappAVSet')]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[parameters('vmSize')]"
 },
 "availabilitySet": {
 "id": "[resourceId('Microsoft.Compute/availabilitySets',
 'webappAVSet')]"
 },
 "osProfile": {
 "computerName": "[concat('vm',copyIndex(1))]",
 "adminUsername": "[parameters('vmUserName')]",
 "adminPassword": "[parameters('vmPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "[parameters('osSKU')]",
 "version": "latest"
 },
 "osDisk": {
 "name": "osdisk",

||||||||||||||||||||

Configuration Management

 [358]

||||||||||||||||||||

 "vhd": {
 "uri": "[concat('http://',variables('storageAccountName')
,'.blob.core.windows.net/vhds0/','vm',copyindex(1),'osdisk.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {

"id":
"[resourceId('Microsoft.Network/networkInterfaces',concat('nic',
 copyIndex(1),variables('nicName')))]"
 }
]
 }
 }
 }
 }

Microsoft.Compute/virtualMachines/extensions – CustomScriptExtension

This extension downloads three PowerShell scripts–lcm.ps1,

ChangeConnectionString.ps1, and ContainerConfig.ps1, a dockerfile and a ZIP

file named deployment.zip. The ZIP file contains the webdeploy package of our sample

application.

The virtual machine is configured to execute ContainerConfig.ps1 first and is

responsible for provisioning a new container image using the downloaded dockerfile.

The dockerfile loads both lcm.ps1 and changeConnectionString.ps1 during its

execution and executes both the PowerShell files to configure the containers local

configuration manager configuration and update the connection string of the web

application at web.config. The data for the connection string, such as a SQL username, a

SQL password, a database, and a server name is passed to the container image.

ContainerConfig.ps1 also generates appropriate virtual machine certificates to access its

security through PowerShell. This extension runs on every virtual machine provisioned for

container and web application deployment. All these files are discussed in depth in the next

section.

||||||||||||||||||||

Configuration Management

 [359]

Farkiantech.com
||||||||||||||||||||

Since it is a nested resource, it is dependent on its parent virtual machine resource. This

extension is also dependent on the successful provisioning of the Pull Server PowerShell

extension. It is because the configurations should be available on Pull Server before the local

configuration manager can pull them.

 {

"name":
"[concat(variables('vmName'),copyIndex(1),'/powershellscript')]",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "location": "[parameters('deployLocation')]",
 "tags": {
 "skuName": "[parameters('skuName')]"
 },
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "scriptloop"
 },
 "apiVersion": "2015-06-15",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/',
 variables('vmName'),copyIndex(1))]",
 "[resourceId('Microsoft.Compute/virtualMachines/extensions',

concat(variables('vmName'),'-pulls') ,'powershellscript')]"
],
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.4",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": [
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),

'/ContainerConfig.ps1')]",
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/dockerfile')]",
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/lcm.ps1')]",
 "[concat('https://', parameters('storageName'),
 '.blob.core.windows.net/', parameters('containerName'),
 '/Deployment.zip')]",
 "[concat('https://', parameters('storageName'),

||||||||||||||||||||

Configuration Management

 [360]

||||||||||||||||||||

 '.blob.core.windows.net/', parameters('containerName'),
 '/ChangeConnectionString.ps1')]"
],
 "timestamp": "11",
 "commandToExecute": "[concat('powershell.exe -ExecutionPolicy
 Unrestricted -File ContainerConfig.ps1 ', '-username ',
 parameters('vmUserName'),' -password ',
 parameters('vmPassword'),
 ' -pullip ',

reference(concat('pipPS',

variables('publicIpName')))
 .ipAddress, ' -regKey ', parameters('pullserverRegKey'),
 ' -port ',
 parameters('pullserverPort'), ' -sqlUsername ',

parameters('sqlUserName'),' -sqlPassword ',

parameters('sqlPassword') ,' -webport ',

parameters('webAppPort'), ' -sqlServer ',

variables('sqlServerName'), ' -databaseName ',
 parameters('databaseName'))]"
 },
 "protectedSettings": {
 // "storageAccountName": "[parameters('storageName')]",
 "storageAccountKey": "[parameters('storageKey')]"
 }
 }
 }

Microsoft.Compute/virtualMachines/extensions –

MicrosoftMonitoringAgent

This is again a nested resource of the virtualMachines resource.

MicrosoftMonitoringAgent helps in installing OMS agent on all virtual machines related

to the web application and also to configure them to connect to the OMS workspace.

 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(variables('vmName'),copyIndex(1),'/omsscript')]",
 "location": "[resourceGroup().location]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/'
 ,variables('vmName'),copyIndex(1))]",

||||||||||||||||||||

Configuration Management

 [361]

Farkiantech.com
||||||||||||||||||||

 "[resourceId('Microsoft.Compute/virtualMachines/extensions',

concat(variables('vmName'),copyIndex(1)),'powershellscript')]"
],
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "omsloop"
 },
 "properties": {
 "publisher": "Microsoft.EnterpriseCloud.Monitoring",
 "type": "MicrosoftMonitoringAgent",
 "typeHandlerVersion": "1.0",
 "settings": {
 "workspaceId": "[parameters('WorkspaceID')]"
 },
 "protectedSettings": {
 "workspaceKey": "[listKeys(variables('accountid'),
 '2015-11-01-preview').primarySharedKey]"
 }
 }
 }

Microsoft.Sql/servers, databases, firewallRules

This resource provisions the Azure SQL server, databases, and firewallrules. Since the

IP addresses belonging to Pull Server and web application virtual machines should be

allowed to access the SQL server and database, they are dynamically added to the

firewallrules using reference function provided by ARM templates. Accordingly, this

resource is also dependent on all three IP addresses belonging to Pull Server and the web

application. The firewall rule named AllowAllWindowsAzureIps allows all Azure

services to connect to the Azure SQL server and database.

Since it is a nested resource, it is dependent on its parent virtual machine resource:

 {
 "name": "[variables('sqlServerName')]",
 "type": "Microsoft.Sql/servers",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "SqlServer"
 },
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[resourceId('Microsoft.Network/publicIPAddresses',concat('pip1',

||||||||||||||||||||

Configuration Management

 [362]

||||||||||||||||||||

 variables('publicIpName')))]",
 "[resourceId('Microsoft.Network/publicIPAddresses',concat('pip2',
 variables('publicIpName')))]",
 "[resourceId('Microsoft.Network/publicIPAddresses',concat('pipPS',
 variables('publicIpName')))]"
],
 "properties": {
 "administratorLogin": "[parameters('sqlUserName')]",
 "administratorLoginPassword": "[parameters('sqlPassword')]",
 "version": "12.0"
 },
 "resources": [
 {
 "name": "[parameters('databaseName')]",
 "type": "databases",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "Database"
 },
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlserverName')]"
],
 "properties": {
 "edition": "[parameters('edition')]",
 "collation": "[parameters('collation')]",
 "maxSizeBytes": "[parameters('maxSizeBytes')]",

"requestedServiceObjectiveName":
 "[parameters('requestedServiceObjectiveName')]"
 }
 },
 {
 "type": "firewallrules",
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlServerName')]"
],
 "location": "[resourceGroup().location]",
 "name": "AllowAllWindowsAzureIps",
 "properties": {
 "endIpAddress": "0.0.0.0",
 "startIpAddress": "0.0.0.0"
 }
 },

||||||||||||||||||||

Configuration Management

 [363]

Farkiantech.com
||||||||||||||||||||

 {
 "type": "firewallrules",
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlServerName')]"
],
 "location": "[resourceGroup().location]",
 "name": "webapp1",
 "properties": {
 "endIpAddress": "[reference(concat('pip1',

variables('publicIpName'))).ipAddress]",
 "startIpAddress": "[reference(concat('pip1',

variables('publicIpName'))).ipAddress]"
 }
 },
 {
 "type": "firewallrules",
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlServerName')]"
],
 "location": "[resourceGroup().location]",
 "name": "webapp2",
 "properties": {
 "endIpAddress": "[reference(concat('pip2',

variables('publicIpName'))).ipAddress]", "startIpAddress":

"[reference(concat('pip2',

variables('publicIpName'))).ipAddress]"
 }
 },
 {
 "type": "firewallrules",
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlServerName')]"
],
 "location": "[resourceGroup().location]",
 "name": "pullserver",
 "properties": {
 "endIpAddress": "[reference(concat('pipPS',

variables('publicIpName'))).ipAddress]",
 "startIpAddress": "[reference(concat('pipPS',

variables('publicIpName'))).ipAddress]"
 }

||||||||||||||||||||

Configuration Management

 [364]

||||||||||||||||||||

 }
]
 }

Outputs

The outputs are helpful to retrieve values of provisioned resources and execute Pester test

cases using them.

"webappPort": {
 "type": "string",
 "value": "[parameters('webAppPort')]"
 },
 "pullserverPort": {
 "type": "string",
 "value": "[parameters('pullserverPort')]"
 },
 "numberofvms": {
 "type": "int",
 "value": "[parameters('countVMs')]"
 },
 "vmsize": {
 "type": "string",
 "value": "[parameters('vmSize')]"
 },
 "ossku": {
 "type": "string",
 "value": "[parameters('osSKU')]"
 },
 "databaseName": {
 "type": "string",
 "value": "[parameters('databaseName')]"
 },
 "sqlServer": {
 "type": "string",
 "value": "[variables('sqlServerName')]"
 },
 "resourceGroupName": {
 "type": "string",
 "value": "[resourceGroup().name]"
 },
 "deployLocation": {
 "type": "string",

||||||||||||||||||||

Configuration Management

 [365]

Farkiantech.com
||||||||||||||||||||

 "value": "[resourceGroup().location]"
 },
 "skuName": {
 "type": "string",
 "value": "[parameters('skuName')]"
 },
 "pullServerPublicIPAddress": {
 "type": "string",

"value":

"[reference(concat('pipPS',vari

ables
 ('publicIpName'))).ipAddress]"
 },
 "VM01PublicIPAddress": {
 "type": "string",

"value":
 "[reference(concat('pip1',variables
 ('publicIpName'))).ipAddress]"
 },
 "VM02PublicIPAddress": {
 "type": "string",

"value":
 "[reference(concat('pip2',variables
 ('publicIpName'))).ipAddress]"
 },
 "loadBalancerPublicIPAddress": {
 "type": "string",
 "value": "[reference('lbPublicIP').ipAddress]"
 },
 "storageName": {
 "type": "string",
 "value": "[variables('storageAccountName')]"
 },
 "nicNameforVM1": {
 "type": "string",
 "value": "[concat('nic1',variables('nicName'))]"
 },
 "nicNameforVM2": {
 "type": "string",
 "value": "[concat('nic2',variables('nicName'))]"
 },
 "lbfrontendIPConfiguration": {
 "type": "string",

"value":

||||||||||||||||||||

Configuration Management

 [366]

||||||||||||||||||||

 "[reference('containerLB').
 frontendIPConfigurations[0].name]"
 },
 "lbbackendAddressPool": {
 "type": "string",

"value":
 "[reference('containerLB').

backendAddressPools[0].name]"
 },
 "lbloadBalancingRules": {
 "type": "string",

"value":
 "[reference('containerLB').

loadBalancingRules[0].name]" },
 "lbinboundNatRule1": {
 "type": "string",

"value":
 "[reference('containerLB').

inboundNatRules[0].name]"
 },
 "lbinboundNatRule2": {
 "type": "string",

"value":
 "[reference('containerLB').

inboundNatRules[1].name]"
 },
 "networkSecurityGroupName": {
 "type": "string",
 "value": "[variables('NSGName')]"
 },
 "vmUserName": {
 "type": "string",
 "value": "[parameters('vmUserName')]"
 },
 "vmPassword": {
 "type": "string",
 "value": "[parameters('vmPassword')]"
 }

Summary

||||||||||||||||||||

Configuration Management

 [367]

Farkiantech.com
||||||||||||||||||||

This was a big chapter, and a lot of miles and technology were covered here. This chapter

started with explaining the concepts related to Infrastructure as Code and its principles.

Our sample web application architecture was revisited along with details of its deployment

architecture. Configuration management for both the infrastructure and application is

designed from the ground-up with special emphasis on security and modularity. The

chapter then provided a step-by-step guidance to be executed by an IT administrator and

deployment operators. All the code shown in this chapter is accompanied with source code

and can be used, changed, and extended. This chapter was primarily about building the

configuration management and artifacts related to Infrastructure as Code.

The next chapter will continue on the same topic. It will focus on testing the configuration

management artifacts related to Infrastructure as Code and also explain the scripts used for

provisioning the environment. It will perform operational validation for environments

under consideration and ensure that the sample application works as intended after

provisioning it.

||||||||||||||||||||

||||||||||||||||||||

Configuration Management

and8

Operational Validation

The previous chapter started with configuration management, and this chapter continues

and concludes the same. In this chapter, apart from configuration management, unit testing

and operational validation of environments will be introduced. One of the principles of

Infrastructure as Code is that the scripts and environments are unit tested. The operational

validation of environments is performed to ensure that the application and environment are

not only in desired state but are also ready operationally. Pester was introduced in Chapter

3, DevOps Automation Primer, and it is a primary tool used for the unit testing environment

using PowerShell. The operational validation module is used in order to perform the

operational validation.

This chapter will continue with the explanation of the scripts needed in order to deploy and

configure the environment and application. Toward the end, it will discuss unit testing and

the operational validation of environments in detail.

Steps for deployment through the release

pipeline

The VSTS release pipeline executes tasks, and some of these tasks internally executes

custom scripts. The scripts executed by the release pipeline are described next.

||||||||||||||||||||

Configuration Management and Operational Validation

 [369]

Farkiantech.com
||||||||||||||||||||

PullServer.ps1

The Desired State Configuration (DSC) Pull Server is essentially an IIS web application

with endpoints that accepts requests from target nodes, records their current status, sends

configuration documents, and enables management-related functionality.

PullServer.ps1 script is responsible for provisioning a Pull Server from scratch on a

virtual machine. Detailed instructions and commands used for the creation of Pull Server

are part of this script. This script is also responsible for creating database tables in Azure

SQL. The portion of script that runs SQL scripts on Azure SQL should be moved as an

exercise to an Azure function or executed through a management-related virtual machine.

Pull Server listens on a dedicated port either on a HTTP or HTTPS protocol. The Pull Server

under consideration is using HTTP protocol; however, readers are encouraged to use the

HTTPS protocol as a good practice. There are a lot of activities happening in this script.

Apart from creating Pull Server, it also downloads DSC and executes it to store at a

wellknown defined location-DSC Pull Server. The registration key (GUID) is an important

concept of Pull Server. It registers a target node with the Pull Server. It is a shared key used

by both Pull Server and target nodes. The key is defined on Pull Server, and only an IT

administrator uses it while configuring individual nodes. The registration key is used in

conjunction with ConfigurationNames when pulling a configuration from Pull Server. It

is ignored when ConfigurationID is used to pull the configuration. This registration key

is needed to configure the local configuration manager of containers so that they can

connect to Pull Server and download and execute configurations. Later in this chapter,

readers will come across the IISInstall DSC configuration. This configuration is

responsible for creating a web server environment. It accepts a port number on which the

IIS website will be configured using DSC.

The script accepts the Pull Server port number, Azure SQL username, password, server

name, database name, web application port number, and DSC registration key as

parameters. This script will be executed on the Pull Server virtual machine, and all
parameters will be passed to it during template execution through the Custom Script

Extension resource:

param (
[string] $port = 9100,
[string] $sqlUsername,
[string] $sqlPassword,
[string] $sqlDatabaseName,
[string] $servername,
[string] $webport,

||||||||||||||||||||

Configuration Management and Operational Validation

 [370]

||||||||||||||||||||

[string] $regKey
)

A new certificate is generated to be used as the SSL certificate for the Pull Server web

application. It is provided so that readers can configure their Pull Server running on the

HTTPS protocol as an exercise:

certificate for DSC Pull Server
if ((Get-ChildItem -Path Cert:\LocalMachine\My -DnsName $env:COMPUTERNAME)
-eq $null)
{
$cert = New-SelfSignedCertificate -CertstoreLocation Cert:\LocalMachine\My
`-DnsName $env:COMPUTERNAME
}

A few variables are declared for internal working of the script.

variables declared and used in script
$ComputerName = "Localhost"
$IISWindowsFeature = "Web-Server"
$NET45WindowsFeature = "NET-Framework-45-Features"
$ODataWindowsFeature = "ManagementOData"
$DSCWindowsFeatureName = "DSC-Service"
$PULLServerWebDirectory = "C:\PSDSCPullServer"
$PULLServerSubDirectory = "bin"
$iisAppPoolName = "DSCPullServer"
$iisAppPoolDotNetVersion = "v4.0"
$iisAppName = "PSDSCPullServer"
$certificateThumbPrint = $cert.Thumbprint

Next, Windows server features, Internet Information Server, .NET 4.5, oData service, and

DSC-services are installed on Pull Server:

installing IIS windows feature
Install-WindowsFeature -Name $IISWindowsFeature -IncludeManagementTools -
ComputerName $ComputerName
installing .NET 4.5 windows feature
Install-WindowsFeature -Name $NET45WindowsFeature -IncludeManagementTools -
ComputerName $ComputerName
installing OData windows feature
Install-WindowsFeature -Name $ODataWindowsFeature -IncludeManagementTools -
ComputerName $ComputerName
installing DSC windows feature

||||||||||||||||||||

Configuration Management and Operational Validation

 [371]

Farkiantech.com
||||||||||||||||||||

Install-WindowsFeature -Name $DSCWindowsFeatureName -IncludeManagementTools
-ComputerName $ComputerName

A new directory is created to act as a home for Pull Server files and folders. This folder

represents the physical path of the Pull Server website:

creating folder for hosting DSC Pull Server web files
New-item -Path $PULLServerWebDirectory -ItemType Directory -Force -
Confirm:$false

A new subdirectory named bin is created within the website root directory:

creating bin folder within DSC Pull Server root directory
New-item -Path $($PULLServerWebDirectory + "" + $PULLServerSubDirectory) -
ItemType Directory -Force -Confirm:$false

The DSC-service Windows feature installs DSC-related files on the server. These files

should be copied over to the Pull Server website root directory created in the previous step.

The following files are generated and copied:

Global.asax

PSDSCPullServer.mof

PSDSCPullServer.svc

PSDSCPullServer.xml

PSDSCPullServer.config,

IISSelfSignedCertModule.dll

Microsoft.Powershell.DesiredStateConfiguration.Service.dll

Devices.mdb

Code listed next provides steps to copy and provision these files to appropriate folders on

filesystem:

copying relevant items to DSC Pull Server root directory
global.asax
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\Global.asax" -
Destination "$PULLServerWebDirectory\Global.asax" -Force -Confirm:$false
copying relevant items to DSC Pull Server root directory
PSDSCPullServer.mof
Copy-Item -Path

||||||||||||||||||||

Configuration Management and Operational Validation

 [372]

||||||||||||||||||||

"$pshome\modules\psdesiredstateconfiguration\pullserver\PSDSCPullServer.mof
" -Destination "$PULLServerWebDirectory\PSDSCPullServer.mof" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
PSDSCPullServer.svc
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\PSDSCPullServer.svc
" -Destination "$PULLServerWebDirectory\PSDSCPullServer.svc" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
PSDSCPullServer.xml
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\PSDSCPullServer.xml
" -Destination "$PULLServerWebDirectory\PSDSCPullServer.xml" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
PSDSCPullServer.config
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\PSDSCPullServer.con
fig" -Destination "$PULLServerWebDirectory\web.config" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
IISSelfSignedCertModule.dll
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\IISSelfSignedCertMo
dule.dll" -Destination "$($PULLServerWebDirectory + "" +
$PULLServerSubDirectory + "\IISSelfSignedCertModule.dll")" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
Microsoft.Powershell.DesiredStateConfiguration.Service.dll
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\Microsoft.Powershel
l.DesiredStateConfiguration.Service.dll" -Destination
"$($PULLServerWebDirectory + "" + $PULLServerSubDirectory +
"\Microsoft.Powershell.DesiredStateConfiguration.Service.dll")" -Force -
Confirm:$false
copying relevant items to DSC Pull Server root directory
Devices.mdb
Copy-Item -Path
"$pshome\modules\psdesiredstateconfiguration\pullserver\Devices.mdb" -
Destination "$env:programfiles\WindowsPowerShell\DscService\Devices.mdb"

Every website in IIS has an internal ID assigned to it. Next, a new ID is generated for to be

created a website:

||||||||||||||||||||

Configuration Management and Operational Validation

 [373]

Farkiantech.com
||||||||||||||||||||

get next website id
$siteID = ((Get-Website | % { $_.Id } | Measure-Object -Maximum).Maximum +
1)

A check is made for the availability of the IIS application pool related to Pull Server. If this

pool exists, it is reused; otherwise, a new application pool is created:

check if app pool with given name already exists
create if it does not exist
if ((Get-Item IIS:\AppPools\$iisAppPoolName -ErrorAction SilentlyContinue)
-eq $null)
{
 $null = New-WebAppPool -Name $iisAppPoolName
 $appPoolItem = Get-Item IIS:\AppPools\$iisAppPoolName
 $appPoolItem.managedRuntimeVersion = "v4.0"
 $appPoolItem.enable32BitAppOnWin64 = $true
 $appPoolItem.processModel.identityType = 0
 $appPoolItem | Set-Item
}

Similar to an application pool, a check is made for the pre-existence of the IIS website

related to Pull Server. If it exists, it is reused; otherwise, a new website is created. The port

parameter is used to configure the website. After it is created and configured, the website is

started. Note that line configuring website with the certificate is commented. It can be

uncommented to use the HTTPS protocol.

check if website with given name already exists
create if it does not exist
if ((Get-Website -Name $iisAppName) -eq $null)
{
 $webSite = New-WebSite -Name $iisAppName `
 -Id $siteID `
 -Port $port `
 -IPAddress "*" `
 -PhysicalPath $PULLServerWebDirectory `
 -ApplicationPool $iisAppPoolName #`
 #-Ssl
Remove existing binding for $port
Remove-Item IIS:\SSLBindings\0.0.0.0!$port -ErrorAction Ignore
Create a new binding using the supplied certificate
$null = Get-Item CERT:\LocalMachine\MY\$certificateThumbPrint | New-Item
IIS:\SSLBindings\0.0.0.0!$port
}
start web site

||||||||||||||||||||

Configuration Management and Operational Validation

 [374]

||||||||||||||||||||

Start-Website -Name $iisAppName

Next, the web.config elements are unlocked:

modify web.config for website
$appcmd = "$env:windir\system32\inetsrv\appcmd.exe"
& $appCmd set AppPool $appPoolItem.name
/processModel.identityType:LocalSystem
& $appCmd unlock config -section:access
& $appCmd unlock config -section:anonymousAuthentication
& $appCmd unlock config -section:basicAuthentication
& $appCmd unlock config -section:windowsAuthentication

The incoming GUID value that represents the registration key is assigned to a temporary

variable. There can be an alternate strategy to generate a registration key every time a Pull

Server is created or modified; however, this discretion is left to the reader's judgement. It is

recommended to use a pre-determined registration key to avoid a broken DSC setup:

generate new guid for registration key
$guid = $regKey

A new file RegistrationKeys.txt is generated containing the incoming registration key

GUID value. Any node that wants to connect to this Pull Server and download a

configuration based on ConfigurationNames must send this registration key along with a

request to Pull Server:

store registration key in RegistrationKeys.txt
at C:\Program Files\WindowsPowerShell\DscService
New-Item -ItemType File -Value $guid -Path "C:\Program
Files\WindowsPowerShell\DscService" -Name "RegistrationKeys.txt" -Force

confirm:$false

The next set of instructions load the Pull Server web.config and add entries to its

AppSettings section. These configuration settings let the Pull Server know the location of

registration keys, the configuration document store, modules store, database location,

database provider, and connection string to use for connecting to the database:

load web.config content
$xml = [XML](Get-Content "$PULLServerWebDirectory\web.config")
$RootDoc = $xml.get_DocumentElement()
add dbprovider appsetting element if it does not exists to web.config.

if (($xml.configuration.appSettings.add.Where({$PSItem.key -eq

||||||||||||||||||||

Configuration Management and Operational Validation

 [375]

Farkiantech.com
||||||||||||||||||||

'dbprovider'})).key `
-eq $null)
{
 $subnode = $xml.CreateElement("add")
 $subnode.SetAttribute("key", "dbprovider")
 $subnode.SetAttribute("value", "System.Data.OleDb")
 $RootDoc.appSettings.AppendChild($subnode)
}
add dbconnectionstr appsetting element if it does not exists to

web.config. if

(($xml.configuration.appSettings.add.Where({$PSItem.key -eq
'dbconnectionstr'})).key
`
-eq $null)
{
 $subnode = $xml.CreateElement("add")
 $subnode.SetAttribute("key", "dbconnectionstr")
 $subnode.SetAttribute("value", `
 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
 Files\WindowsPowerShell\DscService\Devices.mdb;")
 $RootDoc.appSettings.AppendChild($subnode)
}
add ConfigurationPath appsetting element if it does not exists to

web.config. if

(($xml.configuration.appSettings.add.Where({$PSItem.key -eq
'ConfigurationPath'})).key -eq $null)
{
 $subnode = $xml.CreateElement("add")
 $subnode.SetAttribute("key", "ConfigurationPath")
 $subnode.SetAttribute("value", "C:\Program
 Files\WindowsPowerShell\DscService\Configuration")
 $RootDoc.appSettings.AppendChild($subnode)
}
add ModulePath appsetting element if it does not exists to web.config.

if (($xml.configuration.appSettings.add.Where({$PSItem.key -eq
'ModulePath'})).key -eq $null)
{
 $subnode = $xml.CreateElement("add")
 $subnode.SetAttribute("key", "ModulePath")
 $subnode.SetAttribute("value", "C:\Program
 Files\WindowsPowerShell\DscService\Modules")
 $RootDoc.appSettings.AppendChild($subnode)
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [376]

||||||||||||||||||||

add RegistrationKeyPath appsetting element if it does not exists to

web.config. if

(($xml.configuration.appSettings.add.Where({$PSItem.key -eq
'RegistrationKeyPath'})).key -eq $null)
{
 $subnode = $xml.CreateElement("add")
 $subnode.SetAttribute("key", "RegistrationKeyPath")
 $subnode.SetAttribute("value", "C:\Program
Files\WindowsPowerShell\DscService")
 $RootDoc.appSettings.AppendChild($subnode)
}
save web.config with changes
$xml.Save("$PULLServerWebDirectory\web.config")

A Firewall rule is enabled to allow access to the port on which the Pull Server web

application is running:

open firewall rule for Pull Server web application port defined by
incoming parameter
if (!(Get-NetFirewallRule | where {$_.Name -eq "PullServerRule"})) { New-

NetFirewallRule -Name "PullServerRule" -DisplayName "pullport" -
Protocol tcp -LocalPort $port -Action Allow -Enabled True
}

Now, it's time to deploy the real configurations on Pull Server that are downloaded by

nodes. These configurations are dependent on DSC resources not available out-of-the-box

on the Windows platform. Package management is used to download and install these

resources on the server. The DSC configuration to be deployed on Pull Server is dependent

on xWebAdministration and xWebDeploy packages and its DSC resources. The next set

of script lines first configures the package management and then installs these two

packages.

