

Zabbix 7 IT Infrastructure Monitoring
Cookbook
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Group Product Manager: Pavan Ramchandani

Publishing Product Manager: Khushboo Samkaria

Book Project Manager: Ashwin Dinesh Kharwa

Senior Editor: Romy Dias and Sujata Tripathi

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Proofreader: Sujata Tripathi

Indexer: Pratik Shirodkar

Production Designer: Gokul Raj S.T

DevRel Marketing Coordinator: Rohan Dobhal

First published: February 2021

Second edition: March 2022

Third edition: July 2024

Production reference: 1280624

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN: 978-1-80107-832-0

www.packtpub.com

To my grandparents, for supporting my education, my brother, for
always being at the ready, and my mom and stepdad, for cheering me
on. To my wife, for always supporting whatever new idea I get into my
head. To my colleagues, throughout the years, my first mentor, Sander

F., for inspiring me, and Brian, for making it all possible.

– Nathan Liefting

Foreword
Dear readers,

Brian and Nathan, the authors of this book, are well-known figures in the
Zabbix community.

I met them many years ago, and I have always been impressed by their deep
knowledge of the product, which would be impossible without extensive
practical experience. How could it be otherwise? Brian and Nathan have been
professionally working with Zabbix for many years, helping their clients with
the architecture, installation, configuration, and maintenance of Zabbix. The
authors of this book have earned their reputation through their vast
experience and ability to continuously share this knowledge with other
Zabbix users. You can find Brian and Nathan speaking at conferences and
participating in various community platforms, always ready to help and
answer your questions!

Zabbix allows you to quickly immerse yourself in the wonderful world of
monitoring. In Zabbix development, we follow this principle: “Make simple
things easy, and complex things possible.” But don’t let this simplicity and
speed deceive you. Soon enough, you will start to realize that simple
monitoring tasks are indeed easy to implement. However, the further you
move forward, the quicker you will understand that you need to study and
carefully read the documentation. You will discover that there are more
complex monitoring tasks that require a deeper understanding of Zabbix’s
capabilities.

This book fills the gap between the official documentation, which describes
the product’s functionality, and real-life situations that require specific
solutions and it does it perfectly. Especially valuable is that this book covers
the new functionality of Zabbix 7.0 LTS, the latest release of Zabbix to date!

This book is a must-read for anyone who wants to learn specific techniques
for solving particular monitoring and observability tasks. How great it is to
have solutions to many challenges you may encounter at your fingertips!

I am grateful to the authors of the book for their work and wish everyone an
enjoyable reading. You will not be disappointed!

Alexei Vladishev

Creator of Zabbix

Contributors

About the authors

Nathan Liefting, also known as Larcorba, is an IT consultant and trainer.
He has more than 9 years of professional experience in IT. His experience
ranges from managing networks running EVPN/VXLAN to Linux
environments and programming. Nathan started working with Zabbix in
2016, when it was still at Zabbix 2 and Zabbix 3 was just released.

He is now working for Opensource ICT Solutions BV in The Netherlands as
a Zabbix trainer and consultant. Here, he designs and builds professional
Zabbix environments and Zabbix components for some of the biggest and
most interesting companies around the world.

Brian van Baekel quickly discovered how powerful Zabbix is during his
career as a network engineer. Ever since, he has been working with Zabbix in
various (large) environments, leading to him gaining his official Zabbix
Certified Trainer certification in early 2017.

In 2018, Brian founded Opensource ICT Solutions BV in the Netherlands and
Opensource ICT Solutions LLC in the USA. Both companies primarily focus
on building Zabbix environments all over the world. In 2021, further
expansion of the business was established by opening a subsidiary in the
United Kingdom with a full focus on the product Zabbix. All companies
provide support, training, and consultancy services, and basically, that means
Brian is working with the Zabbix product 24/7.

Fun fact: even his cat is named “Zabbix” and you also should ask Brian
what’s on his arm some time.

About the reviewers

Sven Putteneers got to know Zabbix more than eight years ago as part of his
duties at his then-new employer, after which he swore off all other
monitoring systems. He has founded a company, 7 to 7, through which he
provides Zabbix consultancy and develops custom integrations with external
systems. He is also an active member of the Zabbix International Community
Telegram group, where he is known as @OffByOne. In his free time, he likes to
swim, read science fiction, and go to conferences and meet-ups. He dislikes
social media but can be found on LinkedIn.

First of all, I’d like to thank the authors of the book for providing a
valuable resource to the Zabbix community. Furthermore, I’d like to
give a shout-out to the Zabbix community and people who try to help
each other in their free time, be it through the forums, IRC, Telegram

groups, and so on …. You are awesome!

Andreas Drbal boasts a decade in tech, evolving from a self-taught frontend
developer to a key figure in DevOps and CloudOps. His academic journey
led him to UCLA, majoring in English with a German minor, and later
acquiring a master’s in information systems management and an MBA.
Andreas’s passion for monitoring began with Zabbix 3.x in 2015, integrating
it with IoT devices. Currently, as a senior manager at Cloud Software Group,
he’s driven by automation, streamlining the DevOps life cycle, and ensuring
team productivity.

I want to thank my wife, who encouraged me to contribute to the
learning community by active participation, and also for her patience

during the period of reviewing of this book.

Table of Contents

Preface

1

Install ing Zabbix and Getting Started
Using the Frontend

Technical requirements

Installing the Zabbix server

Getting ready

How to do it…

How it works…

Setting up the Zabbix frontend

Getting ready

How to do it…

How it works…

There’s more...

Enabling Zabbix server HA

Getting ready

How to do it…

How it works...

There’s more...

Using the Zabbix frontend

Getting ready

How to do it…

Navigating the Zabbix frontend

Getting ready

How to do it…

2

Getting Things Ready with Zabbix User
Management

Technical requirements

Creating user groups

Getting ready

How to do it…

There’s more...

Using Zabbix user roles

Getting ready

How to do it...

How it works...

There’s more...

Creating your first users

Getting ready

How to do it…

Azure AD SAML user authentication and JIT
user provisioning

Getting ready

How to do it…

How it works…

There’s more…

OpenLDAP user authentication and JIT user
provisioning

Getting ready

How to do it…

How it works…

3

Setting Up Zabbix Monitoring

Technical requirements

Setting up Zabbix agent monitoring

Getting ready

How to do it…

How it works…

See also

Working with SNMP monitoring the old way

Getting ready

How to do it…

How it works…

Setting up SNMP monitoring the new way

Getting ready

How to do it…

How it works…

Creating Zabbix simple checks and the Zabbix
trapper

Getting ready

How to do it…

How it works…

Working with calculated and dependent items

Getting ready

How to do it…

How it works…

Creating external checks

Getting ready

How to do it…

How it works…

Setting up JMX monitoring

Getting ready

How to do it…

How it works…

See also

Setting up database monitoring

Getting ready

How to do it…

How it works…

There’s more…

Setting up HTTP agent monitoring

Getting ready

How to do it…

How it works…

Using Zabbix browser items to simulate a web
user

Getting ready

How to do it…

How it works…

Using Zabbix preprocessing to alter item values

Getting started

How to do it…

How it works…

See also

4

Working with Triggers and Alerts

Technical requirements

Setting up triggers

Getting ready

How to do it…

How it works…

There’s more…

See also

Setting up advanced triggers

Getting ready

How to do it…

How it works…

There’s more…

Setting up alerts

Getting ready

How to do it…

How it works…

There’s more…

Keeping alerts effective

Getting ready

How to do it…

How it works…

There’s more…

Customizing alerts

Getting ready

How to do it…

How it works…

5

Building Your Own Structured Templates

Technical requirements

Creating your Zabbix template

Getting ready

How to do it…

How it works…

There’s more…

Setting up template-level tags

Getting ready

How to do it…

How it works…

See also

Creating template items

Getting ready

How to do it…

How it works…

See also

Creating template triggers

Getting ready

How to do it…

How it works…

Setting up different kinds of macros

Getting ready

How to do it…

How it works…

There’s more…

Using LLD on templates

Getting ready

How to do it…

How it works…

See also

Nesting Zabbix templates

Getting ready

How to do it…

How it works…

6

Visualizing Data, Inventory, and Reporting

Technical requirements

Creating graphs to access visual data

Getting ready

How to do it…

How it works…

Creating maps to keep an eye on infrastructure

Getting ready

How to do it…

How it works…

Creating dashboards to get the right overview

Getting ready

How to do it…

How it works…

There’s more…

Templating dashboards to work at the host level

Getting ready

How to do it…

How it works…

Setting up Zabbix inventory

Getting ready

How to do it…

How it works…

Using the Zabbix Geomap widget

Getting ready

How to do it…

How it works…

Working through Zabbix reporting

Getting ready

How to do it…

Setting up scheduled PDF reports

Getting ready

How to do it…

How it works…

Setting up improved business service
monitoring

Getting ready

How to do it…

How it works…

There’s more...

7

Using Discovery for Automatic Creation

Technical requirements

Setting up Zabbix agent network discovery

Getting ready

How to do it…

How it works…

There’s more…

Working with Zabbix SNMP network discovery

Getting ready

How to do it…

How it works…

Automating host creation with active agent
autoregistration

Getting ready

How to do it…

How it works…

There’s more…

Using Windows performance counter discovery

Getting ready

How to do it…

How it works…

Discovering JMX objects

Getting ready

How to do it…

How it works…

There’s more…

Setting up Zabbix SNMP LLD the new way

Getting ready

How to do it…

How it works…

Creating hosts with LLD and custom JSON

Getting ready

How to do it…

How it works…

There’s more…

8

Setting Up Zabbix Proxies

Technical requirements

Setting up a Zabbix proxy

Getting ready

How to do it…

How it works…

There’s more…

Working with passive Zabbix proxies

Getting ready

How to do it…

How it works…

Working with active Zabbix proxies

Getting ready

How to do it…

How it works…

Monitoring hosts with Zabbix proxy

Getting ready

How to do it…

How it works…

There’s more…

See also

Encrypting your Zabbix proxy connection with
pre-shared keys

Getting ready

How to do it…

How it works…

Setting up Zabbix proxy load balancing

Getting ready

How to do it…

How it works…

Using discovery with Zabbix proxies

Getting ready

How to do it…

How it works…

Monitoring your Zabbix proxies

Getting ready

How to do it…

How it works…

9

Integrating Zabbix with External Services

Technical requirements

Setting up Slack alerting with Zabbix

Getting ready

How to do it…

How it works…

See also

Setting up Microsoft Teams alerting with Zabbix

Getting ready

How to do it…

How it works…

See also

Using Telegram bots with Zabbix

Getting ready

How to do it…

How it works…

There’s more…

See also

Integrating Atlassian Opsgenie with Zabbix

Getting ready

How to do it…

How it works…

There’s more…

10

Extending Zabbix Functionality with
Custom Scripts and the Zabbix API

Technical requirements

Setting up and managing API tokens

Getting ready

How to do it…

How it works…

Using the Zabbix API for extending functionality

Getting ready

How to do it…

How it works…

See also

Building a jumphost using the Zabbix API and
Python

Getting ready

How to do it…

How it works…

See also

Enabling and disabling a host from Zabbix maps

Getting ready

How to do it…

How it works…

There’s more…

See also

11

Maintaining Your Zabbix Setup

Technical requirements

Setting Zabbix maintenance periods

Getting ready

How to do it…

How it works…

Backing up your Zabbix setup

Getting ready

How to do it…

How it works…

There’s more…

Upgrading the Zabbix backend from older PHP
versions to PHP 8.2 or higher

Getting ready

How to do it…

How it works…

Upgrading a Zabbix database from older
MariaDB versions to MariaDB 11.4

Getting ready

How to do it…

How it works…

There’s more...

Upgrading your Zabbix setup

Getting ready

How to do it…

How it works…

See also

Maintaining Zabbix performance over time

Getting ready

How to do it…

How it works…

There’s more…

12

Advanced Zabbix Database Management

Technical requirements

Setting up MySQL partitioning for your Zabbix
database

Getting ready

How to do it…

How it works…

See also

Using the PostgreSQL TimescaleDB
functionality

Getting ready

How to do it…

How it works…

See also

Securing your Zabbix MySQL database

Getting ready

How to do it…

How it works…

13

Bringing Zabbix to the Cloud with Zabbix
Cloud Integration

Technical requirements

Setting up AWS monitoring

Getting ready

How to do it…

How it works…

There’s more…

Setting up Microsoft Azure monitoring

Getting ready

How to do it…

How it works…

There’s more…

Building your Zabbix Docker monitoring

Getting ready

How to do it…

How it works…

There’s more…

Index

Other Books You May Enjoy

Preface
Welcome to Zabbix 7 IT Infrastructure Monitoring Cookbook. IT
infrastructure ranges from Windows and Linux to networking and
development, and basically anything that runs on computer hardware. In this
book, we will go over various subjects useful to anyone in IT who wants to
use Zabbix to monitor their IT infrastructure.

Who this book is for
Monitoring systems are often overlooked within IT organizations, but they
can provide an overview that will save you time, money, and headaches. This
book is for IT engineers who want to learn something about Zabbix 7 and
how to use it to bring their IT environments to the next level.

What this book covers
Chapter 1, Installing Zabbix and Getting Started Using the Frontend, covers
how to set up Zabbix optionally with HA and work your way through its
menus.

Chapter 2, Getting Things Ready with Zabbix User Management, covers how
to set up your first users, user groups, and user roles.

Chapter 3, Setting Up Zabbix Monitoring, covers how to set up almost any
type of monitoring within Zabbix.

Chapter 4, Working with Triggers and Alerts, covers how to set up triggers
and get alerts from them.

Chapter 5, Building Your Own Structured Templates, covers how to build
templates that are structured and will work wonders for keeping your Zabbix
setup organized.

Chapter 6, Visualizing Data, Inventory and Reporting, covers how to
visualize data in graphs, maps, and dashboards. It also covers how to use the
Zabbix inventory, reporting, and business service monitoring functionality.

Chapter 7, Using Discovery for Automatic Creation, covers how to use
Zabbix discovery for automatic host creation as well as items, triggers, and
more with agents, SNMP, WMI, and JMX.

Chapter 8, Setting Up Zabbix Proxies, teaches how to set up Zabbix proxies
correctly for use in a production environment, with the addition of the new
proxy high availability.

Chapter 9, Integrating Zabbix with External Services, teaches how to
integrate Zabbix with external services for alerting.

Chapter 10, Extending Zabbix Functionality with Custom Scripts and Zabbix
API, covers how to extend Zabbix functionality by using custom scripts and
the Zabbix API.

Chapter 11, Maintaining Your Zabbix Setup, covers how to maintain a
Zabbix setup and keep its performance up over time.

Chapter 12, Advanced Zabbix Database Management, teaches how to
manage Zabbix databases for an advanced setup.

Chapter 13, Bringing Zabbix to the Cloud with Zabbix Cloud Integration,
covers how to use Zabbix in the cloud with services such as AWS, Azure,
Docker, and Kubernetes.

To get the most out of this book
You should have a good basis in IT to understand the terminology used in
this book. This book is best for people with at least basic knowledge of
monitoring systems, Linux, and network engineering.

Software/hardware covered
in the book

Operating system
requirements

Zabbix 7 Linux (any)

Python 3

MariaDB (MySQL)

PostgreSQL

NGINX

VIM

Make sure you have a virtualization environment ready to create virtual
machines for use with the recipes. VirtualBox, VMware, or any other type of
client/hypervisor will do.

Throughout the book, we will make use of Vim to edit files, so make sure to
install it. If you do not feel comfortable using Vim, you can substitute this for
Nano or anything else you prefer.

If you are using the digital version of this book, we advise you to type the
code yourself or access the code via the GitHub repository (link available
in the next section). Doing so will help you avoid any potential errors
related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook. If there’s an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: “The log_bin_trust_function_creators

function is set to 1 here to allow the initial database data to be imported.

A block of code is set as follows:

listen 8080;

server_name example.com;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

MariaDB Server

To use a different major version of the server, or to pin to a

specific minor version, change URI below. deb [arch=amd64,arm64]

https://dlm.mariadb.com/repo/mariadbserver/11.4/repo/ubuntu jammy

main

Any command-line input or output is written as follows:

systemctl start mariadb

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: “We will also need a virtual IP (VIP) address
for our cluster nodes.”

TIPS OR IMPORTANT NOTES
Appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting
ready, How to do it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as
follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up
any software or any preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in
the previous section.

There’s more…

This section consists of additional information about the recipe in order to
make you more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata, select your book, click on the Errata
Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Before we get started
Whether you are a real Zabbix guru or you’ve just started working with
Zabbix, this book will include some recipes for everyone. We will go over
most of the Zabbix basics and even do some cool stuff with the Zabbix API
and databases in the book.

We decided to write this book because we think it’s important to be part of
the community and want to supply you with the Zabbix information available
online and in the official Zabbix training materials in a clear and
straightforward way from a reliable source. We’ve all been through the
process of bookmarking all those amazing community blog posts, community
guides, and even official documentation. Sometimes it can be a bit much,
which is where this book will help. See it as your guide with something for
everyone without the need to Google until your fingers fall off.

Now even when you have gained experience, finished this and maybe other
books, and you’ve bookmarked every useful page about Zabbix, you might
still not know everything. This is where we come in. Zabbix is a free product
built on an amazing open source community, but besides that, there are some
real Zabbix gurus out there that decided to make a living out of it. Our
company, Opensource ICT Solutions, comes from these humble beginnings,
and we are there to provide our customers with everything they need when it
comes to Zabbix. As a Premium Zabbix partner, we provide the following:

Official Zabbix training

Official Zabbix support

Zabbix consultancy

Turnkey solutions

Custom integrations

24/7-available service desk

As providing services on Zabbix is our core business, we see different
environments, different customers, and different use cases of the product
every day, while working out the best solutions we can for our worldwide

customer base. As an official training partner, it’s not only about building
environments but also about sharing knowledge and teaching others how to
get the most out of the product.

So, if you’ve enjoyed this book, please do think about us and others in our
amazing Zabbix community. Give us a follow on LinkedIn (and other social
media) and whenever you need help, give us a call! We will definitely be
ready to help you out with any questions you might run into.

United Kingdom The Netherlands United States

Opensource ICT
Solutions LTD

Opensource ICT
Solutions B.V.

Opensource ICT
Solutions LLC

Phone: +44 20
4551 1827

Phone: +31 (0)72
743 65 83

Phone: +1-929-
377-1232

https://oicts.com
info@oicts.com

Share Your Thoughts

Once you’ve read Zabbix 7 IT Infrastructure Monitoring Cookbook, we’d
love to hear your thoughts! Please click here to go straight to the Amazon
review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make
sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of
that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from
your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80107-832-0

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

1

Install ing Zabbix and Getting Started
Using the Frontend
For Zabbix 7, the developers have really outdone themselves. In this Long
Term Support (LTS) release, we will find far more quality-of-life (QoL)
changes along with some impressive new cutting-edge features. Coming from
Zabbix 6.0, you will still find a lot of improvements made in Zabbix 6.2 and
6.4 as those have, of course, been included in Zabbix 7.0 LTS. We will detail
all important changes throughout the book.

In this chapter, we will install the Zabbix server and explore the Zabbix UI to
get you familiar with it. We will go over finding your hosts, triggers,
dashboards, and more to make sure you feel confident diving into the deeper
material later on in this book. The Zabbix UI has a lot of options to explore,
so if you are just getting started, don’t get overwhelmed. It’s quite
structurally built, and once you get the hang of it, I am confident you will
find your way without issues. You will learn all about these subjects in the
following recipes:

Installing the Zabbix server

Setting up the Zabbix frontend

Enabling Zabbix server high availability (HA)

Using the Zabbix frontend

Navigating the Zabbix frontend

Technical requirements
We’ll be starting this chapter with an empty Linux (virtual) machine. Feel
free to choose a RHEL- or Debian-based Linux distribution (we’ll be using
Ubuntu in the examples). It’s recommended to use a server distribution and
not a desktop distribution of the Linux distribution you choose. We will then
set up a Zabbix server from scratch on this host.

So before jumping in, make sure you have your Linux host at the ready. I’ll
be using Rocky Linux 9 and Ubuntu 22.04 in my examples.

Install ing the Zabbix server
Before doing anything within Zabbix, we need to install it and get ready to
start working with it. In this recipe, we are going to discover how to install
Zabbix server 7.0.

Getting ready

Before we actually install the Zabbix server, we are going to need to fulfill
some prerequisites. We will be using MariaDB mostly throughout this book.
MariaDB is popular, and a lot of information is available on using it with
Zabbix.

At this point, you should have a prepared Linux server in front of you
running either a RHEL- or Debian-based distribution. I’ll be installing Rocky
Linux 9 and Ubuntu 22.04 on my server; let’s call them lar-book-rocky and
lar-book-ubuntu.

When you have your server ready, we can start the installation process.

How to do it…
1. Let’s start by adding the Zabbix 7.0 repository to our system.

For RHEL-based systems, run the following:
rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rocky/9/x86_64/zabbix-

release-7.0-2.el9.noarch.rpm

dnf clean all

For Ubuntu systems, run the following:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

2. For RHEL-based systems, we’ll also remove the Zabbix Extra Packages for Enterprise Linux
(EPEL) repository packages (if installed):

vim /etc/yum.repos.d/epel.repo

3. Then, add the following line:

[epel]...excludepkgs=zabbix*

4. Now that the repository is added, let’s add the MariaDB repository on our server:

wget https://downloads.mariadb.com/MariaDB/mariadb_repo_setup

chmod +x mariadb_repo_setup

./mariadb_repo_setup

5. Then, install and enable it.

For RHEL-based systems, run the following:
dnf install mariadb-server

systemctl enable mariadb

systemctl start mariadb

For Ubuntu systems, run the following:
apt install mariadb-server

systemctl enable mariadb

systemctl start mariadb

6. After installing MariaDB, make sure to secure your installation by running the following
command:

mariadb-secure-installation

7. Make sure to answer the questions with yes (Y) and configure a root password that’s secure.

8. Run through the secure installation setup, and make sure to save your password somewhere. It’s
highly recommended to use a password vault.

9. Now, let’s install our Zabbix server with MySQL support.

For RHEL-based systems, run the following command:
dnf install zabbix-server-mysql zabbix-sql-scripts zabbix-

selinux-policy

For Ubuntu systems, run the following command:
apt install zabbix-server-mysql zabbix-sql-scripts

10. With the Zabbix server installed, we are ready to create our Zabbix database. Log in to MariaDB
with the following:

mysql -u root -p

11. Enter the password you set up during the secure installation. Next, we’ll create the Zabbix
database with the following commands. Do not forget to change password in the second and

third commands, as this will be the password used for connecting to your Zabbix database:

create database zabbix character set utf8mb4 collate

utf8mb4_bin;

create user zabbix@localhost identified by 'password';

grant all privileges on zabbix.* to zabbix@localhost identified

by 'password';

set global log_bin_trust_function_creators = 1;

quit

The log_bin_trust_function_creators function is set to 1 here to allow
the initial database data to be imported. We will disable it again
afterwards.

TIP

Since Zabbix 6, Zabbix uses utf8mb4 by default in all its installation documentation. We’ve

changed utf8 to utf8mb4 in the preceding command so that everything will work. For

reference, check the Zabbix support ticket here:
https://support.zabbix.com/browse/ZBXNEXT-3706.

12. We now need to import our Zabbix database schema to our newly created Zabbix database:

zcat /usr/share/zabbix-sql-scripts/mysql/server.sql.gz |

mariadb --default-character-set=utf8mb4 -u zabbix -p zabbix

13. As mentioned, we can now disable log_bin_trust_function_creators again:

mysql -u root -p

set global log_bin_trust_function_creators = 0;

quit;

IMPORTANT NOTE
At this point, it might look like you are stuck and the system is not responding. Do not worry,
though, as it will just take a while to import the SQL schema.

We are now done with the preparations for our MariaDB side and are ready
to move on to the next step, which will be configuring the Zabbix server.