It is a good practice to provide the exact version details while installing packages. If version

information is not provided, the latest packages are downloaded, which might contain

breaking changes compared with packages against which the configurations are built:

Create a new folder for executing DSC configuration
New-Item -Path $PSScriptRoot\IISInstall -ItemType Directory -Force -
Confirm:$false
Registering Nuget as Package source
Register-PackageSource -Name Nuget -Location https://www.nuget.org/api/v2/
-ProviderName Nuget -Trusted -Force -ForceBootstrap

||||||||||||||||||||

Configuration Management and Operational Validation

 [377]

Farkiantech.com
||||||||||||||||||||

Registering Chocolatey as Package source
Register-PackageSource -Name chocolatey -Location
http://chocolatey.org/api/v2/
ProviderName chocolatey -Trusted -Force -ForceBootstrap
installing xWebAdministration DSC resources
install-module -Name xWebAdministration -RequiredVersion 1.14.0.0 -Force
Confirm:$false
installing xWebDeploy DSC resources
install-module -Name xwebdeploy -RequiredVersion 1.2.0.0 -Force

Confirm:$false

By now, the Pull Server is created and is fully functional; however, it still does not contain

any configurations that target servers might be interested in them for downloading and

consuming them. IISInstall.ps1 is downloaded along with the dependent packages. It

defines the configuration that will be explained later in this chapter while covering

IISInstall.ps1 script. It is deployed at a Pull Server well-known configuration folder

location. This script is executed to ensure that there is a valid DSC configuration available

on Pull Server that sample web application containers can download and configure

themselves:

Executing IIsInstall.ps1 to generate and deploy DSC configuration
files on Pull Server used by containers to configure their
IIS settings
if((Get-Item 'C:\Program
Files\WindowsPowerShell\DscService\Configuration\IISInstall.mof' `
-ErrorAction SilentlyContinue) -eq $null)
{
 . $PSScriptRoot\IISInstall.ps1 -webport $webport
}

The next set of lines execute SQL script on Azure SQL. The script connects to Azure SQL

using incoming parameters and executes the OnlinePharmacy.sql downloaded from the

Azure storage account along with other script files. This SQL script creates the table

structure within the Azure SQL database:

connect to Azure SQL database and create table structure for
sample onlone medicine web application
try

{
 $ConnectionString = "Password=$sqlPassword;Persist Security
 Info=False;User

||||||||||||||||||||

Configuration Management and Operational Validation

 [378]

||||||||||||||||||||

 ID=$sqlUsername;`
 Initial Catalog=$sqlDatabaseName;Data
Source=$servername.database.windows.net"
 $cmdtext = Get-Content -Path "$PSScriptRoot\OnlinePharmacy.sql"
 $con = New-Object "System.Data.SqlClient.SQLConnection"
 $sqlcmd = New-Object "System.Data.SqlClient.SqlCommand"
 $con.ConnectionString = $ConnectionString
 $con.Open()
 $sqlcmd.connection = $con
 $sqlcmd.CommandText = "Select count(*) from dbo.Drug"
 $output = $sqlcmd.ExecuteScalar()

if($output -lt 0 -or $output -eq $null)
 {
 $sqlcmd.CommandText = $cmdtext
 $sqlcmd.CommandType = [System.Data.CommandType]::Text
 $result = $sqlcmd.ExecuteNonQuery()
 }
}

catch
{
 $sqlcmd.CommandText = $cmdtext
 $sqlcmd.CommandType = [System.Data.CommandType]::Text
 $result = $sqlcmd.ExecuteNonQuery()
}

One of the last steps is to configure the virtual machine with a certificate and Windows

Remote Management (WinRM) settings so that it can be connected remotely from the

Internet using the HTTPS protocol. This step will eventually help Pester test cases to

connect to virtual machines in order to execute them:

$HostName = $env:computername
$cert = Get-ChildItem -Path cert:\LocalMachine\My* -DnsName $HostName -
ErrorAction SilentlyContinue

if ($cert -eq $null)
{
 $cert = New-SelfSignedCertificate -CertstoreLocation
Cert:\LocalMachine\My -DnsName
 $HostName
}
get-childitem -Path WSMan:\localhost\Listener\ | where {$_.keys[0] contains

'Transport=HTTPS'} | Remove-Item -Force -Confirm:$false -Recurse
New-Item -Path WSMan:\LocalHost\Listener -Transport HTTPS -Address * -
CertificateThumbPrint $cert.Thumbprint -Force | out-null
Restart-Service winrm | out-null

||||||||||||||||||||

Configuration Management and Operational Validation

 [379]

Farkiantech.com
||||||||||||||||||||

New-NetFirewallRule -DisplayName 'Windows Remote Management (HTTPS-In)' -
Name 'Windows Remote Management (HTTPS-In)' -Profile Any -LocalPort 5986 -
Protocol TCP -Enabled True -Confirm:$false -ErrorAction Continue

The registration key is sent to the output stream so that it can be consumed by dependent

components:

registrationkey is set for output
used for setting the LCM configuration of containers
to connect to this Pull Server
Write-Output $guid.Guid

IISInstall.ps1

This is a DSC configuration deployed on a Pull Server used by containers in other virtual

machines to configure their IIS environment. This configuration is responsible for ensuring

that IIS and other ASP.NET MVC-related Windows features are installed and available and

a new web application pool and a website are created in IIS. This script accepts a single

parameter to configure the port of the sample web application in IIS. The website runs on

the HTTP protocol on the port number provided as an incoming parameter. This DSC

configuration is dependent on DSC resource modules xWebAdministration. This script is

executed by PullServer.ps1, and it ensures that xWebAdministration is downloaded

and installed before executing the script.

The configuration is executed to generate the MOF file. A corresponding checksum file is

generated for the configuration, which is a mandatory step for configurations to be

deployed in Pull Server. Both the configuration MOF and DSC checksum file are copied
over to the well-known Pull Server configuration folder located at Program Files |

WindowsPowerShell | DscService | Configuration. The entire script is shown here.

This script creates an application pool named MedicinePool and IIS website named

MVCWebSite:

param(
 [string] $webport
)
Configuration IISInstall
{
module containing basic DSC resources
Import-DscResource -ModuleName 'PSDesiredStateConfiguration'

||||||||||||||||||||

Configuration Management and Operational Validation

 [380]

||||||||||||||||||||

module containing IIS related DSC resources
Import-DscResource -ModuleName 'xWebAdministration'
Node localhost
 {
 # installs IIS windows feature
 WindowsFeature IIS
 {
 Name = "Web-Server"
 Ensure = "Present"
 }
 # installs .NET 4.5 windows feature
 WindowsFeature DotNet
 {
 Name = "net-framework-45-Core"
 Ensure = "Present"
 DependsOn = "[WindowsFeature]IIS"
 }
 # installs ASP.NET 4.5 windows feature
 WindowsFeature AspNet45
 {
 Ensure = "Present"
 Name = "Web-Asp-Net45"
 DependsOn = "[WindowsFeature]DotNet"
 }
 # creates a new IIS application pool

xWebAppPool WebsiteApplicationPool
 {
 Name = "MedicinePool"
 Ensure = "Present"
 State = "Started"
 DependsOn = "[WindowsFeature]AspNet45"
 }
 # creates a new directory for IIS website
 file CreateDirectory
 {
 DestinationPath = "C:\Inetpub\MVCWebsite"
 Ensure = "Present"
 Type = "Directory"
 DependsOn = "[xWebAppPool]WebsiteApplicationPool"
 }
 # creates a new Website in IIS

xWebsite CreateWebsite
 {
 Name = "MVCWebSite"

||||||||||||||||||||

Configuration Management and Operational Validation

 [381]

Farkiantech.com
||||||||||||||||||||

 PhysicalPath = "C:\Inetpub\MVCWebsite"
 Ensure = "Present"
 State = "Started"
 ApplicationPool = "MedicinePool"
 BindingInfo = MSFT_xWebBindingInformation{

port ="$webport"; protocol ="http"
 }
 DependsOn = "[file]CreateDirectory"
 }
 }
}
generate the MOF file at same location of this script
IISInstall -OutputPath "$PSScriptRoot\IISInstall"
generate checksum for DSC configuration
New-DSCCheckSum -ConfigurationPath "$PSScriptRoot\IISInstall" -OutPath
"$PSScriptRoot\IISInstall" -Force
copy the MOF configuration to Pull Server well known configuration folder
Copy-Item -LiteralPath "$PSScriptRoot\IISInstall\localhost.mof" -
Destination
"$env:ProgramFiles\WindowsPowerShell\DscService\Configuration\IISInstall.mo
f" -Force
copy the DSC Checksum to Pull Server well known configuration folder Copy-

Item -LiteralPath "$PSScriptRoot\IISInstall\localhost.mof.checksum"-
Destination
"$env:ProgramFiles\WindowsPowerShell\DscService\Configuration\IISInstall.mo

f.checksum"-Force

ContainerConfig.ps1

This is the starting and master script for all the virtual machines-related web application

frontend. After the virtual machines related to the sample web application are provisioned,

this script is executed on each one of them. The script is responsible for managing all the

scripts and web application files provided by the Custom Script Extension on the virtual

machines. It unzips the web application deployment.zip file and opens Firewall rules for

multiple ports including the web application port. Because the image used to create the

virtual machines already has containers installed, it does not download and install Docker

binaries, Docker clients, and Docker daemons on the virtual machine. The virtual machine

has two Docker images: microsoft/windowsservercore and microsoft/nanoserver

available by default in its local repository. A custom Docker image is used in order to

provision the sample OnlinePharmacy web application. This image is named IIS for the

||||||||||||||||||||

Configuration Management and Operational Validation

 [382]

||||||||||||||||||||

purpose of this book. The script checks whether there is already a container image named

IIS on the virtual machines. If this image is not available, it invokes and executes the

dockerfile to build a new container image. The dockerfile ensures that it creates a new

image based on microsoft/windowsservercore and completes all its instructions to

install IIS, run DSC configuration downloaded from Pull Server, install utilities such as

webdeploy using package management, deploy the web application files, and change the

web application web.config connection string.

The explanation of the script is provided here.

The script accepts the virtual machine username and password, the Pull Server IP address,

its port number, registration key, Azure SQL username, password, server, and database

name, and web application port number as parameters:

param
(
 [string] $username,
 [string] $password,
 [string] $port,
 [string] $regKey,
 [string] $pullip,
 [string] $sqlUsername,
 [string] $sqlPassword,
 [string] $webport,
 [string] $sqlServer,
 [string] $databaseName
)

The script copies the original files to a subdirectory and removes the original files:

$HostName = $env:computername
"Downloading all files"
creates a new folder at root directory
New-Item -Path $PSScriptRoot\downloads -ItemType Directory -Force -
Confirm:$false
next four instructions copies the files to newly created folder
Copy-Item -LiteralPath $PSScriptRoot\ChangeConnectionString.ps1 -
Destination $PSScriptRoot\downloads\ChangeConnectionString.ps1 -Force
Copy-Item -LiteralPath $PSScriptRoot\Deployment.zip -Destination
$PSScriptRoot\downloads\Deployment.zip -Force
Copy-Item -LiteralPath $PSScriptRoot\lcm.ps1 -Destination
$PSScriptRoot\downloads\lcm.ps1 -Force
Copy-Item -LiteralPath $PSScriptRoot\dockerfile -Destination

||||||||||||||||||||

Configuration Management and Operational Validation

 [383]

Farkiantech.com
||||||||||||||||||||

$PSScriptRoot\downloads\dockerfile -Force
next four statements deletes the original files
Remove-Item "$PSScriptRoot\Deployment.zip" -Force -Confirm:$false
Remove-Item "$PSScriptRoot\ChangeConnectionString.ps1" -Force -
Confirm:$false
Remove-Item "$PSScriptRoot\lcm.ps1" -Force -Confirm:$false
Remove-Item "$PSScriptRoot\dockerfile" -Force -Confirm:$false

The script unzips the downloaded deployment.zip file containing ASP.NET MVC web

application files in the subdirectory and deletes the original ZIP file:

"$PSScriptRoot\downloads\Deployment.zip"
this script section unzips the deployment.zip containing web application
file
if((get-item -Path $PSScriptRoot\downloads\Deployment -force -ErrorAction
SilentlyContinue) -eq $null)
{
 Add-Type -AssemblyName System.IO.Compression.FileSystem
 function Unzip
 {
 param([string]$zipfile, [string]$outpath)
 [System.IO.Compression.ZipFile]::ExtractToDirectory($zipfile,
$outpath)
 }
 Unzip "$PSScriptRoot\downloads\Deployment.zip"
"$PSScriptRoot\downloads"
}
deletes the original deployment.zip file
Remove-Item "$PSScriptRoot\downloads\Deployment.zip" -Force -Confirm:$false

It opens a couple of Firewall ports for Docker and the web application. The web application

port is determined dynamically as a parameter to the script:

open firewall rule for port 2375 used by Docker client and Daemon

if (!(Get-NetFirewallRule | where {$_.Name -eq "Docker"})) {
 New-NetFirewallRule -Name "Docker" -DisplayName "Docker" -Protocol tcp
-LocalPort 2375 -Action Allow -
 Enabled True
}
open firewall rule for dynamic port used by web application

if (!(Get-NetFirewallRule | where {$_.Name -eq "webapp"})) {
 New-NetFirewallRule -Name "webapp" -DisplayName "webapp" -Protocol tcp
-LocalPort $webport -Action
 Allow -Enabled True
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [384]

||||||||||||||||||||

The Windows container feature should already be installed by default because of the chosen

Azure OS image; however, the next lines of code ensures that Windows Container feature is

already installed on virtual machine. It will install this feature if not already installed.

install containers windows feature if not already installed

if((Get-WindowsFeature -Name containers) -eq $null)
{
 Install-WindowsFeature containers
}

A new PowerShell session object is created. New containers will be created within the

newly created session object. To create a new session, and remote into it, PowerShell

remoting is used.

preparing to remote on local machine
this is needed because the newly downloaded
docker binaries are not picked by existing
powershell session
$username1 = "$HostName\$username"
$username1
$pass = ConvertTo-SecureString $password -AsPlainText -Force
$cred = New-Object System.Management.Automation.PSCredential $username1,
$pass
$soptions = New-PSSessionOption -SkipCACheck -SkipCNCheck -
SkipRevocationCheck
creating a new PSSession
$s = New-PSSession -ComputerName $env:computername -Credential $cred -
SessionOption $soptions

The custom image is named iis, and a check is made to ensure that it already exists on the

virtual machine. If not, a new container image is created using the dockerfile

downloaded on the virtual machine. The dockerfile internally uses lcm.ps1 and

ChangeConnectionString.ps1 to configure the web application environment. The script

passes the necessary arguments to dockerfile to dynamically generate the image:

Remoting on local machine to check and create
custom windows container image for
web application
Invoke-Command -Session $s -ScriptBlock { param($pathfiles, $pullip, $port,
$regKey, $sqlUsername,$sqlPassword, $sqlServer, $databaseName)
 Set-Location $pathfiles
 $aa = Docker images

||||||||||||||||||||

Configuration Management and Operational Validation

 [385]

Farkiantech.com
||||||||||||||||||||

 $toCreateImage = $false
 for($i = 0; $i -lt $aa.Length; $i++){

if($aa[$i].StartsWith("iis")){

$toCreateImage = $false
 break;
 }

else
 {
 $toCreateImage = $true
 }
 }
if ($toCreateImage -eq $true)
{
 docker build --build-arg ipaddress=$pullip --build-arg port=$port --
build-arg regkey=$regKey --build-
 arg sqlUsername=$sqlUsername --build-arg sqlPassword=$sqlPassword --
build-arg sqlServer=$sqlServer - build-arg

databaseName=$databaseName -t iis .
 Restart-Service Docker | out-null
}
} -ArgumentList $PSScriptRoot\downloads, $pullip, $port, $regKey,
$sqlUsername,$sqlPassword, $sqlServer, $databaseName | Out-Null

A container is created on all web frontend related virtual machines using the newly created

the custom image using the docker run command. It is important to note that the port

number on host virtual machine is mapped to the same port number internal to the

container. Readers are free to map other ports other than the one shown here:

Remoting on local machine to create container
based on custom container image
Invoke-Command -Session $s -ScriptBlock { param($webport)
 $portStr = $webport + ":" + $webport

docker run -d -p $portStr iis } -

ArgumentList $webport| Out-Null

Finally, a virtual machine certificate is generated in order to securely connect through

PowerShell:

checking if certificate for virtual machine exists already
if not create a new certificate for secure remote powershell access to
virtual machine
$cert = Get-ChildItem -Path cert:\LocalMachine\My* -DnsName $HostName -

||||||||||||||||||||

Configuration Management and Operational Validation

 [386]

||||||||||||||||||||

ErrorAction SilentlyContinue

if ($cert -eq $null)
{
 $cert = New-SelfSignedCertificate -CertstoreLocation
Cert:\LocalMachine\My -DnsName $HostName
}
get-childitem -Path WSMan:\localhost\Listener\ | where {$_.keys[0] contains

'Transport=HTTPS'} | Remove-Item -Force -Confirm:$false -Recurse
New-Item -Path WSMan:\LocalHost\Listener -Transport HTTPS -Address * -
CertificateThumbPrint $cert.Thumbprint -Force | out-null
Restart-Service winrm | out-null
New-NetFirewallRule -DisplayName 'Windows Remote Management (HTTPS-In)' -
Name 'Windows Remote Management (HTTPS-In)' -Profile Any -LocalPort 5986 -
Protocol TCP -Enabled True -Confirm:$false -ErrorAction Continue

dockerfile

The dockerfile helps in building custom container images. Chapter 4, Nano, Containers,

and Docker Primer provides a good introduction to the dockerfile, and it should be

referred to while going through this section. The comments before each instruction provide

details about the action performed. This dockerfile is building a new container image for

the sample web application.

This template performs the following steps to generate an image iis for our sample

application:

1. This image is built on top of the microsoft/windowsservercore image

provided by Microsoft. At the time of writing, there are only two base images

available: windowsservercore and nanoserver.

2. The next set of instructions in dockerfile declares arguments that are passed

as parameters by ContainerConfig.ps1 during the build phase of the image.

These are used for connecting and downloading DSC configurations from Pull

Server as well as changing the SQL connection strings in web.config.

3. The next command installs Internet Information Services (IIS) and other

ASP.NET MVC Windows features including .NET 4.5.

4. A DSC configuration downloaded from Pull Server has dependency on the

xWebApplication and xWebdeploy packages. They are downloaded from the

PowerShell gallery using the package management module after registering

||||||||||||||||||||

Configuration Management and Operational Validation

 [387]

Farkiantech.com
||||||||||||||||||||

Nuget and Chocolatey sources. While registering these two sources, if their

corresponding package providers are missing, they are also installed.

5. The default files from the wwwroot folder are removed. The default web

application and application pool are removed.

6. Lcm.ps1 is added to the context, stored within the image in a folder, and

executed. This configures the local configuration manager of the container

image and downloads the DSC configuration from Pull Server. The

configuration from Pull Server is executed, which is responsible for creating a

sample applicationspecific website and application pool in IIS.

7. The Chocolatey utility is downloaded and installed. webdeploy package is

also downloaded and installed using Chocolatey.

8. The deployment package containing the entire ASP.NET MVC sample

application is executed.

9. The SQL connection string is modified in web.config by executing the

ChangeConnectionString.ps1.

10. Finally, a loop is created to ensure that the containers do not exit when running

in detached mode using this image.

After this image is created, containers from this image can be provisioned in order to serve

requests for a web application. This image is created on both the web application virtual

machines by ContainerConfig.ps1 script that runs automatically as the Custom Script

Extension after the virtual machines are provisioned. The entire code for dockerfile is

listed here:

escape=`
base image on which custom image is based on
FROM microsoft/windowsservercore
argument ipaddress used during building of image
refers to Pull Server ip address
ARG ipaddress="0.0.0.0"
argument port used during building of image
refers to Pull Server port
used for accesing Pull Server
ARG port="9100"
argument regkey used during building of image
refers to Pull Server registration key
ARG regkey="xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
argument sqlUsername used during building of image
used in changing connection string in web.config

||||||||||||||||||||

Configuration Management and Operational Validation

 [388]

||||||||||||||||||||

ARG sqlUsername="xxxxxxxxx"
argument sqlPassword used during building of image
used in changing connection string in web.config
ARG sqlPassword="xxxxxxxxx"
argument sqlPassword used during building of image
used in changing connection string in web.config
ARG sqlServer="xxxxxxxxx"
argument sqlPassword used during building of image
used in changing connection string in web.config
ARG databaseName="xxxxxxxxx"
installing IIS and its related windows feature
RUN powershell -Command Install-WindowsFeature web-server, Web-Default-Doc,
`
 Web-Dir-Browsing, Web-Http-Errors, Web-Static-Content, Web-Http-
Logging, `
 Web-Request-Monitor, Web-Stat-Compression, Web-Filtering, Web-Windows-
Auth, `
 Web-Net-Ext45, Web-Asp-Net45, Web-ISAPI-Ext, Web-ISAPI-Filter, Web-
Metabase
installing .NET 4.5
RUN ["Powershell", "install-windowsfeature","NET-Framework-45-Core"]
creating a new Docker folder
RUN powershell -Command New-Item -Path c:\docker -ItemType Directory -Force
Registering Nuget as Package source
RUN powershell -Command Register-PackageSource -Name Nuget `
 -Location https://api.nuget.org/v3/index.json `
 -ProviderName Nuget -Trusted -Force -ForceBootstrap
Registering Chocolatey as Package source
RUN powershell -Command Register-PackageSource -Name chocolatey `
 -Location http://chocolatey.org/api/v2/ `
 -ProviderName chocolatey -Trusted -Force -ForceBootstrap
installing xWebAdministration DSC resources
RUN powershell -Command install-module -Name xWebAdministration `
 -RequiredVersion 1.14.0.0 `
 -Force -Confirm:$false -Verbose
installing xWebDeploy DSC resources
RUN powershell -Command install-module -Name xwebdeploy `
 -RequiredVersion 1.2.0.0 `
 -Force -Confirm:$false -Verbose
removing default iisstrart.htm file
RUN powershell -Command Remove-Item C:\inetpub\wwwroot\iisstart.htm
removing default iisstrart.png file
RUN powershell -Command Remove-Item C:\inetpub\wwwroot\iisstart.png
removing default web site website from IIS

||||||||||||||||||||

Configuration Management and Operational Validation

 [389]

Farkiantech.com
||||||||||||||||||||

RUN powershell -Command Remove-Website -Name 'Default Web Site'
removing default application pool from IIS
RUN powershell -Command Remove-WebAppPool -Name 'DefaultAppPool'
adding lcm.ps1 to docker folder created previously
ADD lcm.ps1 c:\docker
adding ChangeConnectionString.ps1 to docker folder created previously
ADD ChangeConnectionString.ps1 c:\docker
executing lcm.ps1 for changing the LCM configuration of image
the LCM should pull configuration from Pull Server
specified in parameters
RUN powerShell -Command c:\docker\lcm.ps1 -port %port% -regKey %regkey% -
ipaddress %ipaddress%
Download Chocolatey installar and install the same
RUN powershell -Command install-package -name webdeploy -ProviderName

chocolatey -RequiredVersion 3.5.2 -Force -ForceBootstrap -Verbose
adding the web application file from deployment folder
ADD \Deployment C:\Deployment
changing the current working directory to deployment folder
WORKDIR C:\\Deployment
execute the webdeploy package commandline from deployment folder
RUN C:\Deployment\OnlinePharmacy.deploy.cmd /Y
execute ChangeConnectionString.ps1 and change connectionstring in
web.config
RUN powerShell -Command c:\docker\ChangeConnectionString.ps1 -sqlUsername
%sqlUsername% -sqlPassword %sqlPassword% -sqlServer %sqlServer% -
databaseName %databaseName% CMD powershell -command while ($true) {

Start-Sleep -Seconds 3600 }

It is to be noted that dockerfile used in this book purposefully uses each command to

generate a new image layer. It is possible to group some of these commands and execute as

a single command. This has been done to explain concepts in a verbose manner for the

readers.

Readers should optimize dockerfiles by grouping related commands into single command.

This would generate lesser image layers.

An example of grouping commands together is shown following:

FROM microsoft/windowsservercore
RUN powershell -Command new-item -ItemType Directory -Name "test-1" ; \

||||||||||||||||||||

Configuration Management and Operational Validation

 [390]

||||||||||||||||||||

new-item -ItemType Directory -Name "test-2"; \ new-

item -ItemType Directory -Name "test-3"; \ new-item -

ItemType Directory -Name "test-4";

The template shown here will create four folders in C:\ in container but will generate a

single image layer compared to four layer when executed as individual commands.

lcm.ps1

This script is loaded by dockerfile while creating a custom Windows container image for

the web application. The purpose of this script is to change the configuration of the DSC

local configuration manager settings of the container image. By default, DSC LCM is

configured with the push mode. The LCM is modified to pull partial configurations from

Pull Server.

The script accepts Pull Server IP address, its port number, and registration key as

parameters:

param
(
 [string] $port,
 [string] $regKey,
 [string] $ipaddress
)

Both the IP address and port are concatenated together to form a Pull Server URL.

ipaddress and port number are concatenated
$str = "$ipaddress" + ":" + "$port"

All configurations for modifying local configuration manager settings are decorated with

the DSCLocalConfigurationManager attribute. Because this configuration will modify

the LCM configuration of the container image whose name cannot be ascertained

beforehand, the node name is set as localhost. The settings section helps in modifying

the general properties of LCM, and they are modified to ensure that the node can pull

configurations.

||||||||||||||||||||

Configuration Management and Operational Validation

 [391]

Farkiantech.com
||||||||||||||||||||

LCM uses ConfigurationRepositoryWeb properties in order to connect to a Pull Server.

Every Pull Server has a unique registration key that LCM should use in conjunction with

ConfigurationNames to download configurations.

Previously, a configuration document, IISInstall was deployed on Pull Server. The LCM

of the container image downloads and applies the IISInstall configuration on the local

Windows container image. LCM can have multiple ConfigurationRepositoryWeb

defined, each representing a different Pull Server. Partial configuration helps in

downloading and applying multiple configurations simultaneously on a target node by

LCM. In this script, a single partial configuration is defined that pulls the IISInstall

configuration from the defined Pull Server:

[DSCLocalConfigurationManager()]

configuration PartialConfigurationDemo
{
 Node localhost
 {
 Settings
 {
 ConfigurationModeFrequencyMins = 30
 RefreshMode = 'Pull'
 RefreshFrequencyMins = 30
 ConfigurationMode = "ApplyandAutoCorrect"
 RebootNodeIfNeeded = $true
 }
 ConfigurationRepositoryWeb IISConfig
 {
 ServerURL = "http://$($str)/psdscpullserver.svc"
 RegistrationKey = "$regkey"
 ConfigurationNames = @("IISInstall")
 AllowUnsecureConnection = $true
 }
 PartialConfiguration IISInstall
 {
 Description = 'Configuration for the IIS'
 ConfigurationSource = '[ConfigurationRepositoryWeb]IISConfig'
 RefreshMode = 'Pull'
 }
 }
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [392]

||||||||||||||||||||

After the configuration is defined, it should be executed to generate the appropriate MOF

file from it. The LCM changes are applied using Set-

DscLocalConfigurationManager and Update-DscConfiguration pulls the partial

configurations from Pull Server. The configurations are stored locally with a pending status.

Finally, the configuration is applied to the Windows container image with the help of

Start-DscConfiguration:

generate the configuration MOF file
PartialConfigurationDemo -OutputPath "$PSScriptRoot\Output" -Verbose
send and apply the configuration to DSC LCM
Set-DscLocalConfigurationManager -Path "$PSScriptRoot\Output" -Verbose
download the partial configuration from Pull Server
Update-DscConfiguration -Wait -Verbose
apply the partial configuration on local container image
Start-DscConfiguration -UseExisting -Wait -Force -Verbose

ChangeConnectionString.ps1

This script is loaded by dockerfile while creating the custom Windows container image

for the web application. The web application, web.config, contains a connection string

order to connect to Azure SQL. After the web application is deployed using the

webdeploy utility within the container image, this script is invoked to update the

connection string to reflect actual SQL username, password, Server and Database name.

The script accepts the SQL username, password, Server and Database name as parameters:

param
(
[string] $sqlUsername,
[string] $sqlPassword,
[string] $sqlServer,
[string] $databaseName
)

The web application internally uses entity framework to interact with Azure SQL database.