1. The Zabbix server is configured using the Zabbix server config file. This file is located in
/etc/zabbix/. Let’s open this file with our favorite editor; I’ll be using Vim throughout the

book (but feel free to substitute Vim with vi or nano):

vim /etc/zabbix/zabbix_server.conf

2. Now, make sure the following lines in the file match your database name, database user username,
and database user password:

DBName=zabbix

DBUser=zabbix

DBPassword=password

TIP
Before starting the Zabbix server, you should configure SELinux or AppArmor to allow the use
of the Zabbix server. If this is a test machine, you can use a permissive stance for SELinux or
disable AppArmor, but it is not recommended to do this in production.

3. All done; we are now ready to start our Zabbix server:

systemctl enable zabbix-server

systemctl start zabbix-server

4. Check whether everything is starting up as expected with the following:

systemctl status zabbix-server

5. Also, make sure to monitor the log file, which provides a detailed description of the Zabbix startup
process:

tail -f /var/log/zabbix/zabbix_server.log

6. Most of the messages in this file are fine and can be ignored safely, but make sure to read them
well and see if there are any issues with your Zabbix server starting.

How it works…

The Zabbix server is the main process for our Zabbix setup. It is responsible
for our monitoring, problem alerting, and a lot of the other tasks described in
this book. A complete Zabbix stack consists of at least the following:

A database (MySQL/MySQL fork, PostgreSQL, or Oracle)

A Zabbix server

Apache or NGINX running the Zabbix frontend with PHP 8.0 or higher

We can see the components and how they communicate with each other in
the following diagram:

Figure 1.1 – Zabbix setup communications diagram

We’ve just set up the Zabbix server and database; by running these two, we
are basically ready to start monitoring. The Zabbix server communicates with
the Zabbix database to write collected values to it.

There is still one problem, though: we cannot configure our Zabbix server to
do anything. For this, we are going to need our Zabbix frontend, which we’ll
set up in the next recipe.

Setting up the Zabbix frontend
The Zabbix frontend is the face of our server. It’s where we will configure all
of our hosts, templates, dashboards, maps, and everything else. Without it, we
would be blind to what’s going on on the server side. So, let’s set up our
Zabbix frontend in this recipe.

Getting ready

We are going to set up the Zabbix frontend using NGINX. It’s also possible
to use Apache, but NGINX is known to be faster and, as such, it has a slight
edge over Apache. Since installation of both NGINX and Apache is quite
simple, NGINX is the preferred way to go if you have a lot of frontend users.
Before starting with this recipe, make sure you are running the Zabbix server
on a Linux distribution of your choice. I’ll be using the lar-book-rocky and
lar-book-ubuntu hosts in these recipes to show the setup process on Rocky
Linux 9 and Ubuntu 22.04.

How to do it…
1. Let’s jump right in and install the frontend.

For RHEL-based systems, run the following:
dnf module switch-to php:8.3

dnf install zabbix-web-mysql zabbix-nginx-conf

For Ubuntu systems, run the following:
apt install zabbix-frontend-php zabbix-nginx-conf

TIP
Don’t forget to allow ports 80 and 443 in your firewall if you are using one. Without this, you

won’t be able to connect to the frontend.

2. We will then have to configure our NGINX configuration.

For RHEL-based systems, edit the following file:
/etc/nginx/conf.d/zabbix.conf

For Ubuntu systems, edit the following file:
/etc/zabbix/nginx.conf

3. Then, edit the following two lines:

listen 8080;

server_name example.com;

Make it look like this:
listen 80;

server_name 192.168.0.50;

IMPORTANT NOTE
At server_name, it is important to add the IP address of where this NGINX (Zabbix) web

page will be running. Add the IP address or DNS name of where you want your frontend to be
available here.

4. Restart the Zabbix components and make sure they start up when the server is booted.

For RHEL-based systems, run the following:
systemctl enable nginx php-fpm

systemctl restart nginx php-fpm

For Ubuntu systems, run the following:
systemctl enable nginx

systemctl restart nginx php-fpm

5. We should now be able to navigate to our Zabbix frontend without any issues and start the final
steps to set up the Zabbix frontend.

6. Let’s go to our browser and navigate to our server’s IP. It should look like this:

http://<your_server_ip>/

IMPORTANT NOTE
On Ubuntu (in some cases), you might have to add port 8080, which you will probably want to

change to port 80 (or 443 after adding SSL) later. In those cases, the URL should look like

this:

http://<your_server_ip>:8080/

7. We should now see the following web page:

Figure 1.2 – The Zabbix welcome screen

If you don’t see this web page, you may have missed some steps in the setup
process. Retrace your steps and double-check your configuration files; even
the smallest typo could prevent the web page from serving.

8. Let’s continue by clicking Next step on this page, which will serve you with the next page:

Figure 1.3 – The Zabbix installation prerequisites page

9. Every single option here should be showing OK now; if not, fix the mistake it’s showing you. If
everything is OK, you may proceed by clicking Next step again, which will take you to the next
page:

Figure 1.4 – The Zabbix installation DB connection page

10. Here, we need to tell our Zabbix frontend where our MySQL database is located. Since we
installed it on localhost, we just need to make sure we issue the right database name, database

user username, and database user password.

11. This should make the Zabbix frontend able to communicate with the database. Let’s proceed by
clicking Next step again:

Figure 1.5 – The Zabbix installation server details page

Next up is the Zabbix server configuration. Make sure to name your server
something useful or something cool. For example, I set up a production
server called Meeseeks because every time we got an alert, we could make
Zabbix say “I’m Mr. Meeseeks. Look at me.” But something such as
zabbix.example.com also works.

12. Let’s name our server, set up the time zone to match our own time zone, and proceed to the next
step:

Figure 1.6 – The Zabbix installation summary page

13. Verify your settings and proceed to click Next step one more time:

Figure 1.7 – The Zabbix installation finish page

14. You have successfully installed the Zabbix frontend. You may now click the Finish button, and
we can start using the frontend. You’ll be served with a login page where you can use the
following default credentials:

Username: Admin

Password: zabbix

Keep in mind that the username and password fields are both case-sensitive.

How it works…

Now that we’ve installed our Zabbix frontend, our Zabbix setup is complete
and we are ready to start working with it. Our Zabbix frontend will connect to
our database to edit the configuration values of our setup, as we can see in the
following diagram:

Figure 1.8 – Zabbix setup communications diagram

The Zabbix frontend will also talk to our Zabbix server, but this is just to
make sure the Zabbix server is up and running and to provide some additional
functionality such as a test button on items. Now that we know how to set up
the Zabbix frontend, we can start using it. Let’s check this out after the next
recipe.

There’s more...

Zabbix provides a very convenient setup guide that contains a lot of detail
regarding the installation of Zabbix. I would always recommend keeping this
page open during a Zabbix installation as it contains information such as a
link to the latest repository. Check it out here:

https://www.zabbix.com/download

Enabling Zabbix server HA

Zabbix 6 shipped with one of the most anticipated features of all time, HA.
This feature will bring your Zabbix setup to the next level by making sure
that if one of your Zabbix servers is having issues, another one will take over.
Of course, this feature is still available in Zabbix 7, and we will be making
good use of it.

A great thing about this implementation is that it supports an easy proprietary
way to put one to many Zabbix servers in a cluster: a great way of making
sure your monitoring stays in the air at all times (or at least as much as
possible).

The setup for the Zabbix server will be active/passive, as we cannot do
anything such as load balancing on the Zabbix server side. Load balancing is,
however, supported using Zabbix proxies, which we will discuss in Chapter
8, Setting up Zabbix Proxies.

Getting ready

Before getting started, please note that creating an HA setup is considered an
advanced topic. It might be more difficult than other recipes in this chapter.

For this setup, we will need three new virtual machines, as we are going to
create a split Zabbix setup, unlike the setup that we created in the first recipe
of this chapter. Let’s take a look at how I have named our three new virtual
machines and what their IP addresses will be:

lar-book-ha1 (192.168.0.1)

lar-book-ha2 (192.168.0.2)

lar-book-ha-db (192.168.0.10)

Two of these servers will run our Zabbix server cluster and a Zabbix
frontend. The other server is just for our MySQL database. Please take note
that the IP addresses used in the example may be different for you. Use the
correct ones for your environment.

We will also need a virtual IP (VIP) address for our cluster nodes. We will
use 192.168.0.5 in the example.

TIP
In our setup, we are using only one MySQL Zabbix database. To make sure all parts of
Zabbix are set up as highly available, it might be worth looking into setting up MySQL in a
primary/primary setup. This can be a great combination with the Zabbix server’s HA.

This cookbook will not use SELinux or AppArmor, so make sure to add the
correct policies before or during the use of this guide. It’s also possible to
disable SELinux, but this is not recommended in production. Additionally,
this guide does not detail how to set up your firewall, so make sure to do this
beforehand as well.

How to do it…

For your convenience, we’ve split this How to do it… section into three parts.
The first is setting up the database, the next is setting up the Zabbix server
cluster, and the last is how to set up the Zabbix frontend redundantly. The
How it works… section will then provide an explanation of the entire setup.

Setting up the database

Let’s start with setting up our Zabbix database, ready to be used in a highly
available Zabbix server setup.

1. Log in to lar-book-ha-db and install the MariaDB repository with the following command on

Red Hat-based systems:

wget https://downloads.mariadb.com/MariaDB/mariadb_repo_setup

chmod +x mariadb_repo_setup

./mariadb_repo_setup

2. Then, let’s install the MariaDB server application.

For RHEL-based systems, run the following:
dnf install mariadb-server

systemctl enable mariadb

systemctl start mariadb

For Ubuntu systems, run the following:
apt install mariadb-server

systemctl enable mariadb

systemctl start mariadb

3. After installing MariaDB, make sure to secure your installation with the following command:

mariadb-secure-installation

4. Make sure to answer the questions with yes (Y) and configure a root password that’s secure. It’s

highly recommended to use a password vault for storing it.

5. Now, let’s create our Zabbix database for our Zabbix servers to connect to. Log in to MariaDB
with the following command:

mariadb -u root -p

6. Enter the password you set up during the secure installation. Next, we’ll create a Zabbix database
with the following commands. Do not forget to change password in the second, third, and fourth

commands:

create database zabbix character set utf8mb4 collate

utf8mb4_bin;

create user zabbix@'192.168.0.1' identified by 'password';

create user zabbix@'192.168.0.2' identified by 'password';

create user zabbix@'192.168.0.5' identified by 'password';

grant all privileges on zabbix.* to 'zabbix'@'192.168.0.1'

identified by 'password';

grant all privileges on zabbix.* to 'zabbix'@'192.168.0.2'

identified by 'password';

grant all privileges on zabbix.* to 'zabbix'@'192.168.0.5'

identified by 'password';

set global log_bin_trust_function_creators = 1;

quit

7. Lastly, we need to import the initial Zabbix database configuration, but for that, we need to install
the Zabbix repository.

For RHEL-based systems, run the following command:
rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rocky/9/x86_64/zabbix-

release-7.0-2.el9.noarch.rpm

dnf clean all

For Ubuntu systems, run the following command:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

8. Then, we need to install the SQL scripts Zabbix module.

For RHEL-based systems, run the following command:
dnf install zabbix-sql-scripts

For Ubuntu systems, run the following command:
apt install zabbix-sql-scripts

9. Then, we issue the following command, which might take a while, so be patient until it is done:

zcat /usr/share/doc/zabbix-sql-scripts/mysql/server.sql.gz |

mysql --default-character-set=utf8mb4 -u root -p zabbix

10. We will need to disable log_bin_trust_function_creators after this step:

mysql -u root -p

set global log_bin_trust_function_creators = 0;

quit;

Setting up the Zabbix server cluster nodes

Setting up the cluster nodes works in the same way as setting up any new
Zabbix server. The only difference is that we will need to specify some new
configuration parameters.

1. Let’s start by adding the Zabbix 7.0 repository to our lar-book-ha1 and lar-book-ha2

systems:

rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rocky/9/x86_64/zabbix-

release-7.0-2.el9.noarch.rpm

dnf clean all

For Ubuntu systems, use the following command:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

2. Now, let’s install the Zabbix server application.

For RHEL-based systems, run the following command:
dnf install zabbix-server-mysql zabbix-selinux-policy

For Ubuntu systems, run the following command:
apt install zabbix-server-mysql

3. We will now edit the Zabbix server configuration files, starting with lar-book-ha1. Issue the

following command:

vim /etc/zabbix/zabbix_server.conf

4. Then, add the following lines to allow a database connection:

DBHost=192.168.0.10

DBPassword=password

DBName and DBUser are both set to zabbix by default. If you used a
different database and/or username, you will have to change those as
well.

5. To enable HA on this host, add the following lines in the same file:

HANodeName=lar-book-ha1

6. To make sure our Zabbix frontend knows where to connect to if there is a node failover, fill in the
following:

NodeAddress=192.168.0.1

7. Save the file, and let’s do the same for our lar-book-ha2 host by editing its file:

vim /etc/zabbix/zabbix_server.conf

8. Then, add the following lines to allow a database connection:

DBHost=192.168.0.10

DBPassword=password

DBName and DBUser are both set to zabbix by default. If you used a
different database and/or username, you will have to change those as
well.

9. To enable HA on this host, add the following lines in the same file:

HANodeName=lar-book-ha2

10. To make sure our Zabbix frontend knows where to connect to if there is a node failover, fill in the
following:

NodeAddress=192.168.0.2

11. Save the file, and let’s start our Zabbix server:

systemctl enable zabbix-server

systemctl start zabbix-server

Setting up NGINX with HA

To make sure our frontend is also set up in such a way that if one Zabbix
server has issues, it fails over, we will set them up with keepalived. Let’s see
how we can do this.

1. Let’s start by logging in to both lar-book-ha1 and lar-book-ha2 and installing

keepalived.

For RHEL-based systems, run the following:
dnf install -y keepalived

For Ubuntu systems, run the following:
apt install keepalived

2. Then, on lar-book-ha1, edit the keepalived configuration with the following command:

vim /etc/keepalived/keepalived.conf

3. Delete everything from this file (if it’s not empty already) and add the following text to the file:

vrrp_track_process chk_nginx {

process nginx

weight 10

}

vrrp_instance ZBX_1 {

state MASTER

interface ens192

virtual_router_id 51

priority 244

advert_int 1

authentication {

auth_type PASS

auth_pass password

}

track_process {

chk_nginx

}

virtual_ipaddress {

192.168.0.5/24

}

}

4. Do not forget to update password to something secure and edit the ens192 interface to your

own interface name/number.

IMPORTANT NOTE
In the previous file, we specified virtual_router_id 51; make sure the virtual router ID

51 isn’t used anywhere in the network yet. If it is, simply change the virtual router ID

throughout this recipe.

5. On lar-book-ha2, edit the same file with the following command:

vim /etc/keepalived/keepalived.conf

6. Delete everything from the file with dG (if you are using vim), and this time, we will add the

following information:

vrrp_track_process chk_nginx {

process nginx

weight 10

}

vrrp_instance ZBX_1 {

state BACKUP

interface ens192

virtual_router_id 51

priority 243

advert_int 1

authentication {

auth_type PASS

auth_pass password

}

track_process {

chk_nginx

}

virtual_ipaddress {

192.168.0.5/24

}

}

7. Once again, do not forget to update password to something secure and edit the ens192

interface to your own interface name/number.

8. Now, let’s install the Zabbix frontend.

For RHEL-based systems, run the following:
dnf install nginx zabbix-web-mysql zabbix-nginx-conf zabbix-

selinux-policy

For Ubuntu systems, run the following:
apt install nginx zabbix-frontend-php zabbix-nginx-conf

9. We will then have to configure our NGINX configuration.

For RHEL-based systems, edit the following file:
/etc/nginx/conf.d/zabbix.conf

For Ubuntu systems, edit the following file:
/etc/zabbix/nginx.conf

10. Then, edit the following two lines:

listen 8080;

server_name example.com;

Make it look like this:
listen 80;

server_name 192.168.0.5;

IMPORTANT NOTE
At server_name, it is important to add the IP address of where this NGINX (Zabbix) web

page will be running. Add the IP address or DNS name of where you want your frontend to be
available here. In this case, we have added the VIP address that keepalived will be

managing.

11. Start the web server and keepalived to make your Zabbix frontend available with the

following command:

systemctl enable nginx keepalived

systemctl start nginx keepalived

12. Then, we are ready to configure our Zabbix frontend. Navigate to your VIP address (in the
example IP case, http://192.168.0.5/), and you will see the following page:

Figure 1.9 – The Zabbix initial configuration window

13. Click on Next step twice until you see the following page:

Figure 1.10 – The Zabbix database configuration window for lar-book-ha1

14. Make sure to fill in Database host with the IP address of our Zabbix MariaDB database
(192.168.0.10). Then, fill in the database password for our zabbix database user.

15. Then, for the last step, for our first node, set up Zabbix server name as lar-book-ha1 and

select your time zone, as seen in the following screenshot:

Figure 1.11 – The Zabbix server settings window for lar-book-ha1

16. Then, click Next step and Finish.

17. Now, we need to do the same thing to our second frontend. Log in to lar-book-ha1.

On RHEL-based systems, issue the following:
systemctl stop nginx

For Ubuntu systems, issue the following:
systemctl stop nginx

18. When navigating to your VIP (in the example IP case, http://192.168.0.5/zabbix), you

will see the same configuration wizard again.

19. Fill out the database details again:

Figure 1.12 – The Zabbix database configuration window for lar-book-ha2

20. Then, make sure to set up Zabbix server name as lar-book-ha2, as seen in the following

screenshot:

Figure 1.13 – The Zabbix server settings window for lar-book-ha2

21. Now, we need to enable the lar-book-ha1 frontend again by issuing the following:

systemctl start nginx

That should be our last step. Everything should now be working as expected.
Make sure to check your Zabbix server log file to see if the HA nodes are
running as expected.

How it works...

Now that we have done it, how does the Zabbix server actually work in an
HA mode? Let’s start by checking out the Reports | System information
page on our Zabbix frontend:

Figure 1.14 – The Zabbix server system information with HA information

We can now see that we have some new information available; for example,
the High availability cluster parameter. This parameter now tells us if HA is
enabled or not and what the failover delay is. In our case, this is 1 minute,
meaning that it could take up to 1 minute before failover is initiated.

Furthermore, we can see every single node in our cluster. As Zabbix now
supports one to many nodes in a cluster, we can see every single one taking
part in our cluster right here. Let’s take a look at the setup we have built:

Figure 1.15 – The Zabbix server HA setup

As you can see in the setup, we have connected our two Zabbix server nodes,
lar-book-ha1 and lar-book-ha2, to our single Zabbix database, lar-book-ha-
db. Because our Zabbix database is our single source of truth (SSOT), it can
be used to keep our cluster configuration as well. In the end, everything
Zabbix does is always kept in the database, from host configuration to history
data to HA information. That’s why building a Zabbix cluster is as simple as
putting the HANodeName value in the Zabbix server configuration file.

We also included the NodeAddress parameter in the configuration file. This
parameter is used by the Zabbix frontend to make sure that our system
information (widget) and Zabbix server are not running frontend notification
work. The NodeAddress parameter will tell the frontend which IP address to
connect to for each respective server once it becomes the active Zabbix
server.

To take things a bit further, I have added a simple keepalived setup to this
installation as well. A keepalived configuration is a way to build simple
VRRP failover setups between Linux servers. In our case, we have entered

the VIP as 192.168.0.5 and added the chk_nginx process monitoring to
determine when to fail over. Our failover works as follows:

lar-book-ha1 has priority 244

lar-book-ha2 has priority 243

If NGINX is running on our node, that adds a weight of 10 to our priority,
leading to the total priority of 254 and 253, respectively. Now, let’s imagine
that lar-book-ha1 no longer has the web server process running. That means
its priority drops to 244, which is lower than 253 on lar-book-ha2, which does
have the web server process running.

Whichever host has the highest priority is the host that will have the
192.168.0.5 VIP, meaning that host is running the Zabbix frontend, which
will be served.

Combining these two ways of setting up HA, we have just created
redundancy for two of the parts that make up our Zabbix setup, making sure
we can keep outages to a minimum.

There’s more...

Now, you may wonder, what if I wanted to go further in terms of setting up
HA? First, the Zabbix HA feature is built to be simple and understandable to
the entire Zabbix user base, meaning that as of now, you might not see the
same amount of features you would get with a third-party implementation.

Nevertheless, the new Zabbix server HA feature has proved itself to be a
long-awaited feature that really adds something to the table. If you want to
run an HA setup such as this, the best way to add one more level of

complexity to HA is a MySQL master/master setup. Setting up the Zabbix
database with HA, which is the main source of truth (SOT), will make sure
that your Zabbix setup really is reliable in as many ways as possible. For
more information regarding MariaDB replication, check out the
documentation here: https://mariadb.com/kb/en/standard-replication/.

Using the Zabbix frontend
If this is your first time using Zabbix, congratulations on getting to the UI. If
you are a returning Zabbix user, there have been some changes to the Zabbix
7 UI that you might notice. We’ll be going over some of the different
elements that we can find in the Zabbix frontend so that during this book,
you’ll feel confident in finding everything you need.

Getting ready

To get started with the Zabbix UI, all we need to do is log in to the frontend.
You will be served with the following page at the IP on which your server is
running the Zabbix frontend:

Figure 1.16 – The Zabbix login screen

Make sure you log in to the Zabbix frontend with the default credentials:

Username: Admin

Password: zabbix

TIP
Just like in Linux, Zabbix is case-sensitive in most places. When entering your username,
make sure to include the right cases; otherwise, you won’t be able to log in!

How to do it…

After you log in, you’ll be served with the default page, which is the default
dashboard. This is what Zabbix has called Global view, and it provides us
with a nice overview of what’s going on. We can completely customize this
and all the other dashboards that Zabbix supplies, but it’s a good idea to
familiarize yourself with the default setup before building something new:

Figure 1.17 – The Global view dashboard

So, let’s get started on getting to know this Zabbix 7 frontend by looking at
the default dashboard. Please follow along in the frontend by clicking and
checking out the content mentioned.

Zabbix uses dashboards, and they are filled with widgets to show you
information. Let’s go over the different widgets in the default dashboard and
detail their information.

Let’s start with the System information widget:

Figure 1.18 – The System information widget

The System information widget, as you might have guessed, details all
system information for you. This way, we can keep an eye on what’s going

on with our Zabbix server and see whether our Zabbix server is even running.

Let’s go over the parameters:

Zabbix server is running: Informs us whether the Zabbix server backend is actually running and
where it is running. In this case, it’s running, and it’s running on localhost:10051.

Zabbix server version/Zabbix frontend version: We now have separate indicators that will
detail what the versions of our Zabbix server and frontend are.

Software update last checked: This is another new addition. Zabbix will now check for new
releases for you, indicating in the column below what the latest release is.

Latest release: This will detail the latest available version of Zabbix.

Number of hosts (enabled/disabled): This will detail the number of hosts enabled (15) and the

number of hosts disabled (5).

Number of templates: This details the total number of templates we have (284).

Number of items (enabled/disabled/not supported): Here, we can see details of our Zabbix
server’s items—in this case, enabled (564), disabled (240), and not supported (216).

Number of triggers (enabled/disabled [problem/ok]: This details the number of triggers. We
can see how many are enabled (371) and disabled (38), but also how many are in a problem state

(13) and how many are in an ok state (358).

Number of users (online): The first value details the total number of users. The second value
details the number of users currently logged in to the Zabbix frontend.

Required server performance, new values per second: Perhaps I’m introducing you to a
completely new concept here, which is New Values Per Second, or NVPS. A server receives or
requests values through items and writes these to our MariaDB database (or another database). The
NVPS information detailed here shows the estimated number of NVPS received by the Zabbix
server. Keep a close eye on this as your Zabbix server grows, as it’s a good indicator to see how
quickly you should scale up.

High availability cluster: If you are running a Zabbix server HA cluster, you will see if it is
enabled here and what the failover delay is. Additionally, the System information page will
display extra HA information.

You might also see two additional values here depending on your setup:

Database history tables upgraded: If you see this, it indicates that one of your database history
tables hasn’t been upgraded yet. Numeric (float) tables have been expanded to allow for more
characters to be saved per data point. This table isn’t upgraded automatically coming from Zabbix
4 to 5 or higher, as not everyone needs it, and it might take a long time to upgrade.

Database name: If you see the name of your database with the value of your version, it might
indicate you are running a non-supported database version. You could see a message such as
Warning! Unsupported <DATABASE NAME> database server version.

Should be at least <DATABASE VERSION>.

Now, that’s one of the most important widgets when it comes to your Zabbix
server, and it’s a great one to keep on your main dashboard if you ask me.

Let’s move on to the next widget, Host availability:

Figure 1.19 – The Host availability widget

The Host availability widget is a quick overview widget showing you
everything you want to know about your monitored host’s availability status.
In this widget, it shows whether the host is available, not available, or
unknown. This way, you get a good overview of the availability of all hosts
you could be monitoring with your Zabbix server in a single widget.

Next to it is the Problems by severity widget:

Figure 1.20 – The Problems by severity widget

It shows you how many hosts currently have a trigger in a certain state. There
are several default severities in Zabbix:

Disaster

High

Average

Warning

Information

Not classified

We can fully customize the severity levels and colors; for example, what
severity levels we want to put on which triggers. So, if you are worried about
the severities right now, don’t be. We’ll get to that later.

TIP
Customizing the severity levels and colors can be very useful to your organization. We can
customize the severity levels to match levels used throughout our company or even to match
some of our other monitoring systems.

The next widget is Clock:

Figure 1.21 – The Clock widget, indicating a time

It’s a clock with the local Linux system time, finally in a digital time format.
Need I say more? Let’s move on to the Problems widget:

Figure 1.22 – One of the Problems widgets available

Now, this is an interesting widget that I use a lot. We see our current
problems on this screen, so if we have our triggers set up correctly, we get
valuable information here. A quick overview of how many hosts are having
problems is one thing, but the Problems page also gives us more details
about the problem:

Time: At what time this problem was first noticed by the Zabbix server

Info: Information about the event, with Manual close and Suppressed statuses being represented
here.

Host: What host this problem occurred on.

Problem/Severity: What the problem is and how severe it is. The severity is shown in a color; in
this case, orange, meaning Average.

Duration: How long this has been a problem.

Update: A button to allow us to make changes to this existing problem, such as acknowledging it
or adding messages.

Actions: What actions have been taken after this problem occurred; for example, the problem
being acknowledged or a custom script that executes on problem creation? If you hover over any
action, it will show you detailed information about all actions that have been taken for this
problem.

Tags: What tags are assigned to this problem?

The Problems widget is very useful. We have different types of this widget
available, and as mentioned before, it is completely customizable, based on
how this widget shows our problems to us. Take a quick look at some of the
options, which we’ll detail further in a later chapter:

Figure 1.23 – The Add widget screen

TIP

We can hide severity levels from these widgets to make sure we only see important ones.
Sometimes, we don’t want to see informational severity problems on our dashboards; it can
distract us from a more important problem. Keep your dashboards clean by customizing
widgets to their full extent.

There’s also a very basic Graph widget included on the default dashboard.
As you can see, it details the number of processed values per second. As we
said, System information gives us an estimate on this value. The Graph
widget gives us a more accurate and detailed look:

Figure 1.24 – The Graph widget

These graph widgets are also fully customizable, and we will talk about them
more later in the book.

Some newer widgets you will find on this page are the Top hosts, Item
value, and Geomap widgets. Starting with the Top hosts widget, let’s have a
closer look at these:

Figure 1.25 – The Top hosts widget

The Top hosts widget is fully customizable to show us a list of any item we
want. We can then sort that list to show us the item with the highest (Top N)
or Lowest (Bottom N) values, giving us a great overview of—in this case—
hosts with the highest CPU load.

The Item value widget is also super useful, showing us a single item value:

Figure 1.26 – The Item value widget

Then, last, we have the Geomap widget: a geographical map with a
representation of all the hosts we would like to add. As you can see, by
default, our Zabbix server is already included. In our case, I’ve made sure to
update the location of our Zabbix server to our main office in the
Netherlands:

Figure 1.27 – The Geomap widget

It also shows us that the Zabbix server currently has no issues, as the icon is
green. If there is a problem the icon will show in the colour of the severity of
the problem.

We now know how to work with the Zabbix frontend and can continue
further on with how to navigate our instance.

Navigating the Zabbix frontend

Navigating the Zabbix frontend is easier than it looks at first glance,
especially with some of the amazing changes made to the UI starting from
Zabbix 5.0 and continuing into Zabbix 7.0. Let’s explore the Zabbix
navigational UI some more in this recipe by looking at the navigation bar and
what it has to offer.

Getting ready

Now that we’ve seen the first page after logging in with the default
dashboard, it is time to start navigating through the Zabbix UI and see some
of the other pages available. We’ll move through the sidebar and explore the
pages available in our Zabbix installation so that when we start monitoring
our networks and applications, we know where we can find everything.

So, before continuing, make sure you have the Zabbix server ready as set up
in the previous recipes.

How to do it…

The Zabbix navigation bar is the gateway to all of our powerful tools and
configuration settings. Zabbix uses a left-side navigation bar to keep our UI
as clean as possible. On top of that, they have made the sidebar disappear so
that we can keep a close look at all of our content without the sidebar
blocking our vision.

TIP
We cannot change the Zabbix navigation menu location, but it is possible to hide it to a
smaller form or completely hide it. If you want the navigation bar to be hidden (or not), click

the first icon on the right side of the Zabbix logo. If you want to fully hide the navigation bar,
click the second icon on the right side of the Zabbix logo.

Let’s take a look at the Zabbix sidebar as we see it from our default page and
get to know it. Please follow along in the frontend by clicking and checking
out the content mentioned:

Figure 1.28 – The default Zabbix page as seen in your own web browser

We’ve got some categories here to choose from, and one level below the
categories, we’ve got our different pages. First, let’s start by detailing the
categories:

Monitoring: The Monitoring category is where we can find all information about our collected
data. It’s basically the category you want to use when you’re working with Zabbix to read any
collected information you’ve worked hard to acquire.

Services: The Services category is new to Zabbix 7 and comes as part of the improved Business
Service Monitoring (BSM) features. We can find all the information regarding service and
service-level agreement (SLA) monitoring here.

Inventory: The Inventory category is a cool extra feature in Zabbix that we can use to look at our
host-related inventory information. You can add stuff such as software versions or serial numbers

to hosts and look at them here.

Reports: The Reports category contains a variety of predefined and user-customizable reports
focused on displaying an overview of parameters such as system information, triggers, and
gathered data.

Data collection: The Data collection category is where we build everything that has to do with
monitoring our devices. We will later use this data in Monitoring, Inventory, and Reports. We
can edit our settings to suit our every need so that Zabbix can show us that data in a useful way.

Alerts: The Alerts section of the UI is all about showing the right data.

Users: The Users section is all about displaying user- and user-group-related data. It has
everything you need to manage accounts and permissions.

Administration: The Administration category is where we administer the Zabbix server. You’ll
find all your settings from the server here to enable you and your colleagues to have a good
working Zabbix experience.

You’ll go over all of these quite a lot while using this book, so remember
them well. Let’s dive a little deeper into the categories by looking at them
one by one. Let’s start with the Monitoring category:

Figure 1.29 – The Monitoring section of the sidebar

The Monitoring tab contains the following pages:

Problems: We can look at our current problems in detail here. We are provided with a bunch of
filter options to narrow down our problem search if needed.

Hosts: This page will provide a quick overview of what’s going on with hosts. It also provides
links to navigate to pages showing data for our hosts.

Latest data: Here is a page we’re going to use quite a lot throughout our professional Zabbix
lifetime. The Latest data page is where we can find collected values for every single host, which
we can, of course, filter on.

Maps: Maps are a very helpful tool in Zabbix to get an overview of your infrastructure. We can
use them for network overviews and such.

Discovery: This page provides us with an overview of discovered devices. We’ll work more on
this later.

Next, we have the Services category:

Figure 1.30 – The Services section of the sidebar

This part of the sidebar contains the following pages:

Services: This is where we configure all of the services we want to monitor

SLA: We can configure any SLAs here that we can then use in our services

SLA report: A detailed overview of configured services with their SLAs and whether they are
being met or not

Then, we have the Inventory category:

Figure 1.31 – The Inventory section of the sidebar

The Inventory tab contains the following pages:

Overview: A quick overview page for your inventory information

Hosts: A more detailed look into inventory values on a per-host basis

Next, we have the Reports category:

Figure 1.32 – The Reports section of the sidebar

The Reports tab contains the following pages:

System information: You can look at system information here; it contains the same information
as the System information widget we discussed earlier.

Scheduled reports: This is where we configure any automatic PDF reporting that we might want
to send out.

Availability report: On this page, we can see the percentage of time a trigger has been in a
problem state compared to an ok state. This is a helpful way of seeing how long certain items are
actually healthy.

Top 100 triggers: The top 100 triggers that have changed their state most often within a period of
time.

Audit log: We can see who changed what on our Zabbix server here. This is a great way to see
which colleague locked you out by accident or whether it was on purpose.

Action log: We can see a list of actions that have been taken; for example, due to triggers going to
a problem state or an ok state.

Notifications: On this page, we can see the number of notifications sent to our users.

Next, we have the Data collection category, which is a new entry:

Figure 1.33 – The Data collection section of the sidebar

The Data collection tab is almost the same as what the Configuration tab
used to be in older versions. It contains the following pages:

Template groups: We configure our template groups here; for instance, a group for all templates
that will be used within our company (Templates/Open source ICT Solutions) or all network
devices (Templates/Networking).

Host groups: We configure our host groups here; for instance, a group for all Linux servers.

Templates: This is where we configure templates that we can use to monitor hosts from the
Zabbix server.

Hosts: Another Hosts tab, but this time it is not for checking data. This is where we add and
configure host settings.

Maintenance: In Zabbix, we have the availability to set maintenance periods; this way, triggers or
notifications won’t disturb you while you take something offline for maintenance, for example.

Event correlation: We can correlate problems here to reduce noise or prevent event storms. This
is achieved by closing new or old problems when they correlate to other problems.

Discovery: This is where we configure Zabbix discovery for automatic host creation.

New in Zabbix is the Alerts category:

Figure 1.34 – The Alerts section of the sidebar

It consists of the following three pages:

Actions: All different kinds of actions can be configured in this part of the frontend. We can set up
actions for sending out alerts, creating hosts, and more.

Media types: There are several media types preconfigured in Zabbix, which you’ll find here
already. We can also add custom media types.

Scripts: This is where we can add custom scripts for extending Zabbix functionality in the
frontend.

Second to last, and also new, we have Users:

Figure 1.35 – The Users section of the sidebar

We can find five different pages here:

User groups: This is where we configure user groups and the permissions for these user groups.

User roles: It’s possible to configure different users’ roles here to limit or extend certain frontend
functionality to certain users.

Users: Add users to this page.

API tokens: This page was kind of hidden before, but it’s now easier to find. We can manage all
API tokens we have permission to edit here: super useful for super admins to create and manage
tokens of different users.

Authentication: We can find our authentication settings here, such as Lightweight Directory
Access Protocol (LDAP), Security Assertion Markup Language (SAML), and HTTP. It also
contains settings for the new just-in-time (JIT) user provisioning.

Finally, we have the Administration category:

Figure 1.36 – The Administration section of the sidebar

The Administration tab contains the following pages:

General: The general page contains our Zabbix server configuration. Settings ranging from
Housekeeping to Frontend theme are found here.

Audit log: The audit log settings are located here. We can enable or disable audit logging as well
as change how long logs should be stored.

Housekeeping: General housekeeping settings are found here. We can edit what we want to
enable or disable for housekeeping, as well as change how long we store things such as history,
trends, triggers, and more.

Proxy groups: At this new entry, we will define proxy groups that we can use for failover and
load balancing in combination with proxies.

Proxies: This is where we configure proxies that should be connected to this Zabbix server.

Macros: A bit more accessible now is global macros, since they have been relocated here. Define
new and manage existing global macros here.

Queue: View your Zabbix server queue here. Items might be stuck in a queue due to data
collection or performance issues.

TIP

When using Zabbix authentication such as HTTP, LDAP, or SAML, we still need to create our
users internally with the right permissions. Configure your users to match your authentication
method’s username in Zabbix and use the authentication method for password management.
With Zabbix 7.0, however, it is possible to use JIT user provisioning to automatically create
users with the correct permissions, which we will also talk about in this book.

2

Getting Things Ready with Zabbix User
Management
In this chapter, we will work on creating our first user groups, users, and user
roles. It’s very important to set these up in the correct manner, as they will
give people access to your Zabbix environment with the correct permissions.
By going over these things step by step, we will make sure we have a
structured Zabbix setup before continuing on with this book.

As a bonus, we will also set up some advanced user authentication using
SAML and LDAP to make things easier for your Zabbix users and provide
them with a way to use the login credentials they might already be using
throughout your company. We will go over all these steps in the order of the
following recipes:

Creating user groups

Using Zabbix user roles

Creating your first users

Azure AD SAML user authentication and JIT user provisioning

OpenLDAP user authentication and JIT user provisioning

Technical requirements
We can do all of the work in this chapter with any installed Zabbix setup. If
you haven’t installed Zabbix yet, check out the previous chapter to learn how

to do so. We will go through our Zabbix setup to get everything ready for our
users to start logging in and using the Zabbix frontend.

Creating user groups
To log in to the Zabbix frontend, we are going to need users. Right now, we
are logged in with the default user, which is logical because we need a user to
create users. This isn’t a safe setup though, because we don’t want to keep
using zabbix as a password. So, we are going to learn how to create new
users and group them accordingly.

It’s important to choose how you want to manage users in Zabbix before
setting up user accounts. If you want to use something such as LDAP or
SAML, it’s a smart idea to make the choice to use one of those authentication
methods right away, so you won’t have any migration trouble.

Getting ready

Now that we know how the Zabbix UI is structured and how to navigate it,
we can start doing some actual configuration. We’ll start out by creating
some user groups to get familiar with the process and start using them. This
way, our Zabbix setup gets not only more structured but also more secure.

To get started with this, we’ll need a Zabbix server like the one we used in
the previous recipes and the knowledge we’ve acquired there to navigate to
the correct frontend sections.

Looking at the following figure, we can see how our example company,
Cloud Hoster, is set up. We will create the users seen in the diagram to

create a structured and solid user setup:

Figure 2.1 – Cloud Hoster department diagram

So, Cloud Hoster has some departments that need access to the Zabbix
frontend and others that don’t need it at all. Let’s say we want to give the
following departments access to the Zabbix frontend:

Networking: To configure and monitor their network devices

Infrastructure: To configure and monitor their Linux servers

Buying and Inventory: To look at inventory information and compare it with other internal tools

How to do it…

Let’s get started with creating these three groups in our Zabbix UI:

1. To do this, navigate to Users | User groups, which will show you the following page:

Figure 2.2 – The Zabbix User groups window

2. Now, let’s start by creating the Networking group by clicking Create user group in the top-right
corner. This will bring you to the following screen:

Figure 2.3 – The Zabbix User groups configuration window

We will need to fill in the information, starting with Group name, which will
of course be Networking. There are no users for this group yet, so we’ll skip
that one. Frontend access gives us the option to provide authentication; if
you select LDAP here, LDAP authentication will be used for authenticating.
We will keep it as System default, which uses the internal Zabbix
authentication system.

MULTI-FACTOR AUTHENTICATION
New to Zabbix 7.0 is the ability to use multi-factor authentication. If we want users to be forced
to use this, we can set that up in the user group here. Before doing that, however, make sure
to set up multi-factor authentication under Users | Authentication.

3. Now, let’s navigate to the next tab on this page, which is Template permissions:

Figure 2.4 – The Zabbix User groups Template permissions configuration window

Here, we can specify what host groups our group will have access to. There’s
a default host group for Network devices already, which we will use in this
example.

4. Click Select to take you to a pop-up window with host groups available. Select
Templates/Network devices here and it’ll take you back to the previous window, with the group
filled in.

5. Select Read-write permissions.

6. We won’t be adding anything else, so click the big blue Add button to finish creating this host
group.

TIP
When using Zabbix authentication such as HTTP, LDAP, or SAML, we still need to create our
users internally with the right permissions if we do not use JIT user provisioning. To do so,
configure your users to match your authentication method’s username in Zabbix and use the
authentication method for password management. When using JIT user provisioning, this is
not something we have to worry about.

Now we will have a new user group called Networking that is only allowed
to read and write to the Templates/Network devices template group:

Figure 2.5 – The Zabbix User groups window

7. Let’s repeat this process to create a new Infrastructure user group, except instead of adding the
Templates/Network devices template group, we’ll add the Linux servers host group, like this:

Figure 2.6 – The Zabbix User groups Permissions configuration window with one host
group

8. Click Add to save this host group.

9. Repeat the steps again and to add Buying and Inventory user group, we’ll do something
differently. We’ll repeat the process we’ve just done except for the part with the permissions. We
want Buying and Inventory to be able to read our inventory data, but we don’t want them to
actually change our host configuration. Add both the Templates/Network devices template group
and Linux servers host group to the user group, but with only Read permissions like this:

Figure 2.7 – The Zabbix User groups Permissions configuration window with two groups

Congratulations! Finishing this means you’ve ended up with three different
user groups and we can continue to create our first new users! Let’s get to it.

There’s more...

Zabbix user groups are quite extensive and there is a lot more to it than there
seems at first. As the entire permission system is based on what user group(s)
and user role you are part of, it is always a good idea to read the Zabbix
documentation first:

https://www.zabbix.com/documentation/current/en/manual/config/users_and
_usergroups/usergroup.

Using Zabbix user roles
Since Zabbix 6.0, we can create user roles within our Zabbix system. By
creating our own user roles in Zabbix, it’s possible to provide additional
permission settings. In older Zabbix versions, we had the ability to assign one
of three user types:

Users

Admin

Super admin

What these user types did in earlier releases was restrict what Zabbix users
could see in the frontend. This was always pre-defined though.

Although these user groups are still in Zabbix, with the addition of user roles
that we can create ourselves, we can set up our own frontend-related
restrictions, making it possible to only show certain parts of the UI to certain
Zabbix users. This is done by limiting access to certain permissions a user
group has by default as well as respecting the user group-related permissions.

Getting ready

For this recipe, we will need a Zabbix server, preferably the one set up in the
previous recipe. In the previous recipe, we set up different user groups to
provide for different permissions on host groups. Completely separate from

the user group, we will apply certain user roles to our users to determine what
they can see in the UI. Let’s check out how to set up our user roles.

How to do it...
1. First, navigate to the Zabbix frontend and go to Users | User roles. This will show us the default

user roles as you know them from older Zabbix versions:

Figure 2.8 – The default Zabbix User roles configuration window

2. Here, we can click on the blue Create user role button in the top-right corner.

3. We’ll set up a new user role called User+ role. This role will be for Zabbix users with only

read permissions, but who need more access than just the Monitoring, Inventory, and Reports
navigational elements.

Figure 2.9 – The top part of a new Zabbix User role configuration window

4. First things first, make sure to enter User+ role into the Name field.

5. Let’s focus on the part where it states Access to UI elements first. When User is selected for User
type, we are not able to add access rights to the user role. So, let’s change the User type by

selecting Admin in the dropdown.

6. I specifically want this user role named User+ role to have the ability to access the

maintenance page. Setting this up will look like this:

Figure 2.10 – A new Zabbix User+ role with access to Maintenance

7. Make sure to also change the Access to actions section of the form by deselecting Manage
scheduled reports as follows:

Figure 2.11 – A new Zabbix User+ role with correct Access to actions settings

8. Last, but not least, click on the blue Add button at the bottom of the form to add this new user
role.

How it works...

First, let’s break down the options we have when creating user roles in
Zabbix:

Name: We can set a custom name for our user role here.

User type: User types still exist in Zabbix 6, although they are now assigned through user roles.
There’s still a limit to what can be seen by a certain user type, for example the User type will

never have more than read access and the Super admin type is still unrestricted when it comes

to permissions.

Access to UI elements: Here, we can restrict what a user can see on the Zabbix UI when they are
assigned to this user role.

Access to services: Service or SLA monitoring can be restricted here, as we might not want all
users to have access to it.

Access to modules: Custom Zabbix frontend modules are fully integrated into the user role
system, meaning we can select what frontend modules a Zabbix user can see.

Access to API: The Zabbix API can be restricted to certain user roles. For example, you might
only want a specific API user role, limiting the rest of the users’ access to the Zabbix API.

Access to actions: In Zabbix user roles, certain actions can be limited, including the ability to edit
dashboards, maintenance API tokens, and more.

Now, let’s look at what we’ve changed between the user role called User

role and the user role called User+ role. The default user role called User

role has the following access to UI elements:

Figure 2.12 – Default Zabbix user role called User role Access to UI elements

By default, we have three user roles in Zabbix 6, which mirror the available
user types. The user role we see here in Name mirrors the user type we have

called User. It gives us access to the UI elements seen above, restricting the
user role called User role to only be able to see certain things and make no
configuration changes.

For example, it’s considered an impactful permission to be able to set
Maintenance. Because of course, you could restrict important notifications
by setting Maintenance. But here comes the catch, what if you explicitly
want a Zabbix user to only be able to read information but still not have
access to configuration pages? In Zabbix 5.0, this wasn’t possible because
you could only select the User, Admin, or Super admin types, immediately
giving access to the entire configuration section when using the Admin and
Super admin user types.

Now, let’s see what we did by creating a new user role called User+ role:

Figure 2.13 – New Zabbix user role called User+ role Access to UI elements

Here, we can see what happens if we change the user type to Admin but do
not select all the available Access to UI elements. We now have a user role

with no access to important configuration pages but with access to
Maintenance.

Combining that with the settings for Access to actions, where we added the
Create and edit maintenance setting as seen in Figure 2.11, we would have
full access to the maintenance settings.

When we assign this role to a user in the next recipe and log in as that user,
we will be able to see the following in our Zabbix sidebar:

Figure 2.14 – Custom User role Zabbix sidebar

This, of course, is just one of the many types of configurations we can use.
We also have the ability to allow Zabbix users access to menus and options

through a number of parameters under a bunch of custom user roles. We are
free to set this up however we please, adding a lot of user flexibility within
Zabbix.

There’s more...

Zabbix is currently in the process of working out user roles further, meaning
that some parts might still be missing or you might see issues with them. As
it is a new feature, it is constantly being improved and extended. Check out
the Zabbix documentation for more information regarding this feature:
https://www.zabbix.com/documentation/6.4/en/manual/web_interface/fronten
d_sections/users/user_roles

Creating your first users
With our newly created user groups and user roles, we’ve taken our first step
toward a more structured and secure Zabbix setup. The next step is to
actually assign some users to the newly created user groups to make sure they
are assigned our new user permissions from the group, as well as making
them part of a user role to provide the correct access to UI elements.

Getting ready

To get started, we’ll need the server and the newly created user groups from
the last recipe. So, let’s start with the configuration.

We know there are three departments in the Cloud Hoster company that are
going to use our Zabbix installation. We’ve created user groups for them, but

there are also users in those departments that actually want to use our
installation. Let’s meet them:

Figure 2.15 – Cloud Hoster users diagram

These are the users we need to configure for Cloud Hoster to use.

How to do it…

Let’s start creating the users. We will start with our Networking department:

1. Navigate to Users | Users, which will bring us to this page:

Figure 2.16 – The Zabbix Users window

2. This is where all the user creation magic is happening, as we will be managing all of our users
from this page. To create our first Networking department user named s_network, click the

Create user button in the top-right corner, bringing us to the following screen:

Figure 2.17 – The Zabbix Users configuration window

3. Fill out the Username field to provide us with the username this user will have, which will be
s_network.

4. Also, it’s important to add this user to the group we have just created to give our user the right
permissions. Click Select and pick our group called Networking.