The script is responsible for updating username, password, Server and Database name of a

connection string. The connection string is defined using three parts for easier changes:

connection string prefix used by entity framework
$constrPrefix = "metadata=res://*/Models.PharmacyModel.csdl|`

||||||||||||||||||||

Configuration Management and Operational Validation

 [393]

Farkiantech.com
||||||||||||||||||||

 res://*/Models.PharmacyModel.ssdl|`

res://*/Models.PharmacyModel.msl;`

provider=System.Data.SqlClient;` provider connection

string='"
connection string suffix
$constrSuffix = "MultipleActiveResultSets=True;App=EntityFramework';"
connection string with username and password
from Azure Key vault
$connectionString = "Password=$sqlPassword;`
 Persist Security Info=False;`
 User ID=$sqlUsername;`
 Initial Catalog=$databaseName;`
 Data Source=$sqlServer.database.windows.net;"
complete connection string
$connectionString = $constrPrefix + $connectionString + $constrSuffix

The content of the web.config file is loaded, and using the xPath query, all the connection

strings available in web.config are queried:

loading web.config content
$xml = [XML](Get-Content "C:\inetpub\MVCWebsite\newapp\web.config")
loading all connection strings from web.config using xPath
$nodes = $xml.SelectNodes("/configuration/connectionStrings/add")

Finally, all the connection strings are looped through, and when an appropriate connection

string is found, it is replaced with a new connection string and saved into the web.config

file:

looping through connection strings
foreach($node in $nodes) {
 if($node.name -eq 'medicineEntities')
 {
 # match found for specific connectionstring
 # update the connection string
 $node.SetAttribute("connectionString", $connectionString);
 }
}
save the updated content to web.config
$xml.Save("C:\inetpub\MVCWebsite\newapp\web.config")

PreparePesterEnvironment.ps1

||||||||||||||||||||

Configuration Management and Operational Validation

 [394]

||||||||||||||||||||

This script is executed from the release pipeline. A new release server is assigned by VSTS

while executing a release and to ensure that the Pester module is available on the resultant

release server, this script uses package management module to download Pester and

related modules. Both OperationValidation and the Pester module are made available

on the release server before executing Pester test cases. The code for this script is shown

next.

Both Nuget and Chocolatey are installed and configured. Using them, Pester and

the OperationValidation module are made available to the release server:

Register-PackageSource -Name Nuget -Location https://www.nuget.org/api/v2/
-ProviderName Nuget -Trusted -Force -ForceBootstrap
Registering Chocolatey as Package source
Register-PackageSource -Name chocolatey -Location
http://chocolatey.org/api/v2/ -ProviderName chocolatey -Trusted -Force -
ForceBootstrap
installing xWebAdministration DSC resources
install-module -Name Pester -RequiredVersion "3.4.3" -Scope CurrentUser -
Force -Confirm:$false
installing xWebDeploy DSC resources
install-module -Name OperationValidation -RequiredVersion 1.0.1 -Scope
CurrentUser -Force -Confirm:$false
Get-command -Module Pester | select name
Get-command -Module Microsoft.PowerShell.Operation.Validation | select name

Execute-Pester.ps1

Once Pester binaries are available on a release server, Pester test cases can be executed on it.

The Execute-Pester.ps1 script is responsible for executing both Pester and

OperationValidation tests. The script is quite simple. It accepts four parameters and

uses them with Invoke-Pester cmdlet.

The scripts are executed as a group using the Invoke-Pester cmdlet. This cmdlet takes in

a folder path, and every test script from the folder is executed one after another.

Every test script, whether unit or operational, takes in two parameters:

Release name

Resource group name

||||||||||||||||||||

Configuration Management and Operational Validation

 [395]

Farkiantech.com
||||||||||||||||||||

These two parameters are passed on to the Invoke-Pester cmdlet, which in turn passes

them to the test scripts:

param (
 [string] $releaseName,
 [string] $resourceGroupName,
 [string] $testScriptPath,
 [string] $operationTestsPath
)
Invoke-Pester -Script @{Path = "$testScriptPath"; Parameters = @{

deploymentName = "$releaseName" ; resourceGroupName = "$resourceGroupName"

}}
Invoke-Pester -Script @{Path = "$operationTestsPath"; Parameters = @{

deploymentName = "$releaseName" ; resourceGroupName = "$resourceGroupName"

}}

Environment unit tests

After provisioning the resources, it is important to test them. Tests should be executed on

these resources to verify that they are provisioned successfully, configured according to

given values, and are in the expected desired state.

Chapter 5, Building a Sample Application, introduced the

OnlinePharmacy.Configuration project within the overall sample solution. This project

contains the Tests folder containing both unit and operational validation tests.

Pester was introduced in Chapter 3, DevOps Automation Primer. It is used to execute the test

cases defined in this section. The UnitTests folder contains all the Pester tests. The test

cases are defined in PowerShell script files, one for each resource that should be tested.

These tests can be executed manually by executing the scripts directly using a PowerShell

console. It can also be executed using the VSTS release pipelines. The preferred mechanism

to execute these tests is through the VSTS release pipeline. After provisioning an

environment, these unit tests should be executed against it. Chapter 10, Continuous Delivery

and Deployment, will introduce release pipelines and way to execute these scripts from it.

When executing these tests from the release pipeline, the connection to the Azure

subscription is configured using VSTS service endpoints. These concepts will become clear

in Chapter 10, Continuous Delivery and Deployment; however, if readers want to execute

||||||||||||||||||||

Configuration Management and Operational Validation

 [396]

||||||||||||||||||||

these tests manually, they should already be logged in to the subscription using the service

application created in the previous chapter through the PreCreate.ps1 script file.

Each test script takes in two parameters–the name of the deployment and the resource

group name. The deployment name is the unique release name autogenerated by VSTS

while executing a release pipeline. A release pipeline has access to this value using the

$(Release.ReleaseName) variable. Each script also has a BeforeAll section that

executes Get-AzureRmResourceGroupDeployment with the provided parameters to

retrieve the output values defined in the template in Chapter 7, Configuration Management.

These output values are filled with values after the successful execution completion of the

template.

Some of the scripts also query the resource directly using these output values.

Unit testing availability set

The availability set provides high availability when multiple virtual machines containing

the same service are deployed in it. In this case, there should be two virtual machines

associated with the availability set, and it should be provisioned in the same location as that

of the virtual machines. It should also have a reference to both the virtual machines. The

code for unit testing availability sets is shown next. The availability set tests are defined in

Availabilityset.Tests.ps1:

<#

Purpose:
 Verify that Azure availabilitySet resource is provisioned and

configured appropriately. Action:
 Run Get-AzureRmAvailabilitySet available in given resource group.
 Expected Result:
 The name of availabiltyset matches.
 AvailabilitySet is provisioned successfully.
 The location is appropriatly set
 It contains two virtual machines
 It has reference to vmvm1 virtual machine
 It has reference to vmvm2 virtual machine
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Availability Sets" {
 BeforeAll {

||||||||||||||||||||

Configuration Management and Operational Validation

 [397]

Farkiantech.com
||||||||||||||||||||

 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 }
$avset = Get-AzureRmAvailabilitySet -ResourceGroupName $resourceGroupName
 It "Availability set exists with given name" {
 $avset.Name | should be "webappAVSet"
 }
 It "Availability set state is good.." {
 $avset.StatusCode | should be "OK"
 }
 It "Availability set exists within given Azure location" {
 $avset.Location | should be $location
 }
 It "Availability set has references to two VMs" {
 $ref = $avset.VirtualMachinesReferences
 $ref.Count | should be $numberofvms
 }
 It "Availability set has references to first VMs" {
 $ref = $avset.VirtualMachinesReferences
 $ref[0].Id.Contains("VM1") | should be $true
 }
 It "Availability set has references to second VMs" {
 $ref = $avset.VirtualMachinesReferences
 $ref[1].Id.Contains("VM2") | should be $true
 }
}

Unit testing virtual networks

Virtual networks are necessary for the creation of virtual machines. They provide a network

for virtual machines to communicate among themselves and also to the outside world. They

||||||||||||||||||||

Configuration Management and Operational Validation

 [398]

||||||||||||||||||||

provides internal IP addresses to virtual machines and provide the ability to define multiple

subnets. Each virtual network has its own address prefix, and the subnets have a subset of

the address prefix defined by the virtual network. A single virtual network with two

subnets is defined in order to deploy the sample solution. Both the Pull Server and web

application virtual machines are deployed in the same frontend subnet, although they

could have been defined in separate subnets. The code for unit testing virtual networks and

their subnets are shown later. A NSG is also applied to the frontend subnet. The virtual

network tests are defined in VirtualNetworks.Tests.ps1:

<#

Purpose:
 Verify that Azure virtual network resource is provisioned and

configured appropriately.
 Action:
 Run Get-AzureRmVirtualNetwork available in given resource group with

a given name.
 Expected Result:
 The count of subnets in virtual network is two

The name of the two subnets are subnetad and frontend.
 The address prefix of virtual network matches.
 The address prefix of both virtual network subnets matches.

virtual network is provisioned successfully.
 Its two subnets are provisioned successfully.
 The location is set appropriately
 The frontend subnet has applied Network security group represented
by Om-NSG
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Virtual network" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value

||||||||||||||||||||

Configuration Management and Operational Validation

 [399]

Farkiantech.com
||||||||||||||||||||

 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 }
 $network = (Get-AzureRmVirtualNetwork -ResourceGroupName
 $resourceGroupName -Name $($skuName + "-
 network"))
 It "virtual network address space is {10.0.0.0/16}.." {
 $network.AddressSpace.AddressPrefixes | should be "10.0.0.0/16"
 }
 It "virtual network location is $location .." {
 $network.Location | should be "$location"
 }
 It "virtual network count of subnets is 2 .." {
 $network.Subnets.Count | should be 2
 }
 It "virtual network subnet name is subnetad .." {
 $network.Subnets[0].Name | should be "subnetad"
 }
 It "virtual network subnet name is frontend .." {
 $network.Subnets[1].Name | should be "frontend"
 }
 It "virtual network subnetad subnet address prefix is
 10.0.0.0/24.." { $network.Subnets[0].AddressPrefix

| should be "10.0.0.0/24"
 }
 It "virtual network subnetad subnet address prefix is
 10.1.0.0/24.." {
 $network.Subnets[1].AddressPrefix | should be "10.0.1.0/24"
 }
 It "virtual network subnetad subnet has om-NSG applied to it.." {
 ($network.Subnets[1].NetworkSecurityGroup).Id.Contains(
 $($skuName + "-NSG")) | should be $true
 }
 It "virtual network was provisioned successfully" {
 $network.ProvisioningState | should be "Succeeded"
 }
 It "virtual network subnetad was provisioned successfully.." {

$network.Subnets[0].ProvisioningState | should be "Succeeded"
 }
 It "virtual network frontend subnet was provisioned successfully.."
{
 $network.Subnets[1].ProvisioningState | should be "Succeeded"
 }
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [400]

||||||||||||||||||||

Unit testing Network Security Groups

Network Security Groups (NSGs) are one of the security mechanisms to limit access to

Azure virtual machines. NSGs are applied at a virtual network subnet or a network

interface level. A sample solution applies NSG at the subnet level. Applying NSG at the

subnet level ensures that all virtual machines on the subnet get the same security filters. The

same NSG filters are applied to both Pull Server and web application virtual machines.

However, separate security groups could have been applied if they were deployed on

separate subnets. As a best practice, virtual machines of a similar nature and hosting similar

applications should be in a subnet with a unique NSG assigned to it. The exercise to have

separate subnets and NSGs is left for readers to implement. NSGs provide an option to

allow or disallow access to a port in combination with the source and destination IP

addresses. Port 80, 443, 1433, 5985, 5986, 3389, 2375, 2376, the Pull Server port, and the

web application port should be opened on the NSG for the application to work as intended.

The code for unit testing NSG is shown later. The NSG tests are defined in

NetworkSecurityGroups.Tests.ps1:

<#

Purpose:
 Verify that Azure network security group resource is provisioned and

configured appropriately.
 Action:
 Run Get-AzureRmNetworkSecurityGroup available in given resource group

with a given name. Expected Result:
 NSG resource is provisioned successfully.
 NSG for port 443 is allowed for incoming requests
 NSG for port 80 is allowed for incoming requests
 NSG is applied to frontend subnet of virtual network
 NSG for port 1433 is allowed for incoming requests
 NSG for port 5985 is allowed for incoming requests
 NSG for port 5986 is allowed for incoming requests
 NSG for port 3389 is allowed for incoming requests
 NSG for port 2375 is allowed for incoming requests
 NSG for port 2376 is allowed for incoming requests
 NSG for port web application port is allowed for incoming requests

NSG for port Pull Server port is allowed for incoming requests
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Network Security group" {

||||||||||||||||||||

Configuration Management and Operational Validation

 [401]

Farkiantech.com
||||||||||||||||||||

 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $NSGName= $deployment.Outputs.networkSecurityGroupName.Value
}
It "NSG resource was provisioned successfully.." {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName $resourceGroupName))
 $rule.ProvisioningState | should be "Succeeded"
}
It "NSG is applied to frontend subnet of virtual network" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).Subnets[0].Id)
 $rule.Contains('frontend') | should be $true
}
It "NSG for port 80 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"rule80"}).DestinationPortRange
 $rule | should be 80
}
It "NSG for port 443 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"rule443"}).DestinationPortRange
 $rule | should be 443
}
It "NSG for port 1433 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq

||||||||||||||||||||

Configuration Management and Operational Validation

 [402]

||||||||||||||||||||

"rule1433"}).DestinationPortRange
 $rule | should be 1433
}
It "NSG for port 5985 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"rulePSUnsecured"}).DestinationPortRange
 $rule | should be 5985
}
It "NSG for port 5986 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"rulePSsecured"}).DestinationPortRange
 $rule | should be 5986
}
It "NSG for port 3389 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"RDP"}).DestinationPortRange
 $rule | should be 3389
}
It "NSG for port 2375 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"docker"}).DestinationPortRange
 $rule | should be 2375
}
It "NSG for port 2376 is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq

"dockers"}).DestinationPortRange
 $rule | should be 2376
}
It "NSG for port $webappPort is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"webserver"}).DestinationPortRange
 $rule | should be $webappPort

||||||||||||||||||||

Configuration Management and Operational Validation

 [403]

Farkiantech.com
||||||||||||||||||||

}
It "NSG for port $pullserverPort is allowed for incoming requests" {
 $rule = ((Get-AzureRmNetworkSecurityGroup -Name $NSGName -
ResourceGroupName
 $resourceGroupName).SecurityRules.Where{$_.name -eq
"pullserver"}).DestinationPortRange
 $rule | should be $pullserverPort
}
}

Unit testing load balancer

The Azure load balancer provides the ability to distribute requests to multiple virtual

machines. External load balancers have both a public IP and internal IP assigned to them

while internal load balancers only have a internal IP assigned. Load balancers have load

balancing rules assigned to them, and based on these rules, the requests are distributed

among virtual machines. Load balancers also have a probe configuration that continually

probes the virtual machines on the provided port. The sample solution uses HTTP with

port 8080 using the /newapp/Index path continually with an interval of 100 seconds. It

also probes 100 times. Load balancers also have frontend configuration with NAT rules and

a public IP address assigned to it. It has a backend pool with references to virtual machine

network interfaces.The load balancer tests are defined in LoadBalancer.Tests.ps1:

<#

Purpose:
 Verify that Azure Load balancer resource is provisioned and configured

appropriately.
 Action:
 Run Get-AzureRmLoadBalancer available in given resource group with a

given name. Run Get-AzureRmLoadBalancerRuleConfig available in given

resource group with a given name. Run Get-

AzureRmLoadBalancerProbeConfig available in given resource group with a

given name. Run Get-AzureRmLoadBalancerInboundNatRuleConfig available

in given resource group with a given name.
 Run Get-AzureRmLoadBalancerBackendAddressPoolConfig available in

given resource group with a given name. Run Get-

AzureRmLoadBalancerFrontendIpConfig available in given resource

group with a given name.
 Expected Result:
 Load balancer rule for frontend web application port is configured
 Load balancer rule for backend web application port is configured

||||||||||||||||||||

Configuration Management and Operational Validation

 [404]

||||||||||||||||||||

 Load balancer rules is associated with backend address pool
 Load balancer rule is associated with frontend IP configuration
 Load balancer rule is associated with Tcp protocol
 Load balancer rule uses the Default load distibution algorithm
 Load balancer rule is provisioned successfully
 Load balancer rule is associated with probe object
 Load balancer probe is configured to be executed 100 times
 Load balancer probe is configured to be executed in 100 seconds
 interval
 Load balancer probe is associated with load balancer rules
 Load balancer probe is configured for web application port
 Load balancer probe is configured on http protocol
 Load balancer probe is configured successfully
 Load balancer probe is configured to probe /newapp/index path
 Load balancer Nat config with frontend port 3389 for first virtual
 machine
 Load balancer Nat config with backend port 3389 for first virtual
 machine
 Load balancer Nat config with backend port 3389 for first virtual
 machine
 Load balancer Nat config with frontend port 13389 for second virtual
 machine
 Load balancer Nat config is on Tcp protocol for both
 virtual machines
 Load balancer Nat config is configured successfully for both
 virtual machine
 Load balancer backend address pool is connected to nic on
 first virtual machine
 Load balancer backend address pool is connected to nic on
 second virtual machine
 Load balancer frontend ip configuration is associated with load
 balancer public ip
 Load balancer frontend ip configuration is associated with NAT
 to first virtual machine
 Load balancer frontend ip configuration is associated with NAT
 to second virtual machine
 Load balancer frontend ip configuration is associated with
 load balancing rules
 Load balancer frontend ip configuration private internal ip
 is assigned dynamically
 Load balancer backend address pool is provisioned successfully
 Load balancer backend address pool is connected to Nic of
 first virtual machine
 Load balancer backend address pool is connected to Nic of

||||||||||||||||||||

Configuration Management and Operational Validation

 [405]

Farkiantech.com
||||||||||||||||||||

 second virtual machine
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Load balancer" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $lbfrontendIPConfiguration=
$deployment.Outputs.lbfrontendIPConfiguration.Value
 $lbbackendAddressPool= $deployment.Outputs.lbbackendAddressPool.Value
 $lbloadBalancingRules= $deployment.Outputs.lbloadBalancingRules.Value
 $lbinboundNatRule1= $deployment.Outputs.lbinboundNatRule1.Value
 $lbinboundNatRule2= $deployment.Outputs.lbinboundNatRule2.Value
 $nicNameforVM1= $deployment.Outputs.nicNameforVM1.Value
 $nicNameforVM2= $deployment.Outputs.nicNameforVM2.Value
}
 $lb = Get-AzureRmLoadBalancer -Name containerLB -ResourceGroupName
$resourceGroupName
It "Load balancer rule for frontend port $webappPort is configured.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer $lb).FrontendPort |
should be $webappPort
}
It "Load balancer rule for backend port $webappPort is configured.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer $lb).BackendPort |
should be $webappPort
}
It "Load balancer rules is associated with backend address pool.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer
 $lb).BackendAddressPool.Id.Contains($lbbackendAddressPool) | should be
$true
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [406]

||||||||||||||||||||

It "Load balancer rule is associated with frontend IP configuration.." {

(Get-AzureRmLoadBalancerRuleConfig -LoadBalancer
 $lb).FrontendIPConfiguration.id.Contains($lbfrontendIPConfiguration) |
should be $true
}
It "Load balancer rule is associated with Tcp protocol" {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer $lb).Protocol | should
be "Tcp"
}
It "Load balancer rule uses the Default load distibution algorithm.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer $lb).LoadDistribution
| should be "Default"
}
It "Load balancer rule is provisioned successfully.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer $lb).ProvisioningState
| should be "Succeeded"
}
It "Load balancer rule is associated with probe object.." {
 (Get-AzureRmLoadBalancerRuleConfig -LoadBalancer
$lb).Probe.Id.Contains('WebLBPROBE') | should be
 $true
}
It "Load balancer probe is configured to be executed 100 times.." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer $lb).NumberOfProbes |
should be 100
}
It "Load balancer probe is configured to be executed in 100 seconds
interval.." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer
$lb).IntervalInSeconds | should be 100
}
It "Load balancer probe is associated with load balancer rules.." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer
 $lb).LoadBalancingRules[0].Id.Contains($lbloadBalancingRules) | should
be $true
}
It "Load balancer probe is configured on port $webappPort .." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer $lb).Port | should be
$webappPort
}
It "Load balancer probe is configured on http protocol.." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer $lb).Protocol |
should be "http"
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [407]

Farkiantech.com
||||||||||||||||||||

It "Load balancer probe is configured successfully.." {
 (Get-AzureRmLoadBalancerProbeConfig -LoadBalancer
$lb).ProvisioningState | should be "Succeeded"
}
It "Load balancer probe is configured to probe /newapp/index path .." {

(Get-AzureRmLoadBalancerProbeConfig -LoadBalancer $lb).RequestPath |
should be "/newapp/Index"
}
It "Load balancer Nat config with frontend port 3389 for first virtual
machine.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb)[0].FrontendPort | should be "3389"
}
It "Load balancer Nat config with backend port 3389 for first virtual
machine.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb)[0].BackendPort | should be "3389"
}
It "Load balancer Nat config with backend port 3389 for first virtual
machine.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb)[1].BackendPort | should be "3389"
}
It "Load balancer Nat config with frontend port 13389 for second virtual
machine.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb)[1].FrontendPort | should be "13389"
}
It "Load balancer Nat config is on Tcp protocol for both virtual
machines.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb).Protocol | should be @('Tcp','Tcp')
}
It "Load balancer Nat config is configured successfully for both virtual
machine.." {
 (Get-AzureRmLoadBalancerInboundNatRuleConfig -LoadBalancer
$lb).ProvisioningState | should be
 @('Succeeded','Succeeded')
}
It "Load balancer frontend ip configuration is associated with load
balancer public ip .." {
 (Get-AzureRmLoadBalancerFrontendIpConfig -LoadBalancer
$lb).PublicIpAddress.Id.Contains('lbPublicIP')
 | should be $true

||||||||||||||||||||

Configuration Management and Operational Validation

 [408]

||||||||||||||||||||

}
It "Load balancer frontend ip configuration is associated with NAT to first
virtual machine .." {
 (Get-AzureRmLoadBalancerFrontendIpConfig -LoadBalancer
 $lb).InboundNatRules[0].Id.Contains($lbinboundNatRule1) | should be
$true
}
It "Load balancer frontend ip configuration is associated with NAT to
second virtual machine.." {
 (Get-AzureRmLoadBalancerFrontendIpConfig -LoadBalancer
 $lb).InboundNatRules[1].Id.Contains($lbinboundNatRule2) | should be
$true
}
It "Load balancer frontend ip configuration is associated with load
balancing rules resource.." {
 (Get-AzureRmLoadBalancerFrontendIpConfig -LoadBalancer
 $lb).LoadBalancingRules[0].Id.Contains($lbloadBalancingRules) | should
be $true
}
It "Load balancer frontend ip configuration private internal ip is assigned
dynamically.." {
 (Get-AzureRmLoadBalancerFrontendIpConfig -LoadBalancer
$lb).PrivateIpAllocationMethod | should be
 "Dynamic"
}
It "Load balancer backend address pool is provisioned successfully.." {
 (Get-AzureRmLoadBalancerBackendAddressPoolConfig -LoadBalancer
$lb).ProvisioningState | should be
 "Succeeded"
}
}

Unit testing Azure SQL

Azure SQL provides SQL as a service. Azure SQL hosts an SQL database and has Firewall

rules that allow requests from only whitelisted IP addresses. Both the web applications and

Pull Server virtual machine public IP addresses are added to the list of allowed Firewall

rules. The code for unit testing Azure SQL is shown next. The Azure SQL tests are defined

in SQLServer.Tests.ps1:

<#

Purpose:

||||||||||||||||||||

Configuration Management and Operational Validation

 [409]

Farkiantech.com
||||||||||||||||||||

 Verify that Azure SQL resource is provisioned and configured

appropriately.
 Action:
 Run Get-AzureRmSqlServer available in given resource group with a given

name. Run Get-AzureRmSqlDatabase available in given resource group with

a given name. Run Get-AzureRmSqlServerFirewallRule available in given

resource group with a given name. Expected Result:
 Get SQL server with given name
 Get SQL server location
 Get SQL Server database with given name
 Get SQL Server database with firewall rules related to first virtual
machine
 Get SQL Server database with firewall rules related to second virtual
machine
 Get SQL Server database with firewall rules related to pullserver
virtual machine
 Get SQL Server database with firewall rules related to all azure
services
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "SQL SERVER" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $sqlServer= $deployment.Outputs.sqlServer.Value
}
 $server = Get-AzureRmSqlServer -ResourceGroupName $resourceGroupName
 $database = Get-AzureRmSqlDatabase -ServerName $sqlServer -
ResourceGroupName $resourceGroupName
 DatabaseName $databaseName
 $firewall = Get-AzureRmSqlServerFirewallRule -ResourceGroupName

||||||||||||||||||||

Configuration Management and Operational Validation

 [410]

||||||||||||||||||||

$resourceGroupName -ServerName
 $sqlServer
It "Get SQL server with given name" {
 $server.ServerName | should be $("devopswin2016-" + $skuName)
}
It "Get SQL Server database with given name" {
 $database.Databasename | should be $databaseName
}
It "Get SQL Server database with Webapp1 firewall rules" {
 $webapp1Ipaddress = $firewall.Where{$_.FirewallRuleName -eq 'webapp1'}
| select startipaddress
 ExpandProperty startipaddress
 $firewall.Where{$_.FirewallRuleName -eq 'webapp1'} | select
FirewallRuleName -ExpandProperty
 FirewallRuleName | should be "webapp1"
}
It "Get SQL Server database with Webapp2 firewall rules" {
 $firewall.Where{$_.FirewallRuleName -eq 'webapp2'} | select
FirewallRuleName -ExpandProperty
 FirewallRuleName | should be "webapp2"
 $webapp2Ipaddress = $firewall.Where{$_.FirewallRuleName -eq 'webapp2'}
| select startipaddress -
 ExpandProperty startipaddress
}
It "Get SQL Server database with Pull Server firewall rules" {
 $firewall.Where{$_.FirewallRuleName -eq 'pullserver'} | select
FirewallRuleName -ExpandProperty
 FirewallRuleName | should be "pullserver"
 $pullserverIpaddress = $firewall.Where{$_.FirewallRuleName -eq
'pullserver'} | select startipaddress -
 ExpandProperty startipaddress
}
It "Get SQL Server database with AllowAllWindowsAzureIps firewall rules" {
 $firewall.Where{$_.FirewallRuleName -eq 'AllowAllWindowsAzureIps'} |
select FirewallRuleName -
 ExpandProperty FirewallRuleName | should be "AllowAllWindowsAzureIps"
 $AllowAllWindowsAzureIps = $firewall.Where{$_.FirewallRuleName -eq
'AllowAllWindowsAzureIps'} | select
 startipaddress -ExpandProperty startipaddress
}
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [411]

Farkiantech.com
||||||||||||||||||||

Unit testing Azure SQL Firewall

The IP addresses in Azure SQL Firewall rules should match the public IP address of the

web application and Pull Server virtual machines. They should also allow traffic from any

Azure service. The code for unit testing Azure SQL Firewall rules is shown here. The Azure

SQL Firewall tests are defined in SQLFirewallIPAddresses.Tests.ps1:

<#

Purpose:
 Verify that Azure SQL firewalls have valid Ip address belonging to two
virtual machine hosting web

application.
 Action:
 Run Get-AzureRmSqlServer available in given resource group with a given

name. Run Get-AzureRmSqlDatabase available in given resource group with

a given name.
 Run Get-AzureRmSqlServerFirewallRule available in given resource group
with a given name. Run Get-AzureRmPublicIpAddress available in given

resource group with a given name.
 Expected Result:
 Public Ip address of VM vmvm1 matches to the Azure SQL firewall

Public Ip address of VM vmvm2 matches to the Azure SQL firewall
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "SQL Firewall IP Addresses"{
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $sqlServer= $deployment.Outputs.sqlServer.Value
 }
 $server = Get-AzureRmSqlServer -ResourceGroupName $resourceGroupName

||||||||||||||||||||

Configuration Management and Operational Validation

 [412]

||||||||||||||||||||

 $database = Get-AzureRmSqlDatabase -ServerName $sqlServer -
ResourceGroupName $resourceGroupName -
 DatabaseName $databaseName
 $firewall = Get-AzureRmSqlServerFirewallRule -ResourceGroupName
$resourceGroupName -ServerName
 $sqlServer
It "Public Ip address of VM vm1 matches to the Azure SQL firewall " {
 $ipaddress = (Get-AzureRmPublicIpAddress -Name $("pip1" + $skuName + "-
publicIP") -ResourceGroupName
 $resourceGroupName).IpAddress
 $webapp1Ipaddress = $firewall.Where{$_.FirewallRuleName -eq 'webapp1'}
| select startipaddress -
 ExpandProperty startipaddress
 $webapp1Ipaddress | should be $ipaddress
}
It "Public Ip address of VM vm2 matches to the Azure SQL firewall " {
 $ipaddress = (Get-AzureRmPublicIpAddress -Name $("pip2" + $skuName + "-
publicIP") -ResourceGroupName
 $resourceGroupName).IpAddress
 $webapp2Ipaddress = $firewall.Where{$_.FirewallRuleName -eq 'webapp2'} |

select startipaddress -
 ExpandProperty startipaddress
 $webapp2Ipaddress | should be $ipaddress
}
}

Unit testing the count of virtual machines

The solution comprises of three virtual machines–one virtual machine for DSC Pull Server

and two virtual machines for hosting web application. It should be noted that the number

of virtual machines for the web application is configurable. The code for unit testing the

count of virtual machines is shown here. The virtual machine count tests are defined in

VirtualMachineCount.Tests.ps1:

<#

Purpose:
 Verify the count of virtual machines in resource group .

Action:
 Run Get-AzureRmVM available in given resource group with a given name.
 Expected Result: count of virtual

machine in resource group

||||||||||||||||||||

Configuration Management and Operational Validation

 [413]

Farkiantech.com
||||||||||||||||||||

#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Check the existance of Web front end and Pull Server virtual
machine" {

BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
}
 $vms = Get-AzureRmVM -ResourceGroupName $resourceGroupName
It "count of virtual machine in resource group" {
 $vms.Count | should be ($numberofvms +1)
}
}

Unit testing virtual machine 01

Virtual machines contain Docker containers that host a web application. Virtual machines
are created using an image, Windows 2016 with Containers from Microsoft. The virtual

machine needs a storage account to store its vhd file, a virtual network for communicating

with other machines, a network interface card to talk to the network, and extensions to

execute scripts. Azure provides multiple sizes for virtual machines. It is important to choose

an appropriate size of virtual machine as it has a cost associated with it. The code for unit

testing the first virtual machine is shown here. The virtual machine 01 tests are defined in

VM01.Tests.ps1:

<#

Purpose:

||||||||||||||||||||

Configuration Management and Operational Validation

 [414]

||||||||||||||||||||

 Verify that virtual machine VM01 is provisioned and configured

appropriately. Action:
 Run Get-AzureRmVM available in given resource group with a given name.
 Expected Result:
 Virtual machine location is as intended
 Virtual machine is part of availability set
 Virtual machine size is Standard_D3
 Virtual machine is attached to NIC
 Virtual machine image is from appropriate Offer
 Virtual machine image is from appropriate publisher
 Virtual machine image is from appropriate sku
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "web front end Virtual Machines vm01" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $nicNameforVM1= $deployment.Outputs.nicNameforVM1.Value
}
 $vm = Get-AzureRmVM -ResourceGroupName $resourceGroupName -Name vm1
It "virtual machine location is as intended" {
 $vm.Location | should be $location
}
It "Virtual machine is part of availability set" {
 $vm.AvailabilitySetReference.Id.Contains('WEBAPPAVSET') | should be
$true
}
It "Virtual machine size is $vmsize" {
 $vm.HardwareProfile.VmSize| should be "Standard_D3"
}
It "Virtual machine is attached to NIC " {

||||||||||||||||||||

Configuration Management and Operational Validation

 [415]

Farkiantech.com
||||||||||||||||||||

 $vm.NetworkInterfaceIDs[0].Contains("$nicNameforVM1")| should be $true
}
It "Virtual machine image is from appropriate Offer" {
 $vm.StorageProfile.ImageReference.Offer| should be 'WindowsServer'
}
It "Virtual machine image is from appropriate publisher" {
 $vm.StorageProfile.ImageReference.Publisher| should be
'MicrosoftWindowsServer'
}
It "Virtual machine image is from appropriate sku" {
 $vm.StorageProfile.ImageReference.Sku| should be $ossku
}
}

Unit testing virtual machine 02

This is similar to the first virtual machine. The code for both the virtual machines could

have been written in a loop; however, for demonstration purposes, a separate script is

written for both the virtual machines. There is another example later in this chapter that

uses looping for both the virtual machines as well. The code for unit testing the second

virtual machine is shown here. The virtual machine 02 tests are defined in

VM02.Tests.ps1:

<#

Purpose:
 Verify that virtual machine VM02 is provisioned and configured

appropriately. Action:
 Run Get-AzureRmVM available in given resource group with a given name.
 Expected Result: virtual machine

location is as intended Virtual machine

is part of availability set
 Virtual machine size is Standard_D3
 Virtual machine is attached to NIC
 Virtual machine image is from appropriate Offer
 Virtual machine image is from appropriate publisher
 Virtual machine image is from appropriate sku
#>

param(
 [string] $deploymentName,
[string] $resourceGroupName
)

||||||||||||||||||||

Configuration Management and Operational Validation

 [416]

||||||||||||||||||||

Describe "web front end Virtual Machines VM02" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $nicNameforVM2= $deployment.Outputs.nicNameforVM2.Value
}
 $vm = Get-AzureRmVM -ResourceGroupName $resourceGroupName -Name vm2
It "virtual machine location" {
 $vm.Location | should be $location
}
It "Virtual machine is part of availability set" {
 $vm.AvailabilitySetReference.Id.Contains('WEBAPPAVSET') | should be
$true
}
It "Virtual machine size is $vmsize.." {
 $vm.HardwareProfile.VmSize| should be "Standard_D3"
}
It "Virtual machine is attached to NIC " {
 $vm.NetworkInterfaceIDs[0].Contains("$nicNameforVM2")| should be $true
}
It "Virtual machine image is from appropriate Offer" {
 $vm.StorageProfile.ImageReference.Offer| should be 'WindowsServer'
}
It "Virtual machine image is from appropriate publisher" {
 $vm.StorageProfile.ImageReference.Publisher| should be
'MicrosoftWindowsServer'
}
It "Virtual machine image is from appropriate sku" {
 $vm.StorageProfile.ImageReference.Sku| should be $ossku
}
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [417]

Farkiantech.com
||||||||||||||||||||

Unit testing the DSC Pull Server virtual machine

This is again similar to the previous two virtual machines. The code for unit testing the Pull

Server virtual machine is shown here. The Pull Server virtual machine tests are defined in

PullServer.Tests.ps1:

<#

Purpose:
 Verify that DSC Pull Server virtual machine is provisioned and

configured appropriately. Action:
 Run Get-AzureRmVM available in given resource group with a given name.
 Expected Result: virtual machine

location is as intended
 Virtual machine is part of availability set
 Virtual machine size is Standard_D1
 Virtual machine is attached to NIC
 Virtual machine image is from appropriate Offer
 Virtual machine image is from appropriate publisher
 Virtual machine image is from appropriate sku
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Virtual Machines pullserver" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
}
 $vm = Get-AzureRmVM -ResourceGroupName $resourceGroupName -Name vm-
pulls
It "virtual machine location is as intended" {
 $vm.Location | should be $location
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [418]

||||||||||||||||||||

It "Virtual machine size is Standard_D1" {
 $vm.HardwareProfile.VmSize| should be $vmsize
}
It "Virtual machine is attached to NIC " {
 $vm.NetworkInterfaceIDs[0].Contains("nicPS" + $skuName + "-nic")|
should be $true
}
It "Virtual machine image is from appropriate Offer" {
 $vm.StorageProfile.ImageReference.Offer| should be 'WindowsServer'
}
It "Virtual machine image is from appropriate publisher" {
 $vm.StorageProfile.ImageReference.Publisher| should be
'MicrosoftWindowsServer'
}
It "Virtual machine image is from appropriate sku" {
 $vm.StorageProfile.ImageReference.Sku| should be '2016-Datacenter-with-
Containers'
}
}

Unit testing the DSC Pull Server operating system

It's time to test the configuration of the operating system and the DSC Pull Server. The DSC

Pull Server is an IIS website with a web application pool. It has a defined port number. It is

dependent on the web server and DSC service Windows feature; an appropriate Firewall

port for Pull Server to work should be enabled and allowed access to. The code for unit

testing the DSC Pull Server and operating system is shown here. The Pull Server operating

system tests are defined in InsidePullServer.Tests.ps1:

<#

Purpose:
 Verify that DSC Pull Server virtual machine is configured to accept pull

requests from DSC nodes.
 Action:
 Login into Pull Server hosted on Azure virtual machine using

NewPSSession.
 Expected Result:
 Web-server feature is installed
 SC-Service feature is installed
 DSC Pull Server web site exists
 DSC Pull Server web site is up and running

||||||||||||||||||||

Configuration Management and Operational Validation

 [419]

Farkiantech.com
||||||||||||||||||||

 DSC Pull Server web site is attached to appropriate application pool
 DSC Pull Server web site is running on https protocol
 DSC Pull Server web site is running on appropriate port
 DSC Pull Server web site is running on given physical path
 DSC Pull Server application pool exists
 DSC Pull Server application pool is up and running
 DSC Pull Server winrm service is available
 DSC Pull Server winrm service is up and running
 DSC Pull Server winrm service startup type is automatic

Pull Server web application port is open on Pull Server.
 Pull Server winrm port 5985 is open on Pull Server
 Pull Server winrm port 5986 is open on Pull Server
 Pull Server Remote desktop port 3389 is open on Pull Server
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Inside Virtual Machines pullserver" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $vmUserName = $deployment.Outputs.vmUserName.Value
 $vmPassword = $deployment.Outputs.vmPassword.Value
 $pullServerPublicIPAddress =
$deployment.Outputs.pullServerPublicIPAddress.Value
 }
 beforeeach {
 $hostName= "$pullServerPublicIPAddress"
 $winrmPort = '5986'
 $username = $vmUserName
 $pass = ConvertTo-SecureString -string $vmPassword -AsPlainText -Force
 $cred = New-Object -typename System.Management.Automation.PSCredential
-argumentlist $username, $pass

||||||||||||||||||||

Configuration Management and Operational Validation

 [420]

||||||||||||||||||||

 $soptions = New-PSSessionOption -SkipCACheck -SkipCNCheck -
SkipRevocationCheck
 $s = new-PSSession -ComputerName $hostName -Port $winrmPort -Credential
$cred -SessionOption $soptions
 -UseSSL
 }
It "Web-server feature is installed" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-WindowsFeature -name
web-server).Name}
 $r | should be "Web-Server"
}
It "DSC-Service feature is installed" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-WindowsFeature -name
DSC-Service).Name}
 $r | should be "DSC-Service"
}
It "DSC Pull Server web site exists" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
PSDSCPullServer).Name}
 $r | should be "PSDSCPullServer"
}
It "DSC Pull Server web site is up and running" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
PSDSCPullServer).state}
 $r | should be "Started"
}
It "DSC Pull Server web site is attached to appropriate application pool" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
PSDSCPullServer).applicationPool}
 $r | should be "DSCPullServer"
}
It "DSC Pull Server web site is running on https protocol" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
 PSDSCPullServer).bindings.Collection.protocol}
 $r | should be "http"
}
It "DSC Pull Server web site is running on appropriate port" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
 PSDSCPullServer).bindings.Collection.bindinginformation}
 $r | should be $("*:" + $pullserverPort + ":")
}
It "DSC Pull Server web site is running on given physical path" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Website -Name
PSDSCPullServer).PhysicalPath}

||||||||||||||||||||

Configuration Management and Operational Validation

 [421]

Farkiantech.com
||||||||||||||||||||

 $r | should be "C:\PSDSCPullServer"
}
It "DSC Pull Server application pool exists" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-IISAppPool -Name
DscPullServer).Name}
 $r | should be "DSCPullServer"
}
It "DSC Pull Server application pool is up and running" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-WebAppPoolState Name

DscPullServer).Value}
 $r | should be "Started"
}
It "DSC Pull Server winrm service is available" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
winrm).Name}
 $r | should be "winrm"
}
It "DSC Pull Server winrm service is up and running" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
winrm).Status}
 $r | should be "4"
}
It "DSC Pull Server winrm service startup type is automatic" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
winrm).StartType}
 $r | should be "2"
}
It "Pull Server web application port $pullserverPort is open on Pull
Server." {
 $r = Invoke-Command -Session $s -ScriptBlock { param($pullserverPort)
Test-NetConnection -Port
 $pullserverPort -ComputerName $env:COMPUTERNAME} -ArgumentList
$pullserverPort
 $r | should not be $null
}
It "Pull Server winrm port 5985 is open on Pull Server" {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"5985" -ComputerName
 $env:COMPUTERNAME}
 $r | should not be $null
}
It "Pull Server winrm port 5986 is open on Pull Server" {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"5986" -ComputerName

||||||||||||||||||||

Configuration Management and Operational Validation

 [422]

||||||||||||||||||||

 $env:COMPUTERNAME}
 $r | should not be $null
}
It "Pull Server Remote desktop port 3389 is open on Pull Server" {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"3389" -ComputerName
 $env:COMPUTERNAME}
 $r | should not be $null
}

aftereach{
 Remove-PSSession -Session $s
 }
}

Unit testing the web application operating system

It's time to test the configuration of the operating system and web application operating

system. OnlinePharmacy is an IIS website associated with its own web application pool. It

is configured with a defined port number. It is dependent on the web server and Docker

Windows feature. The appropriate Firewall port for it to work should be enabled and

allowed access to. The web application is hosted within Windows containers. A custom

image IIS should exist along with a container provisioned using it. The web application

operating system tests are defined in InsideFrontEndVirtualMachines.Tests.ps1, as

shown here:

<#

Purpose:
 Verify that web application hosted on Azure virtual machine is
configured with container and images and

hosting web application within containers.

Action:
 Login into both virtual machines hosted on Azure using New-PSSession.
 Expected Result:
 Docker windows service is available on both virtual Machine
 Docker windows service is up and running on both virtual Machine

Docker windows service is setup for automatic startup on both virtual
Machine
 Web-Server windows feature is available on both virtual Machine
 Containers windows feature is available on both virtual Machine
 Docker windows service is setup for automatic startup on both virtual
Machine
 Windows container image IIS exists on both virtual machines
 Windows container exists created using IIS image on both virtual
machine

||||||||||||||||||||

Configuration Management and Operational Validation

 [423]

Farkiantech.com
||||||||||||||||||||

 winrm service is available on both virtual Machine winrm service

is up and running on both virtual Machine winrm service is setup for

automatic startup on both virtual Machine
 OnlinePharmacy web application port is open on Pull Server.
 Pull Server winrm port 5985 is open on Pull Server
 Pull Server winrm port 5986 is open on Pull Server
 Pull Server Remote desktop port 3389 is open on Pull Server
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Inside Virtual Machines hosting web application container" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $webappPort = $deployment.Outputs.webappPort.Value
 $pullserverPort = $deployment.Outputs.pullserverPort.Value
 $numberofvms = $deployment.Outputs.numberofvms.Value
 $location = $deployment.Outputs.deployLocation.Value
 $vmsize = $deployment.Outputs.vmsize.Value
 $ossku = $deployment.Outputs.ossku.Value
 $databaseName = $deployment.Outputs.databaseName.Value
 $resourceGroupName = $deployment.Outputs.resourceGroupName.Value
 $skuName= $deployment.Outputs.skuName.Value
 $vmUserName = $deployment.Outputs.vmUserName.Value
 $vmPassword= $deployment.Outputs.vmPassword.Value
}
for ($i=1; $i -le $numberofvms; $i++) {
 $hostName= "webapponlmed" + $skuName + $i +
".westeurope.cloudapp.azure.com"
 $winrmPort = '5986'
 $username = $vmUserName
 $pass = ConvertTo-SecureString -string $vmPassword -AsPlainText -Force
 $cred = New-Object -typename System.Management.Automation.PSCredential
-argumentlist $username, $pass
 $soptions = New-PSSessionOption -SkipCACheck -SkipCNCheck -
SkipRevocationCheck
 $s = new-PSSession -ComputerName $hostName -Port $winrmPort -Credential
$cred -SessionOption $soptions
 UseSSL
It "winrm service is available on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name

||||||||||||||||||||

Configuration Management and Operational Validation

 [424]

||||||||||||||||||||

winrm).Name}
 $r | should be "winrm"
}
It "winrm service is up and running on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
winrm).Status}
 $r | should be "4"
}
It "winrm service startup type is automatic on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
winrm).StartType}
 $r | should be "2"
}
It "Docker service is available on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
docker).Name}
 $r | should be "docker"
}
It "docker service is up and running on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name

docker).Status}
 $r | should be "4"
}
It "docker service startup type is automatic on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-Service -Name
docker).StartType}
 $r | should be "2"
}
It "Web-server feature is installed on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-WindowsFeature -name
web-server).Name}
 $r | should be "Web-Server"
}
It "Containers feature is installed on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {(Get-WindowsFeature -name
containers).Name}
 $r | should be "containers"
}
It "Windows container image IIS exists on webapp$($i)" {
 $r = Invoke-Command -Session $s -ScriptBlock {$images = docker images;
 $images.where{$_.Contains('iis')}}
 $r | should not be $null
}
It "Windows container exists created using IIS image on webapp$($i)." {

||||||||||||||||||||

Configuration Management and Operational Validation

 [425]

Farkiantech.com
||||||||||||||||||||

 $r = Invoke-Command -Session $s -ScriptBlock {$container = docker ps -
a;
 $Container.where{$_.Contains('iis')}}
 $r | should not be $null
}
It "web application port $webappPort is open on webapp$($i)." {
 $r = Invoke-Command -Session $s -ScriptBlock {param($webappPort) Test-
NetConnection -Port $webappPort
 -ComputerName $env:COMPUTERNAME} -ArgumentList $webappPort
 $r | should not be $null
}
It "winrm port 5985 is open on webapp$($i)." {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"5985" -ComputerName
 $env:COMPUTERNAME}
 $r | should not be $null
}
It "winrm port 5986 is open on webapp$($i)." {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"5986" -ComputerName
 $env:COMPUTERNAME}
 $r | should not be $null
}
It "Remote desktop port 3389 is open on webapp$($i)." {
 $r = Invoke-Command -Session $s -ScriptBlock {Test-NetConnection -Port
"3389" -ComputerName
 $env:COMPUTERNAME}
 $r | should not be $null
}
 Remove-PSSession -Session $s
 }
}

Environment operational validation

Operational validation refers to the process of validating and verifying that the

environments are not only provisioned and configured in the desired state but also are

operational and running as intended. Although unit tests are performed on environments

such as development, testing, and preproduction, operational validation can be executed

against the production environment. However, this does not mean that operational

||||||||||||||||||||

Configuration Management and Operational Validation

 [426]

||||||||||||||||||||

validation cannot be executed against development, test, or any other environment. It can

be executed against any environment.

Another important point to remember about operational validation is that it should not

modify the environment while executing the tests. If it needs to perform any action that

would eventually modify the environment, the tests should proactively create additional

resources and use them. After completion of the tests, these temporary resources should be

teared down.

Operational validation is a must have tool that should be employed for effective continuous

delivery and deployment. Operational validation provides immediate feedback about a

release to decide if it is suitable for going live on production. It can also execute tests such

as A/B tests that can provide additional feedback about the deployment.

Operational validation can be executed through two different ways, as follows:

Pester

Operational validation module

Operational validation tests are Pester test cases authored and executed exactly in the same

as way unit tests were shown earlier. The difference is in the scope of the tests. Although

unit tests focus on an individual component and its working, operational validation checks

for end-to-end working and operational effectiveness of the environment and application.

Microsoft provides the operational validation module in order to execute operational tests

for an environment. The operational validation module internally executes Pester test cases.

The tests should be converted into a PowerShell module for the operational validation

module to be able to search and execute these test cases. The advantage operational

validation module brings in is that it mandates that the tests are available as PowerShell

modules. They can be easily searched and discovered easily on a computer. There is no

need to use a file path in order to execute the tests. Moreover, these modules are easily

shareable with communities, and other developers within and outside the team. These test

modules are searchable, discoverable, identifiable, and they can be deployed using package

management as well. Chapter 10, Continuous Delivery and Deployment will show the way to

execute operational validation tests using Pester.

There are specific steps that are undertaken to use the operational validation module for

operation validation test cases:

||||||||||||||||||||

Configuration Management and Operational Validation

 [427]

Farkiantech.com
||||||||||||||||||||

1. Create a folder structure expected by the operational validation module.

2. Write operational validation test cases.

3. Convert the tests into the PowerShell module.

The operational validation folder structure

The operational validation module expects test cases within specific folders and has a

predefined folder structure. This helps the operational module to deterministically load and

execute the operational validation tests.

An OnlineMedicine folder is created within the OperationalValidation folder.

OnlineMedicine contains the OnlineMedicine.psd1 PowerShell data file and

Diagnostics folder. The Diagnostics folder further contains two subfolders: Simple

and Comprehensive. The Simple folder should contain simple test cases focusing on

single resources, whereas the Comprehensive folder should contain integration and

operational validation tests that involve more than one resource and are usually more

time consuming than executing a simple test case.

To generate the psd1 file in the OnlineMedicine folder, the new-ModuleManifest cmdlet

can be used as shown here:

New-ModuleManifest -Path "..\
OnlinePharmacy.Configuration\tests\Operational
Validation\OnlineMedicine\OnlineMedicine.psd1"

Although the authoring and saving of script files happens within the overall Project
folder, eventually, the OnlineMedicine module should be copied over to Program Files |

WindowsPowershell | Modules directory of the machine on which the validation

operations tests are executed.

The operational validation of the web application

on the first virtual machine

As part of the operation validation, it is important to test whether the web application is

reachable, whether it can send response to requests, and that the entire request-response

||||||||||||||||||||

Configuration Management and Operational Validation

 [428]

||||||||||||||||||||

mechanism is successful. The web application comprises multiple pages, and tests should

be conducted in order to retrieve multiple pages successfully. The requests will only get a

successful response if provisioning and configuration of every resource is in the desired

state, and there are no deviations in them. The public IP address to the virtual machine is

assigned at deployment time, and the web application port number is provided as a

parameter by the administrator. The values for the public IP address and web application

port number are available as part of the output from the template deployment. The code for

operation validation tests is shown here. The operational validation tests for the first

instance of the web application are defined in WebAppVirtualMachine-01.Tests.ps1:

<# Purpose: Verify the web application is operational on first

virtual machine.
 Action:
 Run Invoke-WebRequest on multiple pages of web application.
 Expected Result: invoking the request for index page of web

application and comparing
the returned status, text and
 description
 invoking the request for Drug's create page of web application and
comparing the returned status, text
 and description
 invoking the request for Drugs page of web application and comparing
the returned status, text and
 description
 invoking the request for Drug Inventory page of web application and

comparing the returned status, text and description
 invoking the request for sales page of web application and comparing
the returned status, text and
 description
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Web application requests to first virtual machine and container"
{
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $vm01IP = $deployment.Outputs.vM01PublicIPAddress.value
 $webappPort= $deployment.Outputs.webappPort.value
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [429]

Farkiantech.com
||||||||||||||||||||

It "invoking the request for index page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($vm01IP) + ":" + $($webappPort))
 $indexPage = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/index"
 $indexPage.Content.Contains("Welcome to Medical Point of sale
application") | should be $true
 $indexPage.StatusCode | should be 200
 $indexPage.StatusDescription | should be "OK"
}
It "invoking the request for Drug's create page of web application and
comparing the returned status, text and description.." {
 $parturl = $($($vm01IP) + ":" + $($webappPort))
 $createDrug = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Drugs/Create" -Method
 Get
 $createDrug.Content.Contains("Create new Drug Master - DevOps with
Windows Server 2016 sample

application") | should be $true
 $createDrug.StatusCode | should be 200
 $createDrug.StatusDescription | should be "OK"
}
It "invoking the request for Drugs page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($vm01IP) + ":" + $($webappPort))
 $drugs = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Drugs"
 $drugs.Content.Contains("List of Drugs - DevOps with Windows Server
2016 sample application") | should
 be $true
 $drugs.StatusCode | should be 200
 $drugs.StatusDescription | should be "OK"
}
It "invoking the request for Drug Inventory page of web application and
comparing the returned status, text and description.." {
 $parturl = $($($vm01IP) + ":" + $($webappPort))
 $drugInventory = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/DrugInventories"
 $drugInventory.Content.Contains("List of inventory - DevOps with
Windows Server 2016 sample

application") | should be $true
 $drugInventory.StatusCode | should be 200
 $drugInventory.StatusDescription | should be "OK"
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [430]

||||||||||||||||||||

It "invoking the request for sales page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($vm01IP) + ":" + $($webappPort))
 $sales = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Sales"
 $sales.Content.Contains("All sales.. - DevOps with Windows Server 2016
sample application") | should
 be $true
 $sales.StatusCode | should be 200
 $sales.StatusDescription | should be "OK"
 }
}

The operational validation of the web application

on the second virtual machine

The operational validation tests for the second virtual machine are similar to the first one.