5. Last but not least, set a secure password in the Password fields; don’t forget it because we will be
using it later.

6. After this, move on to the Permissions tab as we won’t be configuring Media just yet:

Figure 2.18 – The Zabbix user Permissions configuration window

7. Select the Role option named Super admin role here. This will enable our user to access all UI
elements and see and edit information about all host groups in the Zabbix server.

The following user roles are available in Zabbix by default:

Default
roles

Description

User
role

The Zabbix User role has access to the
visualization aspects of our Zabbix
environment. Specifically, the Monitoring,
Services, and Inventory and Reporting
menus are available. The user will only ever

have READ access to templates and hosts
and they must be explicitly assigned.

Admin
role

The Zabbix Admin role can additionally
manage the configuration of our Zabbix
monitoring. Specifically, all the menus that
the Zabbix User has access to are available,
with the addition of Data collection and
Alerts. The user can be assigned READ-
WRITE access to templates and hosts and
they must be explicitly assigned.

Super
admin
role

The Zabbix Super admin role has access to
the administrative aspects of our Zabbix
environment. Specifically, all the menus
that the Zabbix Admin has access to are
available, with the addition of Users and
Administration. The user will always have
READ-WRITE access to all templates and
hosts.

8. Let’s repeat the previous steps for the user named y_network, but in the
Permissions tab, select the Admin role option as follows:

Figure 2.19 – The Zabbix user Permissions configuration window

After creating these two users, let’s move on to create the infrastructure user,
r_ infra. Repeat the steps we took for s_network, changing the Username,
of course. Then, add this user to the group and give our user the right
permissions. Click Select and pick our group called Infrastructure. It will
look as follows:

Figure 2.20 – The Zabbix user configuration window for r_infra

Lastly, make this user another Super admin on the Permissions page.

9. Now, for our last user, let’s repeat our steps, changing the Username and
the group in the User tab as follows:

Figure 2.21 – The Zabbix User configuration window for e_buy

10. If you didn’t follow the previous recipe, you can change this user’s Role
to User role at the Permissions tab. But if you did follow the previous
recipe, we can use the User+ role we created as follows:

Figure 2.22 – The Zabbix user configuration window for e_buy

Setting the user up with the User+ role will also let the e_buy user create
maintenance periods.

When you’re done, you’ll end up with the following:

s_network: A user with access to the Networking user group permissions with the Super

admin role

y_network: A user with access to the Networking user group permissions with the Admin role

r_infra: A user with access to the Infrastructure user group permissions with the Super

admin role

e_buy: A user with access to the Buying and Inventory user group permissions with either the

User role or the User+ role

Azure AD SAML user authentication and
JIT user provisioning

In this recipe, we will use Security Assertion Markup Language (SAML)
authentication, a widely used form of authentication in the IT world. The
SAML standard allows us to exchange authorization data between
applications, so we can authenticate between our Zabbix application and an
authentication provider. We’ll be using this as a form of managing passwords
for our Zabbix users. Please note that if you only set up user authentication
with passwords with SAML or LDAP, you still have to create users with their
permissions manually within Zabbix. To circumvent this, we can also set up
Just In Time (JIT) user provisioning since Zabbix 6.4.

Getting ready

To get started with SAML authentication, we will need our configured
Zabbix server from the previous recipe. It’s important that we have all the
configured users from the previous recipe. We will also need something to
authenticate with SAML. We will be using Microsoft Azure Active
Directory (AD) SAML.

Make sure to set up users in your Azure AD before continuing with this
recipe. You can use your existing AD users for authentication, so you can use
this recipe with your existing AD setup.

We will be using the s_network user as an example as well as a new
JIT_Admin user group in our Zabbix environment with no permissions set up.
The Azure user looks as follows:

Figure 2.23 – The Azure Users and groups window

For JIT user provisioning, we also made sure to make this user part of a new
zbx_admin group:

Figure 2.24 – The Azure users group details window

This group is just going to be an empty security group that we will use to
assign permissions in Zabbix later:

Figure 2.25 – The Azure group details window

To set up SAML, retrieve your SAML settings from your AD or another
SAML provider. To work with Zabbix, we will need the following:

IdP entity ID

SSO service URL

SLO service URL

Username attribute

SP entity ID

SP name ID format

For the JIT user provisioning, we will need the following:

Group name attribute

User name attribute

User last name attribute

User group mapping

How to do it…

We start with the assumption that you have your Azure AD ready. Let’s see
how we can configure SAML using our setup:

1. Let’s navigate to the following URL: https://portal.azure.com/.

2. After logging in, navigate to Azure AD and click on Enterprise Applications.

3. Now click on + New Application to create our new application. At the next window, click on
Create your own application:

Figure 2.26 – The Azure enterprise application creation page

4. In the next window, name our new application Zabbix and click on the blue Create button:

Figure 2.27 – The Azure enterprise new application page

5. Select our new application from the list and click on Users and Groups to add the correct users.
In our case, this will be s_network:

Figure 2.28 – The Azure enterprise application User addition

6. If we are setting up JIT user provisioning, make sure to also add the zbx_admin group:

Figure 2.29 – The Azure enterprise application Group addition

With JIT user provisioning, adding the group should be enough.

7. You will also have to assign a role. Click on Select a role and add the role you want to use. When
using JIT you can use the zbx_admin group, otherwise just add the user as User.

Figure 2.30 – Azure enterprise application role assignment

8. Click on Select and then Assign.

9. Now let’s move on to the SAML settings by clicking on Single sign-on in the sidebar.

10. Now click on SAML on the page shown in the following screenshot and continue:

Figure 2.31 – The Azure enterprise application SAML option

11. Now at 1, we can add the following information, where the black marks are our Zabbix server
URL:

Figure 2.32 – The Azure SAML setting 1

12. At 2, fill out the following:

Figure 2.33 – The Azure SAML setting 2

13. 3 will be automatically filled. Click on Download for Certificate (Base64):

Figure 2.34 – The Azure SAML setting 3

14. Log in to the Zabbix server CLI and create a new file with the following command:

vim /usr/share/zabbix/conf/certs/idp.cert

15. Paste the contents from the file downloaded in step 11 here and save the file.

16. Now back at Azure for 4, we will get the following information:

Figure 2.35 – The Azure SAML setting 4

17. At the Zabbix frontend, go to the Users | Authentication | SAML settings page and fill in the
following information:

Figure 2.36 – The Zabbix SAML settings

18. If you also want to use JIT user provisioning, enable it as seen in the previous screenshot as well
as fill in the following information:

Figure 2.37 – The Zabbix SAML JIT settings

IMPORTANT NOTE
I have used the JIT_Admin user group as suggested in the Getting ready part of this recipe.
Please use any user group and roles you see fit and make sure to integrate the JIT user
provisioning into your own groups and permissions.

19. If you have already created the s_network user and you aren’t going to use JIT user

provisioning, go to Users | Users and change the s_network user to include the used Azure

domain, for example:

Figure 2.38 – The Zabbix edit user screen for our SAML setup

If you are using JIT user provisioning, you can simply log in with the new
user credentials using SAML authentication and it should create the user with
the correct credentials.

20. After following these steps, it should now be possible to log in with your user configured in
Zabbix and use the password set in Azure AD for this:

Figure 2.39 – The Zabbix login window

How it works…

Zabbix SAML user authentication is by default used to centralize password
management. In the past, we were not able to actually assign user groups and

permissions to users via this setup. If we set it up without JIT user
provisioning we can use it for simple password management.

This way, we can make sure it is easier for users to keep their passwords
centralized:

Figure 2.40 – Zabbix SAML authentication diagram

Zabbix communicates with our Azure AD SAML component when we click
the Sign in button. The user is then authenticated against your Azure AD user
and a confirmation is sent back to the Zabbix server. Congratulations, you are
now logged in to your Zabbix server.

However, since Zabbix 6.4 it is also possible to enable JIT user provisioning.
This new feature allows us to also assign Zabbix User groups and roles
according to user groups on our SAML server. As such, the whole process
with JIT user provisioning included looks something like this:

Figure 2.41 – Zabbix SAML JIT authentication diagram

There’s more…

We can do this kind of authentication not only with SAML but also with
HTTP and LDAP. This way, you can choose the right form of advanced
authentication for your organization.

Check out the Zabbix documentation for more information on the different
forms of authentication:
https://www.zabbix.com/documentation/current/en/manual/web_interface/fro
ntend_sections/users/authentication

It’s also possible to work with an identity provider such as Okta or
OneLogin, among others. This means your options aren’t limited to Azure
AD: as long as it supports SAML, you can use it to authenticate against your
Zabbix server.

OpenLDAP user authentication and JIT
user provisioning
Although a lot of people use SAML in combination with Azure Active
Directory, that isn’t always the case. There are loads of different methods of
running your user authentication.

One of those methods is using LDAP instead of SAML with, for example, an
OpenLDAP server. OpenLDAP provides us with a solid open source
implementation to set up a user database with LDAP. The great thing about
this is that JIT user provisioning doesn’t just work with SAML, but also with
LDAP, meaning we can apply JIT user provisioning here as well.

Getting ready

To get things going, we are going to need an OpenLDAP server set up and
ready to go. It is recommended to use your own OpenLDAP environment.
There are loads of guides available online to do a solid OpenLDAP
implementation as well as a quick start guide for the latest version on the
official website: https://www.openldap.org/

Another way to go is spin up a test OpenLDAP environment with Docker.
We can use the following command:

docker run -p 389:389 -p 636:636 --name openldap-server --detach

oicts/openldap:1.0.0

docker run -p 8081:80 -p 4443:443 --name phpldapadmin --hostname

phpldapadmin --link openldap-server:ldap-host --env

PHPLDAPADMIN_LDAP_HOSTS=ldap-host --detach osixia/phpldapadmin:0.9.0

Please use this for testing only, since the preceding code might not be using
the latest versions anymore.

How to do it…

Once OpenLDAP is set up, we can start to create some users and groups in
our new OpenLDAP environment. Let’s get started on that first:

1. We will open the OpenLDAP GUI by navigating to the URL in our browser:

https://<ip_address_of_server>:4443

2. After logging in, let’s create some new users. First, click on Login on the left-hand side of the
window. The default username and password are as follows:

Login DN: cn=admin,dc=example,dc=org

Password: admin

3. You should see that we have already created some groups and users for you if you are using our
Docker images, as you can see in the following screenshot:

Figure 2.42 – OpenLDAP server groups and users

If you are using your own OpenLDAP environment, make sure to have at
least one group and one user for testing.

4. Let’s use these usernames and groups to set up LDAP authentication with JIT user provisioning.

5. Move on to the Zabbix frontend and navigate to Users | Users. First, we’ll give ourselves access at
any time even if the default authentication method will be switched to LDAP. Switch the Admin
user’s default authentication method to internal by adding them to the Internal group.

Figure 2.43 – Zabbix Admin user settings

6. Click on Update and it should then look like the following screenshot.

Figure 2.44 – Zabbix Admin user with Internal Frontend access

7. Then we will go to Users | Authentication and then LDAP settings. Set up the default
authentication method to LDAP and the deprovisioned users group as follows.

Figure 2.45 – Zabbix Default authentication method

8. Next, we’ll click on the LDAP settings tab. This is where we can configure our LDAP server and
JIT user provisioning. Let’s start by enabling the ones we would like to use.

Figure 2.46 – Zabbix Default authentication method

When using just LDAP, we will have to create our users manually. By
enabling JIT, users will be created and granted the correct permissions
automatically.

9. It’s also possible to add multiple LDAP servers in Zabbix now. Let’s add our OpenLDAP server
by clicking on Add at Servers.

10. Then, fill in the following.

Figure 2.47 – Zabbix LDAP authentication setup

The default Bind password value is password.

11. If we want, we can also enable JIT provisioning. Enable it and fill in the following.

Figure 2.48 – Zabbix LDAP authentication setup with JIT

12. Now, sign out of the currently logged-in account by clicking the Sign out button in the lower left
corner of the sidebar.

13. We should now be able to log in with the user1 LDAP user. The password is password.

Figure 2.49 – Zabbix login window for user1

14. When we log in for the first time, the user will be created with the correct permissions as defined
in the JIT user provisioning step. If logged in as a Zabbix super admin, we can see this under
Users | Users.

Figure 2.50 – Zabbix LDAP provisioned user

How it works…

As you can see, we can use Zabbix in combination with an LDAP server to
make password management easier as a whole. There are two options for us

to choose from: using LDAP with or without JIT user provisioning.

When we use Zabbix in combination with an LDAP server, but choose to not
use JIT user provisioning, Zabbix will communicate with the LDAP server
just to do the password authentication upon pressing the Sign in button.

Figure 2.51 – Zabbix LDAP authentication diagram

However, since Zabbix 6.4 it is also possible to enable JIT user provisioning.
This new feature allows us to also assign Zabbix user groups and roles in line
with the user groups on our LDAP server. As such, the whole process with
JIT user provisioning included looks something like the following:

Figure 2.52 – Zabbix LDAP JIT authentication diagram

3

Setting Up Zabbix Monitoring
Zabbix is built to be flexible and should be able to monitor just about
anything you could ever require. In this chapter, we will learn more about
working with Zabbix to build a lot of different options for monitoring. We’ll
go over them recipe by recipe so that you end up with a solid understanding
of how they work.

We’ll cover the following recipes on the different monitoring types:

Setting up Zabbix agent monitoring

Working with SNMP monitoring the old way

Setting up SNMP monitoring the new way

Creating Zabbix simple checks and the Zabbix trapper

Working with calculated and dependent items

Creating external checks

Setting up JMX monitoring

Setting up database monitoring

Setting up HTTP agent monitoring

Using Zabbix browser items to simulate a web user

Using Zabbix preprocessing to alter item values

Technical requirements

We will need a Zabbix server capable of performing monitoring, with the
following requirements:

A server with Zabbix server installed on a Linux distribution of your choice, such as Rocky Linux
or Ubuntu. However, a distribution such as Debian, Alma Linux, or anything else will suit you just
as well.

A MariaDB (MySQL) server to monitor – for example, the Zabbix server database we set up in
Chapter 1.

I’ll be using the same server that we used in the previous chapter, but any
Zabbix server should do.

Setting up Zabbix agent monitoring
Starting from the release of Zabbix 5, Zabbix also officially started support
for the new Zabbix Agent 2. Zabbix Agent 2 brings some major
improvements and is even written in another coding language – Golang
instead of C. In this recipe, we will explore how to work with Zabbix Agent 2
and explore some of the new features introduced by it.

Getting ready

To get started with Zabbix Agent 2, all we need to do is install it on a host
that we want to monitor. Make sure you have an empty Red Hat Enterprise
Linux (RHEL)-based or Ubuntu Linux host ready to monitor.

How to do it…

Let’s learn how to install Zabbix Agent 2 and then move on to working with
it.

Installing Zabbix Agent 2

Let’s start by installing Zabbix Agent 2 on the Linux host we want to
monitor. I’ll show you how to do this on both RHEL and Ubuntu systems:

1. Issue the following command to add the repository.

For RHEL-based systems, this is as follows:
rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rocky/9/x86_64/zabbix-

release-7.0-2.el9.noarch.rpm

For Ubuntu systems, this is as follows:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

2. Then, issue the following command to install Zabbix Agent 2.

Here’s the command for RHEL-based systems:
dnf -y install zabbix-agent2

Here’s the command for Ubuntu systems:
apt install zabbix-agent2

Congratulations – Zabbix Agent 2 is now installed and ready to use!

IMPORTANT NOTE
When adding new repositories to your system, always check out the Zabbix download page.
You can find the right up-to-date repository for your system here:
https://www.zabbix.com/download.

Using a Zabbix agent in passive mode

Let’s start by building a Zabbix agent with passive checks:

1. After installing Zabbix Agent 2, let’s open the Zabbix agent configuration file for editing:

vim /etc/zabbix/zabbix_agent2.conf

In this file, we can edit all the Zabbix agent configuration values we
could need from the server side.

2. Let’s start by editing the following parameters:

Server=127.0.0.1

Hostname=Zabbix server

3. Change the value of Server to the IP of the Zabbix server that will monitor this passive agent.

Change the value for Hostname to the hostname of the monitored server. We can get the IP

address of our server with the following command:

ip addr

4. Now, restart the Zabbix Agent 2 process:

systemctl enable zabbix-agent2

systemctl restart zabbix-agent2

5. Next, move to the frontend of your Zabbix server and add this host for monitoring.

6. Go to Data collection | Hosts in your Zabbix frontend and click Create host in the top-right
corner.

7. To create this host in our Zabbix server, we need to fill in the values shown in the following
screenshot:

Figure 3.1 – The Zabbix host creation page for lar-book-agent

It’s important to add the following:

Host name: To identify the host (has to be unique).

Host groups: To logically group hosts.

Interfaces: To monitor this host on a specific interface. No interface means no communication.
It’s possible to have a host without an interface in Zabbix 7 if we don’t need it. In the case of a
Zabbix-agent-monitored host, an agent interface is required.

8. Make sure you add the correct IP address to the Agent interface configuration.

9. It is also important to add a template to this host. With Zabbix 7, this can be done on the same tab.
As this is a Linux server monitored by a Zabbix agent, let’s add the correct out-of-the-box
template, as shown in the following screenshot:

Figure 3.2 – The Zabbix host template page for lar-book-agent

10. Click the blue Add button to finish creating this agent host. Now that you’ve got this host, make
sure the ZBX icon turns green, indicating that this host is up and being monitored by the passive
Zabbix agent:

Figure 3.3 – The Zabbix configuration hosts page for lar-book-agent

11. Because we configured our host and added a template with items, we can now see the values that
were received on items for this host by going to Monitoring | Hosts and checking the Latest data
button. Please note that the values could take around 1 minute to show up:

Figure 3.4 – The Zabbix Latest data page for lar-book-agent

Using a Zabbix agent in active mode

Now, let’s learn how to configure the Zabbix agent with active checks. We
need to change some values on the monitored Linux server host side:

1. Start by executing the following command:

vim /etc/zabbix/zabbix_agent2.conf

2. Now, let’s edit the following value to change this host to an active agent:

ServerActive=127.0.0.1

3. Change the value for ServerActive to the IP of the Zabbix server that will monitor this

passive agent. Then, change the value of Hostname to your hostname. In my case, this is lar-

book-agent:

Hostname=lar-book-agent

IMPORTANT NOTE

Keep in mind that if you’re working with multiple Zabbix servers or Zabbix proxies, such as
when you’re running a Zabbix server in high availability, you need to fill in all the Zabbix
servers or Zabbix proxies IP addresses when using the ServerActive parameter. High

availability (HA) nodes are delimited by a semicolon (;), while different Zabbix environment

IPs are delimited by a comma (,).

4. Now, restart the Zabbix Agent 2 process:

systemctl restart zabbix-agent2

5. Next, move to the frontend of your Zabbix server and add another host with a template to do
active checks instead of passive ones.

6. First, let’s rename our passive host. To do that, go to Data collection | Hosts in your Zabbix
frontend and click the host we just created. Change Host name as follows:

Figure 3.5 – The Zabbix host configuration page for lar-book-agent_passive

We are doing this because, for an active Zabbix agent, the hostname in the
Zabbix agent configuration file needs to match the configuration of our host,
as seen on the Zabbix frontend. For passive agents, this isn’t the case.

7. Click on the blue Update button to save the changes.

8. Go to Data collection | Hosts in your Zabbix frontend and click Create host in the top-right
corner.

9. Now, let’s create the host, as follows:

Figure 3.6 – The Zabbix host configuration page for lar-book-agent

10. Also, make sure you add the correct template, named Linux by Zabbix agent active:

Figure 3.7 – The Zabbix host template page for lar-book-agent

Please note that as of Zabbix 6.2, the ZBX icon should turn green for an
active agent. Note that when we navigate to Monitoring | Hosts and check
Latest data, we can see our active data coming in.

TIP
As you might have noticed, a Zabbix agent can run in both passive and active mode at the
same time. Keep this in mind when creating your own Zabbix agent templates as you might
want to combine the check types. In the end, the Item type will determine how the checks are

executed toward the agent.

How it works…

Now that we’ve configured our Zabbix agents and know how they should be
set up, let’s see how the different modes work.

Passive agent

The passive agent works by collecting data from our host with the Zabbix
agent. Every time an item on our host reaches its update interval, the Zabbix
server asks the Zabbix agent what the value is now:

Figure 3.8 – Communication diagram between the server and the passive agent

Passive agents are great when you’re working in environments where you
want to keep communication initiated from the Zabbix server or Zabbix

proxy side. An example of this is when there is a firewall that is only
allowing outgoing traffic, as seen from the Zabbix server or proxy side.

Active agent

The active agent works by sending data from the Zabbix agent to a Zabbix
server or Zabbix proxy. Every time an item on our agent reaches its update
interval, the agent will collect the value to send to our server:

Figure 3.9 – Communication diagram between the server and the active agent

The active agent is great when you’re working in an environment where there
is a firewall that is only accepting outgoing connections, as seen from the
Zabbix agent side. This is used in a lot of environments as it can mitigate one
of the main security concerns that is mostly associated with monitoring hosts.
Instead of allowing the Zabbix server to access all the different subnets
(which is a bigger risk), we allow the hosts to send data to Zabbix instead –
many to one instead of one to many.

On the other hand, having the Zabbix agent working in active mode can also
be a lot more efficient. Most of the load that comes from getting data to your
Zabbix server is now on the Zabbix agent side. Because there are more
Zabbix agents out there than you have Zabbix servers or proxies, offloading a
load like this is a great idea.

As mentioned previously, we can use both types of checks at the same time,
giving us the freedom to configure every type of check we need. In this case,
our setup would look like this:

Figure 3.10 – Communication diagram between the server and both agent types

This might be the case in situations where we want to mainly monitor
passively, but, for example, log file monitoring with the Zabbix agent must
be done with an active Zabbix agent. In this case, we can combine our modes
and make sure we use the full scale of our features provided in the Zabbix
agent.

See also

There’s a lot of stuff going on under the hood of Zabbix Agent 2. If you’re
interested in learning more about the core of Zabbix Agent 2, check out this
cool blog post by Alexey Petrov: https://blog.zabbix.com/magic-of-new-
zabbix-agent/8460/.

Working with SNMP monitoring the old way
Now, let’s do something I enjoy most when working with Zabbix: build
SNMP monitoring. My professional roots lie in network engineering, and I

have worked with SNMP monitoring a lot to monitor all these different
network devices.

Please do keep in mind that although this recipe will cover how to work with
SNMP monitoring the old way, it is still a valid option. Zabbix 6.4 introduced
an entirely new way of setting up SNMP monitoring. The new way utilizes
bulk metric collection and is more efficient for the SNMP device and number
of network sessions, so it might be a good idea to check out that recipe after
this one.

Getting ready

To get started, we need the two Linux hosts we used in the previous recipes:

Our Zabbix server host

The host we used in the previous recipe to monitor via the Zabbix active agent

How to do it…

Monitoring via SNMP polling is easy and very powerful. We will start by
configuring SNMPv3 on our monitored Linux host:

1. Let’s start by issuing the following commands to install SNMP on the host we would like to be
monitored by SNMP.

For RHEL-based systems:
dnf install net-snmp net-snmp-utils

For Ubuntu systems:
apt install snmp snmpd libsnmp-dev

2. Now, let’s create the new SNMPv3 user that we will use to monitor our host. Please note that
we’ll be using insecure passwords, so make sure you use secure passwords for your production

environments. Issue the following command:

net-snmp-create-v3-user -ro -a my_authpass -x my_privpass -A

SHA -X AES snmpv3user

Please note that on some installations, you might have to stop snmpd

before executing this command. You can start it again after.

This will create an SNMPv3 user with a username of snmpv3user, an
authentication password of my_authpass, and a privilege password of my_
privpass.

3. Make sure you edit the SNMP configuration file so that you can read all SNMP objects:

vim /etc/snmp/snmpd.conf

4. Add the following line to the existing view systemview lines. If there are none, simply create

this new line:

view systemview included .1

5. Now, enable and start the snmpd daemon so that you can start monitoring this server:

systemctl enable snmpd

systemctl start snmpd

This is all we need to do on the Linux host side; we can now go to the
Zabbix frontend to configure our host. Go to Data collection | Hosts in
your Zabbix frontend and click Create host in the top-right corner.