The code for operation validation tests is shown here. The operational validation tests for

the second instance of the web application are defined in WebAppVirtualMachine-

02.Tests.ps1:

<# Purpose: Verify the web application is operational on second

virtual machine.
 Action:
 Run Invoke-WebRequest on multiple pages of web application.
 Expected Result: invoking the request for index page of web

application and comparing
the returned status, text and
 description
 invoking the request for Drug's create page of web application and
comparing the returned status, text
 and description
 invoking the request for Drugs page of web application and comparing
the returned status, text and
 description
 invoking the request for Drug Inventory page of web application and
comparing the returned status,

text and description
 invoking the request for sales page of web application and comparing
the returned status, text and
 description

||||||||||||||||||||

Configuration Management and Operational Validation

 [431]

Farkiantech.com
||||||||||||||||||||

#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Web application requests to first virtual machine and container"
{
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $vm02IP = $deployment.Outputs.vM02PublicIPAddress.value
 $webappPort= $deployment.Outputs.webappPort.value
}
It "invoking the request for index page of web application and comparing
the returned status, text and
description.." {
 $parturl = $($($vm02IP) + ":" + $($webappPort))
 $indexPage = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/index"
 $indexPage.Content.Contains("Welcome to Medical Point of sale
application") | should be $true
 $indexPage.StatusCode | should be 200
 $indexPage.StatusDescription | should be "OK"
}
It "invoking the request for Drug's create page of web application and
comparing the returned status, text
and description.." {
 $parturl = $($($vm02IP) + ":" + $($webappPort))
 $createDrug = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Drugs/Create" -Method
 Get
 $createDrug.Content.Contains("Create new Drug Master - DevOps with
Windows Server 2016 sample

application") | should be $true
 $createDrug.StatusCode | should be 200
 $createDrug.StatusDescription | should be "OK"
}
It "invoking the request for Drugs page of web application and comparing
the returned status, text and
description.." {
 $parturl = $($($vm02IP) + ":" + $($webappPort))
 $drugs = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Drugs"

||||||||||||||||||||

Configuration Management and Operational Validation

 [432]

||||||||||||||||||||

 $drugs.Content.Contains("List of Drugs - DevOps with Windows Server
2016 sample application") | should
 be $true
 $drugs.StatusCode | should be 200
 $drugs.StatusDescription | should be "OK"
}
It "invoking the request for Drug Inventory page of web application and
comparing the returned status, text and description.." {
 $parturl = $($($vm02IP) + ":" + $($webappPort))
 $drugInventory = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/DrugInventories"
 $drugInventory.Content.Contains("List of inventory - DevOps with
Windows Server 2016 sample

application") | should be $true
 $drugInventory.StatusCode | should be 200
 $drugInventory.StatusDescription | should be "OK"
}
It "invoking the request for sales page of web application and comparing
the returned status, text and description..." {
 $parturl = $($($vm02IP) + ":" + $($webappPort))
 $sales = Invoke-WebRequest -UseBasicParsing -Uri
"http://$parturl/newapp/Sales"
 $sales.Content.Contains("All sales.. - DevOps with Windows Server 2016
sample application") | should
 be $true
 $sales.StatusCode | should be 200
 $sales.StatusDescription | should be "OK"
 }
}

The operational validation of the web application

using an Azure load balancer

The operational validation tests using a load balancer is the same as that of virtual

machines; however, instead of using the public IP address of the virtual machines, the

public IP address of load balancer is used. The code for operational tests using load

balancer is shown next. The operational validation tests for the web application load

balancer are defined in WebAppLoadBalancer.Tests.ps1:

<# Purpose: Verify the web application is operational using Azure

Load balancer.

||||||||||||||||||||

Configuration Management and Operational Validation

 [433]

Farkiantech.com
||||||||||||||||||||

 Action:
 Run Invoke-WebRequest on multiple pages of web application.
 Expected Result: invoking the request for index page of web

application and comparing
the returned status, text and
 description
 invoking the request for Drug's create page of web application and
comparing the returned status, text
 and description
 invoking the request for Drugs page of web application and comparing
the returned status, text and
 description
 invoking the request for Drug Inventory page of web application and
comparing the returned status,

text and description
 invoking the request for sales page of web application and comparing
the returned status, text and
 description
#>

param(
 [string] $deploymentName,
 [string] $resourceGroupName
)
Describe "Web application requests to virtual machine and container using
load balancer" {
 BeforeAll {
 $deployment = (Get-AzureRmResourceGroupDeployment -ResourceGroupName
$resourceGroupName -Name
 $deploymentName)
 $lbip = $deployment.Outputs.loadBalancerPublicIPAddress.value
 $webappPort= $deployment.Outputs.webappPort.value
}
it "invoking the request for index page of web application and comparing
the returned status, text and
description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/index"
 $indexPage = Invoke-WebRequest -UseBasicParsing -Uri (New-Object
System.Uri -ArgumentList "$fullurl")
 $indexPage.Content.Contains("Welcome to Medical Point of sale
application") | should be $true
 $indexPage.StatusCode | should be 200
 $indexPage.StatusDescription | should be "OK"
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [434]

||||||||||||||||||||

it "invoking the request for index page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/index"
 $indexPage = Invoke-WebRequest -UseBasicParsing -Uri "$fullurl"
 $indexPage.Content.Contains("Welcome to Medical Point of sale
application") | should be $true
 $indexPage.StatusCode | should be 200
 $indexPage.StatusDescription | should be "OK"
}
it "invoking the request for Drug's create page of web application and
comparing the returned status, text and description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/Drugs/Create"
 $createDrug = Invoke-WebRequest -UseBasicParsing -Uri "$fullurl" -
Method Get
 $createDrug.Content.Contains("Create new Drug Master - DevOps with
Windows Server 2016 sample

application") | should be $true
 $createDrug.StatusCode | should be 200
 $createDrug.StatusDescription | should be "OK"
}
it "invoking the request for Drugs page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/Drugs"
 $drugs = Invoke-WebRequest -UseBasicParsing -Uri "$fullurl"
 $drugs.Content.Contains("List of Drugs - DevOps with Windows Server
2016 sample application") | should
 be $true
 $drugs.StatusCode | should be 200
 $drugs.StatusDescription | should be "OK"
}
it "invoking the request for Drug Inventory page of web application and
comparing the returned status, text and description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/DrugInventories"
 $drugInventory = Invoke-WebRequest -UseBasicParsing -Uri "$fullurl"

$drugInventory.Content.Contains("List of inventory - DevOps with
Windows Server 2016 sample

application") | should be $true
 $drugInventory.StatusCode | should be 200
 $drugInventory.StatusDescription | should be "OK"
}

||||||||||||||||||||

Configuration Management and Operational Validation

 [435]

Farkiantech.com
||||||||||||||||||||

it "invoking the request for sales page of web application and comparing
the returned status, text and description.." {
 $parturl = $($($lbip) + ":" + $($webappPort))
 $fullurl = "http://$parturl/newapp/Sales"
 $sales = Invoke-WebRequest -UseBasicParsing -Uri "$fullurl"
 $sales.Content.Contains("All sales.. - DevOps with Windows Server 2016
sample application") | should
 be $true
 $sales.StatusCode | should be 200
 $sales.StatusDescription | should be "OK"
 }
}

Unit and operational validation tests

Pester provides the Invoke-Pester PowerShell function in order to execute Pester test

cases. It accepts a single script file as well as a path to the folder containing multiple test

script files through the Script parameter:

Invoke-Pester -Script "$env:ProgramFiles\WindowsPowershell\Modules\Unit
Tests"

The preceding command executes all the test scripts while the following command executes

test cases only in a single script file:

Invoke-Pester -Script "$env:ProgramFiles\WindowsPowershell\Modules\Unit
Tests\ Availabilityset.Tests.ps1"

Operational validation tests can be executed similar to the way unit tests are executed using

Invoke-Pester. The operational validation module also provides a function Invoke-

OperationValidation to execute operational validation test cases. Invoke-

OperationValidation internally invokes the Invoke-Pester function in order to

execute the test cases. If no parameters are specified for this function, it searches all the

modules on the machine that adheres to the folder structure prescribed by the operational

validation module and executes the tests within them. It has an option to choose if only

simple or comprehensive tests are to be executed. By default, it executes both types of test

cases. Even the ModuleName parameter can be specified containing the test cases. When the

||||||||||||||||||||

Configuration Management and Operational Validation

 [436]

||||||||||||||||||||

ModuleName parameter is provided, this function will search only for this module to

execute the test cases.

The execution report of the operational validation module is different in format as

compared with the Pester report although it internally uses the Pester module. However the

Pester output can be included with the operational validation report.

The operational validation tests are executed directly using Invoke-Pester instead of

Invoke-OperationValidation in Chapter 10, Continuous Delivery and Deployment.

Summary

This is the concluding chapter on configuration management, and again a lot of miles were

covered in this chapter. This chapter covers the creation of a Pull Server, the configuration

deployed on the DSC Pull Server, the configuration of web application virtual machines

with a custom Docker image and container, dockerfile for defining a custom Docker

image, local configuration manager updates to pull DSC configuration from the Pull Server,

and modification of the connection string in web.config. After provisioning and configuring

the environment, the chapter explained unit and operational validation tests for them. It

provided information about various ways these tests can be executed using Pester and the

operational validation module. All the code shown in this chapter is accompanied with the

source code and can be used, changed, and extended. This chapter was primarily about

building the configuration management and artifacts related to Infrastructure as Code and

testing them in a continuous deployment and delivery process. The next chapter will be

about continuous integration, explaining concepts and building build pipelines. Stay tuned!

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

Continuous Integration9

Chapter 6, Source Code Control, provided detailed insight into the working of source code

configuration management. Chapter 7, Configuration Management and Chapter 8,

Configuration Management and Operational Validation, dealt with practices, principles, and

implementation of application and infrastructure configuration management with the help

of the Online Medicine sample application. The focus of this chapter is on another

important practice of DevOps, that is, continuous integration.

Continuous integration is one of the main pillars of DevOps, directly effecting the

application life cycle management of a project. This chapter will discuss continuous

integration in depth. It will focus on the necessity of continuous integration, some of its
important principles and implementation, and the configuration of Visual Studio Team

Services (VSTS) to automate continuous integration.

Continuous integration

Continuous integration refers to the process of generating final deployable code packages

because of changes in the source code. The goal of continuous integration is to keep the

source code in a state that is always ready for deployment. The process can run at

scheduled intervals, on demand, and whenever there is a change in the source code. The

process consists of multiple tasks, and each task is responsible for executing a functionality.

These functionalities include activities such as compiling code, unit testing, code coverage,

code quality, and so on. Code changes can induce bugs and break the functionality of the

application. Continuous integration ensures that code changes are compiled and tested

immediately. It also ensures that immediate feedback is provided to the team in the case of

failure. This can help teams take pro-active actions on fixing the issue. Continuous

integration is executed by means of a build pipeline.

||||||||||||||||||||

Continuous Integration

 [438]

||||||||||||||||||||

Why continuous integration?

Continuous integration brings in multiple advantages to the project implementing it. Every

project has a finite budget, resources, and time. Projects are executed within these

constraints. One of the goals of every enterprise is to optimize within these constraints, and

bring out quality software products and services while reducing risks. Continuous

integration helps in optimizing these constraints and streamlining the build and test process

using automation.

Continuous integration automates the build and test process through build pipelines.

There are many advantages of implementing continuous integration. Some of the major

advantages of continuous integration are mentioned here.

Fail fast and often

When a developer checks-in their code, the code is merged and integrated, and an

automated build pipeline is executed to validate the correctness of the code and its outputs.

If there is any bug, error, or issue, it is communicated to the developer in detail. The

developer can identify the issue, and fix and test it, ensuring that the build process is not

broken and the code meets the functional correctness of the solution at any given point of

time.

High confidence and cadence

Continuous integration ensures that the code in the repository branch can always be

compiled, tested, and ready for deployment to environments (including production). This

entire process is automated to bring standardization and consistency in its execution.

Stakeholders and the project management team will have a high level of confidence using

the code for deployment to production and other environments. Now, compare it with a

scenario where there is no continuous integration. Developers are free to check-in their code

at their own will, which can run into weeks. Infrequent integration of code often leads to

more code conflicts and regressions in other developers' code, which would be painful to

resolve.

||||||||||||||||||||

Continuous Integration

 [439]

Farkiantech.com
||||||||||||||||||||

Better collaboration

Continuous integration provides immediate feedback to the developers when they push

their code to the shared repository. The feedback is made available to all developers in the

team. The issue could be directly related to the code and feature belonging to the developer,

or it could induce issues in other developers' code and features. Developers interact and

communicate in real time to solve issues arising out of pushing the code change.

Reduction of technical debt

“Technical debt is a concept in programming that reflects the extra development work that
arises when code that is easy to implement in the short run is used instead of applying the
best overall solution. As a change is started on a codebase, there is often the need to make
other coordinated changes at the same time in other parts of the codebase or documentation.
The other required, but uncompleted changes are considered debt that must be paid at some
point in the future. Just like financial debt, these uncompleted changes keep incurring
interest, making it cumbersome to build a project.” -Wikipedia

When an automated build pipeline executes, it checks for issues arising out of compiling the

solution, executing units, integration, and other tests. This ensures that if there are issues

arising within the overall solution, it can be caught early and fixed rather than finding it

sometime in future. It would be more difficult to fix the issue in the future compared to

fixing it immediately.

Principles of Continuous Integration

Continuous integration is a mindset and guidance. It is based on certain principles, which

make it highly effective. It does not prescribe ways to implement itself. Continuous

integration does not talk of any individual tool, technology, or utility. It also does not

mention the tasks that should be part of any continuous integration. However, it mentions

that basic activities should be performed for effective continuous integration.

Automation

It is difficult to achieve continuous integration goals when implemented and executed

manually. Automation should be used for implementing continuous integration. There

||||||||||||||||||||

Continuous Integration

 [440]

||||||||||||||||||||

should be a source code repository for developers to collaborate on code, an automated

build pipeline that has the capability of executing both on demand as well as on triggers. It

should also have the capability to execute build pipelines on schedule. Furthermore, the

activities in build pipelines should have capabilities to compile the code, perform validation

by executing different multiple types of tests, such as unit and integration tests, generate

code drops, and provide a dynamic build name to uniquely identify it.

VSTS is a robust, feature-rich automation service for both build and release pipeline

management. It provides automation capabilities to define and author build pipelines as

well as execute, manage, report, and monitor build executions. VSTS was introduced in

Chapter 2, DevOps Tools and Technologies, of this book, where its capabilities and features

were demonstrated. Here are some of the capabilities of VSTS; it can:

 Define multiple build pipelines:

Variables to store commonly used data

Build activities or steps to define the pipeline

Build pipeline to move context and data across build activities and

steps

 Manage build pipeline definitions: Cloning

Saving into template

Editing definitions

Managing security for build definitions

Executing definitions

Be link to the source code repository branch

Trigger a build pipeline:

Manually

On schedule

Changes in repository branch

Generate unique build label and identifiers

Link with work items in the case of failure

Provide version control for build definitions

Execute build definitions on self-hosted servers as well as servers provided by

VSTS

Link with release management

||||||||||||||||||||

Continuous Integration

 [441]

Farkiantech.com
||||||||||||||||||||

Integrate with open source tools

These capacities provided by VSTS will be discussed later in this chapter in detail. There are

many more capabilities, and newer ones are getting added continuously on a regular basis.

There is also a market place hosting third-party extensions, easily consumable within build

pipelines. In fact, this chapter is accompanied with a sample build pipeline source code. The

code for the build definition was exported from VSTS using a third-party extension called

Export/Import Build Definition.

Single repository

Continuous integration yields better results with a single shared repository. If there are

multiple repositories, each would have its own build pipeline. There would not be any

outof-the-box native sharing and collaboration between these build pipelines. However, if

there is a single repository with build pipelines, there would be a single source to work

with and all builds can happen from here. It is possible to have multiple branches, each

having its own unique build pipeline or sharing a common pipeline. With a single

repository, reporting can be done easily without combining data from multiple repositories.

Fast execution

Continuous integration will be more effective if the build pipeline executed in response to

the code check can complete its execution faster. There should be immediate feedback to the

developers about the quality of the code checked-in and they should be informed about any

issues in the code. If the build pipeline takes hours or days to complete its activity, then the

entire purpose of continuous integration gets defeated. The activities within a build

pipeline should complete as soon as possible. If any activity within the build pipeline is

consuming considerable time, analysis and refactoring should be done to check whether a

subset can be moved to another pipeline. This differs from one project to another and

should be evaluated on a case-to-case basis.

Reporting

||||||||||||||||||||

Continuous Integration

 [442]

||||||||||||||||||||

Continuous integration should provide reports to its stakeholders. Centralized reporting

and feedback should be enabled and provided to developers and management regarding

the quality of code, execution of build pipelines, number of build failures and successes,

root cause of build failures, logs from build the execution, compilation reports, unit tests,

code coverage reports, and so on.

Security

Security plays a paramount role in continuous integration. The build pipeline accesses the

source code repository, executes its activities, and steps on a build server. The build server

should not be accessible to anyone apart from the build service account. The build

definition should encrypt its variables both at definition and during runtime. Permissions

in the build follow a hierarchical model. Defaults for all the permissions can be set at the

team project level and can be overridden on an individual build definition. You are advised

to

visit h t t p s ://w w w . v i s u a l s t u d i o . c o m /e n - u s /d o c s /b u i l d /c o n c e p t s /p o l i c i e s /p e r m i s s i

o n s #b u i l d - p e r m i s s i o n s to understand permissions in details.

Continuous integration process

Continuous integration is a practice based on principles. It provides guidance regarding

best practices and activities that should be performed and executed. However, it does not

mandate any tool, utility, product, or service. It also does not prescribe processes that

should be part of the build pipeline. It just says that there should be continuous integration

that starts a build pipeline automatically to verify the build aspects of the solution, the

quality of the solution by executing tests, and labels the execution with a unique name for

identification.

However, as a practice, there are certain aspects that are common across software

development and should be used across projects. In this chapter, we used those to

implement continuous integration for the sample application, OnlineMedicine. The

process of continuous integration is shown in the following image:

https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions
https://www.visualstudio.com/en-us/docs/build/concepts/policies/permissions#build-permissions

||||||||||||||||||||

Continuous Integration

 [443]

Farkiantech.com
||||||||||||||||||||

The continuous integration process can be broken down into nine high-level steps.

A developer checks-in or commits code into his local repository. A developer typically

works on his local repository. Once he commits his changes into the local repository, he

pushes his changes with the common shared repository used by all the developers.

Continuous integration is associated with the common shared repository. VSTS is the

platform used to implement continuous integration.

It monitors the repository for any new check-ins or commits. Once it sees that there is a new

commit, it starts a new execution of the build pipeline. The build pipeline itself is composed

of multiple steps, which we will discuss in detail later in this chapter. A new build label to

identify the build execution uniquely is generated.

||||||||||||||||||||

Continuous Integration

 [444]

||||||||||||||||||||

If the build execution is successful, a new build drop comprising build artifacts is created.

However, if the build fails, the developer is informed about the error. The developer can

rework on fixing the issue and restart the process of checking in into the local and then into

the central shared repository. This is a continuous process that happens every time there is

a change in code.

Types of continuous integration

There are three ways in which VSTS builds can be triggered. They are as follows:

Scheduled

Continuous integration (builds each check-in)

Gated builds

So far, we have been discussing the second way, which is continuous integration. Now, we

will discuss scheduled builds.

Scheduled builds

Scheduled builds refer to automatic build pipeline execution at a predetermined day and

time. Multiple schedules can be configured for the same build pipeline and can include

multiple branches from the same repository. Build pipelines are not dependent on the

developer's check-in. These types of build pipelines are generally used as nightly and

weekly builds during off-hours when no one is actively working on the shared common

repository. The configuration of the same in VSTS is shown here.

Figure 2: Scheduled build pipeline

||||||||||||||||||||

Continuous Integration

 [445]

Farkiantech.com
||||||||||||||||||||

In the preceding screenshot, a build has been scheduled to run at 3 a.m. on Monday,

Tuesday, Wednesday, Thursday, and Friday, and it includes the source code from the
master branch from the repository.

Continuous build

This executes a build pipeline whenever any developer checks in or commits code to the

repository branch. Here is a screenshot:

Batch changes in the preceding screenshot show an option used to sequence the execution

of build definitions. This option batches all changes from developers into a single trigger

and executes the build pipeline as soon as the previous build execution finishes. If this

option is not checked, a build will be triggered for each check-in made by the developers.

Gated builds

Gated builds take a pessimist view of the check-in done by the developer. They allow the

developer to check-in the code change into a repository only after the build is successful. If

the build fails, the check-in is rejected. Gated builds can be configured through branch

policies of a repository branch. This is not configured for the sample project.

Integration with source code configuration

management

||||||||||||||||||||

Continuous Integration

 [446]

||||||||||||||||||||

Build pipelines are generally integrated with source code repositories. In fact, integration

between the source code repository and the build pipelines is an important automation

aspect necessary for continuous integration to work seamlessly. The linking of a build

definition with a repository is shown in the following screenshot. In our sample

implementation, Git is chosen as the repository type. The user interface and options are
different, depending on the repository type chosen. Team Foundation Version Control

(TFVC) has different options compared to the ones shown in the screenshot. Other

repository types include GitHub, subversion, and external GitHub. After choosing a

repository type, a valid repository must be chosen. It is to be noted that multiple

repositories can coexist within a VSTS project. A repository can host multiple branches, and

an appropriate branch should be chosen to work along with build execution.

Label sources help in providing a unique label to the source code for identifying them after

the build is complete. On selection of either On successful build or On every build, the

label format text box appears. The label decides the naming convention for the source code

identifier. Modules, LFS, sync, and shallow fetch are Git-specific concepts that are beyond
the scope of this book. The Clean options removes untracked files and branches from the

repository.

Figure 4: Integration with source code repository branch

Integration with work item management

Build pipeline can be integrated with VSTS work item management. This helps in opening a

new bug or a work item when the build execution fails and assigning it to the requestor or

developer who initiated the build by pushing his code to the repository. This is shown in
the following screenshot. In this example, a Bug work item Type is created and assigned to

the requestor. There are additional fields holding name value pairs that can also be filled

while creating the work item:

||||||||||||||||||||

Continuous Integration

 [447]

Farkiantech.com
||||||||||||||||||||

Build definition

VSTS provides an intuitive user interface for defining and building build definitions. A

build definition comprises discrete individual steps and activities, and they together form

the build process. Each project and solution has its unique requirements of the build

process. Continuous integration does not provide any specification regarding what goes

into a build pipeline. Continuous integration states that for it to be effective, it should have

steps to ensure that the code can be compiled and its features and functionality can be

tested. A build process for our Online Medicine sample application is shown here. This

build pipeline comprises getting the latest version of code immediately after a developer

checks-in the code, compiling code and generating binaries, executing unit tests and code

coverage on the generated assembles, naming and versioning the build execution, and

finally dropping the build artifacts to a location from where the release pipeline can pick

and use them for provisioning the infrastructure and deploying the application. It is to be

noted that there is a general tendency of provisioning and configuring a test environment

and performing integration tests on it before finishing the execution of the build pipeline.

Even the sample build pipeline in context could have been implemented the same way.

However, they are purposefully moved to the release pipeline (discussed in the next

chapter) so that the build pipeline can be executed faster and provide feedback to the

developer faster. It is at your discretion to implement the provisioning of the test

environment and deploy the application in the build pipeline based on your project needs.

||||||||||||||||||||

Continuous Integration

 [448]

||||||||||||||||||||

Next, we will delve deeper in the configuration of the sample build pipeline for our Online

Medicine sample application.

Defining variables

Variables help define common data elements reused at multiple places within the build

definition. Also, changing its value can help update all the places it is used. Two variables,
Buildplatform and BuildConfiguration, are defined for the Online Medicine build

definition, and they are shown in the following screenshot. These variables are used while

configuring build activities. Variables are defined by providing a name and value to it.

The variable is referred by its name and has a default value. The default value can be

overridden when starting a new execution of the build definition. There is also a lock icon

against each variable. Selecting the lock icon will mask the value, and the value will not be

visible on the user interface:

Figure 6: Build pipeline for Online Medicine sample application

||||||||||||||||||||

Continuous Integration

 [449]

Farkiantech.com
||||||||||||||||||||

Build activities

This is a core and major part of the build definition where all the activities are defined and
configured. The build activities are available from the Build tab of the build definition. It is

these activities that are executed when a build pipeline is executed. These activities are

executed in sequence and are responsible for performing a single functionality. Every build

activity has four common properties as shown here:

Figure 8: Common properties of activities

The Enabled property determines whether the activity will participate when the build

definition is executed. This property becomes quite useful while building and testing the

build definition.

The Continue on error property determines whether the activity and build pipeline should

continue executing even if there are errors in executing this activity. The next activity will

execute even when the activity in context fails. This property should remain unchecked as a

best practice. If it is checked, it might provide unpredictable results during execution.

Figure 7: Online Medicine build definition variables

||||||||||||||||||||

Continuous Integration

 [450]

||||||||||||||||||||

The Always run property ensures that the activity in context is executed even if the build

fails.

The Timeout property determines the time lapse after which the activity will time out and

throw an error. The default value of 0 means there is no timeout, and the activity will wait

indefinitely for its completion.

The screenshot that follows shows the build activities for the Online Medicine build

definition. It comprises of seven discrete steps, which are explained here:

1. The NuGet installer activity is for downloading and installing dependent

binaries and executables.

2. The Visual Studio Build activity is for building and compiling the Online

Medicine sample application project.

3. The Visual Studio Build activity is for building and compiling the Online

Medicine unit tests project.

4. The Visual Studio Test activity is for executing unit tests on binaries generated

on step 2. This step also performs the code coverage aspect of the application life

cycle.

5. The Replace Tokens activity replaces the website name from

SetParameters.xml used during the release pipeline. Here, the tokens are

replaced and stored in the SetParameters.xml file.

6. The Archive Files activity is for generating the deployment.zip file needed

during the release management.

7. The Copy and Publish Build Artifacts the source code and build artifacts,

including the deployment.zip file, so that the release pipelines can pick them

for provisioning and configuration of both the environment and the application.

||||||||||||||||||||

Continuous Integration

 [451]

Farkiantech.com
||||||||||||||||||||

Figure 9: Online Medicine build definition

NuGet installer activity

The Online Medicine project is dependent on assemblies that are available through NuGet

packages. These packages might not be available on the build server, so it is a good practise

to add this activity before any build and test activity for installing dependencies.

||||||||||||||||||||

Continuous Integration

 [452]

||||||||||||||||||||

Figure 10: NuGet package install activity

In the preceding screenshot, the path to the solution file is provided in the Path to solution

or packages.config text box using wildcard characters. The **/*/.sln characters here mean

all solution files available in the current branch of the current repository. The Installation

type is Restore, and the rest of the configuration options are left with their default settings.

Visual Studio Build activity for the OnlinePharmacy

project

The Visual Studio Build activity helps in compiling the solution and its constituent projects.

The solution property can take the path to the solution file or project file. The path can use

wildcard characters to refer to multiple or exact matches. Since there are three projects in

||||||||||||||||||||

Continuous Integration

 [453]

Farkiantech.com
||||||||||||||||||||

the OnlinePharmacy solution and the OnlinePharmacy.Configuration project should

not be compiled, individual projects are used for compiling and building them. The

solution path refers to the OnlinePharmacy project file containing the ASP.NET MVC web

application.

Just to recall from the Chapter 7, Configuration Management, the web application binaries

were archived in a ZIP file. This ZIP file contains web application binaries in the form of

webdeploy packages. The command used to generate webdeploy packages within the
Deployment folder is shown here, and they are the arguments provided to the MSBuild

arguments. The webdeploy packages are generated and stored in the Deployment folder as

denoted by the PackageLocation parameter:

/p:Configuration=Release /p:DeployOnBuild=true /p:DeployTarget=Package
/p:PackageLocation="./Deployment";PublishProfile=Release

Setting up Clean to true is like rebuilding the entire source code, while setting it up to false

means an incremental build. It is set to be true, which will rebuild the entire project every

time the build pipeline executes. The build configuration for the OnlinePharmacy project

is shown here:

||||||||||||||||||||

Continuous Integration

 [454]

||||||||||||||||||||

Figure 11: Visual Studio Build activity to build Online Medicine web application

Visual Studio Build activity for the OnlinePharmacy test

project

This activity is similar to the previous Visual Studio Build activity for the OnlinePharmacy

project activity. However, in this step, instead of compiling the OnlinePharmacy project,

the OnlinePharmacy.Tests project file is compiled. This project is related to uniting

testing of the web application. The path of the project is provided to the solution property.

There are no MSBuild arguments, and the rest of the property is blank or has default values.

This is shown here:

Figure 12: Visual Studio Build activity to build Online Medicine unit tests project

The Visual Studio Test activity for OnlinePharmacy

project binaries

||||||||||||||||||||

Continuous Integration

 [455]

Farkiantech.com
||||||||||||||||||||

The Visual Studio Test activity, as shown in the following screenshot, is used to execute test

cases available by compiling the unit tests project. These tests are executed on assemblies
generated from compiling the OnlinePharmacy project. The Code Coverage Enabled

checkbox is enabled, denoting that code coverage will also be performed along with unit

tests. All other properties are either blank or with their default values. It is important to
note that Continue on error is not checked for this activity. It means that the build

execution will fail even when a single unit test fails:

Figure 13: Visual Studio Test activity for executing unit tests and code coverage

Replace Tokens activity for updating the web

application's name

The Online Medicine web application is packaged as a webdeploy package. The default

value of the website in the webdeploy package's Setparameter.xml file is default web

||||||||||||||||||||

Continuous Integration

 [456]

||||||||||||||||||||

application. However, the sample application is deployed in a web application named
MVCWebApp. MVCWebApp represents a web application with an Internet Information

Server (IIS). The idea behind Replace Tokens is to make the IIS website name dynamic,

which can be determined at runtime. In this case, it happens to be MVCWebApp and could

be anything depending on the name of the web application hosting the sample application.

The Replace Tokens activity helps in replacing the name of the web application from the

SetParameters.xml web deploy file to reflect the actual website that exists within the

sample application environment IIS installation. The following screenshot shows that the
SetParameters.xml file is represented as Target files within the deployment Root

directory. The SetParameters.xml file has tokenized data represented with the #{ prefix

and }# suffix. The rest of the configuration is either blank or default:

Figure 14: Replace token activity for replacing website name in webdeploy package

Archive Files activity for deployment.zip

The Archive Files activity helps in generating archive files. These files can have .zip, .7z,

.tar, and .wim as extensions. As shown in the following screenshot, the newly generated

Deployment folder by the Visual Studio build activity for the OnlinePharmacy project

||||||||||||||||||||

Continuous Integration

 [457]

Farkiantech.com
||||||||||||||||||||

activity containing the webdeploy package is used as the root folder to archive. The

archive type is the ZIP file. The output ZIP file is named as deployment.zip and would

replace the file, if it already exists:

Copy and Publish Build Artifacts activity

Finally, once the main web application project and unit test project are compiled and built

successfully, the unit tests and code coverage are executed on generated assemblies and

webdeploy packages are packaged into the archive file. It's time to drop the entire code

base along with the generated artifacts to a drop location. This is achieved using the Copy

and Publish Artifacts activity.

This activity accepts a source root folder; in this case, it is empty, as shown in the following

screenshot. An empty copy root means copy everything from the root folder recursively.
The Contents property is configured with wildcard characters. The name of the folder is

Figure 15: Archive activity to zip web deploy package

||||||||||||||||||||

Continuous Integration

 [458]

||||||||||||||||||||

Drop, which could be any string value in this case. All files within this Drop folder are

available and accessible to the release pipeline:

Build options

The Options tab provides the ability to configure different aspects of execution of the build

definition.

Generally, there is more than one project build configuration, that is, debug and release.

Also, there is more than a single target platform, that is, x86 and x64. The build pipeline can

be executed in various combinations of build configuration and target platforms. When

selected, it accepts comma-separated values. Since we are building for any CPU type with
only release build configuration, BuildPlatform and Buildconfiguration variables are

reused here to refer to any CPU and release configuration. These build definitions for such

combinations can run in parallel, depending on whether the parallel box is checked.

We have already discussed the configuration related to creating a work item when the build

execution fails, as shown in the following screenshot.