6. Fill in the host configuration page:

Figure 3.11 – Zabbix host configuration page for lar-book-agent_snmp

7. Don’t forget to change the IP address of the SNMP interface to your own value.

8. Make sure you add the right out-of-the-box template, as shown in the following screenshot:

Figure 3.12 – Adding the Linux by SNMP template to the host

TIP
While upgrading from an earlier Zabbix version to Zabbix 6, you won’t get all the new out-of-
the-box templates. If you feel like you are missing some templates, you can download them
from the Zabbix GitHub repository:
https://git.zabbix.com/projects/ZBX/repos/zabbix/browse/templates.

9. We are using some macros in our configuration here for the username and password. We can use
these macros to add a bunch of hosts with the same credentials. This is very useful, for instance, if
you have a bunch of switches with the same SNMPv3 credentials.

Let’s fill in the macros under Administration | Macros, like so:

Figure 3.13 – Zabbix global macro page with SNMP macros

TIP

A cool feature in Zabbix 6 is the ability to hide macros in the frontend by using the Secret text
macro type. Do keep in mind that macros of the Secret text type are still unencrypted in the
Zabbix database, So, for fully encrypted macros, we would need something such as
HashiCorp or CyberArk Vault. Check out the documentation for more information:
https://www.zabbix.com/documentation/current/en/manual/config/secrets.

10. Use the dropdown to change {$SNMPV3_AUTH} and {$SNMPV3_PRIV} to Secret text:

Figure 3.14 – Zabbix Secret text used to hide sensitive (authentication) data

11. Now, after applying these changes by clicking Update, we should be able to monitor our Linux
server via SNMPv3. Let’s go to Monitoring | Hosts and check the Latest data page for our new
host:

Figure 3.15 – SNMP – the Latest data page for lar-book-agent_snmp

Note that it might take around 1 minute for your data to show up here.

TIP
When working with macros, there are three levels in cascading order: global, template, and
host-level macros. When working with global-level macros, keep in mind that they are not
exported with templates or hosts. You want to use template-level and host-level macros in
most cases to keep your exports independent of Zabbix global settings.

How it works…

When we create a host, as we did in Step 4, Zabbix polls the host using
SNMP. Polling SNMP like this uses SNMP OIDs. For instance, when we poll
the Free memory item, we ask the SNMP agent running on our Linux host to

provide us the value for OID 1.3.6.1.4.1.2021.4.6.0. That value is then
returned to us on the Zabbix server:

Figure 3.16 – Diagram showing communication between Zabbix server and SNMP host

The OID is like the address (or path) of where our metric is located. By
requesting the OID, the metric is requested.

SNMPv3 adds authentication and encryption to this process, making sure that
when our Zabbix server requests information, that request is first encrypted
and the data is sent back encrypted as well.

We also included the option to use Combined requests when configuring
our host. Combined requests request several OIDs in the same stream,
making this the preferred method of doing SNMP requests as it is more
efficient. Only disable it for hosts that do not support Combined requests.
Even better is to use an SNMP bulk request, which we will discuss in the
next recipe.

Lastly, let’s take a look at SNMP OIDs, the most important part of our
SNMP request. OIDs work in a tree-like structure, meaning that every
number behind the dot can contain another value. For example, let’s look at
this OID for our host:

1.3.6.1.4.1.2021.4 = UCD-SNMP-MIB::memory

If we poll that OID with either the SNMPwalk CLI tool or our Zabbix server,
we will get several OIDs back:

.1.3.6.1.4.1.2021.4.1.0 = INTEGER: 0

.1.3.6.1.4.1.2021.4.2.0 = STRING: swap

.1.3.6.1.4.1.2021.4.3.0 = INTEGER: 1679356 kB

.1.3.6.1.4.1.2021.4.4.0 = INTEGER: 1674464 kB

.1.3.6.1.4.1.2021.4.5.0 = INTEGER: 1872872 kB

.1.3.6.1.4.1.2021.4.6.0 = INTEGER: 184068 kB

This includes our 1.3.6.1.4.1.2021.4.6.0 OID with the value that contains
our free memory. This is how SNMP is built, like a tree.

Setting up SNMP monitoring the new way
SNMP monitoring has had an entire overhaul starting with Zabbix 6.4,
introducing a new way to build SNMP monitoring. The old way is still
available and works, but all out-of-the-box monitoring will be overhauled to
work with the new way.

The new way will utilize SNMP bulk queries, making it a lot more efficient.
As such, in this recipe, we will look at how to build SNMP monitoring the
new way.

Getting ready

To get started, we need the two Linux hosts:

Our Zabbix server environment

Any Linux host running the SNMP server

How to do it…

Let’s be efficient and start building some bulk SNMP queries. First things
first, get your hosts ready:

1. First, log in to your Zabbix server CLI. We will start by installing some additional tools to make
building SNMP monitoring easier.

For RHEL-based systems:
dnf install net-snmp-utils

For Ubuntu systems:
apt install libsnmp-dev

2. Then, on the Linux host we would like to monitor, we must install the SNMP server.

For RHEL-based systems:
dnf install net-snmp net-snmp-utils

For Ubuntu systems:
apt install snmp snmpd libsnmp-dev

3. Now, let’s configure a new SNMPv3 user on the host we want to monitor and set up the server so
that we can query information:

net-snmp-create-v3-user -ro -a my_authpass -x my_privpass -A

SHA -X AES snmpv3user

This will create an SNMPv3 user with a username of snmpv3user, an
authentication password of my_authpass, and a privilege password of my_
privpass. Please make sure you use secure passwords in your production
environments!

4. Make sure you edit the SNMP configuration file so that you can read all SNMP objects:

vim /etc/snmp/snmpd.conf

5. Add the following line to the rest of the view systemview lines:

view systemview included .1

6. Now, enable and start the snmpd daemon so that you can start monitoring this server:

systemctl enable snmpd

systemctl start snmpd

This is all we need to do on the Linux host side; we can now go to the
Zabbix frontend to configure our host.

7. Go to Data collection | Hosts in your Zabbix frontend and click Create host in the top-right
corner. We will create a new host with the following information:

Figure 3.17 – Zabbix host configuration page for lar-book-snmp_bulk

8. Before adding the host, make sure you click on the small dotted underlined Add button in the
Interfaces section and select SNMP:

Figure 3.18 – Zabbix interface configuration for lar-book-snmp_bulk

Make sure you fill in the right IP address and credentials for the host you are
going to monitor.

9. Switch to the Macros tab and add the following information:

Figure 3.19 – Zabbix host configuration Macros tab for lar-book-snmp_bulk

10. Let’s also go to Value mapping and create the following value map. We’ll use this later:

Figure 3.20 – Zabbix host configuration Value mapping tab for lar-book-snmp_bulk

11. Now, you can click on the big Add button at the bottom of the page and the host will be created.

12. At this point, we have to start building our SNMP checks. But before we do that, we should decide
which checks to build. Let’s do a quick SNMP walk from the Zabbix server Linux CLI:

snmpwalk -On -v3 -l authPriv -u snmpv3user -a SHA -A

"my_authpass" -x AES -X "my_privpass" 192.168.1.86

.1.3.6.1.2.1.2.2.1.2

This SNMP walk will show us an output similar to the following:
.1.3.6.1.2.1.2.2.1.2.1 = STRING: lo

.1.3.6.1.2.1.2.2.1.2.2 = STRING: ens192

These are the SNMP interfaces that are available within our system and I
want to add them for monitoring. Let’s say I want to monitor the ens192

interface. Remember that the index for the ens192 interface is the number
2; we will need it later.

To add all the interface information in bulk to our Zabbix environment, I
will use a lower OID. However, note that .1.3.6.1.2.1.2.2.1 contains all
our interface information.

13. Test the SNMP walk with all interface information:

snmpwalk -On -v3 -l authPriv -u snmpv3user -a SHA -A

"my_authpass" -x AES -X "my_privpass" 192.168.1.86

.1.3.6.1.2.1.2.2.1

You should see a lot more output now.

14. Let’s go back to the Zabbix frontend by going to Data collection | Hosts, choosing the lar-

book-snmp_bulk host, and going to Item.

15. In the top-right corner, click Create item and add the following information:

Figure 3.21 – Zabbix item configuration for ifTable.walk

16. Don’t forget to switch to the Tags tab and add the following:

Figure 3.22 – Zabbix item configuration ifTable.walk Tags tab

17. Click on the big Add button at the bottom of the window to add this item to the host.

18. This item will now collect our SNMP data in bulk. At this point, we can create dependent items to
get specific values. You should be back on the Items page for the host, where we can once again
click on Create item.

19. My interface was called ens192, so let’s get the operational status for that interface. Add the

following information:

Figure 3.23 – Zabbix item configuration for ifOperStatus[ens192]

20. Don’t forget to switch to the Tags tab and add the following:

Figure 3.24 – Zabbix item configuration ifOperStatus[ens192] Tags tab

21. Last, but certainly not least, we will need to go to the Preprocessing tab. This is where we will
decide which value to extract from the bulk. Remember the index from Step 12? Let’s use it now
by adding the OID for the interface operational status (1.3.6.1.2.1.2.2.1.8) with an index

of 2:

Figure 3.25 – Zabbix item configuration ifOperStatus[ens192] Preprocessing tab

22. Now, click the big Add button at the bottom of the page and let’s see if it all worked.

23. Go to Monitoring | Latest data and find your host – that is, lar-book-snmp_bulk:

Figure 3.26 – Zabbix lar-book-snmp_bulk under Monitoring | Latest data

As you can see, we are now collecting the SNMP information in bulk and
then collecting a single value from the bulk information.

IMPORTANT NOTE
It is always recommended to use the Do not keep history option on items collecting values in
bulk. That way, we aren’t storing duplicate values for no reason. Once you finish building all
your SNMP items, don’t forget to make that change.

How it works…

The new SNMP walk might seem like a bit of a headscratcher at first. Why
do we need this new change? The way the internals work in Zabbix before
6.4 is that it will collect each SNMP OID separately. There is a smart
mechanism that combines requests to make it a bit more efficient, but it was
never officially a bulk request (even though that’s what the frontend called
it).

Now, with the new walk[] item key, we are collecting all the SNMP values in
a single SNMP GetBulk request. This makes the entire process a lot more
efficient and stresses the SNMP devices a lot less.

There’s also a new addition in Zabbix 7.0 that is for the following three
pollers:

Agent poller

HTTP agent poller

SNMP poller (for walk[OID] and get[OID] items)

These processes now execute checks asynchronously. What this means for
our SNMP checks using walk[] or get[] is that they can execute multiple
(item) checks at the same time. In older versions of Zabbix, these pollers
could only execute a single check at a time.

It’s still possible to add multiple of these processes with StartSNMPPollers,
for example, but it now functions differently. They will execute a maximum
of 1,000 checks per poller, something that can be configured with the
MaxConcurrentChecksPerPoller parameter.

So, what did we use? Well, we started with a simple request, which was to
get all of the values under the SNMP interface’s OID – that is,
.1.3.6.1.2.1.2.2.1. This contains all the information for our SNMP
interfaces, as shown in the following screenshot:

Figure 3.27 – Zabbix lar-book-snmp_bulk raw SNMP walk on Monitoring | Latest data

After, we extracted a single value from the bulk we collected with a
preprocessing step:

Figure 3.28 – Zabbix lar-book-snmp_bulk SNMP walk value preprocessing

We can do this to extract any OID from the already completed SNMP walk
manually. This is super useful if you have a lot of information from an SNMP
walk item but you only need a few static values from the walk.

This becomes extra apparent once we collect big pieces of information and
start using LLD rules to automate the task later, as well as when we still need
to get some specific values, something that might not be an option for LLD.
All that information can be collected in a single call to the SNMP device and
then split into LLD rules, as well as separate items.

We’ll continue working with this kind of new monitoring in Chapter 7, Using
Discovery for Automatic Creation, in the Setting up Zabbix SNMP low-level
discovery the new way recipe.

Creating Zabbix simple checks and the
Zabbix trapper
In this recipe, we will go over two checks that can help you build some more
customized setups. Zabbix simple checks provide you with an easy way to

monitor some specific data, while the Zabbix trapper combines with the
Zabbix sender to get data from your hosts into the server, providing you with
some scripting options. Let’s get started.

Getting ready

To create these checks, we will need a Zabbix server and a Linux host to
monitor. We can use the host with a Zabbix agent and SNMP monitoring
from the previous recipes.

Note that we do not need the Zabbix agent for these checks.

How to do it…

As the name suggests, working with simple checks is quite simple. So, let’s
get started.

Creating simple checks

We will create a simple check to monitor whether a service is running and
accepting TCP connections on a certain port:

1. To get this done, we will need to create a new host on the Zabbix frontend. Go to Data collection |
Hosts in your Zabbix frontend and click Create host in the top-right corner.

2. Create a host with the following settings:

Figure 3.29 – Zabbix host configuration page for lar-book-agent_simple

3. Now, go to Data collection | Hosts and go to Items for the newly created host. We want to create
a new item here by clicking the Create item button.

We must create a new item with the following values. After doing so,
click the Add button at the bottom of the page:

Figure 3.30 – The Zabbix item configuration page for the port 22 check on the lar-book-
agent_simple host

4. Make sure that you also add a tag to the item since we need this in several places to filter and find
our item when we’re working with Zabbix. Set it up like this:

Figure 3.31 – Zabbix SSH port item, Tag tab

IMPORTANT NOTE
We are adding the net.tcp.services[ssh,,22] item key here. The port in this case is

optional as we can specify the service SSH with a different port if we want to.

5. Now, we should be able to see whether our server is accepting SSH connections on port 22 on our

Latest data screen. Navigate to Monitoring | Hosts and check the Latest data screen for our new
value:

Figure 3.32 – Zabbix Latest data page for lar-book-agent_simple, item port 22 check

6. There is one more thing wrong here. As you can see, we do not currently have a value mapping
setup. Here, Last value is just displaying 1 or 0, making it hard to distinguish what this means. To

change this, navigate back to Data collection | Hosts and edit the lar-book-agent_simple

host.

7. Click on the Value mapping tab and click the small Add button to add a value mapping, like so:

Figure 3.33 – lar-book-agent_simple, Value mapping window

8. Click on the blue Add button and click on the blue Update button.

9. Then, back at the full Data collection | Hosts list, navigate to our lar-book-agent_simple

host and click on Items for this host.

10. Edit the Check if port 22 is available item and add the following value mapping:

Figure 3.34 – lar-book-agent_simple, edit item window

That’s all there is to creating simple checks in Zabbix. The latest data page
will now look like this:

Figure 3.35 – Latest data page for our port 22 check item

As you can see, there is a human-readable value now displaying either Up or
Down, giving us a human-readable entry that’s easier to understand. Now,
let’s look at the Zabbix trapper item.

Creating a trapper

We can do some cool stuff with Zabbix trapper items once we get more
advanced setups. But for now, let’s create an item on our lar-book-
agent_simple host:

1. Go to Data collection | Hosts and click on the host, then go to Items. We want to create a new
item here by clicking the Create item button.

So, let’s create the following item and click the Add button:

Figure 3.36 – Zabbix item trap receiver configuration screen for lar-book-agent_simple

2. Make sure you also navigate to the Tags tab and add a tag. We will use this later for filtering:

Figure 3.37 – Zabbix item trap receiver tag configuration screen for lar-book-agent_simple

3. If we go to the CLI of our monitored server, we can install Zabbix sender.

Run the following command for RHEL-based systems:
dnf -y install zabbix-sender

Run the following command for Ubuntu systems:
apt install zabbix-sender

4. After installation, we can use Zabbix sender to send some information to our server (make sure
you use your Zabbix server IP when using the -z option):

zabbix_sender -z 10.16.16.152 -s "lar-book-agent_simple" -k

trap -o "Let's test this book trapper"

Now, we should be able to see whether our monitored host has sent out
the Zabbix trap and the Zabbix server has received this trap for
processing.

5. Navigate to Monitoring | Hosts and check the Latest data screen for our new value:

Figure 3.38 – Zabbix Latest data page for lar-book-agent_simple, item trap receiver

There it is – our Zabbix trap is in our Zabbix frontend.

How it works…

Now that we have built our new items, let’s see how they work by diving into
the theoretical side of Zabbix simple checks and trappers.

Simple checks

Zabbix simple checks are a list of built-in checks that are made for
monitoring certain values. There is a list and descriptions available for all the
simple checks that are available in the Zabbix documentation:
https://www.zabbix.com/documentation/current/manual/config/items/itemtyp
es/simple_checks.

All of these checks are performed by the Zabbix server to collect data from a
monitored host. For example, when we do the Zabbix simple check to check
whether a port is open, our Zabbix server requests whether it can reach that
port and turns that into a status we can then see in our Zabbix frontend.

This means that if your monitored host’s firewall is blocking port 22 from the
Zabbix server, we’ll get a service down value. However, this doesn’t
necessarily mean that SSH isn’t running on the server; it simply means SSH
is down as seen from the side of the Zabbix server or proxy:

Figure 3.39 – Zabbix server-to-host communication diagram

TIP
Keep in mind that working with simple checks is dependent on external factors such as the
firewall settings on the monitored host. When you build simple checks, make sure to check
these factors as well.

There’s one more thing to note here. In Zabbix 6.4, the ability to add simple
checks without an interface on the host was added. This means you can
simply add the item with the connection details as parameters in the item key
instead of selecting an interface.

Trappers

When working with Zabbix sender, we are doing exactly the opposite of most
checks – we are building an item on our Zabbix server, which allows us to

capture trap items. This allows us to build some custom checks so that we can
send data to our Zabbix server from a monitored host:

Figure 3.40 – Zabbix server trap receiver diagram

Let’s say, for instance, that we want to build a custom Python script that, at
the end of running the scripts, sends output to the Zabbix server. We could
ask Python to send this data using the Zabbix sender utility, at which point
we’d have this data available for processing on the Zabbix server.

This process is used by some companies who write software to completely
integrate their software into Zabbix. As you can see, we can greatly extend
our options with Zabbix trappers and customize our Zabbix server even
further. Amazingly, this also works with low-level discovery, so long as we
send the correct data formats (JSON).

Working with calculated and dependent
items
Calculated and dependent items are used in Zabbix to produce additional
values from existing values. Sometimes, we have already collected a value
and we need to do more with the values created by that item. We can do
exactly that by using calculated and dependent items.

Getting ready

To work with calculated items and dependent items, we are going to need the
Zabbix server and monitored hosts from the previous recipes. We will add the
items to the lar-book-agent_passive host and our Zabbix server (or any
MySQL server) host so that we already have some items available to
calculate and make dependent.

How to do it…

Let’s see how we can extend our items. We’ll start by looking at calculated
items.

Working with calculated items

Follow these steps:

1. Let’s navigate to our host configuration by going to Data collection | Hosts and clicking on our
lar-book-agent_passive host’s Items area. In the Name filter field, enter memory; you

will get the following output:

Figure 3.41 – Zabbix item page for lar-book-agent_passive

2. Now, we can create a calculated item that is going to show us the average memory utilization over
15 minutes. We can use this value to determine how busy our host was during that period, without
having to look at the graphs.

3. Let’s click the Create item button and start creating our new calculated item. We want our item to
have the following values:

Figure 3.42 – Zabbix item configuration page, average memory used

4. Make sure you also navigate to the Tags tab and add a tag that we will use later for filtering:

Figure 3.43 – Calculated item Tags tab

5. Now, if we go to check our Monitoring | Hosts page and select Latest data, we can check out our
value. Make sure you filter the Name field for memory so that you see the correct values:

Figure 3.44 – Zabbix Latest data page for lar-book-agent_passive, memory items

As we can see, we are calculating the 15-minute average of the memory
utilization on our newly created item.

Working with dependent items

It’s time to make our first dependent item. I’ll use the lar-book-rocky host or
our (as it’s called by default) Zabbix server host, but any MySQL database
server should work. Let’s say we want to request some variables from our
MySQL database in one big batch. In this case, we can create dependent
items on top of the first item to further process the data:

1. Let’s start by creating the main check. Navigate to Data collection | Hosts, select our host, and
click the Create item button to start creating our first new item. We want an item with the
following variables:

Figure 3.45 – Zabbix item configuration page, database status

This item is an SSH check that logs in to our Zabbix server host using SSH
and then executes the code that was entered in the Executed script field. This
code will then log in to our MariaDB database and will print its status. Make
sure you enter your credentials correctly.

TIP
Instead of using plaintext credentials in the MySQL command, which is not recommended,
use macros in the Executed script field. This way, you can use the Secret text macro type to
make sure no one can read your password from the frontend.

2. Before saving this new item, make sure you also add a tag, like this:

Figure 3.46 – Zabbix master item configuration page, Tags tab

3. Now, click the blue Add button to save this new item.

4. Go back to the list of items and click on this host’s hostname, then Macros. Create a new
{$USERNAME} and {$PASSWORD} macro with your SSH username and password under Value.

5. Next, go to Monitoring | Latest data and check out the data for our new check. There should be a
long list of MariaDB values. If so, we can continue creating the dependent item.

6. To create the dependent item, navigate to Data collection | Hosts, select our host, and click the
Create item button. We want this item to have the following variables:

Figure 3.47 – Zabbix item configuration page, MariaDB aborted clients

7. Make sure you add the following tag:

Figure 3.48 – Zabbix dependent item configuration page, Tags tab

8. It’s very important to add preprocessing to this item; otherwise, we will simply get the same data
as our master item. So, let’s add the following:

Figure 3.49 – Zabbix item Preprocessing page, MariaDB aborted clients

With the preprocessing added, the result will be the number of aborted clients
for our MariaDB instance:

Figure 3.50 – Zabbix Latest data page, MariaDB aborted clients

As you can see, using a dependent item, we can use already available
information from other Zabbix items and split them up into dependent items.

How it works…

The calculated and dependent items we worked with in the How to do it…
section can be quite complicated, so let’s go over how they work.

Calculated items

Working with calculated items can be a great way to get even more statistics
out of your existing data. Sometimes, you just need to combine multiple
items into one specific value.

What we did just now works by taking several values of one item every 15
minutes and calculating the average, as follows:

Figure 3.51 – Zabbix dependent item diagram

We’re taking those values and calculating the average every 15 minutes. It
gives us a nice indication of what we are doing over a set period.

Dependent items

Dependent items work by taking the data from a master item and processing
that data into other data. This way, we can structure our data and keep our
check interval for all these items the same since the dependent items will
receive their data on the update interval as the master item. That means that
dependent items don’t have (and don’t need) an update interval:

Figure 3.52 – Dependent item diagram

As we can see, dependent items work as duplicators, on which we use
preprocessing options to get specific values. Note that preprocessing must be
used to extract data from the master items since without preprocessing, our
data will be the same as it is for the master item.

TIP
Often, we don’t require our master item to be saved in our database since we already have
the information in our dependent items. When we don’t want the master item to be saved, we
can simply select the Do not keep history option on that master item. This will save us some
storage space.

Creating external checks
To further extend our Zabbix functionality, we can use custom scripts that
can be executed as Zabbix external checks. Not everything that we want to
monitor will always be standard in Zabbix, although a lot is. There’s always
something that could be missing, and external checks are just a way to bypass
some of these.

Getting ready

In this recipe, we are going to need just our Zabbix server. We can create an
item on our lar-book-rocky host, which is our Zabbix server-monitored host.

How to do it…

Follow these steps:

1. First, let’s make sure our Zabbix server configuration is set up correctly. Execute the following on
the Zabbix server CLI:

cat /etc/zabbix/zabbix_server.conf | grep ExternalScripts=

2. This should show us the path where we will place the script that’s used by the Zabbix external
check. By default, this is /usr/lib/zabbix/ externalscripts/. Let’s create a new

script called test_external in this folder with the following command:

vim /usr/lib/zabbix/externalscripts/test_external

Add the following code to this file and save it:
#!/bin/bash

echo $1

3. Make sure our Zabbix server can execute the script by adding the right permissions to the file. The
zabbix user on your Linux server needs to be able to access and execute the file:

chmod +x /usr/lib/zabbix/externalscripts/test_external

chown zabbix:zabbix

/usr/lib/zabbix/externalscripts/test_external

4. Now, we are ready to go to our host to create a new item. Navigate to Data collection | Hosts,
select our host, lar-book-rocky, and click the Create item button. We want this item to be

created as follows:

Figure 3.53 – Zabbix item configuration page

5. Now that we’ve added this new item, let’s navigate to Monitoring | Hosts and check the Latest
data page for our host. Our Test variable should be returned by our script as Last value in
Zabbix, as shown in the following screenshot:

Figure 3.54 – Zabbix Latest data page

TIP
Use the macros in the frontend as variables to send data from your frontend to your scripts.
You can further automate your checks with this to enhance your external checks.

How it works…

External checks seem like they have a steep learning curve, but they are quite
simple from the Zabbix side. All we do is execute an external script, at which
point we will receive the standard result output (STDOUT) and error (STDERR):

Figure 3.55 – Zabbix server external script communication diagram

In our example, we sent a value of Test to our script, which the script then
echoed back to us as $1.

When you have good knowledge of a programming language such as Python,
you can use this function to build a lot more expansions on top of the current
existing Zabbix feature set – a simple yet powerful tool to work with.

Setting up JMX monitoring
Zabbix has JMX monitoring built into it so that we can monitor our Java
applications. In this recipe, we’ll learn how to monitor Apache Tomcat with
Zabbix JMX so that we can get a feel for what this monitoring option is all
about.

Getting ready

To get ready for this recipe, we are going to need our Zabbix server so that
we can monitor our JMX application.

I used a CentOS 7 machine for this recipe, with Tomcat installed. It can be
quite tricky to use Tomcat on later CentOS versions due to package
dependencies, so I recommend sticking with CentOS 7 for this example. You
can add the following to your Tomcat configuration after installing it to get it
working for this recipe:

JAVA_OPTS="-Djava.rmi.server.hostname=10.16.16.155

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.port=12345

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false"

If you want to set up JMX monitoring in your production environment, you
can use the settings you have probably already set up there. Simply change
the port and IP address accordingly.

How to do it…

To set up JMX monitoring, we are going to add a host to our Zabbix server
that will monitor our Apache Tomcat installation. But first, we will need to
add some settings to our /etc/zabbix/zabbix_server.conf file:

1. Let’s edit the zabbix_server.conf file by logging in to our Zabbix server and executing the

following command:

vim /etc/zabbix/zabbix_server.conf

2. Now, we need to add the following lines to this file:

JavaGateway=127.0.0.1

StartJavaPollers=5

TIP
It’s possible to install your Java gateway on a host that’s separate from your Zabbix. This way,
you can spread the load and scale more. Simply install it on a separate host and add the IP

address of that host to the JavaGateway parameter. So long as your Zabbix server or proxy

can reach the gateway on port 10052 over the network, this should work. We won’t be doing

this in this example, so keep the Java gateway set up on the Zabbix server host itself.

3. We will also need to install the zabbix-java-gateway application on our Zabbix server with

the following command.

RHEL-based systems:
dnf install zabbix-java-gateway

systemctl enable zabbix-java-gateway

systemctl start zabbix-java-gateway

systemctl restart zabbix-server

Ubuntu systems:
apt install zabbix-java-gateway

systemctl enable zabbix-java-gateway

systemctl start zabbix-java-gateway

systemctl restart zabbix-server

That is all we need to do on the server side of things to get JMX
monitoring to work. Zabbix doesn’t include these settings by default, so
we need to add the respective text to our file and install the application.

4. To start monitoring our JMX host, go to Data collection | Hosts in your Zabbix frontend and click
Create host in the top-right corner.

Add a host with the following settings:

Figure 3.56 – Zabbix item configuration page

5. After this, our JMX icon should turn green; let’s check this under Monitoring | Hosts. It should
look like this:

Figure 3.57 – Monitoring | Hosts

6. If we click on Latest data for our new JMX-monitored host, we should also see our incoming
data. Check it out; it should return stats like these:

Figure 3.58 – Zabbix Latest data page

How it works…

Zabbix utilizes a Java gateway either hosted on the Zabbix server itself or
hosted on another server (proxy) to monitor JMX applications:

Figure 3.59 – Communication diagram between the Zabbix server and Java

Zabbix polls the Java gateway and the Java gateway, in turn, communicates
with our JMX application, as it does with Tomcat in our example. The data is
then returned through the same path, at which point we can see our data in
our Zabbix server.

See also

There are loads of applications that can be monitored through Zabbix JMX.
Check out the Zabbix monitoring and integrations page for more uses of
Zabbix JMX monitoring: https://www.zabbix.com/integrations/jmx.

Setting up database monitoring

Databases are a black hole to a lot of engineers; data is being written to them
and something is being done with this data. But what if you want to know
more about the health of your database? That’s where Zabbix database
monitoring comes in – we can use it to monitor the health of our database.

Getting ready

For convenience, in this recipe, we’ll be monitoring our Zabbix database.
This means that all we are going to need is our installed Zabbix server with
our database on it. We’ll be using MariaDB in this example, so if you have a
PostgreSQL setup, make sure you install a MariaDB instance on a Linux host
(although the same kind of setup could be created on PostgreSQL if you
change some of the ODBC parameters).

How to do it…

Before getting started with the item configuration, we’ll have to do some
stuff on the CLI side of the server:

1. Let’s start by installing the required modules on our server.

RHEL-based systems:
dnf install unixODBC mariadb-connector-odbc

Ubuntu systems:
apt install odbc-mariadb unixodbc unixodbc-dev odbcinst

2. Now, let’s verify whether our Open Database Connectivity (ODBC) configuration files exist:

odbcinst -j

Your output should look similar to this:

unixODBC 2.3.7

DRIVERS............: /etc/odbcinst.ini

SYSTEM DATA SOURCES: /etc/odbc.ini

FILE DATA SOURCES..: /etc/ODBCDataSources

USER DATA SOURCES..: /root/.odbc.ini

SQLULEN Size.......: 8

SQLLEN Size........: 8

SQLSETPOSIROW Size.: 8

3. If the output is correct, we can go to the Linux CLI and continue by editing odbc.ini so that we

can connect to our database:

vim /etc/odbc.ini

Now, fill in your Zabbix database information. It will look like this:
[book]

Description = MySQL book test database

Driver = MariaDB

Server = 127.0.0.1

Port = 3306

Database = zabbix

4. Let’s also check that our driver exists:

vim /etc/odbc.ini

5. You should see the driver:

Driver from the mariadb-connector-odbc package

Setup from the unixODBC package

[MariaDB]

Description = ODBC for MariaDB

Driver = /usr/lib/libmaodbc.so

Driver64 = /usr/lib64/libmaodbc.so

FileUsage = 1

6. Now, let’s test whether our connection is working as expected by executing the following
command:

isql -v book

You should get a message saying Connected; if you don’t, check your
configuration files and try again.

7. Now, let’s move to the Zabbix frontend to configure our first database check. Navigate to Data
collection | Hosts and click the lar-book-rocky host; note that it might still be called Zabbix

server. Now go to Items; we want to create a new item here by clicking the Create item button.

TIP
If you haven’t already, a great way to keep Zabbix structured is to keep all hostnames in
Zabbix equal to the real server hostname. Rename your default Zabbix server host in the
frontend to what you’ve called your server.

We want to add an item with the following parameters:

Figure 3.60 – Zabbix item configuration page, items in Zabbix database

8. Make sure you also add a tag to the item:

Figure 3.61 – Zabbix item configuration page, items in Zabbix database, Tags tab

9. Now, click the Add button and click on the name of the host to add the macros, as follows:

Figure 3.62 – Zabbix host macro configuration page

10. Now, if you go to Monitoring | Hosts and click on Latest data for our host, you’ll see the
following:

Figure 3.63 – Zabbix Latest data page for lar-book-rocky, items in Zabbix database

From here, we can see how many items have been written to the database
directly.

How it works…

Zabbix database monitoring works by connecting to your database with the
ODBC middleware API. Any database supported by ODBC can be queried
with Zabbix database monitoring:

Figure 3.64 – A diagram showing communication between the Zabbix server and ODBC

Your Zabbix server sends a command with, for instance, your MySQL query
to the ODBC connector. Your ODBC connecter sends this query to the
database through the ODBC API, which, in turn, returns a value to ODBC.
ODBC then forwards the value to the Zabbix server and hey presto: we have
a value under our item.

There’s more…

You can do loads of queries to your databases with Zabbix database
monitoring, but keep in mind that you are working with actual queries.
Querying a database takes time and processing power, so keep your database
monitoring structured and define the right execution times.

Alternatively, we can use Zabbix Agent 2 to monitor most databases natively.
This can improve security and performance and keep complexity lower.

Setting up HTTP agent monitoring
With the Zabbix HTTP agent, we can monitor a web page or API by
retrieving data from it. For instance, if there’s a counter on a web page and
we want to keep an eye on that counter value, we can do so with the Zabbix
HTTP monitor.

Getting ready

For this recipe, we’re going to need a web page to monitor, as well as our
Zabbix server. For this lab, we will use Zabbix update v1:
https://services.zabbix.com/updates/v1.

Please note that your Zabbix server will need an active internet connection
for this recipe.

How to do it…

Let’s poll the web page from Zabbix so that it shows the latest version of
Zabbix 7.0 that’s currently available:

1. Navigate to your Zabbix frontend and navigate to Data collection | Hosts. Then, click the lar-

book-agent_simple host.

2. Now, go to Items; we want to create a new item here by clicking the Create item button. We are
going to need to create an HTTP agent item, as shown in the following screenshot:

Figure 3.65 – Zabbix Item configuration page, visitor count on the oicts.com page

3. Make sure you fill in the query fields as follows:

type: software_update_check

version: 1.0

software_update_check_hash: A randomly generated 64-character string with

lowercase letters and numbers

4. We also need to add a tag to this item:

Figure 3.66 – Zabbix Item configuration page, visitor count on the oicts.com page, Tags tab

5. Use the following preprocessing steps:

Figure 3.67 – Zabbix Item configuration page, visitor count on the oicts.com page,
Preprocessing tab

6. Now, navigate to Monitoring | Hosts and open the Latest data page for our lar-book-

agent_simple host. If everything is working as it should, we should now be requesting the

latest Zabbix 7.0 version:

Figure 3.68 – Zabbix Latest data page

How it works…

Here, we request the complete web page from Zabbix by navigating to the
page with the HTTP agent and downloading it. Once we have the complete
content of the page – in this case, an HTML/PHP page – we can process the
data:

Figure 3.69 – Diagram showing Zabbix HTTP agent communication

We ask our preprocessor to go through the requested code via a JSONPath
and only show the version for the latest_release node.

All that’s left is the number, ready for us to use in graphs and other types of
data visualization.

Using Zabbix browser items to simulate a
web user
Zabbix now includes the ability to monitor web pages in a brand-new way.
It’s now possible to use the new Zabbix Browser items functionality to
simulate the things a browser user would do when navigating your web page.

This makes it possible to navigate to pages, simulate clicks, get results, and
much more.

Getting ready

For this recipe, we will only need our Zabbix server and Zabbix frontend.
Keep in mind that we will be running Selenium in Docker on our Zabbix
server to get this new type of monitoring working.

We’ll also use some pre-prepared JavaScript that you can find here:
https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/blob/main/chapter03/browser_item_script.txt.

How to do it…

First, we’ll log in to the CLI of our server and start preparing the
environment:

1. We’ll use a lightweight Docker container to run Selenium, which will handle the browser
emulation. Issue the following on the Zabbix server CLI.

For RHEL-based systems:
dnf install docker-ce

For Ubuntu systems:
dnf install docker-ce

2. Make sure you start Docker as well:

systemctl enable docker --now

3. Now, let’s download and run our Docker container:

docker run -d -p 4444:4444 -p 7900:7900 --shm-size="2g"

selenium/standalone-chrome:latest

4. Next, we must edit the Zabbix server configuration:

vim /etc/zabbix/zabbix_server.conf

5. Two new parameters have been added to the Zabbix server configuration file that we can edit.
Let’s connect to the container and add some browser pollers:

WebDriverURL=http://localhost:4444

StartBrowserPollers=2

6. Restart your Zabbix server to make the changes take effect:

systemctl restart zabbbix-server

7. With the Zabbix server side of things done, let’s move on to the Zabbix frontend. Navigate to
Data collection | Hosts.

8. Let’s add a new host to monitor our Zabbix frontend website:

Figure 3.70 – Zabbix website host configuration window

9. Click on the Add button at the bottom of the page to add this new host.

10. Now, let’s add an item to this host. Click Items next to the Zabbix website host, then click on the
Create item button in the top-right corner.

11. To create the item, we will need to download a bit of JavaScript from the Packt GitHub repo. You
can find it here: https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/blob/main/chapter03/browser_item_script.txt.

12. Now, let’s fill in the new item fields. Make sure you place the aforementioned script in the Script
field. The item should now look like this:

Figure 3.71 – Zabbix website host item configuration window

13. Make sure you add a tag as well:

Figure 3.72 – Zabbix website host item tag configuration window

14. Now, save the item by clicking on the Add button at the bottom of the window.

15. Since we’re using macros, make sure you add them to the host. Click on the Zabbix website
hostname. Then, add the following macros:

Figure 3.73 – Zabbix website host macros configuration window

Make sure you fill in the correct URL. Also, don’t forget to set the password
macro to the Secret text type.

16. Navigating to Monitoring | Latest data should now show us the value for our new host:

Figure 3.74 – Zabbix website item result

17. As we learned earlier in this chapter, we can extract data from this bulk metric item using
dependent items. This is what we’ll do next.

18. Let’s go back to Data collection | Hosts and click on Items for the Zabbix website host.

19. Click Create item in the top-right corner and create a new item to get the total duration:

Figure 3.75 – Browser monitoring total duration item

20. Click on Preprocessing so that we can add preprocessing details as well:

Figure 3.76 – Browser monitoring total duration item preprocessing

21. Click on Tags – we can’t forget to add a tag:

Figure 3.77 – Browser monitoring total duration item tag

22. Click Add to finish creating the item.

23. Now, click Create item in the top-right corner again and create a new item to get the number of
enabled hosts:

Figure 3.78 – Browser monitoring enabled hosts item

24. Click on Preprocessing and add some preprocessing details:

Figure 3.79 – Browser monitoring enabled hosts item preprocessing

25. Click on Tags – we can’t forget to add a tag:

Figure 3.80 – Browser monitoring enabled hosts item tag

26. Click Add to finish creating the item.

TIP
Feel free to add more dependent items yourself to get even more statistics from the raw
JSON that was collected by the master item. Don’t forget to set History to Do not store on
the master item once you’ve finished adding dependent items to save some disk space.

27. Let’s have a look at how this code works.

How it works…

With the new Zabbix browser monitoring, we can use advanced JavaScript in
combination with Selenium, for example. This gives us the option to do
almost anything a normal browser user can. This provides us with endless
opportunities to monitor what our end users are doing.

Let’s have a look at some of the steps in our JavaScript:

try {

var params = JSON.parse(value); // Parse the JSON string passed

from Zabbix

var webUrl = params.webUrl;

var username = params.username;

var password = params.password;

browser.navigate(webUrl);

browser.collectPerfEntries("open page");

We start by parsing the parameters that we defined in the Zabbix frontend.
We don’t want to use just hardcoded usernames and passwords – we want to
use other values that can be dynamic in this script, such as URLs, which are
useful to parse. This way, we create flexibility, which can also be useful later
when we template the item:

// Find and fill username

var el = browser.findElement("xpath", "//input[@id='name']");

if (el === null) {

throw Error("cannot find name input field");

}

el.sendKeys(username);

// Find and fill password

el = browser.findElement("xpath", "//input[@id='password']");

if (el === null) {

throw Error("cannot find password input field");

}

el.sendKeys(password);

// Find and click the login button

el = browser.findElement("xpath", "//button[@id='enter']");

if (el === null) {

throw Error("cannot find login button");

}

el.click();

Then, we have a browser.findElement function. We will be using this to find
the correct field to fill in with the username and password before we click on
the login button. With this type of monitoring, we are translating JavaScript
to what looks like what a user could also be doing:

// Collect performance data after login

browser.collectPerfEntries("login");

We also collect some performance statistics so that we can find how quickly
the login was performed:

// Navigate to Reports -> System information

el = browser.findElement("xpath",

"//a[contains(text(),'Reports')]");

if (el === null) {

throw Error("cannot find Reports menu");

}

el.click();

el = browser.findElement("xpath", "//a[contains(text(),'System

information')]");

if (el === null) {

throw Error("cannot find System information submenu");

}

el.click();

// Find the required server performance row and get the value

nvps = browser.findElement("xpath", "//tr[th[contains(text(),

'Required server performance, new values per second')]]/td[1]");

totalHosts = browser.findElement("xpath",

"//tr[th[contains(text(), 'Number of hosts

(enabled/disabled)')]]/td[1]");

enabledHosts = browser.findElement("xpath",

"//tr[th[contains(text(), 'Number of hosts

(enabled/disabled)')]]/td[2]/span[1]");

disabledHosts = browser.findElement("xpath",

"//tr[th[contains(text(), 'Number of hosts

(enabled/disabled)')]]/td[2]/span[2]");

numberOfTemplates = browser.findElement("xpath",

"//tr[th[contains(text(), 'Number of templates')]]/td[1]");

totalItems = browser.findElement("xpath",

"//tr[th/span[contains(text(), 'Number of items

(enabled/disabled/not supported)')]]/td[1]");

enabledItems = browser.findElement("xpath",

"//tr[th/span[contains(text(), 'Number of items

(enabled/disabled/not supported)')]]/td[2]/span[1]");

disabledItems = browser.findElement("xpath",

"//tr[th/span[contains(text(), 'Number of items

(enabled/disabled/not supported)')]]/td[2]/span[2]");

nsItems = browser.findElement("xpath",

"//tr[th/span[contains(text(), 'Number of items

(enabled/disabled/not supported)')]]/td[2]/span[3]");

if (el === null) {

throw Error("cannot find required server performance row");

}

var performanceValue = nvps.getText();

var totalHosts = totalHosts.getText();

var enabledHosts = enabledHosts.getText();

var disabledHosts = disabledHosts.getText();

var numberOfTemplates = numberOfTemplates.getText();

var totalItems = totalItems.getText();

var enabledItems = enabledItems.getText();

var disabledItems = disabledItems.getText();

var nsItems = nsItems.getText();

Then, we have a few browser.findElement functions to navigate to the
Reports | System information menu. On this page, we want to find specific
rows from the table. Something important to note here is that apart from
using browser monitoring to gather performance data or see if a user’s
functionality is still working, we can also use it to extract metrics. We’ll
come back to this shortly:

// Find and click the logout button

el = browser.findElement("xpath", "//a[contains(text(),'Sign

out')]");

if (el === null) {

throw Error("cannot find logout button");

}

el.click();

// Collect performance data after logout

browser.collectPerfEntries("logout");

// Set result with the performance value

result = browser.getResult();

result.performanceValue = performanceValue;

result.totalHosts = totalHosts;

result.enabledHosts = enabledHosts;

result.disabledHosts = disabledHosts;

result.numberOfTemplates = numberOfTemplates;

result.totalItems = totalItems;

result.enabledItems = enabledItems;

result.disabledItems = disabledItems;

result.nsItems = nsItems;

} catch (err) {

if (!(err instanceof BrowserError)) {

browser.setError(err.message);

}

result = browser.getResult();

result.error.screenshot = browser.getScreenshot();

} finally {

return JSON.stringify(result);

}

We must ensure we log out (it’s best practice to end any session correctly), at
which point we can do some more error and result-catching. At this point, I
would love to show you the JSON result, but let’s not cut down any more
trees than necessary. Open your Latest data page and have a look at some of
the JSON entries:

"duration":1.8088712692260742,

We can see the total duration of the whole item execution at the top of the
JSON result:

{

"mark":"open page",

"navigation":{

….

"transfer_size":4220,

"duration":0.08759999996423722,

….

For each step we did, we can see a mark value, which will give us more
information about the action we executed through the browser:

"performanceValue":"9.46","totalHosts":"23","enabledHosts":"18","disabledHosts":"5","numberOfTemplates":"287","totalItems":"1108","enabledItems":"650","disabledItems":"241","nsItems":"217"}

Last, but not least, at the bottom, we have our extracted Zabbix system report
values. We gathered all this information through this single browser item
monitoring type:

Figure 3.81 – Zabbix

Using the dependent items we learned about earlier, we can now extract
useful data from our bulk metric collection, which was done by the browser
item type. This gives us nice and clean metrics in a single item, which can
also easily be used in triggers. For example, we can use these triggers to
specify whether the duration is too long or whether there are fewer hosts
enabled now than before.

As you can see, this single new item type opens up a world of possibilities for
us. I can only imagine the Zabbix community finding more and more use
cases for this and sharing their amazing new templates.

Using Zabbix preprocessing to alter item
values

Preprocessing item values is an important functionality in Zabbix; we can use
it to create all kinds of checks. We’ve already done some preprocessing in
this chapter, but let’s take a deeper dive into it and what it does.

Getting started

We are going to need a Zabbix server to create a check for. We will also need
a passive Zabbix agent on a Linux host to get our values from and preprocess
them. We can use the agent that’s running on our Zabbix server for this. In
my case, this is lar-book-rocky.

How to do it…

Follow these steps:

1. Let’s start by logging in to our Zabbix frontend and going to Data collection | Hosts.

2. Click on your Zabbix server host; in my case, it’s called lar-book-rocky.

3. Now, go to Items and click on the blue Create item button in the top-right corner. Let’s create a
new item with the following information:

Figure 3.82 – New item creation screen, Get traffic statistics from CLI

4. Don’t forget to add your tag:

Figure 3.83 – New item creation screen, Get traffic statistics from CLI, Tags tab

5. Make sure you change ens192 to your primary network interface. You can find your primary

network interface by logging in to the Linux CLI and executing the following command:

Ifconfig

6. Back on the item creation screen, click on the blue Add button. This item will use the Zabbix
agent to execute a remote command on the Linux CLI.

7. When we navigate to this new item, we’ll see that the item becomes unsupported. This is because
when we use the system.run key, we need to allow it in the Zabbix agent configuration:

Figure 3.84 – Unsupported item information, Unknown metric system.run

8. Log in to the Linux CLI of the monitored host and edit the Zabbix agent configuration by running
the following command:

vim /etc/zabbix/zabbix_agent2.conf

9. Go to the Option: AllowKey line and add AllowKey=system.run[*], as shown here:

Figure 3.85 – Zabbix agent configuration file, AllowKey=system.run[*]

10. Save the file and restart the Zabbix agent, like so:

systemctl restart zabbix-agent2

11. Back at the Zabbix frontend, the error we noticed in Step 7 should be gone after a few minutes.

12. Navigate to Monitoring | Latest data and filter your Zabbix server host, lar-book-rocky,

and the name of the new Get traffic statistics from CLI item.

13. The value should now be pulled from the host. If we click on History, we can see the full value; it
should look as follows:

Figure 3.86 – Zabbix agent system.run command executing ifconfig ens192 results

14. The information we can see here is way too much for just one item, so we need to split it up. We’ll
use preprocessing to get the number of RX bytes from the information.