The sample build definition does not utilize the Allow Scripts to Access OAuth

Figure 16: Copy and Publish activity for code drop

||||||||||||||||||||

Continuous Integration

 [459]

Farkiantech.com
||||||||||||||||||||

Token configuration. This configuration should be selected if your scripts needs to access

the VSTS API using the build process OAuth token:

Figure 17: Options tab of build definition

Repository

The repository configuration for the sample build configuration is shown here. The details

of the repository were explained in the previous section of this chapter.

||||||||||||||||||||

Continuous Integration

 [460]

||||||||||||||||||||

Triggers

Triggers were discussed earlier in the previous section of this chapter. The configuration of

the Online Medicine build definition trigger for the Online Medicine sample application is

shown next. For our build definition, both continuous and scheduled builds have been

selected with the Master branch of our repository. Also, the scheduled build is supposed to

run every day at 3.00 a.m. UST apart from weekends.

The time represents project-specific attributes where none of the developers would be

working on the shared repository.

||||||||||||||||||||

Continuous Integration

 [461]

Farkiantech.com
||||||||||||||||||||

General, retention, and history

The General tab in the following screenshot helps in configuring general build pipeline

execution settings.

As we saw in Chapter 2, DevOps Tools and Technologies, the build pipelines can be executed

on VSTS-provided servers as well as on project-provided servers. There can be multiple

queues, each attached to different types of build servers. The Default agent queue helps in

configuring the default queue to use when executing the build pipeline. This setting can be

overridden when executing the build pipeline manually. In this case, we are using the
Hosted option, which executes the build pipeline on VSTS-provided servers.

Description allows is to enter a description for the build definition and it is visible in the

build status.

Figure 19: Triggers tab of build definition

||||||||||||||||||||

Continuous Integration

 [462]

||||||||||||||||||||

Build job authorization scope helps in defining and restricting access to a current project or

Project Collection.

Every build pipeline execution gets a build label. The format for this is determined by VSTS
when the Build number format is empty. The Build number format for the sample build

definition is defined using variables having the project name, build definition name, branch

name, the data of executing the pipeline, and the number of times the build has executed on

the current date.

The Build job timeout in minutes setting determines the time lapse in minutes before the

build fails.

If the status of build executions is required to be shown in external websites, the Badge

enabled option can be selected, which will provide a URL that can be consumed. The

format of the URL is like this:

https://desiredstate.visualstudio.com/_apis/public/build/definitions/576aa4ac-900c-417a-ae45-89abf7
cc26b4/10/badge

Figure 20: General tab of build definition

||||||||||||||||||||

Continuous Integration

 [463]

Farkiantech.com
||||||||||||||||||||

VSTS generates and stores a lot of data and information with every build. This includes

build labels, reports, symbols, and logs. Retention refers to policies containing rules. Each

rule defines the type of artifacts to be stored based on the number of days and number of

builds. Proper retention policy will ensure that there is no unnecessary storage requirement.

Rules are evaluated in order, from top to bottom. Rules are composed of a combination of

days to keep and a minimum number of builds to keep. More restrictive rules should be

placed above the more general purpose rules. For the sample build definition and project,

the defaults have been used for retention configuration, as shown here:

Figure 21: Retention tab of build definition

VSTS provides version control for build definitions as well. It means any changes,

modification, and updates to the build definition itself are recorded in VSTS, providing a

completely different history since the build definition was initially created. This is a very

useful feature as it allows for comparison of build definitions between multiple changes
and allows to reconcile the changes. The Diff button on the top menu helps in comparing

two versions of the same build definition after selecting them from the list. This is shown

here:

||||||||||||||||||||

Continuous Integration

 [464]

||||||||||||||||||||

Build pipeline execution

There are multiple places from where build definitions can be executed manually in VSTS.

In this section, a couple of different ways are explained for executing a build definition.

Build definitions can be executed using the context menu available against each build

definition, as show here:

Figure 22: History tab of build definition

||||||||||||||||||||

Continuous Integration

 [465]

Farkiantech.com
||||||||||||||||||||

If the build definition is in the edit mode, it can be executed by clicking on the Queue new

build button in the top-right corner of the screen, as shown here:

Figure 24: Another way to queue build definition

||||||||||||||||||||

Continuous Integration

 [466]

||||||||||||||||||||

The build progress can be viewed in the console window. This is shown in the following

screenshot. Here, the left pane shows the execution of all activities available in the build

definition that are in the enabled state. The right pane shows the log messages from

activities about their progress and status. Any message in red color denotes failure, while

green color means success:

Summary

This chapter introduced continuous integration, its importance, and benefits, and also

discussed in detail some of its important principles. Continuous integration is an evolution

from manual processes for building and testing to automated delivery of code and artifacts

to environments. It's a mechanism to tell developers about issues arising out of their code

and helps in detecting failures earlier than later. A discussion on continuous integration

cannot be complete without a discussion about build definitions and pipelines. Build

pipelines are automation in application life cycle management. VSTS is the platform used

for implementing continuous integration and build pipelines. Different types of build

||||||||||||||||||||

Continuous Integration

 [467]

Farkiantech.com
||||||||||||||||||||

definitions, such as continuous and scheduled builds, were discussed, along with their

integration to project work items and the source code repository.

Finally, the chapter explained the sample build definitions created for the Online Medicine

sample application, along with their configuration and individual steps. These build

activities are the main workhorse for getting the job of continuous integration done.

Subsequently, continuous integration should be followed by continuous deployment and

delivery. The next chapter will focus on continuous delivery and deployment, which uses

the concepts of release pipelines and configuration management shown in the previous

chapter.

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

10

Continuous Delivery and

Deployment

The previous chapters have discussed in detail the major practices related to DevOps. The

practices covered were configuration management and continuous integration. This chapter

will discuss at length the concepts, principles, importance, strategies, and implementation

related to continuous delivery and deployment. By the end of this chapter, we will have

discussed in detail all the major DevOps practices with examples of their implementation.

Both continuous delivery and deployment DevOps practices are quite often used

interchangeably, and the difference is not well understood by DevOps practitioners.

However, there is a subtle difference between them. Readers should understand their

differences and use them appropriately based on the context. The differences will become

clear as we progress in this chapter.

However, before getting into the details about continuous delivery and deployment, it is

important to understand the concept of release management and releases.

Understanding releases

In its simplest meaning, a release in software parlance means making software available to

the end users. When a release is made, software features and functionality are made

available to the end users for consumption. Releases are generally periodic in nature, and

they can be done at any time–daily, weekly, monthly, yearly, or any combination of these

depending on the nature of software, users, and value added into each release. A release

consists of newer and updated functionality, completely tested and deployed on a

||||||||||||||||||||

Continuous Delivery and Deployment

 [469]

Farkiantech.com
||||||||||||||||||||

production environment. Each release has a unique identifier through which it can be

referred. A release is generally done on a production environment, but it can also involve

deployment on multiple other environments such as test and staging. It depends on an

organization as to how it would like to define a release along with the approval

requirements. A release on any environment including a production environment involves

getting approvals from stakeholders. Because every release involves multiple changes and

bears the inherent risk of nonavailability and nonreliability of the application, every release

demands approval from appropriate stakeholders and owners of the environments. Based

on approvals, it is decided to release on environments. A release might consist of newer

features or updates to existing features, bug fixes, or general improvements. With the

majority of software getting developed using an agile application development life cycle,

with each consisting of a small subset of features and functionality, there is a need for

smaller, faster, and more frequent releases.

Release management

Release management refers to the process of managing releases. It involves planning,

scheduling, controlling, and monitoring the complete application life cycle of software and

ensuring that appropriate feedback is provided to stakeholders for effective decision

making on pushing the release to production. It also involves deployment and

configuration of both environments and applications. Multiple software changes are

grouped together and referred collectively as a release. Stakeholders plan and decide which

changes will be part of a release. They prioritize, schedule the release, and ensure that

changes go through the quality gates before they are used on production. An agile

application life cycle demands frequent releases, and release management ensures that

release can be planned and executed frequently without risk. The adoption of agile

practices without effective release management and frequent releases defeats the entire

purpose of being agile. Release management helps in realizing the benefits of agile

methodology. Release management is an integral component of both continuous delivery

and deployment.

Continuous delivery

Continuous delivery is a DevOps practice. It refers to adopting the practice of generating

quality application artifacts that are readily deployable in new or existing environments by

executing quality checks on both the code and functionality by ensuring that the application

||||||||||||||||||||

Continuous Delivery and Deployment

 [470]

||||||||||||||||||||

meets both technical and functional specifications. Continuous delivery also ensures that

the code in the main branch is always in a state that is readily deployable to any

environment including a production environment. It helps in achieving a state that makes

sure that the build and quality of software meets the specification and there are no surprises

or risks in it being used for deployment to a production environment. It can also be referred

as a state of readiness for the application code and configuration.

Application developers continually change code and to ensure that changes are acceptable

only when they meet the functional and technical specification, they are deployed to an

environment and successfully validated. If there are issues in build, deployment, and

configuration of the environment and software, immediate feedback is provided to

developers so that those issues can be fixed immediately.

Continuous deployment

Continuous deployment is a DevOps practice, and it refers to the practice of deployment of

software artifacts to a new or existing production environment after ensuring that the

application meets all the functional and technical requirements/specifications, deployed on

multiple environments with no major issues or bugs. The definition is very similar to

continuous delivery; however, an astute reader should have figured out that continuous

deployment refers to the deployment and configuration of the environment and software

on the production environment. Although continuous delivery is about being ready with

regard to the application and environment by deploying the application on multiple

environments, continuous deployment is about ensuring that the same artifacts are used for

the production environment. The beauty of continuous deployment can be appreciated

when a single change in the code is reflected on production after the changes undergo all

the quality checks, are deployed and configured multiple times on different new as well as

existing environments, executing automated code UI as well as performance tests, and

finally executing operational validation on the production environment to verify that the

application will act and behave as expected and end users are not surprised due to

nonavailability, non-reliability, and reduced performance of the application. Deployment to

production is dependent on approvals, and based on these approvals, releases are

performed on production.

Some companies do not want to deploy on a production environment using automatic

approvals. The stakeholders want to verify the release manually and ensure that

||||||||||||||||||||

Continuous Delivery and Deployment

 [471]

Farkiantech.com
||||||||||||||||||||

deployment to production will not break the application, whereas others might want

completely automated continuous deployment through automatic approvals. The decision

to use manual approval viz-a-viz automatic approval depends on the maturity of the

company, its people who are adopting DevOps practices, collaboration, technology

adoption and implementation, robustness, and the completeness of the application life

cycle. The stakeholders should have confidence that the application will continue to be

operational even after the release and that the release can be rolled back to a previous stable

release in case of an issue with the current release.

Why continuous delivery and deployment?

Software development is inherently a difficult exercise because it involves multiple

processes, practices, and people. Some of the prominent reasons to adopt continuous

delivery and deployment are mentioned next.

Detecting deployment issues early

As mentioned before, continuous delivery and deployment conduct frequent deployments

to multiple environments. When a developer checks in their code, an automated build

pipeline is executed, and after the build pipeline completes, deployment is conducted on a

test environment where functional and technical verification and validation is performed. If

there is any bug, error, or issue in deploying and configuring the environment and

application, immediate feedback is provided to the developer informing about the failure.

The developer can find the issue and fix it, thus ensuring that the release process does not

fail and, at the same time, meets the functional correctness of the solution.

Eliminating surprises and risks

Continuous delivery and deployment ensure that the code in the repository branch can

always be compiled, tested, and be ready for deployment to environments (including

production). This entire process is automated, which brings standardization and

consistency in the execution of the release pipeline. With such practices, surprises related to

||||||||||||||||||||

Continuous Delivery and Deployment

 [472]

||||||||||||||||||||

application and environment deployment and configuration on production can be reduced,

and the entire deployment process can be made risk-free.

Reducing cost of change

Cost of change refers to time and effort invested to see a change on production. It also

includes the time to resolve the issues arising due to releasing a change and bringing the

production environment to a valid stable state. Automated continuous delivery and

deployment eliminates or reduces manual tasks from the release process. This reduces both

time and effort for moving changes to production. It also reduces bugs and issues in

changes as both the code and its deployment process are verified on multiple environments

before getting used on the production environment.

Pushing frequent changes to production

Continuous delivery and deployment deploys code on the environment whenever new

packages are available from the continuous integration process. This ensures that code is

verified against the deployment process and configuration whenever there is change in

code. The resultant code is in a deployable state and can be pushed to production

environments. This in turn helps in frequent releases on production while reducing the

overall risks involved in a release.

Removing risky manual deployments

Manual environment provisioning and application deployment is a time-consuming,

unpredictable, inconsistent and risky activity. It is highly error-prone when executed

manually. The entire team is dependent on a couple of individuals being aware of

conducting manual deployments. The steps are generally missed when performed

manually, and the team gets into troubleshooting exercises. Sometimes, even the

deployment documentation is also missing or not sufficient. Continuous deployment and

delivery helps in complete automation of deployments on all environments.

Moving away from human dependency

It is better to write scripts and use them for deployment and configuration rather than

doing it manually. However, the documentation to use the scripts are equally important,

||||||||||||||||||||

Continuous Delivery and Deployment

 [473]

Farkiantech.com
||||||||||||||||||||

but they are generally missing. The scripts use different values for each environment and

most often they are known to only a few members of the team. If there are multiple scripts,

the complexity increases and the knowledge of ordering and sequencing becomes

important for anyone conducting deployment. Continuous deployment and delivery help

eliminate these issues using input values from configuration management tools and release

pipeline variables. They also use automated processes rather than sequencing scripts

manually. The entire release becomes process-dependent rather than human-dependent.

The principles of continuous deployment

Like continuous integration, continuous delivery and deployment is a culture, mindset, and

guidance. It is based on adopting principles, which makes releasing applications and their

life cycle efficient and effective. Some of the important principles are discussed next.

Automation as an enabler

It is difficult to achieve the benefits of continuous deployment and delivery when executed

manually. It is important that automation is used to achieve their intent. Efforts should be

made to automate every step and at the minimum should retrieve the artifacts generated by

the build pipeline, execute deployment activities on multiple environments, and allow for

the approval workflow before moving and deploying from one environment to another.

There should be an automated release pipeline that has the capability of execution both on

demand as well as based on triggers. It should also have the capability to execute release

pipelines on the schedule. Furthermore, the activities in the release pipeline should have

capabilities to deploy and configure both environments and the application. It should be

able to perform the validation of environments and the application by executing

operational validation tests. It should also provide feedback and deployment progress logs.

VSTS provides automation capabilities to define and author release pipelines/definitions as

well as execute, manage, report, and monitor release executions. VSTS has very rich

capabilities related to release management, including:

 Defining multiple release definitions/pipeline:

Variables for storing commonly used data

||||||||||||||||||||

Continuous Delivery and Deployment

 [474]

||||||||||||||||||||

Release and deployment activities or steps for defining the

pipeline Releasing the pipeline to move context and data across

release activities and steps

Defining multiple environments within each release definition

Each environment can have its own variables which not shared

with other environments

Each environment has its own approval and deployment

workflow

 Managing release pipeline definitions:

Cloning

Exporting a template

Editing definitions

Managing security for build definitions

Executing definitions

Linking to the artifacts repository

Executing the release pipeline

Manually

On schedule

Continuously because of changes in the code

Generating a unique release label and identifiers

The version control for release definitions

Ability to execute release definitions on self-hosted servers as well as servers

provided by VSTS

These are some of the rich capabilities provided by VSTS, and we will discuss them in detail

later in this chapter. VSTS has many more automation capabilities, and they are getting

continuously added on a regular basis. There is also a market place providing third-party

activities that can be used within release pipelines.

Infrastructure as Code

While automation helps in bringing consistency and predictability, Infrastructure as Code

helps in authoring declarative testable infrastructure scripts that are version controlled and

these scripts are under the same application life cycle management process as the one that

the application deploys. The scripts should execute unit and operational validation tests on

||||||||||||||||||||

Continuous Delivery and Deployment

 [475]

Farkiantech.com
||||||||||||||||||||

the environment after the provisioning. This principle mandates that scripts and

infrastructure configuration should be built and tested just like regular applications. It helps

in increasing repeatability and testability of the environment.

Shortened execution time

Continuous deployment and delivery will be more highly effective if the release pipeline

can complete its execution faster. This would decrease the deployment and provision time

and provide immediate feedback to the developers about the quality of deployments. If the

release pipeline takes hours or days to complete its process, then the entire purpose of

continuous deployment and delivery gets defeated.

Reporting

Centralized reporting and feedback should be enabled and provided to both developers

and management regarding the quality of the code, the execution of release pipelines, the

number of release failures and successes, the root cause of release failures, and the logs

from the release execution.

Secure deployments

Security plays an important role in continuous deployment and delivery. The release

pipeline accesses the repository and executes its activities on a release server. The release

server should not be accessible to anyone apart from the release service account. Every

piece of data, credentials, and secrets should be encrypted. They should not be visible

during both the design as well as runtime. The secrets should not even be visible in release

logs. Appropriate policies, locks, and the compliance process should be enabled for secure

deployments.

Continuous deployment process

Continuous deployment and delivery provides guidance about best practices and activities

that should be executed in a typical release pipeline. However, it does not mandate any

tool, utility, product, or service. It also does not provide any definite process that should be

||||||||||||||||||||

Continuous Delivery and Deployment

 [476]

||||||||||||||||||||

part of the release pipeline. It just says that there should be continuous deployment that

should execute release pipeline because of the availability of newer packages.

However, as a practice, there are certain processes that are common across software

development and should be used in almost every project. In this chapter, we used those to

implement continuous deployment for the Online Medicine sample application. The process

of continuous deployment is shown in Figure 1:

The continuous deployment process in Figure 1 is broken down in to 12 high-level steps.

The sample continuous deployment process uses Azure as its target deployment platform.

A developer checks in or commits code into the repository. VSTS is the platform used for

continuous deployment. It monitors the repository for any changes, executes the build

pipeline, and generates build packages.

||||||||||||||||||||

Continuous Delivery and Deployment

 [477]

Farkiantech.com
||||||||||||||||||||

The release pipeline monitors the availability of new packages and starts executing the

release pipeline associated with it. The release pipeline creates multiple environments for

deployment. This includes executing scripts for uploading scripts and templates to Azure

storage. Uploading scripts and template to storage helps with an easy distribution of scripts

to virtual machines.

As part of the test environment, a test environment is provisioned and configured, an

application is deployed and configured, and test activities are performed on application

features and functionality. At the end, tests are executed on test environment to ensure that

it is working as expected.

After ensuring that the deployment was satisfactory on the test environment, approvals are

sought either automatically or manually to deploy into the next environment. The next

environment could be any environment such as the staging environment, or it could be the

production environment. No matter what environment it is, the steps remain the same as

those executed for the test environment. Once they pass on this environment, the next

environment is used for deployment. This process continues till the deployment happens

on the production environment.

After deployment to production, operational validation tests are executed on production to

ensure that application is working as desired and as expected. Based on the results of the

operational validation, management and stakeholders can decide if they would like to

accept the release or would roll back the same.

Continuous delivery process

Continuous delivery and continuous deployment go hand in hand together. Continuous

delivery process is similar to that of continuous deployment; however, with the difference

that it stops at deploying on an environment on which validation can be performed for both

environment and application. It is conducted more from code and environment validation

perspective rather than actual deployment on production. This is shown in Figure 2.

||||||||||||||||||||

Continuous Delivery and Deployment

 [478]

||||||||||||||||||||

Alternate strategies

In this book, the samples looked at an approach with a custom Pull Server deployed on a

virtual machine, building a Docker image on all the environments with a dockerfile

containing many instructions. This is one of the approaches for configuration management

and continuous deployment. However, there are other approaches, and they should be

evaluated before finalizing the strategy for configuration management and continuous

deployment. In this section, we will discuss other alternate strategies that can be employed.

Using Azure automation for DSC Pull Server

Instead of creating a IaaS-based custom Pull Server on virtual machines, another strategy

could be to use the Azure automation-provided PaaS DSC Pull Server. Although using the

IaaS approach will provide more control over the Pull Server environment, the PaaS

approach involves less maintenance and overheads. Some of the features might not be

available as of the time of writing; however, they will be released in due course.

Using Docker hub/Docker registry

||||||||||||||||||||

Continuous Delivery and Deployment

 [479]

Farkiantech.com
||||||||||||||||||||

Instead of building Docker images for all the environments, an alternate approach could be

to build the image once, execute all the tests on it, and after satisfactory results, upload the

image to a private or public repository. All the environments that are part of the release

pipeline can download the image to create containers instead of creating images from

scratch. The advantage of using registries is that they can quicken the entire release process

because they no longer need to build Docker images at runtime, while creating images at

runtime for all the environments will ensure that all edge cases are well taken care off.

Using Docker compose

At the time of writing this book, Docker compose on Windows was at a nascent stage.

Docker compose is a great tool for creating Docker images and containers as a solution

through a single configuration file. An alternate approach to build images and containers is

to use Docker compose instead of creating them directly on all the virtual machines.

Using Docker management tools such as Swarm

or Kubernetes

At the time of writing this book, Swarm and Kubernetes on Windows were also at a nascent

stage. These are great management tools providing features such as orchestration,

scalability, deployment, and general management for Docker containers. These tools can be

used to manage containers in different environments.

Types of releases

There are two ways in which VSTS can be configured to execute releases:

Scheduled release

Continuous deployment

We have been discussing continuous deployment in this chapter, and the next section talks

about scheduled releases.

||||||||||||||||||||

Continuous Delivery and Deployment

 [480]

||||||||||||||||||||

Scheduled releases

A scheduled release refers to automatic release pipeline execution at a predetermined

schedule. Multiple schedules can be configured for each release pipeline and can include

multiple source repositories. The release pipeline will execute at a given schedule and is not

dependent on changes done to the code in the repository. These types of release pipelines

are generally used on weekends during off-hours when generally there is no activity on the

repository. The scheduling of a release is shown in Figure 3.

In Figure 3, a release has been scheduled to run at 3 a.m. on Monday, Tuesday, Wednesday,

Thursday, and Friday.

Continuous deployment

Continuous deployment refers to the execution of release pipeline as and when a new

version of the packages is available from a build pipeline. This is shown in Figure 4.

||||||||||||||||||||

Continuous Delivery and Deployment

 [481]

Farkiantech.com
||||||||||||||||||||

Continuous deployment can also be triggered on the availability of different packages

available from different sources arising out of multiple build pipelines.

Azure Resource Manager service endpoint

Before we get into discussing the release pipeline and definitions, it is important to

understand VSTS service endpoints. Release and build pipelines by themselves are just

repeatable workflows that execute one activity after another in sequence. They at times

connect to external system and environments to perform their activities. In fact, most of the

deploy tasks in VSTS are dependent on external environments. It could be related to

conducting deployments on Azure Cloud, on-premise environments, or a combination of

both. VSTS provides the facility of defining service endpoints centrally for a project, which

can then be reused across all tasks in every build and release definition.

Since the Online Medicine sample application is completely deployed on Azure, VSTS

release agents need to connect to Azure to provision, configure, and deploy environments

and applications on it. VSTS provides the ability to connect to multiple types of external

systems and environments. This is shown in Figure 5.

||||||||||||||||||||

Continuous Delivery and Deployment

 [482]

||||||||||||||||||||

Figure 5: VSTS service endpoint types

This book uses Azure Resource Manager (ARM) for its cloud deployments. Clicking on the

Azure Resource Manager menu item provides options to configure the ARM connection

and endpoint. Figure 6 shows a new ARM endpoint used within the sample release
definition. ARM Connection is the name of the endpoint and is referred to in the release

and build definition with this name. Information needed to connect to the Azure tenant is
provided including the Subscription ID, Subscription Name, Tenant ID, application/client

ID, and application key. The keys have been masked for security reasons; however, the

||||||||||||||||||||

Continuous Delivery and Deployment

 [483]

Farkiantech.com
||||||||||||||||||||

reader should refer to Chapter 7, Configuration Management, to get details about how to get

this information using PowerShell.

Figure 6: Azure Resource Manager service endpoint

Release pipeline definition

VSTS provides a very intuitive user interface to define and build the release pipeline

definition. The release definition comprises multiple discrete environments. Each

environment block generally represents deployment to an environment. Examples of

environments include test environments, staging environments, production environments,

or any other environment. Each environment consists of multiple tasks that execute one

after another as part of the overall deployment process. The transition from one

environment to another is based on the approval workflow. Every project and solution has

its unique requirements about its release process. Continuous deployment does not provide

any specification regarding elements that should go into a release pipeline. Continuous

deployment states that for it to be effective, it should have tasks that ensure that

deployments are conducted and tested in an automated fashion.

||||||||||||||||||||

Continuous Delivery and Deployment

 [484]

||||||||||||||||||||

A sample release process for our sample Online Medicine application is shown in Figure 7.

This release pipeline comprises two environments representing the actual test and

production environment. There is an additional environment preparation that does not

conduct deployment but prepares the overall availability of scripts and templates at the

Azure storage account. There could be many more environments in a release pipeline.

Each release definition is at least connected to an artifacts source. Every environment within

the release definition starts by downloading the artifacts on the release server. This happens

because each environment in effect can be executed on a separate release server. The

preparation environment starts with getting the latest artifacts from a repository and

uploads them to the Azure Blob storage. The artifacts consist of deployment scripts,

templates, and DSC configurations. It also contains the webdeploy package built during the

build pipeline. These artifacts are uploaded to the Azure storage so that any environment

can download and use for its deployment. The preparation environment is configured to

execute automatically whenever new artifacts are available. After the execution of the

preparation environment, there is autoapproval to move to the execution of the next

environment. This approval could potentially be configured to be manually approved.

After the preparation environment, the execution of the test environment is initiated. This

environment is responsible for deployment to test the environment consisting of the

provisioning and configuring environment on Azure, deploying the application within the

Azure virtual machine Docker containers, and executing unit and operational tests to verify

that the solution is behaving as expected.

There could have been more activities such as functional tests and coded UI tests within the

test environment. These are not covered in this book because a few tasks are enough to

understand release pipelines; however, readers should configure their pipelines with such

tasks. After the successful execution of the test environment, there is autoapproval to move

to the execution of the next environment, which happens to be the production environment

in our case.

The production environment is exactly like the test environment. It has the same set of

activities and executes the same scripts and templates. The only difference is that different

parameters are used for the production environment compared to the test environment.

Once the operational validation tests are positive, the stakeholders can decide to go live

with the changes on production.

It is to be noted that there could have been many more environments in between the test

and production environments; however, that depends on the project needs.

||||||||||||||||||||

Continuous Delivery and Deployment

 [485]

Farkiantech.com
||||||||||||||||||||

Next, we will delve deeper into the configuration of the sample release pipeline for our

Online Medicine sample application.

Variables configuration

Variables help define common data elements reused at multiple places within the release

definition. Also, changing their values at one place can help update at all other places they

are used. Four variables, StorageAccountName, ContainerName, resourceGroupName,

and StorageSAS, are defined in Online Medicine release definition, and these are shown in

Figure 8. StorageAccountName and ContainerName holds the name of the storage account

and container storing the scripts and templates. resourceGroupName refers to the resource

group holding common resources such as Operational Management Workspace, Azure

Key Vault, and the storage account. Access to the storage account container is limited to

users holding the Secure Access Signature (SAS) token. The storage SAS variable holds the

value of the SAS token used to connect to the Azure storage account. These are global

variables and can be used in any release task in any environment. Variables are defined by

providing a name and a value. They are referred by their name and have a default value.

There is also a lock icon against each variable. Selecting the lock icon will mask the value,

and the value will not be visible on the user interface.

||||||||||||||||||||

Continuous Delivery and Deployment

 [486]

||||||||||||||||||||

Figure 8: Online Medicine release definition global variables

Artifacts configuration

The artifacts configuration for a release definition allows it to be associated with multiple

build pipelines. The artifacts configuration for the sample release definition is shown in

Figure 9.

Release definitions and, in turn, environment definitions need artifacts that they can use to

deploy on environments. Release definitions do not have access to the source code

repository as build definitions do. Release definitions rely on the build definitions ability to

generate packages based on the current snapshot of the source code repository. These

artifacts are the source of truth for release definitions. As mentioned before, the artifacts are

downloaded for every environment definition because of the simple fact that each

environment definition can potentially run in a different release server.