15. Go back to Data collection | Hosts and click on your Zabbix server host. Go to Items on this host.

16. Click on the Get traffic statistics from CLI item to edit it. Change its name to Total RX

traffic in bytes for ens192 and add B to Units, where B stands for bytes. It will look

like this:

Figure 3.87 – Zabbix agent system.run item

17. Add your tag:

Figure 3.88 – New item creation screen, Get traffic statistics from CLI, Tags tab

18. Now, click on Preprocessing and click on the underlined Add button.

19. A Regular expression (regex) field will be added. We are going to fill this so that it matches the
total number of bytes for your interface:

Figure 3.89 – Zabbix agent system.run item preprocessing

20. Make sure you also select the Discard value box under Custom on fail.

21. Now, click on the underlined Add button again and use the drop-down menu for this new step to
select Discard unchanged. The result will look like this:

Figure 3.90 – Zabbix agent system.run item preprocessing

22. We can now click the blue Update button to finish editing this item.

23. Navigate back to Monitoring | Latest data and filter on your host and the new item name, Total
RX traffic in bytes for ens192. Make sure you use your own interface name.

24. We can now see our value coming in. Here, we have an item displaying our total RX traffic for
our main interface:

Figure 3.91 – Zabbix Total RX traffic item latest data

How it works…

We did some preprocessing in the Working with calculated and dependent
items recipe to get data from a master item. We also used preprocessing in the
Setting up HTTP agent monitoring recipe to get a specific value from a web
page. We didn’t go over the preprocessing concepts used in those recipes,
though, so let’s go over them here.

When working with preprocessing, it’s important to know the basic setup.
Let’s take a look at the incoming data before we use preprocessing:

Figure 3.92 – Zabbix agent system.run command executing ifconfig ens192 results

This is a lot of information. When we look at how Zabbix items are used, we
try to put graspable information in a single item. Luckily, we can preprocess

this item before we store the value in Zabbix. In the following figure, we can
see the preprocessing steps we added to our item:

Figure 3.93 – Zabbix agent system.run item preprocessing with two steps

Our first step is a regex. This step will make sure we only use the numbers
we need. We match on the word RX, then the word bytes, and a sequence of
numbers after them. This way, we end up with the total number of RX bytes
in capture group 2. This is why we fill in \2 in the output field. We also
specify Custom on fail, which will discard any value if the regex doesn’t
match.

Our second step is to discard any values that are the same as the value
received before. Instead of storing duplicate values, we simply discard them
and save some space in our Zabbix database.

TIP
It’s a lot easier to build a regex when using an online tool such as https://regex101.com/. You
can see what number your capture groups will get, and there’s a lot of valuable information in
the tools as well.

It’s important to note that steps are executed in the sequence they are defined
in the frontend. If the first step fails, the item becomes unsupported unless
Custom on fail is set to do something else.

By adding preprocessing to Zabbix, we open up a whole range of options for
our items, and we can alter our data in almost any way required. These two
steps are just the beginning of the options that are available when diving into
the world of Zabbix preprocessing.

See also

Preprocessing in Zabbix is an important subject, and it’s impossible to cover
every aspect of it in a single recipe. The two preprocessing steps in this
recipe’s example are just two of the many options we can use. Check out the
official Zabbix documentation to see the other options we can use:
https://www.zabbix.com/documentation/current/en/manual/config/items/prep
rocessing.

4

Working with Triggers and Alerts
Now, what use would all of that collected data in Zabbix be without actually
doing some alerting with it? Of course, we can use Zabbix to collect our data
and just go over it manually, but Zabbix gets a lot more useful when we
actually start sending out notifications to users. This way, we don’t have to
always keep an eye on our Zabbix frontend, but we can just let our triggers
and alerts do the work for us, redirecting us to the frontend only when we
need it.

In Zabbix 7, you will find a new trigger expressions syntax compared to
Zabbix 5. This syntax has been available since Zabbix 5.4, so if you skipped
some versions, this might be the first time you’re working with it. If you’ve
been working with a Zabbix version before version 5.4, keep in mind that you
might need to get used to this new syntax. If you have Zabbix 5.4 or higher
running already, the syntax will be the same in Zabbix 7.

We will learn all about setting up effective triggers with the new expression
format and about alerts in the following recipes:

Setting up triggers

Setting up advanced triggers

Setting up alerts

Keeping alerts effective

Customizing alerts

Technical requirements
For this chapter, we will need a Zabbix server, for instance, the one used in
the previous chapter.

The Zabbix server installed on a Linux distribution of your choice. We will use the server set up in
Chapter 1.

MariaDB set up to work with your Zabbix server.

NGINX or Apache set up to serve the Zabbix frontend.

We will also need a Linux host to monitor so that we can actually build some cool triggers to use.

Setting up triggers
Triggers are important in Zabbix because they notify you as to what’s going
on with your data. We want to get a trigger when our data reaches a certain
threshold or when we receive a certain value.

So, let’s get started with setting up some cool triggers. There are loads of
different options for defining triggers, but after reading this recipe, you
should be able to set up some of the most prominent triggers. Let’s take your
trigger experience to the next level.

Getting ready

For this recipe, we will need our Zabbix server ready and we will need a
Linux host. I will use the lar-book-agent_simple host from the previous
chapter because we already have some items on that.

We’ll also need one more host that is monitored by the Zabbix agent with the
Zabbix agent template. We’ll use one of the items on this host to create a

trigger. This will be the lar-book-agent_passive host from the previous
chapter.

On this host, we will already have some triggers available, but we will extend
these triggers further to inform us even better.

How to do it…

In this section, we are going to create three triggers to monitor state changes.
Let’s get started by creating our first trigger.

Trigger 1 – SSH service monitoring

Let’s create a simple trigger on the lar-book-agent_simple host. We made a
simple check on this host called Check if port 22 is available, but we
haven’t created anything to notify us about this yet:

1. First, let’s get started by going to Data collection | Hosts, then clicking the host and going to
Triggers. This is where we will find our triggers and where we can create them. We want to create
a new trigger here by clicking the blue Create trigger button in the top-right corner.

2. Let’s create a new trigger with the following information:

Figure 4.1 – The Zabbix trigger creation page – Service unreachable

3. Click on Add and finish creating the trigger. This will create a trigger for us that will fire when
our Secure Shell (SSH) port goes down.

4. Let’s test this by navigating to our host command-line interface (CLI) and executing some
commands to shut our Zabbix server off from port 22. We will add an iptables rule to block

off all incoming traffic on port 22 (SSH):

iptables -A INPUT -p tcp -i ens192 -s 10.16.16.152

--destination-port 22 -j DROP

5. Make sure to change the ens192 network card and the IP address 10.16.16.152 to your own

values. You can use the following command to get that information:

ip addr

6. Now, if we click on Dashboards in the navigation bar, after a while we should see the following:

Figure 4.2 – Zabbix problems on a dashboard – port 22 down

Trigger 2 – triggering when there is a new
Zabbix version

Now, to create our second trigger, let’s ramp it up a bit. If you followed
Chapter 3, Setting Up Zabbix Monitoring, in the recipe titled Setting up
HTTP agent monitoring, we created an item that polls the Zabbix website for
the latest release of Zabbix, Zabbix 7.0. Now, what we probably want to do
ourselves is keep an eye out for any new version of Zabbix being released:

1. Let’s navigate to Data collection | Hosts and click on the lar-book-agent_simple host.

2. Now, go to Triggers and click the Create trigger button. We will build our trigger with the
following settings:

Figure 4.3 – The Zabbix trigger creation page – new Zabbix 7.0 release trigger

3. Click on Add and finish creating the trigger.

Now, this might not actually trigger for you in the frontend, but I’ll explain to
you just how this trigger works in the How it works… section of this recipe.

Trigger 3 – using multiple items in a trigger

We have seen triggers that use one item, but we can also use multiple items
in a single trigger. Let’s build a new trigger by using multiple items in the
same expression:

1. Let’s navigate to Data collection | Hosts and click on the lar-book-agent_ passive host. Now, go
to Triggers and click the Create trigger button.

2. We are going to create a trigger with the following settings:

Figure 4.4 – The Zabbix trigger creation page – inbound or outbound packets trigger

3. Please note that your item keys might need different interface names. In my case, the interface is
called ens192, so use the correct name for your interface in its place. Use the following Linux

command to get the interface on your host:

ip addr

4. Click on Add and finish creating the trigger.

Here's a tip - On the trigger creation page, use the Add button next to the
Expression field to add a condition and build your expression easily. For
example, we can use the Select button to pick an item from a list.
Something that’s also very useful, when using the Function drop-down
menu, is the short explanation for every trigger function that’s included:

Figure 4.5 – Trigger creation page

That’s all we need to do to build a trigger that will function on two items.

How it works…

We need a good understanding of how to build triggers and how they work so
we can create a well-set-up monitoring platform. Especially important here is
that we make sure that our triggers are set up correctly and we test them well.
Triggers are a very important part of Zabbix as they will be vital to inform
you about things going on with your monitoring targets. Configure your
triggers too loosely and you will be missing things. Configure them too
strictly and you will be overloaded with information.

In all of these triggers, we have also included a trigger severity, as we can see
in the following screenshot:

Figure 4.6 – A Zabbix trigger severity selector

These severities are important to make sure your alerts will be correctly
defined by importance. We can also filter on these severities in several places
in the Zabbix frontend and even in things such as actions.

Now, let’s discover why we built our triggers as we did.

Trigger 1 – SSH service monitoring

This is a very simple but effective trigger to set up in Zabbix. When our value
returns either 1 for UP or 0 for DOWN, we can easily create triggers such as these
—not just for monitoring logical ports that are up or down, but for everything
that returns a simple value change from, for example, 1 to 0 and vice versa.

Now, if we break down our expression, we have the following:

Figure 4.7 – A Zabbix trigger expression – port 22 (SSH)

When building an expression, we have four parts:

Trigger function: The trigger function is the part of the expression that determines what we
expect of the value, such as whether we want just the last value or, for example, an average value
over a period of time.

Host: The host part of the expression is where we define which host we are using to trigger on.
Most of the time, it’s simply just the host (or template) we are working on.

Item key: The item key is the part of the expression where we define which item key we’ll be
using to retrieve the value(s) on a host and feed it into the trigger function.

Operator: The operator determines how our function will be calculated based on the trigger
expression—against a constant or another expression, for example. The operator can be anything,
such as the following:

= Equal to.

<> Not equal to.

> Bigger than.

< Smaller than.

>= Bigger than or equal to.

<= Smaller than or equal to.

+ Add to.

- Subtract from.

/ Divide by.

* Multiply by.

and Logical AND. Used to, for example, equal both
one and another expression.

or Logical OR. Used to, for example, equal either one
or another epxression.

not Logical NOT. Used to, for example, specifically
not equal an expression.

Constant: The constant is the actual constant (often a value) that our trigger function uses to
determine whether the trigger should be in an OK or PROBLEM state. We can also use macros here.

Now, for our first trigger, we defined our host and the item that gives us the
SSH status. What we are saying in the trigger function is that we want the last
value to be 0 before triggering it.

For this item, that would mean it would trigger within a minute because in
our item, we specified the following:

Figure 4.8 – The Zabbix item configuration page – port 22 availability item

Looking at the Update interval field on the Item configuration page, we can
determine that when building this trigger, we are expecting our value to be 0

and that it will take a maximum of one minute of SSH port 22 downtime due
to the 1m interval.

Trigger 2 – triggering when there is a new
Zabbix version

Now, for our second trigger, we did something different. We not only made
an expression for triggering this problem but also one for recovering from the
trigger. What we do in the Problem expression option is define a trigger
function, telling our host to compare the last value with the value before it.
We did this by using the change trigger function.

Figure 4.9 – A Zabbix trigger expression – HTTPS check

So, our trigger will only be activated when the latest Zabbix version has been
changed. We could just let the trigger resolve the first time the current value
and the value before that are the same again, but I want to keep this trigger in
the PROBLEM state just a little longer.

Therefore, I defined a recovery expression as well. I’m telling it that this
problem can only be recovered if the last received value and the fifth last are

received. Check out the recovery expression up close:

Figure 4.10 – Another Zabbix trigger expression – HTTPS check with different value

Recovery expressions are powerful when you want to extend your trigger
functionality with just a bit more control over when it comes back into the OK

state.

TIP
You can use the recovery expression to extend the trigger’s PROBLEM state beyond what you

defined in the Problem expression option. This way, we know we are still close to the
PROBLEM state. We define that we only want the trigger to go back to the OK state after we’ve

reached another threshold as defined in the recovery expression. This will work by evaluating
both the problem and recovery expressions, where the problem expression has to be FALSE

and the recovery expression TRUE.

Trigger 3 – using multiple items in a trigger

Now, trigger 3 might seem complicated because we’ve used more than one
item, but it’s basically the same setup:

Figure 4.11 – A Zabbix trigger expression using several items

We have the same setup for the expression, with the function, host, item key,
and value. Yet when we are working with multiple items, we can add an or

statement between the items. This way, we can say we need to match one of
the items before triggering the PROBLEM state. In this case, we trigger when
either item exceeds the threshold.

IMPORTANT NOTE
In this trigger expression, we have some empty lines between the different item expressions.
Empty lines between item expressions are totally fine and actually make for good readability.
Use this wisely when building triggers.

Old versus new trigger expression syntax

Now, if you’ve worked with Zabbix before version 5.4, the next part might
be interesting to you. As mentioned in our introduction, there has been a big
update to expressions within Zabbix. Trigger expressions now work in a new
way, which is the same way as you will see in calculated items and other
places for a unified experience.

Let’s take a look at the old expression syntax as seen in Zabbix 5.2 and older
versions:

Figure 4.12 – A Zabbix trigger expression using the old syntax

In the old syntax, we always started with a curly bracket and then the
hostname or template name. Between the hostname or template name and the
item key, we had a colon. Marking the end of the item key, we had a dot, but
item keys can also include dots themselves. Then, after the dot, we have the
trigger function followed by the ending curly bracket. Then, all we have left
is the operator and constant we want to compare the expression against.

As you can imagine, this could become confusing at times, especially when
using dots in item keys. Now let’s check out the new trigger syntax:

Figure 4.13 – A Zabbix trigger expression using the new syntax

Our new trigger syntax starts off right away with our trigger function; no
hassle, just immediately showing you what we’re doing with this line. This is
followed by a bracket and a forward slash before entering the host or
template name. We then use another forward slash to divide the hostname or
template name and the item key. We end with a bracket, and then all we have
left is the operator and value we want to hold the expression against.

Starting with the trigger function makes for a clear indicator of what your line
is doing. Putting the hostname or template name into brackets and then
dividing it with forward slashes from the item key makes for a more cohesive
experience when writing expressions. We also don’t have confusing extra
dots any longer. Altogether a very nice change to the trigger syntax, which in
all honesty might take a bit of time to get used to.

It’s the small stuff that makes the entire software feel more professional and
well thought out. Zabbix including changes such as these really helps with
that.

There’s more…

Not only can we match one of the items in a trigger expression, but we can
also use an and statement. This way, we can make sure our trigger only goes
into a PROBLEM state when multiple items are reaching a certain value.
Triggers are very powerful like this, allowing us to define our own criteria in
great detail. There’s no predefinition—we can add as many and, not, or or
statements and different functions as we like in the trigger expressions.
Customize your triggers to exactly what you need, and suddenly you are

going to have a lot more peace of mind because you know your triggers will
notify you when something is up.

See also

To know more about trigger expressions, check out the Zabbix
documentation. There’s a lot of information on which functions you can use
to build the perfect trigger. For more details, go to
https://www.zabbix.com/documentation/current/en/manual/config/triggers/ex
pression.

Setting up advanced triggers
Triggers in Zabbix keep getting more advanced and it might be hard to keep
up. For people working with Zabbix 5.2 or older and upgrading to Zabbix 7,
not only is there a new Zabbix trigger syntax but there’s also a whole new
array of functions.

Let’s dive into setting up some more advanced triggers in Zabbix 7.

Getting ready

For this recipe, we will need our Zabbix server ready and we’ll need one host
that is monitored by a Zabbix agent with the Zabbix agent template. We’ll
use the items on this host to create triggers. Let’s use the lar-book-

agent_passive host from the previous chapter.

If you don’t have this host from the previous chapter, simply hook up a new
host with the default passive Linux monitoring template called Linux by

Zabbix agent.

We’ll also be touching on some more advanced topics that are discussed later
in the book. If you don’t know how to use Low-Level Discovery (LLD), for
example, it might be a good idea to dive into Chapter 7, Using Discovery for
Automatic Creation, first.

How to do it…

Let’s take a look at three more advanced triggers compared to the three
we’ve seen in the previous recipe: trendavg for going through trend data,
timeleft to predict values in the future, and time shifting to compare to the
past.

Advanced trigger 1 – trendavg function

First, we’ll take a look at one of the newer trigger functionalities, the trend
average function:

1. Let’s start by creating a new trigger in our frontend. Navigate to Data collection | Hosts and select
lar-book-agent_passive.

2. Navigate to Triggers and click on the blue Create trigger button in the top-right corner.

3. Next to the Expression field, click on the white Add button. Fill out the trigger using the
expression builder:

Figure 4.14 – trendavg trigger expression builder

4. Click on Insert and add a name. It will look like this if done correctly.

Figure 4.15 – trendavg trigger form filled out

5. Now let’s click the blue Add button at the bottom of the page to finish creating this trigger.

That’s all for creating this trigger. Check out the How it works… section of
this recipe to get more information about the trigger.

Advanced trigger 2 – timeleft function

Next up is our timeleft function, which is very useful for things such as
space utilization. Let’s take a look:

1. We’ll create a new trigger in our Zabbix frontend. Navigate to Data collection | Hosts and select
lar-book-agent_passive.

2. Navigate to Discovery rules and click on Trigger prototype next to Mounted filesystem
discovery.

IMPORTANT NOTE
In this case, we are creating the trigger prototype directly on the host, using an existing
template discovery rule. If you want to apply a trigger like this to every host using a template,
make sure to create the trigger on a template level. Furthermore, discovery rules are
explained further in Chapter 7, Using Discovery for Automatic Creation, of this book.

3. Click on Create trigger prototype.

4. Next to the Expression field, click on the white Add button. Fill out the trigger using the
expression builder:

Figure 4.16 – timeleft trigger expression builder

IMPORTANT NOTE
Using short intervals in predictive triggers to predict long time periods is not recommended.
Make sure to use the right dataset for the time period we want to use in relation to the time we

want to predict.

5. Click the blue Insert button and the finished trigger will look like this.

Figure 4.17 – timeleft trigger form filled out

6. Click the blue Add button at the bottom of the page to finish setting up the trigger.

We now have a new trigger using the timeleft function to tell us when hard
disks are filling up within a week. Check out the How it works… section of
this recipe to get more information about the trigger.

Advanced trigger 3 – time shifting using
mathematical functions

Lastly, we are going to work with time shifting, and in this case, we’ll do so
in combination with a mathematical function. Time shifting is a little bit of a
difficult example, so bear with me:

1. Let’s navigate to Data collection | Hosts and select our host, lar-book-agent_passive.

2. Go to Triggers and click the blue Create trigger button.

3. Add the following trigger, as seen in the screenshot:

Figure 4.18 – Time shifting average trigger form filled out

This is a very complex trigger to set up, so let’s dive right into how it’s set up
in the How it works… section.

How it works…

Advanced triggers can get very complex. The triggers we have just set up are
just the tip of the iceberg. Do not worry if these triggers seem intimidating, as
there is plentiful documentation out there to help you set them up, which you
can find here:
https://www.zabbix.com/documentation/current/en/manual/config/triggers.

It’s near impossible to cover every single use case in this book, so the triggers
we set up will show you what’s possible. Use what you have learned in the
examples in your own scenarios, but make sure to apply your own thinking to
it.

Advanced trigger 1 – trendavg function

Let’s start off the How it works… section with the trend average. Trend
average is one of the few trigger functions that use trend data instead of
history data. Let’s do a short crash course on history and trend data in
Zabbix. History data is the exact value every time an item receives data from
a monitored host. Trend data is the average, minimum, and maximum values
over one hour created from the history data and a count of the number of
values.

Now, let’s look at the available functions for creating triggers using trend
data:

trendavg: To get the average value from trend values within a time period

trendmax: To get the maximum value from trend values within a time period

trendmin: To get the minimum value from trend values within a time period

trendcount: To get the number of retrieved trend values within a time period

trendsum: To get a sum of trend values within a time period

As I said, all of these will use our trend values. The values used are stored in
a special Zabbix trend cache in memory, for use in our trigger. We’ve used
the trendavg function. Let’s check out how we used it in our trigger
expression again:

Figure 4.19 – trendavg trigger expression

We start off our trigger with the trendavg function and then the host/template
and item key as we saw earlier in the last recipe. What’s new here is the part
where we state 1w:now-1w. This is the time period; here we’ve stated to use a
value from one week ago.

What this means is that if the average value from our trends one week ago is
above 800 Mbps, then this trigger will go into a problem state.

Advanced trigger 2 – timeleft function

timeleft is another very interesting trigger function. We can use timeleft to
create triggers that only fire when it expects something to reach a certain
threshold in the future. This is called a predictive trigger, as it makes a
prediction based on older data.

Let’s check out our trigger expression again.

Figure 4.20 – timeleft trigger expression

As we can see, we start our expression as usual: the trigger function,
host/template, and our item key. In this case, we combined that with a time
period we want to use for our predictive trigger to define its prediction. We
used 7h, to tell this expression to use seven hours of historic data. Combine
that with a threshold of 100, to make sure this will trigger if we expect to
reach 100% disk space usage. Now we only need one more element to
complete this, the expected result, which in this case is <1w.

To sum it all up, this trigger expression looks at seven hours of historic data
and if it expects to reach 100% disk space in less than one week, it will go

into a problem state, alerting you that you will need to make sure your disks
don’t run out of space.

A tip would be to combine the timeleft trigger function with other functions
to limit how many times you get alerted. For example, with disk space, we
might expect a disk to fill up in a week, but you might not want to see that
unless the used space is at least less than 50 Gigabytes. Add another
expression and you are golden:

Figure 4.21 – timeleft trigger function expression

Advanced trigger 3 – time shifting using
mathematical functions

As a Zabbix trainer, time shifting trigger expressions are where my students
and I always need to spend some additional time on what they all do exactly.
This makes sense, as it is one of the more complex expressions, and in this
example, we even combined it with some mathematical functions.

So, let’s take another look at our expression and break it down.

Figure 4.22 – Time shifting trigger expression

I’ve added line numbers for our convenience. Now we can go over each line
and explain what they mean:

1. This is the opening bracket for our mathematical statement, using the operator between two items.

2. Our first item, using the time shift function. This item will get our memory availability as a
percentage from one week ago starting from this moment exactly. If the current date and time are
Monday 24th November at 14:00, it will get the one-hour average value for Monday 17th
November between 13:00 and 14:00.

3. Our mathematical operator, stating a minus. This means we’ll subtract the result of the first
expression from the result of the second expression.

4. This is our second item, not using a time shift. This item will be filled with a one-hour average
value of the last hour.

5. The closing bracket ends our mathematical statement.

6. Finally, an operator and constant. This states that this trigger will only trigger if the mathematical
result is higher than 20.

Now that we know what each of the lines does, let’s take a look at how it
works in a real-life scenario. We’re going to fill out the values manually and
see whether the expression is TRUE or FALSE. TRUE means that there is a
problem and FALSE means everything is fine. So, the math is as follows:

(Last week - This week) = Result

If the Result is higher than 20 then the expression is True

This expression is: TRUE/FALSE

Filling it out with 80% memory available last week and only 50% available
this week, we can see the following happening:

(80 - 50) = 30

If 30 is higher than 20 the expression is TRUE

This expression is TRUE

Let’s do it one more time but with 80% memory available last week and 70%
this week:

(80 - 70) = 10

If 10 is higher than 20 the expression is TRUE

This expression is FALSE

This is how you should go about setting up your time shifting expressions.
Simply use a notebook or whatever you like, write down your expression in
simple text for yourself, and do the calculations.

There’s more…

Trigger expressions can also be tested within Zabbix itself. If we go to Data
collection | Hosts | Triggers and select any of our three advanced triggers,
we can do a little test. For example, using the time shifting trigger, we can
click Expression constructor.