The release definition should link itself to an appropriate build definition.

||||||||||||||||||||

Continuous Delivery and Deployment

 [487]

Farkiantech.com
||||||||||||||||||||

Figure 9: Artifacts tab of build definition

The artifacts can be sourced from multiple places. They can be sourced from packages

generated during the VSTS build execution, directly from the VSTS Git or TFVC repository,

packages generated by the Jenkins build execution, or from GitHub as code repository.

The Type field accepts build, GitHub, Git, TFVC, and Jenkins as artifact source.

The Project field denotes the VSTS project, and the Source (Build definition) field refers to

the build definition name. Source alias is just another name to refer to an artifacts source.

Triggers configuration

Release triggers were discussed earlier in this chapter. There is another section,
Environment triggers, within the Triggers section that was not discussed earlier. After a

||||||||||||||||||||

Continuous Delivery and Deployment

 [488]

||||||||||||||||||||

release is triggered, VSTS needs to identify a way to invoke the environment definition.

Each environment can decide its own policy of getting triggered. Figure 10 shows the
configuration of Environment triggers for a sample release definition.

The preparation environment is configured to start automatically after a release is created.

The test environment is configured to be executed automatically after the successful

deployment of the previous preparation environment, and the production environment is

configured to be executed automatically after the successful deployment to the test

environment. These are also called deployment conditions and further explained in the

environment section of this chapter.

General, retention, and history

The General tab in Figure 11 helps to configure the pattern for release names. Every release

execution gets a release name, the format of which is determined by VSTS using the Release

name format field. The Release name format for a sample release definition is defined

using VSTS provided out-of-the-box release variables, such as the project name, release

definition name, release ID, date of execution, and number of times the build has executed

on any day. The build name format is shown here for reference:

$(System.TeamProject)_$(Release.DefinitionName)_$(Release.ReleaseId)_$(Date:yyyyM

Mdd)$(Rev:.r)

Figure 10: Triggers tab of build definition

||||||||||||||||||||

Continuous Delivery and Deployment

 [489]

Farkiantech.com
||||||||||||||||||||

VSTS generates and stores a lot of data and information with every release and

environment execution. These includes release labels, reports, symbols, and more. Each

environment has its own retention policy and can decide the number of days and number

of release executions to store. Proper retention policy will ensure that there is no

unnecessary usage of storage space on the project account. For the sample release definition

and project, the defaults have been used for retention configuration as shown in Figure 12.

||||||||||||||||||||

Continuous Delivery and Deployment

 [490]

||||||||||||||||||||

VSTS provides version control for release definitions as well. It means any changes,

modification, and updates to the release definition will be recorded in VSTS, providing a

complete history of all changes since the release definition is created. This is a very useful

feature as it allows the comparison of release definitions between multiple changes over
time and allows for reconciliation of the changes. The Diff button on the top menu helps in

comparing two versions of the same release definition after selecting them in the list. This is

shown in Figure 13.

Figure 13: History tab of build definition

||||||||||||||||||||

Continuous Delivery and Deployment

 [491]

Farkiantech.com
||||||||||||||||||||

Release environments

This is a core and major part of the release definition, comprising of multiple environments.

The release definition can be viewed as a container with metadata and hosts multiple

environment definitions. The metadata includes global variable declarations, linking of

artifacts, and release management-related activities such as starting a release, and defining

release names. They affect the overall working of a release definition and they are available

to every environment. The environments are free to override or use the default values of

variables. Each environment definition consists of multiple tasks. It is these tasks that are

executed when a release pipeline is executed. These tasks are executed in sequence, and

each task is responsible for performing a single function. When a release is created from a

release definition, it is responsible for orchestrating the execution of each environment

depending on its configuration.

It is to be noted that VSTS allows the same tasks to be used in build as well as release

definitions. An activity can be placed within a build definition as well as in a release

definition. We have already witnessed the common properties of every task in the previous

chapter while we discussed build definitions.

It is important to note that in continuous deployment configuration, a new release is created

with the availability of new artifacts. The new release, in turn, executes the environments

based on their deployment condition configuration. The details about deployment

condition configuration are discussed in depth while discussing individual environments

later.

Figure 14 shows the release definition for the Online Medicine application. It comprises three

discrete environments:

Preparation environment to upload scripts, templates, and packages to the

Azure

Blob storage

Test environment for deployment to the test environment

Production environment for deployment to production

||||||||||||||||||||

Continuous Delivery and Deployment

 [492]

||||||||||||||||||||

Let's dig deeper into each of these environment configurations and the tasks comprising

them.

Preparation environment

Preparation environment is not a deployment environment like other environments. Its sole

responsibility is to upload webdeploy packages, PowerShell scripts, DSC configuration,

SQL scripts, and Docker templates to the Azure Blob storage. This activity could have also

been executed in a build pipeline instead of a release pipeline. The objective of putting this

activity in the release definition was to ensure that the build pipeline remains as lean as

possible and is able to provide feedback to developers immediately. If readers feel that

these should be part of the build definition, they are free to include them, and in doing so,

they will not violate any build best practices. Moreover, uploading of the files was kept in a

separate environment definition configured to execute as the first environment to ensure

that other environments dependent on these files can download them from a centralized

||||||||||||||||||||

Continuous Delivery and Deployment

 [493]

Farkiantech.com
||||||||||||||||||||

location. Another reason to put this activity in the release pipeline was because the

execution of the release pipeline is less frequent compared with the build pipeline.

Figure 15 shows the tasks that comprise the preparation environment. It comprises of two

activities. Again, the uploading of scripts and templates could have been done through a

single activity; however, to demonstrate the usage of multiple activities, the upload of files

to the Azure Blob storage has been divided into two steps.

This environment does not declare environment-specific variables, and its deployment

condition is configured to execute automatically on the creation of a new release. This

environment uses global variables declared at the release level. The approval for both

preand post-deployment is also set to automatic for this task. Clicking on the ellipse button

against each environment opens the configuration for that environment. The configuration

for the preparation environment is shown in Figure 16.

||||||||||||||||||||

Continuous Delivery and Deployment

 [494]

||||||||||||||||||||

The details of each task in the preparation environment is discussed next.

Azure file copy task
This task is responsible for uploading the webdeploy package to the Azure storage account.

If you recount, in Chapter 9, Continuous Integration, the build pipeline generated the

webdeploy package while compiling the Online Medicine project and named it as

Deployment.zip.

In Figure 17, the Source path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy/Deployme

nt.zip.

||||||||||||||||||||

Continuous Delivery and Deployment

 [495]

Farkiantech.com
||||||||||||||||||||

Azure Connection Type is configured with Azure Resource Manager because all the

examples in this book uses Azure Resource Manager as the preferred choice.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Destination Type is Azure Blob.

RM Storage Account is configured with the variable, $(StorageAccountName). This syntax

represents usage of variables. If you recollect, this variable was defined as the global release

variable.

Container Name is configured as $(ContainerName) and Storage Container SAS Token is

configured with the $(StorageSAS) variable.

Azure PowerShell
Although Azure file copy is specifically designed to copy files to the Azure storage account,

there is a more generic activity named Azure PowerShell. It can perform any activity on

||||||||||||||||||||

Continuous Delivery and Deployment

 [496]

||||||||||||||||||||

Azure that is possible using Azure SDK and PowerShell. This task is responsible to the

Azure Blob storage for the following:

Copy PullServer.ps1 PowerShell script

Copy IISInstall.ps1 PowerShell script

Copy ContainConfig.ps1 PowerShell script

Copy ChangeConnectionString.ps1 PowerShell script

Copy lcm.ps1 PowerShell script

Copy dockerfile Docker template

Copy OnlinePharmacy.sql SQL script

In Figure 18, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/UploadScriptFiles.ps1.

Script Arguments is configured as -sqlFilePath

“$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy/OnlinePh

armacy.sql” -scriptsFilePath

“$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configura

tion” -containerName $(ContainerName) -resourceGroupName $(resourceGroupName)

storageAccountName $(StorageAccountName).

||||||||||||||||||||

Continuous Delivery and Deployment

 [497]

Farkiantech.com
||||||||||||||||||||

Figure 18: Azure PowerShell to copy files to Azure Blob storage

Test environment

The test environment is the first environment that conducts an actual deployment. It reuses

and executes the scripts and templates uploaded to the Azure Blob storage and so is

dependent on the preparation environment. It conducts deployment by executing a series of

activities in its pipeline. The environment definitions are used as an orchestrator whose

primary responsibility is to invoke scripts. The scripts have the bulk of logic implemented

for provisioning, configuration, and testing of both the environment and application. The

environment definition provides the execution model and ensures that tasks are executed

one after another and provides feedback through audits and logs.

This environment declares environment-specific variables. They include the

ResourceGroupName, OMSWorkspaceName, skuName, deployLocation, and regKey.

The preparation environment uploads the scripts in a storage account in a resource group

that can be accessed by any deployment. The deployments execute in separate resource

groups and reuse the scripts from the common storage account. Each environment creates

its own resource group so that all deployments related to the test environment happens in

that resource group.

The OMS workspace is needed to install agents on virtual machines and connect them to

itself. The operational management suite was created in the chapter related to configuration

||||||||||||||||||||

Continuous Delivery and Deployment

 [498]

||||||||||||||||||||

management, and the agents were provisioned in virtual machines using ARM templates.

In the next chapter, we will see how to configure the OMS workspace.

Every deployment in Azure should be uniquely named for easier identification There are

resources in Azure that should be named uniquely across the Internet. This includes

resources such as the storage account name and DNS names for IP addresses. The
skuName acts a qualifier and is added to every resource to uniquely name them. For the

test environment, the value for skuName is test, while for the production environment, it is

prod. Readers are free to provide any name for this variable.

deployLocation denotes the location where the Azure resource group, and its related

resources are provisioned. This makes the templates and scripts generic and can be

provisioned on any location provided as a value to this variable.

regKey refers to the registration key of the Desired State Configuration. In general, this key

should be static. Both the DSC Pull Server and its node should have this shared key with

them to identify each other.

The deployment condition is configured to execute automatically on the successful

completion of the preparation environment. The approval for both pre- and

postdeployment is also set to automatic for this task. The configuration for the test

environment is shown in Figure 19.

||||||||||||||||||||

Continuous Delivery and Deployment

 [499]

Farkiantech.com
||||||||||||||||||||

Figure 19: Test environment configuration

The details of the test environment definition are discussed next and shown in Figure 20.

||||||||||||||||||||

Continuous Delivery and Deployment

 [500]

||||||||||||||||||||

Azure PowerShell – test ARM template deployment
This task is responsible for creating a new Azure resource group and testing the template

for its validity. The OnlineMedicine.json template is passed as a parameter to this script

for the TemplatePath variable. It executes a script Test-ARMTemplate.ps1 that in turn

uses New-AzureRmResourceGroup cmdlet to create a new resource group based on

parameters passed for the resource group name and deploy location and Test-

AzureRMResourceGroupDeployment to test the templates. The template and its parameter

file paths are sent as argument to this script. It also passes the sku name and OMS

workspace name as arguments.

In Figure 21, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

||||||||||||||||||||

Continuous Delivery and Deployment

 [501]

Farkiantech.com
||||||||||||||||||||

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/Test-ARMTemplate.ps1.

Script Arguments is configured as -ARMTemplatePath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.json -ARMTemplateParametersPath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.parameters.json -resourceGroupName

$(ResourceGroupName) -OMSWorkspaceName $(OMSWorkspaceName)

deployLocation $(deployLocation) -pullserverRegKey $(regKey).

Figure 21: Creating resource group and testing deployment

Azure PowerShell – deploy test environment
This task is responsible for new deployment within previously created resource groups
using the Azure Resource Manager template and its parameter file. It also provides values

for skuName, OMSWorkspaceName, DSC Pull Server registration key values while

executing the script New-Templatedeployment.ps1, that in turn uses the

NewAzureRmResourceGroupDeployment cmdlet to create a new resource group with the

provided parameters.

||||||||||||||||||||

Continuous Delivery and Deployment

 [502]

||||||||||||||||||||

In Figure 22, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/New-TemplateDeployment.ps1.

Script Arguments is configured as -ARMTemplatePath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.json -ARMTemplateParametersPath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.parameters.json -resourceGroupName

$(ResourceGroupName) -OMSWorkspaceName $(OMSWorkspaceName) -skuName

$(skuName) -deploymentName $(RELEASE.RELEASENAME) -deployLocation

$(deployLocation) -pullserverRegKey $(regKey).

Figure 22: Deploy test environment

PowerShell – prepare Pester environment
The release pipeline is configured to run on hosted release servers. Every time a release

runs, it will potentially run on a new server. This activity is responsible for preparing the

release server by installing it with dependencies, specifically Pester binaries and operational

validation modules. This is a PowerShell activity that invokes the

PreparePesterEnvironment.ps1 PowerShell script. In this script, Nuget and

Chocolatey are added as the package source and provider. They install Pester and the

||||||||||||||||||||

Continuous Delivery and Deployment

 [503]

Farkiantech.com
||||||||||||||||||||

operation validation module needed for the execution of Pester unit test cases and

operational validation scripts.

In Figure 23, Type is configured with File Path.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/PreparePesterEnvironment.ps1.

Figure 23: Preparing Pester environment

Copy files – copy operational validation module
This task copies the operational validation module from the artifacts source to the release

server so that it can be executed from there. This is an optional activity used in the

environment definition for the purpose of demonstration. Pester is capable of executing

both Pester and operational validation test cases. Instead of using the operational validation

module, Pester is used to execute both the test types. It is difficult to send parameters to the

operations validation module, so for an example in this book, we are sending parameters to

the test cases. It is for this reason that Pester is chosen over the operations validation

module for running the tests. The configuration copies the OnlineMedicine and all its

subfiles and folders to the Modules folder on release server.

In Figure 24, Source Folder path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Tests/OperationalValidation/OnlineMedicine.

Contents is configured with **.

Target Folder is configured as

||||||||||||||||||||

Continuous Delivery and Deployment

 [504]

||||||||||||||||||||

$(USERPROFILE)\Documents\WindowsPowerShell\Modules.

Figure 24: Copy operational validation test case module

Azure PowerShell – execute Pester and operational validation tests
This task is responsible for executing Pester and operational validation tests by executing

the Execute-Pester.ps1 PowerShell script. The script uses Invoke-Pester to execute

Pester as well as operational validation test cases.

In Figure 25, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/Execute-Pester.ps1.

Script Arguments is configured as -testScriptPath

“$(System.DefaultWorkingDirectory)\OnlineMedicine\Drop\OnlinePharmacy.Configura

tion\Tests\UnitTests” -releaseName “$(RELEASE.RELEASENAME)” resourceGroupName

“$(ResourceGroupName)” -operationTestsPath

“$(System.DefaultWorkingDirectory)\OnlineMedicine\Drop\OnlinePharmacy.Configura

tion\Tests\OperationalValidation\OnlineMedicine\Diagnostics\Comprehensive”.

||||||||||||||||||||

Continuous Delivery and Deployment

 [505]

Farkiantech.com
||||||||||||||||||||

Figure 25: Execute Pester and operational validation test cases

Production environment

This environment is similar to the test environment. However, it is configured to execute

after the successful deployment of the test environment and automatic approval. It declares

the same variables as the test environment; however, the values are different compared

with the test environment. It reuses and executes the scripts and templates uploaded to the

Azure Blob storage and so is dependent on the preparation environment to be executed

first. The approval for both pre- and post-deployment is also set automatic for this task. The

configuration for the production environment is shown in Figure 26.

||||||||||||||||||||

Continuous Delivery and Deployment

 [506]

||||||||||||||||||||

Figure 26: Production environment configuration

The details of the production environment definition are discussed next and shown in

Figure 27.

||||||||||||||||||||

Continuous Delivery and Deployment

 [507]

Farkiantech.com
||||||||||||||||||||

Azure PowerShell – test ARM template deployment
This task is responsible for creating a new Azure resource group and testing the template

for its validity. It uses the same template, OnlineMedicine.json, even for deployment to

the production environment. It executes the same script, Test-ARMTemplate, as the test

environment with different parameters.

In Figure 28, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

||||||||||||||||||||

Continuous Delivery and Deployment

 [508]

||||||||||||||||||||

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/Test-ARMTemplate.ps1.

Script Arguments is configured as -ARMTemplatePath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.json -ARMTemplateParametersPath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.parameters.json -resourceGroupName

$(ResourceGroupName) -OMSWorkspaceName $(OMSWorkspaceName)

deployLocation $(deployLocation) -pullserverRegKey $(regKey).

Figure 28: Creating resource group and testing deployment

Azure PowerShell – deploy test environment
This task is responsible for new deployments using the Azure Resource Manager template
and its parameter file. It also provides the values for skuName, OMSworkspaceName, and

DSC Pull Server registration key values while executing the script
NewTemplatedeployment.

In Figure 29, Azure Connection Type is configured with Azure Resource Manager.

||||||||||||||||||||

Continuous Delivery and Deployment

 [509]

Farkiantech.com
||||||||||||||||||||

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/New-TemplateDeployment.ps1.

Script Arguments is configured as -ARMTemplatePath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.json -ARMTemplateParametersPath

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Templates/OnlineMedicine.parameters.json -resourceGroupName

$(ResourceGroupName) -OMSWorkspaceName $(OMSWorkspaceName) -skuName

$(skuName) -deploymentName $(RELEASE.RELEASENAME) -deployLocation

$(deployLocation) -pullserverRegKey $(regKey).

Figure 29: Deploy production environment

PowerShell – prepare Pester environment
This is again similar to the test environment, and it uses the same script.

In Figure 30, Type is configured with File Path.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/PreparePesterEnvironment.ps1.

||||||||||||||||||||

Continuous Delivery and Deployment

 [510]

||||||||||||||||||||

Copy Files – copy operational validation module
This is again the same as the test environment and uses the same configuration.

In Figure 31, the Source Folder path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/Tests/OperationalValidation/OnlineMedicine.

Contents is configured with **.

Target Folder is configured as

$(USERPROFILE)\Documents\WindowsPowerShell\Modules.

||||||||||||||||||||

Continuous Delivery and Deployment

 [511]

Farkiantech.com
||||||||||||||||||||

Azure PowerShell – execute Pester and operational validation tests
This task is responsible for executing Pester and operational validation tests by executing

the Execute-Pester.ps1 PowerShell script. The script uses Invoke-Pester to execute

Pester as well as the operational validation test cases.

In Figure 32, Azure Connection Type is configured with Azure Resource Manager.

Azure RM Subscription is configured to use already and is created by the ARM

Connection ARM service endpoint.

Script Path is configured as

$(System.DefaultWorkingDirectory)/OnlineMedicine/Drop/OnlinePharmacy.Configurati

on/PSScripts/Execute-Pester.ps1.

Script Arguments is configured as -testScriptPath

“$(System.DefaultWorkingDirectory)\OnlineMedicine\Drop\OnlinePharmacy.Configura

tion\Tests\UnitTests” -releaseName “$(RELEASE.RELEASENAME)” resourceGroupName

“$(ResourceGroupName)” -operationTestsPath

“$(System.DefaultWorkingDirectory)\OnlineMedicine\Drop\OnlinePharmacy.Configura

tion\Tests\OperationalValidation\OnlineMedicine\Diagnostics\Comprehensive”.

Release pipeline execution

There are multiple places from where release definitions can be executed manually in VSTS.

||||||||||||||||||||

Continuous Delivery and Deployment

 [512]

||||||||||||||||||||

Release definitions can be executed using the context menu available against each release

definition as shown in Figure 33.

If the release definition is in the edit mode, it can be executed by clicking on the Create

Release button on the menu as shown in Figure 34.

||||||||||||||||||||

Continuous Delivery and Deployment

 [513]

Farkiantech.com
||||||||||||||||||||

Figure 34: Another way to queue release definition manually

The release progress can be viewed from the console window. Clicking on the Releases link

takes to window containing the details of all the release executions. This is shown in Figure

35.

Clicking on Open shows a dashboard containing all the details about the release executions

including artifacts and logs. This is shown in Figure 36.

||||||||||||||||||||

Continuous Delivery and Deployment

 [514]

||||||||||||||||||||

Figure 36: Release dashboard

Clicking on the logs menu items shows the log entries for each activity in each environment

as shown in Figure 37.

||||||||||||||||||||

Continuous Delivery and Deployment

 [515]

Farkiantech.com
||||||||||||||||||||

Release pipeline strategies

Release pipelines are used for deployment to environments such as development, testing,

staging, and production; however, they can also be used for multiple other purposes as

well. Some of them are mentioned next.

A/B testing

A/B testing is experimental testing of the application at the user interface level. It tries to

mix and change the user interface to evaluate the adaptability, usage, and the consumption

of the service. Multiple smaller releases can be made to change the UI aspect of the

application and understand the best combination of UI that can lead to the best experience

and performance from a usage point of view.

Blue/Green deployments

Blue/Green deployments are used to reduce risks in continuous deployment where two sets

of production environments are maintained. One is referred to as the Blue environment,

and the other is known as the Green environment. At any point of time, only one

environment serves requests on production. The other environment is kept on a standby

mode. When a new release is conducted, it is conducted on the servers that is in standby

mode. Once complete rigorous testing including operation validation is successfully

executed, the standby servers becomes the primary production servers accepting requests

while the original primary servers are converted into standby mode. The swap ensures that

there is minimum downtime and it is done during off-peak hours. It is to be noted that this

is an expensive solution as two sets of redundant servers are maintained; however, only one

set is used to serve requests on the production environment. However, this reduces the

risks of the release and eliminates the need for rollback of a release on a production server.

If the release does not work as expected on the standby servers, the release can be

abandoned and can be tried again in future without disturbing the availability of the

production environment to end users.

Canary releases

A canary release refer to the release of a smaller functionality to a smaller subset of users to

check that it is working before making a fuller release. A host of smaller canary releases are

done in sequence, and rigorous testing is conducted after each small release.

||||||||||||||||||||

Continuous Delivery and Deployment

 [516]

||||||||||||||||||||

Summary

This chapter introduced both continuous deployment and delivery. There is a small

difference between these concepts. In fact, achieving continuous delivery automatically will

lead to continuous deployment. If you are doing continuous deployment with heavy

automation, you are already doing continuous delivery. Continuous delivery is the first

step toward continuous deployment. We looked in detail why at both continuous

deployment and delivery are important and considered their benefits, and we discussed

some of their important principles. They are a mature evolution from executing manual

deployment processes to the automated delivery of code and deployment to multiple

environments. It's a mechanism to tell developers about issues arising out of deployment

and helps in failing earlier than later. These concepts are not complete without the

discussion of release definitions and pipelines. Release pipelines are the automation of

deployment processes on multiple environments using an approval workflow and

environment definitions.

Tasks inside these environments are the main workhorse for getting the job of continuous

delivery and deployment. VSTS is the set of core platform services used in this chapter and

book for continuous delivery and deployment. The next chapter will focus on monitoring

environments and applications by gathering telemetry information so that appropriate

corrective action and improvements can be incorporated into both environments and

applications. This will ensure that end users get a high-quality reliable, available, and

performance-centric service.

||||||||||||||||||||

||||||||||||||||||||

Monitoring and

Measuring11

“If you can't measure it, you can't improve it” – Lord Kelvin

Wonderful! If you have reached here, trust me that you know quite a lot about DevOps

both from an understanding and implementation perspective. This is the last chapter of this

book, and we have covered all the major pillars of DevOps. We have covered the concepts

and activities essential for the DevOps implementation and to make it work effectively and

efficiently. There are other activities such as automated testing and coded UI tests, that

were not covered in this book. They have been amply covered elsewhere on the Internet.

This chapter will discuss at length the concepts and implementation related to monitoring

and measuring the different aspects of applications and environments on the production

environment. Monitoring and measuring is an important activity within the DevOps life

cycle as it helps in capturing the telemetry in real time about the status of the production

environment and application. From raw telemetry data, appropriate information is derived

and sent to a development team as feedback in order to improve the overall application

quality and enhance its features. The same information is useful for the operations team to

take proactive and reactive actions to keep the application operational, which is also named

keeping the lights on. The telemetry information is also consumed by management

stakeholders for effective decision making and in order to prioritize the next set of features

from the implementation perspective.

Continuous monitoring is one of the main pillars of DevOps and deals with capturing

information from the application and environments, storing it for a period of time,

conducting an analysis on it, generating information, and making decisions based on it.

This chapter will discuss technologies that help in conducting monitoring and measuring

for both the application as well as the infrastructure environments.

||||||||||||||||||||

Monitoring and Measuring

 [518]

||||||||||||||||||||

Azure provides two services–Application Insights to monitor the application and

Operational Insights to monitor the infrastructure environment. We will look at both in this

chapter.

Application Insights

As the name suggests, Azure Application Insights provides insights about the health of an

application. The insights relevant for a web application would include the incoming

number of requests per second, requests failed per second, CPU utilization, memory

availability, and much more. Application Insights provides a dashboard, reports, and charts

to view various metrics related to the application's health. This helps in viewing and

understanding the trends in terms of usage of the application, its availability, and usage to

take both precautionary as well as reactive actions on the application. Trends information

can be used to find out things not working in favor of the application and things working in

its favor over a period of time.

The first step in working with Application Insights is to provision this service on Azure

within a resource group. We will provision this service in the same resource group that

contains shared resources consumed by all the applications. If you can recall, we had
created a similar resource group named Win2016DevOps that contains all common shared

services such as Azure Key Vault, Operational Insights, and a storage account to hold

scripts and templates used across environments and applications.

Provisioning

As mentioned before, the first step in consuming Application Insights services is to

provision it on Azure.

Application Insights can be provisioned either manually using the Azure portal or through

automation using Azure REST APIs, PowerShell, and Azure Resource Manager templates.

In this chapter, Application Insights will be created manually in the Win2016DevOps

resource group using the Azure portal. Readers should by now be adapt at writing the

resources in Azure Resource Manager templates and should add the Application Insights

resource in the GeneralServices.json file to provision it through automation as an

||||||||||||||||||||

Monitoring and Measuring

 [519]

Farkiantech.com
||||||||||||||||||||

exercise.

If you have been following all the steps mentioned so far in this book, log on to your Azure

portal and subscription using the appropriate credentials and navigate to the
win2016devops resource group. Click on the Add button, as shown in Figure 1:

Figure 1: Azure resource group blade

Type Application Insights in the search box of the resultant blade; the first link should refer

to Application Insights. Click on it to create a new Application Insights service instance as

shown in Figure 2. Click on the Create button to get started.

||||||||||||||||||||

Monitoring and Measuring

 [520]

||||||||||||||||||||

Figure 2: Add Application Insights service

The resultant blade will ask for the Application Insights service instance name, the type of

application, subscription name, resource group name, and location of the service. Provide
the details as appropriate and shown in Figure 3 and click on the Create button. This will

provision the service.

||||||||||||||||||||

Monitoring and Measuring

 [521]

Farkiantech.com
||||||||||||||||||||

Figure 3: Application Insights inputs

Now, navigating to the service shows the essential properties such as its Instrumentation

Key, as highlighted in Figure 4. The key will be different for every instance and should be

||||||||||||||||||||

Monitoring and Measuring

 [522]

||||||||||||||||||||

copied for later use within Visual Studio. Please note that some of the information has been

masked out due to security reasons.

Next, changes should be made to the OnlineMedicine web application to start using the

Application Insights service and send its telemetry information to it.

Changes to sample application

Open the OnlinePharmacy solution in Visual Studio and right-click on the

||||||||||||||||||||

Monitoring and Measuring

 [523]

Farkiantech.com
||||||||||||||||||||

OnlinePharmacy web application project in solution explore. Select ManageNuget from the

Packages menu item from the context menu. It should open the Nuget window. Click on

the Browse menu and type application insights in the search box. It should show all

packages related to Application Insights. This is shown in Figure 5. Click on the
Microsoft.ApplicationInsights.Web and Microsoft.ApplicationInsights list items and

click on the Install button on the right to install the Application Insights assemblies within

the project. This needs to be done one after another as Nuget allows the installation of a

single package at a time. These assemblies can be viewed from within the references section
of the project. If it asks for a licence agreement confirmation, click on I agree to proceed

further.

Figure 5: Installing Application Insights package through Nuget

A new applicationInsights.config file is generated. This file should be edited and the
Instrumentation Key copied earlier should be added to it. This will ensure that the

application starts using and sending telemetry to the Application Insights service on Azure.

The instrumentation key should be added within the ApplicationInsights XML

element, as shown in Figure 6.

||||||||||||||||||||

Monitoring and Measuring

 [524]

||||||||||||||||||||

Figure 6: Adding the instrumentation key to the config file

Application Insights dashboard

Click on the Live Metrics Stream button on the Application Insights management

dashboard in the Azure portal. Run the application on the local development box and keep

refreshing the resulting page in the browser to generate requests. The live stream

Application Insights dashboard should start showing information captured and sent to it by

the web application. This is shown in Figure 7.

||||||||||||||||||||

Monitoring and Measuring

 [525]

Farkiantech.com
||||||||||||||||||||

The changes to the project should be checked in to the repository. It is important to note

that developers may opt for a different Application Insights service for each environment or

just provision an instance for the production environment instead of every environment or

provision a single instance for all environments apart from the production environment and

a dedicated instance for the production environment.

Readers should review their solution requirements and adopt a strategy that best suits them

to identify the number of Application Insights services within the continuous integration

and continuous deployment process.

Another approach in using this instrumentation key is to store it in the Settings section of

the web.config file and read the same imperatively through the code. This key can be

||||||||||||||||||||

Monitoring and Measuring

 [526]

||||||||||||||||||||

changed during deployment using the webdeploy parameter setting file in the same way

that the SQL connection string was changed in Chapter 8, Configuration Management and

Operational Validation.

Operational Insights

Application Insights is used to monitor custom applications; however, it is equally

important to monitor the environment on which they are deployed and hosted. The

environments can involve infrastructure components such as virtual machines, networks,

storage accounts, any many other resources. Operational Insights will provide information

about the overall health of the infrastructure in terms of its usage, availability, changes,

security, and many other areas that can help an operations person to take both proactive

and reactive actions on the environments.

Provisioning

Operational Insights, also known as Operations Management Suite (OMS) must be

provisioned on Azure before it can be consumed to monitor the virtual machines. Again,

similar to Application Insights, Operational Insights can be provisioned through Azure

portal, PowerShell, REST API, or Resource Group Manager templates. For the purpose of

this book, the Azure Resource Group Manager templates approach is used to provision the

Operational Insights workspace. An Operational Insights workspace is a security boundary

that can be allowed to be accessed by certain users. Multiple workspaces should be created

for the isolation of users and their corresponding access to the environment telemetry data.

The JSON script used in GeneralServices.json to provision an Operational Insights

workspace is shown here:

{
 "apiVersion": "2015-11-01-preview",
 "type": "Microsoft.OperationalInsights/workspaces",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('deployLocation')]",
 "properties": {
 "sku": {
 "Name": "[parameters('serviceTier')]"
 }

||||||||||||||||||||

Monitoring and Measuring

 [527]

Farkiantech.com
||||||||||||||||||||

 }
}

The name, location, and sku information is needed to provision a workspace, and values for

them are provided using parameters. The name of the workspace for the purpose of this
book is OnlineMedicineOMS deployed at the West Europe location.

The workspace after provisioning is shown in Figure 8.

Figure 8: The Operational Insights management dashboard

Click on the OMS Portal section to open the workspace portal. This portal is used to view

all telemetry information captured by Operational Insights, in configuring Operational

Insights, and provides dashboard features and functionality.

The home screen of Operational Insights is shown in Figure 9.

||||||||||||||||||||

Monitoring and Measuring

 [528]

||||||||||||||||||||

The Settings section shows that four data sources are connected. These are four virtual

machines connected to the workspace. Two virtual machines from each test and production

environment are connected. A different strategy of having a separate workspace for each

environment can be adopted, and readers should decide the best for their applications and
solutions. Operational Insights can be configured using the Settings tile, as shown in Figure

10.

||||||||||||||||||||

Monitoring and Measuring

 [529]

Farkiantech.com
||||||||||||||||||||

OMS agents

If you may have noticed, no assembly or code changes are done to the application for

consuming Operational Insights. Operational Insights depends on the installation of an

agent on the virtual machines. These agents keep collecting telemetry data on these hosts

and send them to the Azure Operational Insights workspace where they are stored for a

specified period depending on the plan (sku) chosen while provisioning it. These agents can

be installed manually on virtual machines. This book uses the Azure Resource Management

virtual machine extensions to install agents automatically immediately after provisioning

the virtual machines. The JSON code for provisioning an agent on a virtual machine is

shown here:

{
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(variables('vmName'),copyIndex(1),'/omsscript')]",
 "location": "[resourceGroup().location]",
 "dependsOn": [
"[concat('Microsoft.Compute/virtualMachines/',variables('vmName'),copyIndex

||||||||||||||||||||

Monitoring and Measuring

 [530]

||||||||||||||||||||

(1))]",

"[resourceId('Microsoft.Compute/virtualMachines/extensions',

concat(variables('vmName'),copyIndex(1)),'powershellscript')]"

],
 "copy": {
 "count": "[parameters('countVMs')]",
 "name": "omsloop"
 },
 "properties": {
 "publisher": "Microsoft.EnterpriseCloud.Monitoring",
 "type": "MicrosoftMonitoringAgent",
 "typeHandlerVersion": "1.0",
 "settings": {
 "workspaceId": "[parameters('WorkspaceID')]"
 },
 "protectedSettings": {
 "workspaceKey": "[listKeys(variables('accountid'),'2015-11-01-
preview').primarySharedKey]"
 }
 }
}

The workspace ID and primary shared key is available from the Settings tile of the OMS

workspace and a copy element is used to deploy agents on to multiple virtual machines.

This resource is a child resource of the virtual machine resource ensuring that this extension

is executed after provisioning of a virtual machine.

Figure 11 shows the configuration related to workspace ID and workspace key. The primary

key of the OMS workspace is used to configure the agents using ARM templates.

||||||||||||||||||||

Monitoring and Measuring

 [531]

Farkiantech.com
||||||||||||||||||||

Figure 11: Operational Insights connected sources settings

Search

The OMS workspace provides advance search capabilities through the Log Search tile. It

provides the capability to search log entries and helps in the export of telemetry data in

multiple data formats including Excel and PowerBI.

Figure 12 shows the search screen:

||||||||||||||||||||

Monitoring and Measuring

 [532]

||||||||||||||||||||

Solutions

Solutions in OMS are additional capabilities that can be added to the workspace capturing

additional telemetry data that are not captured by default. When these solutions are added

to the workspace, appropriate management packs are sent to all the agents connected to the

workspace so that they can start capturing and sending solution-specific data from virtual

machines to the OMS workspace.

Figure 13 shows the solution gallery on the OMS workspace. Clicking on any solution and
subsequently clicking on the Add button adds the solution in context to the workspace.

||||||||||||||||||||

Monitoring and Measuring

 [533]

Farkiantech.com
||||||||||||||||||||

In Figure 14, the capacity and performance solution is added to the workspace.

Figure 14: The Operational Insights solution blade

||||||||||||||||||||

Monitoring and Measuring

 [534]

||||||||||||||||||||

In order to capture enough telemetry information to ensure that environments are

monitored well and to proactively find issues and risks, the following solutions should be

added to the workspace:

Capacity and performance

Agent health

Change tracking

Containers

Security and audit

Update management

Network performance monitoring

Although these solutions are not added through Azure Resource Manager templates,

readers are advised to modify the template to add them. This will ensure that these

solutions are provisioned every time these templates are executed.

Summary

This was the last chapter of the book and a very important chapter from a DevOps

perspective. DevOps will not be effective and efficient without implementing adequate

monitoring and measuring. The DevOps feedback loop and chain is incomplete in the

absence of monitoring and measuring capabilities. Although monitoring and measuring can

be done manually, their true benefits are realized using services such as Application

Insights and Operational Insights. Azure provides Application Insights to monitor the

availability, reliability, scalability, and performance of applications while Operational

Insights helps the same way for environments.

With this, we come to the end of this chapter and book. It is hoped that you were able to

comprehend, digest, and implement DevOps concepts, principles, and practices and were

able to achieve the benefits to reach out to your customer faster, better, and cheaper with

utmost quality. Let's signing off this book with the assumption that you would be able to

build more, deploy and release more, fail fast, and fix early to provide a quality product

and solution to your customer each and every time.

||||||||||||||||||||

Farkiantech.com
||||||||||||||||||||

A

Access Control List (ACL) 302
Active Directory (AD) 296

ADD instruction 192

agent pools 49 agent

queue 49 agents 49

alternate strategies about

461
 Azure automation, used for DSC Pull Server 461
 Docker Compose, used 462
 Docker Hub, used 462
 Docker management tools, used as Swarm 462
 Docker management, used as Kubernetes 462
 Docker Registry, used 462 Application

Insights about 501 dashboard 507, 509
 provisioning 501, 502, 503, 504, 505

sample application, changes 506, 507

application lifecycle management (ALM) 17
 development methodology 18
Archive files activity for

deployment.zip 440 artifacts

configuration 470, 471
automation 422 enabling 456
availability set 381
Azure Active Directory (AAD) 87

Azure automation used, for

DSC Pull Server 461
Azure Key Vault 152, 291, 292, 469
Azure load balancer
 used, for environment operational validation of

web application 415
Azure public load balancer 294

Index

Azure Resource Manager (ARM)

about 31, 82, 83, 84, 86, 466

advantages 84 architecture 87

 common lifecycle 84
 concepts 85 deployment 106
 deployment support 84

extensible 89
 features 87 grouping 84

idempotent 89
 locks 88 manageability 84

migration 84 minimal template

96
 multi-region 88 nested

resources 96
 policies 88 resource groups 86

resource instances 86
 resource providers 85 resource

types 85 resources 86 role-

based access control 84, 87
 service endpoint 464, 465, 466
 superior technology 84 tags

88
 template tools 97, 98
 templates 89 templates, basics

90 Azure SDK 2.9.6
 URL, for installing 299
Azure Service Management (ASM) 82, 83, 84
Azure SQL 295, 392
Azure SQL Firewall 394
Azure SQL Server
 creating 210, 211
Azure storage account 293

Azure subscription secure

login to 296
Azure tools, for Visual Studio
 URL, for installation 100
Azure virtual machine 294
Azure
 about 34 account

77, 79, 80
 reference link 77
 virtual machines, provisioning 143, 144, 145,

146, 147, 148, 149, 150, 151
 Windows Nano Server, installing 152

||||||||||||||||||||

 [536]

||||||||||||||||||||

 Windows Server 2016 Container, installing on
143

B

build activities about

431
 Archive files activity, for deployment.zip 440

build artifacts activity, copying 440 build

artifacts activity, publishing 440
 NuGet installer activity 434
 Replace Tokens activity, for updating web

application's name 439
 Visual Studio Build activity, for OnlinePharmacy

project 435
 Visual Studio Build activity, for OnlinePharmacy

test project 437
 Visual Studio Test activity, for OnlinePharmacy

project binaries 438
build architecture 48 build artifacts

activity copying 440 publishing

440 build definition about 429

build activities 431 Build level

configuration 50, 53 build options

441
 configuring 49, 55, 57

executing 48 general tab 444
 history tab 444
 queuing 49 repository

443
 retention tab 445
 Task level configuration 58
 triggers 443
 variables, defining 430
Build Management service 46, 47 agent pools

49 agent queues 49 agents 49

 build architecture 48 build definition,

configuring 49, 50, 53, 55, 57 build definition,

executing 48 build definition, queuing 49

build options 441

build permissions reference link 424 build

pipeline executing 447, 449

C

centralized version control system 245, 246

Cloud computing advantages 34 cost

effective 34 elasticity 34 faster and

better 34 pay as you go 34 unlimited

capacity 34
Cloud environment
 Visual Studio Team Services (VSTS), account

creating 75
Cloud technology

about 31, 32, 33
 Infrastructure as a Service (IaaS) 33
 Platform as a Service (PaaS) 33
 Software as a Service (SaaS) 34

CMD instruction 196
cmdlets commands 107 code

coverage 24 collaboration 16

Command Line Interface (CLI) 143

command-line tool
 used, for adding project to VSTS Git repository

281, 282, 283, 284, 285, 286
commands, Docker client Docker

events 183
 Docker inspect 183
 Docker logs 183 Docker stats 183
communication 16
configuration management 227 about

20, 243
 application, configuring 21 application,

deployment 21 change management

244
 Infrastructure as Code (IaC) 21

multiple teams, developing with 244

release management 244
ConfigurationRepositoryWeb about

133

||||||||||||||||||||

 [537]

Farkiantech.com
||||||||||||||||||||

 LCM configuration, pushing 135
 partial configurations 134

properties 133 Container host 141
Container images 141, 142
Container life cycle management, Docker client
 Docker pause 181
 Docker ps 180
 Docker restart 181
 Docker rm 181
 Docker RUN 179
 Docker start 180
 Docker stop 180
 Docker unpause 181
ContainerConfig.ps1 367, 371
Containers about 138, 139, 140,

294 benefits 139 Docker 140,

141
 Docker Hub 142
 Docker Registry 142
 Nano Server 151 WindowsServerCore 151

continuous builds 427
continuous delivery 27 about 453, 454 cost

of change, reducing 455
 deployment issues, detecting 454
 frequent changes, pushing to production 455

human dependency 456 process 460
 risks, eliminating 454
 risky manual deployments, removing 455
continuous deployment about 24, 453, 454, 464

acceptance tests 26 automation, enabling 456,

457 cost of change, reducing 455
 deployment issues, detecting 454 deployment,

to production 26 frequent changes, pushing to

production 455
 human dependency 456
 Infrastructure as Code (IaC) 458
 preproduction deployment 26 principles

456
 process 459, 460

 reporting 458 risks, eliminating 454

secure deployments 458 shortened

execution time 458
 staging environment deployment 26

test automation 26 continuous

deployments risky manual deployments,

removing 455
continuous integration about 22, 419, 420

application packaging 24 automation

422
 build automation 23 cadence 420

collaboration 421 continuous builds 427
 fast execution 423 gated builds 427
 high confidence 420
 issues, fixing 420
 principles 421
 process 424
 reporting 424 scheduled builds 426
 security 424 single repository 423

technical debt, reducing 421 test

automation 24
 types 426
continuous learning 27

controllers about

223, 224, 225

reference link 225

COPY instruction 191

credentials
 storing 296
Custom Script Extension resource 355

D

database schema
 defining 214, 215 database

tables creating 212, 213,

214 deployment role 298
deployment about 106

complete deployment 106

incremental deployment 106

||||||||||||||||||||

 [538]

||||||||||||||||||||

Desired State Configuration (DSC) 31, 41, 82, 355
Desired State Configuration Pull Server 293

Desired State Configuration about 123
 Pull architecture 126, 127, 128
 Pull configuration 129, 130, 131
 Push architecture 124, 125, 126

development environment Azure SQL

Server, creating 210, 211 database

schema, defining 214, 215
 database tables, creating 212, 213,

214
 preparing 204, 205, 206
 SQL Database, creating 210
 SQL Server Management Studio, installing 206,

207, 208, 209, 211
 Visual Studio, solution setting up 215, 216
development methodology 18 DevOps 9
 about 12, 30
 automating processes 18

automating tools 18
 collaboration 16

communication 16

configuration management 20

continuous delivery 27
 continuous deployment 24

continuous integration 22

continuous learning 19
 failure 19
 flexibility 16 innovation, learning 19

measuring 28 metrics 28
 practices 20 principles 16 software

design 18
distributed version control system 246, 247
Docker 31, 140, 141 Docker client

commands, monitoring 182
 Container life cycle management 178
 Docker registry management 184, 186
 Docker Registry management 184

image management 181 using 176

Docker compose using 462 Docker for

Windows 143 Docker Hub 142

references 142 using 462 Docker

management tools used, as Kubernetes

462 used, as Swarm 462
Docker Registry 142
Docker Registry management, Docker client
 login 186

pull 187
 push 186

Docker

Registry using

462
Docker RUN
 reference link 180

dockerfile 371

Dockerfile about

187 ADD instruction

192 build command

188 CMD

instruction 196
 COMMENT instruction 190
 COPY instruction 191
 ENTRYPOINT instruction 197
 ENV instruction 193
 Exec form 189
 EXPOSE instruction 193
 FROM instruction 190

instructions 190
 MAINTAINER instruction 191

reference link 190 RUN

instruction 195
 Shell form 189
 VOLUME instruction 194
 WORKDIR instruction 193
Dot-sourcing 109
Drug controller unit tests 236, 237, 238, 239, 242

Drug data access class mocking 234
DrugController 230
DSC Pull Server operating system 401

||||||||||||||||||||

 [539]

Farkiantech.com
||||||||||||||||||||

DSC Pull Server virtual machine 400
DscLocalConfigurationManager() attribute 131

E

entities and models, creating

reference link 221
Entity Framework 221
ENTRYPOINT instruction 197

ENV instruction 193 environment

operational validation about 408

folder structure 409
 of web application Azure load balancer used 415
 of web application on virtual machine 410, 412
 tests 417 unit

tests 417
environment unit tests

about 380
 availability set 381
 Azure SQL 392
 Azure SQL Firewall 394
 DSC Pull Server operating system 401
 DSC Pull Server virtual machine 400

load balancer 387 Network Security

Groups (NSGs) 384 virtual machine 01

397
 virtual machine 02 398
 virtual machines, count 396 virtual

networks 382
 web application operating system 405
environment variables 65 Exec form

189
Export/Import Build Definition 423

EXPOSE instruction 193

F

fast execution

423

Firewalls 297

flexibility about

16
 application lifecycle management (ALM) 17

functions reference link 95

G

gated builds 427
General Availability (GA) 85
general tab 472
GeneralServices.json ARM template
 about 305 outputs 315 parameters

309 resources 309 variables 309
Git 101 about 249 add command 251

branch command 252
 clone command 251
 commit command 252
 init command 250
 merge command 252
 remote command 253
Git repository 249
 code changes, fetching from 267, 268
 code changes, submitting to 264, 267

developer, onboarding 269, 270, 271, 272

installing, for Windows on development
environment 254, 255

 managing, Visual Studio Team Services (VSTS)
used 264

 reference link 254

H

history tab 472
Host Container System Shim (HCSShim) 139

Hyper-V containers 39

I

Icm.ps1 375 IISInstall.ps1 365
image management, Docker client

||||||||||||||||||||

 [540]

||||||||||||||||||||

 Docker build 181
 Docker commit 182 Docker

images 182
 Docker rmi 182 Docker

tag 182
Infrastructure as a Service (IaaS) 33

Infrastructure as Code (IaC) about

287, 288, 458 consistency 289

deterministic 289

idempotent/repeatability 289

objectives 289 predictability 289

security 289
Integrated Scripting Environment (ISE) 107, 143
Internet Information Server (IIS) 120, 439
Internet Information Services (IIS) 372 IT

administrator 298 about 298 deployment,

steps for 299 GeneralServices.json ARM

template 305
 PreCreate.ps1 script 299, 301, 302, 303

J

JavaScript Object Notation (JSON) 89

L

load balancer 387

M

MAINTAINER instruction 191 Management

Object Format (MOF) file 125 merging 252
microservices

about 40
 enabling 40
Microsoft.Compute Namespace

85 minimal template 96 MSBuild

arguments 435
Multi-Factor Authentication (MFA) 296
MVCWebApp 439

N

namespace 38 Nano server 37, 137
nested resources 96 nested virtual

machines 39
Network Address Translation (NAT) 294
Network Interface Card (NIC) 334
Network Security Groups (NSGs) 166, 297, 384
New-TemplateDeployment.ps1 319

NuGet installer activity 434

O

Online Medicine application 419
OnlineMedicine.parameters.json file 320, 322,

323, 324

about 324

outputs 351

parameters 328

resources 329
 variables

328

OnlinePharmacy

about 200
 adding, to VSTS Git repository Visual Studio 2015

used 256, 258, 260, 261, 262, 263
 web application architecture 203, 204 web

application, experiencing 201, 202, 203

Operational Insights 291, 292 about 509
 Operations Management Suite (OMS) agents

512
 provisioning 509, 511

search capabilities 514
 solutions 514, 516
Operational Management Workspace 469

Operations Management Suite (OMS) 509
operator
 deployment, steps for 315

P

||||||||||||||||||||

 [541]

Farkiantech.com
||||||||||||||||||||

package management 41

Parameters, configuring

reference link 219

Parameters.xml file

reference link 220
PESTER 41 Pester about 114 installing

114, 116 real-time example 120, 122, 123

tests, writing with 116, 117, 118, 119, 120

URL, for downloading 114
Platform as a Service (PaaS) 33, 295
PowerShell 31
 about 106, 107 cmdlets commands 107

development environment 110, 111, 112, 113
 engine 107

features 107 host

107 modules 109,

110
 pipeline 108

scripts 109, 110
 variables 108, 109
preparation environment, release environments
 Azure file copy task 477, 478
 Azure PowerShell 478
PreparePesterEnvironment.ps1 378 Process

Templates 43 production environment, release

environments ARM template deployment, testing

489, 490 operational validation module, copying

492, 493 operational validation tests, executing

493, 494
 Pester environment, preparing 492
 Pester, executing 493, 494
 test environment, deploying 491
Pull configuration, Desired State Configuration
 ConfigurationRepositoryWeb 133
 DscLocalConfigurationManager() attribute 131
PullServer.ps1 355, 359, 363
Push mode 126

R

release definition

configuration 62
 Environment level configuration 68, 70, 72, 74
 executing 61
 Release level configuration 63, 67

Task-level configuration 74 release

environments about 474

preparation environment 475, 476

production environment 488, 489
 test environment 480, 481, 482

release management 452
Release Management service architecture 61

release definition, configuration 62, 63, 65, 67,
68, 70, 72, 74 release definition,

executing 61
release pipeline 25 A/B testing 497
 artifacts configuration 470, 471

Blue/Green deployments 498 canary

releases 498
 ChangeConnectionString.ps1 377,

378 ContainerConfig.ps1 367, 371
 definition 467, 468
 deployment, steps for 315, 354

dockerfile 371 Execute-Pester.ps1 379

execution 494, 496, 497 general tab

472 history tab 472
 Icm.ps1 375

 IISInstall.ps1 365
 PreparePesterEnvironment.ps1 378

PullServer.ps1 355, 359, 363

release environments 474
 retention tab 472
 strategies 497
 triggers configuration 471

variables configuration 469 releases

about 452 continuous deployment

464
 scheduled releases 463 types

462, 463

||||||||||||||||||||

 [542]

||||||||||||||||||||

Remote Desktop Protocol (RDP) 166
Remote PowerShell 166 Replace Tokens

activity for updating the web application's

name 439 reporting 424, 458
repository 443 resources,

GeneralServices.json ARM template

Microsoft.KeyVault/vaults 310
 Microsoft.KeyVault/vaults secrets 311, 312, 313,

314
 Microsoft.OperationalInsights/workspaces 309

resources, OnlineMedicine.parameters.json file

CustomScriptExtension 337, 346 databases

348 FirewallRules 348
 load balancer 339
 Microsoft.Compute/availabilitySets 329
 Microsoft.Compute/virtualMachines 335
 Microsoft.Network/loadBalancers 340
 Microsoft.Network/networkInterfaces 334
 Microsoft.Network/networkSecurityGroups 331
 Microsoft.Network/publicIPAddresses 334
 Microsoft.Network/virtualNetworks 330
 Microsoft.Sql/servers 348
 Microsoft.Storage/storageAccounts 329
 MicrosoftMonitoringAgent 347
 Web application NICs 343
 Web application public IP addresses 342

Web application virtual machines 344
retention tab 472

RUN instruction 195

S

sample application architecture

Azure Key Vault 292
 Azure storage account 293
 Desired State Configuration Pull Server 293
 Operational Insights 292 revisiting 290,

291 scheduled builds 426 scheduled

releases 463

secrets
 storing 296
secure deployments 458
Secure Remote PowerShell 166
security 424
security considerations about

295
 Azure subscription, secure login to 296

credentials, storing 296
 Firewalls 297
 Network Security Groups (NSGs) 297
 secrets, storing 296 shared access

signature (SAS) token 297 storage

account keys 297
Server Message Block (SMB) 130

Service Principal 143
shared access signature (SAS) token 297, 469
Shell form 189 shortened execution time 458
single repository 423 Software as a Service

(SaaS) about 34 cloud computing,

advantages 34 software delivery challenges

about 10 deployments 11
 innovation, lacking 12
 isolated teams 11 manual execution 12
 monolithic design 11 resistance to change

10 rigid processes 10 source code

configuration management integration 428
source code management service 43, 44, 45
Source Configuration Management (SCM)
 about 243, 244 centralized version control

system 245, 246 distributed version control

system 246, 247
 types 245

SQL Database
 creating 210, 211
SQL Server 2014 Management Studio
 URL, for downloading 204
SQL Server Management

Studio installing 206, 207,

||||||||||||||||||||

 [543]

Farkiantech.com
||||||||||||||||||||

208, 209 storage account keys

297

System Center Configuration

Manager (SCCM) 82

T

Team Foundation Server (TFS) 35, 42, 45

Team Foundation Version Control (TFVC) 428
template tools, Azure Resource Manager (ARM)
 authoring tools 98, 99, 100, 101, 102, 103, 104,

105
 deployment tools 105, 106 templates,

Azure Resource Manager (ARM)
 expressions 95

functions 95

outputs 94, 95
 parameters 91, 92

resources 93
 variables 92
test environment, release environments

ARM template deployment, testing 482, 483

operational validation module, copying 486

operational validation tests, executing 487
 Pester environment, preparing 485

 Pester, executing 487

 test environment, deploying 484

Test-ARMTemplate.ps1 318 triggers

443 triggers configuration 471

U

Uniform Resource Identifier (URI)

90 unit testing about 228, 229,

230
 Drug controller unit tests 236, 237, 238, 239,

242
 Drug data access class, mocking 234

 DrugController 230
UploadScriptFiles.ps1 315

V

variables configuration 469
variables defining 430 views

about 223, 224, 225, 226, 227

reference link 225 Virtual Hard

Disk (VHD) 147 virtual machine

(VM) about 146
 environment operational validation, of web

application 412
virtual machine 01

397
virtual machine 02

398
virtual networks

382 virtualization 137,

138 Visual Studio

2015
 used, for adding Online Pharmacy to VSTS Git

repository 256, 259, 262, 263

Visual Studio Build activity for

OnlinePharmacy project 435

OnlinePharmacy test project 437
Visual Studio Online (VSO) 42

Visual Studio Team Services (VSTS)

about 31, 42, 248, 249, 419 Agile

process 43
 Build Management service 46, 47
 Capability Maturity Model Integration (CMMI)

process 43
 Cloud environment, setting up 74
 Git repository 248
 Git repository, adding to 273, 274, 275, 276, 277,

278, 279, 280
 Git repository, cloning to 273, 274, 275, 276,

||||||||||||||||||||

 [544]

||||||||||||||||||||

277, 278, 279, 280

Git, exploring 45

references 75
 Release Management service 59
 Scrum process 43
 source code management service 43, 44, 45
 Team Foundation Version Control (TFVC) 45,

248
 used, for managing Git repository 264

Visual Studio Test activity for

OnlinePharmacy project binaries 438
Visual Studio
 OnlinePharmacy, web application executing 220

Parameters.xml 220
 publish profile, for web application 217, 218, 219

reference link 98 solution, defining 221

solution, setting up 215, 216 web.config

connection string, modifying 217

||||||||||||||||||||

||||||||||||||||||||

VOLUME instruction 194
VSTS Git repository
 Online Pharmacy, adding Visual Studio 2015 used

256, 258, 260, 261, 262, 263
 project, adding command-line tool used 281, 282,

283, 284, 285, 286

W

web application operating system 405
Web Services for Management (WSMan) 123
WebDeploy package 21
Win2016DevOps 501
Windows 2016 with Containers 397

Windows Containers about 31,

137 Nano server 190
 WindowsServerCore 190
Windows Management Framework (WMF) 82
Windows Nano Server
 installing, on Azure 152
 provisioning 152, 153, 154, 155, 156, 157, 158,

159, 160, 162, 164, 168, 169 Windows NT 35
Windows Remote Management (WinRM) 123, 364
Windows Server 2016 35, 36 application platform

36 as hosting platform 36 configuration

management tools 41 container, installing on

Azure 143
 containers 37, 38, 39
 deployment 41
 Docker 37, 38, 39
 Hyper-V containers 39 maintenance, reducing

40 microservices, enabling 40
 Nano server 37
 nested virtual machines 39
 packaging 41
 URL, for downloading 205
Windows
 Git repository, installing on development

environment 254, 255
WindowsServerCore 142
work item management
 integration 429

working tree 249