Figure 4.23 – Time shifting trigger expression constructor

Here, we can select Test and then fill out our values. Let’s use the same 80%
and 50% we did in the earlier example:

Figure 4.24 – Time shifting trigger expression constructor – Test

As you can see, this will tell us whether our expression ends up being TRUE
or FALSE, using any values we want to fill. In short, if you want to be sure
your math on paper is doing the same thing directly in Zabbix, use
Expression constructor to test it.

Setting up alerts
Alerting can be a very important part of your Zabbix setup. When we set up
alerts, we want the person on the other end to be informed of just what is
going on. It’s also important to not spam someone with alerts; we want it to
be effective.

So, in this recipe, we will go over the basics of setting up alerts, so we know
just how to get it right from the start.

Getting ready

For this recipe, we will only need two things. We will have to use our Zabbix
server to create our alerts and we will need some triggers, such as the triggers
from the previous recipe. The triggers will be used to initiate the alerting
process to see just how the Zabbix server will convey this information.

How to do it…
1. Let’s start by setting up our action on the Zabbix frontend. To do this, we will navigate to Alerts |

Actions | Trigger actions and we will be served with this screen:

Figure 4.25 – The Zabbix Trigger actions page with one trigger action

There is already one action set up to notify Zabbix administrators of
problem events. In Zabbix 7, a lot of features, such as Actions and Media,
are predefined. Most of the time, all we need to do is enable them and fill out
some information.

2. We will set up our own action, so let’s create a new action to notify a user in the Zabbix
administrators group of our new triggers. Click the blue Create action button to be taken to the
next page:

Figure 4.26 – The Zabbix action creation page – notify book reader

3. On this page, check the Enabled checkbox to make sure that this action will actually do
something. Make sure to name your action clearly so that you won’t have any issues with
differentiating between actions.

4. Now, move on to the Operations tab:

Figure 4.27 – The Zabbix action creation page at the Operations tab – notify book reader

5. The Operations tab is empty by default, so we are going to want to create some operations here.
There are three forms of operation that we are going to create here—let’s start with the
Operations operation by clicking Add:

Figure 4.28 – Zabbix Operation details page – notify book reader

6. We have the option to add users and/or user groups here that we want to alert. If you’ve followed
along with Chapter 1, Installing Zabbix and Getting Started Using the Frontend, you can just
select the Networking user group here. If not, selecting just the Zabbix administrators group is
fine.

7. After clicking the blue Add button at the bottom of the form, we will be taken back to the Actions
screen.

8. Now, we will create the next operation, named Recovery operations. What we do here is create
an operation, as follows:

Figure 4.29 – Zabbix Recovery operations details – notify book reader

9. This option will notify all users involved in the initial operation defined earlier. All users that got a
PROBLEM generation notification will also receive the recovery this way. Click Add, and let’s

continue.

Now, if you’re like me and you want to stay on top of things, you can
create an update notification. This way, we know that—for instance—
someone acknowledged a problem and is working on it. Normally, I
would select different channels for stuff such as this—for instance, using
SMS for high-priority alerts and a Slack or Teams channel for everything
else.

10. Let’s click Add under Update operations to add the following to our setup:

Figure 4.30 – Zabbix update operation details – notify book reader

11. We will do the same thing here as we did for the Recovery operations option and notify all users
involved of any update to this problem. After clicking Add here, click the blue Add button again
on the Actions screen to finish creating the action.

12. Now, the next thing we want to do is create a media type for actually notifying our users of the
issue. Go to Alerts | Media types, and you will be presented with the following screen:

Figure 4.31 – The Zabbix Media types page with predefined media options

As you can see, there are quite a lot of predefined media types in Zabbix 7.
We have them for Slack, Opsgenie, and even Telegram. Let’s start with
something almost everyone has, though: email.

13. Click the Email media type and we’ll edit it to suit our needs:

Figure 4.32 – The Zabbix Media type creation page for email

14. I set it up to reflect my Office 365 settings, but any Simple Mail Transfer Protocol (SMTP)
server should work. Fill in your SMTP settings, and we should be able to receive notifications.

15. Be sure to also check the next tab, Message templates. For example, the message template for a
Problem generation event looks like this:

Figure 4.33 – The default Zabbix Message template page for problems

We set this up like this so that we get a message telling us just what’s going
on. This is fully customizable as well, to reflect just what we want to know.

16. Let’s keep the default settings for now. Last but not least, go to Users | Users and edit a user in the
Zabbix administrators or Networking group. I will use the Admin user as an example.

Figure 4.34 – The Zabbix user Media page for the Admin user

17. On this window, go to Media and click the Add button. We want to add the following to notify us
of all trigger severities at our email address:

Figure 4.35 – The Zabbix user media creation page for the Admin user

18. Now, click on the blue Add button and finish creating this user’s media.

How it works…

Now, that’s how we set up alerts in Zabbix. You will now receive alerts at
your email address, as shown in the following flowchart:

Figure 4.36 – Diagram showing Zabbix problem flow

When something breaks, a problem in Zabbix is triggered by our trigger
configuration. Our action will then be triggered by our problem event and it
will use the media type and user media configuration to notify our user. Our
user then fixes the issue (for instance, rebooting a stuck server), and then an
OK event will be generated. We will then trigger the action again and get an
OK message.

TIP
Before building alerts such as this, make a workflow (as shown in Figure 4.36) for yourself,
specifying just which user groups and users should be notified. This way, it’s clear just how
you will use Zabbix for alerting.

There’s more…

There are loads of media types and integrations, and we’ve just touched the
tip of the iceberg by seeing a list of predefined ones. Make sure to check out
the Zabbix integration list (https://www.zabbix.com/integrations) for more
options or build your own using the Zabbix webhooks and other extensions
available.

Keeping alerts effective
It’s important to keep our alerts effective to make sure we are neither
overwhelmed nor underwhelmed by notifications. To do this, we will change
our trigger and the Email media type to reflect just what we want to see.

Getting ready

We will be using trigger 1 from the first recipe and the default email media
type in Zabbix.

Furthermore, of course, we’ll also be using our Zabbix server.

How to do it…

To create effective alerts, let’s follow these steps:

1. Let’s get started on trigger 1, which we created in this chapter’s Setting up triggers recipe.
Navigate to the lar-agent-simple host by going to Data collection | Hosts and clicking

Trigger for the host.

2. Here, sometimes people use a different trigger name like the one we see here:

Figure 4.37 – Trigger 1 from the previous recipe

Even when you’ve used the {HOST.NAME} macro in the trigger, it’s quite
simple, so fortunately there isn’t a lot to change here. If you’ve used the
hostname in the trigger name, we can change the name to reflect a message
that is clearer.

3. Make sure to use a short and descriptive trigger name, such as the following:

Figure 4.38 – New Trigger 1 name

4. Next, navigate to the Tags page to add a tag to keep the triggers organized. Let’s add the
following:

Figure 4.39 – Trigger 1 tags

5. Another great way of keeping everything organized is changing the message on media types. Let’s
change the media type to reflect our needs. Navigate to Alerts | Media types and select our media
type named Email.

6. Select Message templates and click Edit next to our first problem. This will bring us to the
following window:

Figure 4.40 – Standard email media type message

Currently, Zabbix uses the default configured message under the media type
when we do not use a custom message. But if we want to change that
message, we can do that here by creating a custom message. The default
message under the Email media type looks as in the previous screenshot.

7. We can change the message on the media type. For instance, if you don’t want to see the original
problem ID or want a more customized message, simply remove that line, as shown in the
following screenshot:

Figure 4.41 – Custom Email media type message

How it works…

We’ve done two things in this recipe: changed our trigger name and added a
tag to our trigger.

Keeping trigger names clear and defined in a structured way is important to
keep our Zabbix environment structured. Instead of just naming our trigger
Port 22 SSH down on {HOST.NAME}, we’ve added standardization to our setup
and can now create cool structures such as this with our future triggers:

Figure 4.42 – Trigger structure diagram

Our triggers are all clear and we can immediately see which host, port, and
service are down.

On top of that, we’ve added a tag for the service that is down, which will now
immediately display our service in a clear way, alerting us to exactly what is
going on:

Figure 4.43 – Trigger down – structured

In Zabbix 6, a new tag policy was introduced. As we created the item used in
the trigger with a component tag and we just added a trigger tag for scope,
we followed the new standard. In the problem view in the preceding
screenshot, it becomes immediately apparent that we have a problem
affecting the availability of the TCP service SSH. The scope tag generally
contains either one of five options: availability, performance, notification,
security, and capacity.

For more information about the new Zabbix tag policy that we still use in
Zabbix 7, check out this link:

https://blog.zabbix.com/tags-in-zabbix-6-0-lts-usage-subfilters-and-
guidelines/19565/

Another thing we’ve done is removed the {HOST.NAME} macro if we’ve used it
before. As we can already see which host this trigger is on by checking the
Host field, we do not need to add the {HOST.NAME} macro. We need to keep
trigger names short and effective and use the hostname macros in Media or
simply use the field already available in the frontend.

We’ve also changed our action in this recipe. Changing a message on media
types is a powerful way to keep our problem channels structured. Sometimes,
we want to see less or more information on certain channels, and changing
media type messages is one way to do this.

We can also create custom messages on an Action level, changing all the
messages sent to the selected channels.

There’s more…

What I’m trying to show you in this recipe is that although it might be simple
to set up Zabbix, it is not simple to set up a good monitoring solution with
Zabbix—or any monitoring tool, for that matter—if you don’t plan. Carefully
plan out how you want your triggers to be structured before you build
everything in your Zabbix installation.

An engineer who works in a structured way and takes the time to build a
good monitoring solution will save a lot of hours in the future because they

will understand the problem before anyone else.

Customizing alerts
Alerting is very useful, especially in combination with some of the tricks
we’ve learned in this book so far to keep everything structured. But
sometimes, we need a little more from our alerts than what we are already
getting from Zabbix out of the box.

In this recipe, we’ll do a small bit of customization to make the alerts more
our own.

Getting ready

For this recipe, all we are going to need is our current Zabbix server
installation.

How to do it…

To customize alerts, follow these steps:

1. Let’s create some custom severities in our Zabbix server to reflect our organization’s needs.
Navigate to Administration | General and select Trigger displaying options from the side menu:

Figure 4.44 – Administration | General from side menu

After selecting this, we’ll be taken to the next page. This window contains the
default Zabbix trigger severities, as shown in the following screenshot:

Figure 4.45 – Default trigger severities page

2. Next up, we can customize the default trigger severities, as follows:

Figure 4.46 – Custom trigger severities page

3. Do not forget to click the blue Update button at the bottom of the page to save the changes.

How it works…

Not all companies like using terms such as High and Disaster, but prefer
using different severities such as P1 and P2. Using custom severities, we can
customize Zabbix to make it more our own and reflect the terms we’ve
already been using in different tools, for example.

Changing custom severities is not a necessity by any means, but it can be a
good way to adopt Zabbix more easily if you are used to something different.

5

Building Your Own Structured Templates
It’s time to start one of the most important tasks in Zabbix: building
structured templates. A good Zabbix setup relies heavily on templating, and
there is a huge difference between a good and a bad template. So, if you’re
new to Zabbix or you haven’t started building your own templates yet, then
pay close attention to this chapter.

In this chapter, we will go over how to set up your templates, and how to fill
them with the right items and triggers. Also, it is important to make use of
macros and Low-Level Discovery (LLD) in the right way. After following
these recipes, you will be more than ready to build solid Zabbix templates
with the right format and even LLD.

In this chapter, we’ll cover the following recipes:

Creating your Zabbix template

Setting up template-level tags

Creating template items

Creating template triggers

Setting up different kinds of macros

Using LLD on templates

Nesting Zabbix templates

Technical requirements

We will need our Zabbix server from Chapter 4, Working with Triggers and
Alerts, to monitor our Simple Network Management Protocol (SNMP)
host. For the SNMP host, we can use the host we set up in the Working with
SNMP monitoring recipe in Chapter 3, Setting Up Zabbix Monitoring.

Creating your Zabbix template
In this recipe, we will start with the basics of creating a Zabbix template. We
will go over the structure of Zabbix templating and why we need to pay
attention to certain aspects of templating.

Getting ready

All you will need in this recipe is your Zabbix server.

How to do it…

Now, let’s get started with building our structured Zabbix template:

1. Open your Zabbix frontend and navigate to Data collection | Templates.

2. On this page, click the Create template button in the top-right corner. This will take you to the
following page:

Figure 5.1 – The Create template page, empty

At this point, we are going to need to name our template and assign a
template group to it. We will be creating an SNMP template to monitor a
Linux host. I’ll be using SNMP in the example to show how the templates are
structured.

IMPORTANT NOTE
Use SNMP to monitor network equipment, custom equipment supporting SNMP, and more.
SNMP is very versatile and easy to understand, and it is implemented by a lot of hardware
manufacturers. For Linux hosts, I’d still recommend the very powerful Zabbix agent, which we
covered in the Setting up Zabbix agent monitoring recipe in Chapter 3, Setting Up Zabbix
Monitoring.

3. Create your template with the following information:

Figure 5.2 – The Create template page filled with information for the SNMP template

We will not link any Templates, Tags, and Macros yet, but we’ll address
some of these functionalities later. That’s all there is to creating our template,
but there’s nothing in it besides a name, group, and description so far.

How it works…

There’s not a lot of work involved in creating our first template—it’s quite
straightforward. What we need to keep in mind is the right naming
convention here.

Now, you might think to yourself: why is naming a template so important?
Well, we are going to create a lot of templates when working with Zabbix.

For example, this is a small part of the list of out-of-the-box templates:

Figure 5.3 – Some out-of-the-box templates

As you can see, this is already a large list, and all of these templates follow a
singular straightforward naming convention. If you look at the name of the
template we have just built ourselves and, for example, the built-in Apache
template, they follow the same convention. Breaking down the convention, it
looks like this:

Figure 5.4 – Template naming convention explanation

If we look at the list and compare it to the naming convention we went over
in Figure 5.4, we can see the following pattern:

What are we monitoring?: (Linux) We name the template—in this case, we’ll call it Linux
because the OS we monitor will be Linux.

Monitoring type: (by SNMP) We will add our data collection method at the end of the template
as we might monitor the Linux OS in other ways besides SNMP, such as the Zabbix agent.

Adhering to the guidelines in this naming convention and thus using the
correct template names is our first step in creating the correct structure for
our template. This makes it easy to find out which templates we want to use
on which hosts.

In our case, we’ve also added a short custom prefix to make sure we can
distinguish our template from others already created in the Zabbix setup.
Normally, we can omit this prefix, but for this book, it’s useful. As a best
practice, it is recommended to clone the default templates you’d like to use
and prefix the template name with your company name or shorthand. We do
this to not overwrite the default templates and to ensure we can import the
official templates later without overwriting possible changes we made. For
example, I would clone Linux by SNMP and call it OICTS Linux by SNMP for

use in our company, Opensource ICT Solutions. This would also work in a
Managed Service Provider (MSP) environment where we’d like to have a
unique template for each customer.

There’s more…

When building templates, adhere to the Zabbix guidelines. That’s what we
will do in this book as well, combined with our experience in creating
templates. If you want to learn more about Zabbix templating guidelines,
check the following URL:
https://www.zabbix.com/documentation/guidelines/en/thosts.

Setting up template-level tags
Our next step in setting up our Zabbix template is setting up template-level
tags. Tags on the template level are used to give every single event (problem)
created on a host by this template a tag. The tag is then used to filter events in
things such as dashboards, actions, and the Monitoring | Problems view.

Getting ready

To get started with this recipe, you will need a Zabbix server and a template
on that server, preferably the template we created in the previous recipe.

How to do it…

Creating template-level tags is a way to make sure that only events created by
a certain template will get a configured tag. To get started, the first thing you
will need to do is navigate to the template and follow these steps:

1. Go to Data collection | Templates and click on our template, which is called Custom Linux by
SNMP.

2. Then, click the Tags tab at the top of the form, and you’ll be taken to this tab:

Figure 5.5 – Zabbix Tags tab for the SNMP template

Now, the first thing we can do is create some tags to make sure we know all
the events from this template will be Linux-related.

3. The first tag is already ready to be created. Fill out Name as class. Then, in the Value field,

type in os.

4. For the second tag, click the small dotted-underlined Add button and set the Name for the second
tag to target. Then, in the Value field, type in linux. It will look like this:

Figure 5.6 – Zabbix Tags tab filled out for the SNMP template

5. Do not forget to click the blue Update button to save your tag to this template.

How it works…

Now, there’s a lot more to creating tags than it might seem at first through
following this recipe. Tags play a key part in keeping your Zabbix
environment structured. You will use the template-level tags to filter in a lot
of places, such as the Monitoring | Problems window, and with a lot of
events created by one host, they will improve readability by making problems
easy to filter.

For example, once we have configured some triggers later in this recipe,
when checking the Monitoring | Problems page for our host, we could see
something like the following:

Figure 5.7 – Example Monitoring | Problems page for host lar-book-agent_snmp

NOTE REGARDING SCREENSHOTS
Some screenshots used in the book have been adjusted to fit the margins of the book pages
which has resulted in lower readability of the text in the print version. Please refer to the PDF
version available here: https://packt.link/free-ebook/978-1-80107-832-0; to enlarge the image
and view the text with more clarity.

As you can see, the problem we are looking at here is displaying the
target:linux and class:os tags at the end of the page. The event was tagged
with the template-level tag, and we can now see that it will always carry that
tag, allowing us to filter.

This gives us loads of opportunities because we aren’t limited to template-
level tags. We also have host-level tags, item-level tags, and trigger-level
tags. We could tag everything from a template with target:linux and class:os
or even tag a specific trigger with something like department:architecture.

We could then, for example, create an action that sends out everything Linux-
related to a certain Linux engineering email address or Teams/Slack channel
based on the class:linux tag, but only send specific problems with a trigger-
level tag such as department:architecture to a more specific email address
or Teams/Slack channel.

For more information regarding the tag policy starting from Zabbix 6, check
out the following link:

https://blog.zabbix.com/tags-in-zabbix-6-0-lts-usage-subfilters-and-
guidelines/19565/

See also

In this chapter, the recipe titled Using LLD on templates will also explain tag
prototypes, where we will create tags automatically based on the LLD
settings. Tag prototypes are the recommended way of working with tags
when creating discovery and are amazing for keeping templates structured.
More about that later.

Creating template items
Let’s get started with finally creating some real template items because, in the
end, items are what it is all about in Zabbix. Without items, we don’t have

data, and without data, we do not have anything to work with in our
monitoring system.

Getting ready

Now, moving along, we are going to need our Zabbix server and a host that
we can monitor with SNMP. In Chapter 3, Setting Up Zabbix Monitoring, we
monitored a host with SNMP, so we will use this host again. We’ll also use
the Zabbix template from the previous recipes.

How to do it…
1. First of all, let’s log in to our Zabbix server command-line interface (CLI) and enter

snmpwalk, with the following command:

snmpwalk -v3 -l authPriv -u snmpv3user -a SHA -A "my_authpass"

-x AES -X "my_privpass" 10.16.16.153 .1

Make sure to change the IP address 10.16.16.153 to your own value. We
will receive an answer such as this:

Figure 5.8 – snmpwalk reply

Now, let’s capture our hostname in our template first, as it is an important
item to have. When working with SNMP, I always like to work with
untranslated SNMP Object Identifiers (OIDs). For our hostname, this is
.1.3.6.1.2.1.1.5.0.

2. If we have an Management Information Base (MIB), we can translate this OID to make sure it
is actually the system name. Enter the following command at the Zabbix server CLI:

snmptranslate .1.3.6.1.2.1.1.5.0

This will return the following reply:

Figure 5.9 – snmptranslate reply

TIP
Using -On in your SNMP command makes sure that we are receiving the OIDs instead of the

MIB translation. If we want to work the other way around, we can omit the -On in our

command and snmptranslate the translated OID.

3. Now that we know how to get our hostname, add this to our template. Navigate to Data collection
| Templates and select our Custom Linux by SNMP template.

4. Here, we will go to Items. In the upper-right corner, select Create item to create the following
item:

Figure 5.10 – Item for sysName SNMP OID

5. Make sure to also add an item-level tag. These are important for grouping and filtering items.
Click the Tags tab and add the following:

Figure 5.11 – Item for sysName SNMP OID on the Tags tab

Now that we have our first item, let’s create a host as well and assign this
template to that host.

6. Navigate to Data collection | Hosts and click Create host in the top-right corner. Create a host
with the following settings:

Figure 5.12 – New host with our self-created template

7. Don’t forget to add the macros to our new host before clicking the Add button. Click on Macros
and fill in the following information:

Figure 5.13 – Add macros tab on a host

Do not forget to set your macros to the type secret text to hide the passwords
in the frontend.

8. Now, you can click the Add button, and our new host will be monitored.

How it works…

When we create items such as this on our template when assigning the
template to our hosts, the item will also be created on the host. The great
thing about this is that we can assign a template to multiple hosts, meaning
we only have to configure the item on the template level once, instead of
creating the item on every single host. For instance, our newly created host
will show the following latest data:

Figure 5.14 – Monitoring | Latest data for our new host

The value for this item will then be different for all your monitored hosts,
depending on the value received by that host.

IMPORTANT NOTE
When creating an SNMP item, keep the following in mind. The Item field SNMP OID always
contains the non-translated OID. This is to ensure that we do not actually need MIB files for
our templates to work.

Furthermore, the item key will be based on the translated OID. In our case,
the translated OID was sysName, which we then turned into the sysName item
key. These are general rules that we should all abide by when creating our
templates, to make sure they are structured in the same way for everyone.

See also

To learn more about Zabbix and SNMP OIDs/MIBs, check out this blog post:

https://blog.zabbix.com/zabbix-snmp-what-you-need-to-know-and-how-to-
configure-it/10345/#snmp-oid

Creating template triggers
Creating templated triggers works in roughly the same way as creating
templated items or normal triggers. Let’s go over the process to see how we
do it and how to keep it structured.

Getting ready

We will need the Zabbix server and the host from the previous recipe for this
recipe.

How to do it…

We have configured one item on our template so far, so let’s create a trigger
for this item:

1. Navigate to Data collection | Templates in our Zabbix frontend and select our Custom Linux by
SNMP template.

2. Now, click Triggers and then Create Trigger in the top-right corner. This will take us to the next
page, where we will enter the following information:

Figure 5.15 – Create trigger window for the SNMP template

3. As discussed in the previous chapter, for triggers there’s also the scope tag that we need to add:

Figure 5.16 – Create trigger window for the SNMP template – tag

4. Last, but not least, let’s edit the hostname on our host to see if the trigger is working correctly.
Change the hostname entry by executing the following command on the Linux host CLI:

hostnamectl set-hostname lar-book-agent-t

5. Then, make sure the changes take effect by executing the following command:

exec bash

systemctl restart snmpd

How it works…

When editing the template, the created trigger will immediately be added to
our host named lar-book-templated_snmp. This is because when we edited
the template, the host was already configured with this template. When we
have changed the hostname, the trigger can immediately be triggered after the
item is polled again:

Figure 5.17 – Hostname has changed trigger for host lar-book-templated_snmp

Because we used the change function in our trigger, the second time we poll
this item the problem will automatically go away again. In our case, this will
happen after 30 minutes.

IMPORTANT NOTE
Like a lot of other Zabbix users, I always like to use the {HOST.NAME} macro in trigger

names, but according to Zabbix guidelines, this isn’t recommended. If you prefer this you can
still use it, but it’s a lot more useful to use the Host fields throughout the Zabbix frontend and

the built-in macros for notifications. This will keep trigger names short and won’t show us
redundant information.

Setting up different kinds of macros

When we are working with templates, a very efficient way to make your
templates more useful is through the use of macros. In this recipe, we’ll
discover how to use macros to do this.

Getting ready

We are going to need our Zabbix server and our SNMP-monitored host from
the previous recipes. We’ll also need our Zabbix template, as created in the
previous recipe.

How to do it…

Now, let’s start with creating some macros on a template level. We’ll be
making two different types of macros.

Defining a user macro
1. First, we’ll define a user macro on our template. Navigate to Data collection | Templates and

click on our Custom Linux by SNMP template.

2. Here, we will go to Macros and fill in the following fields:

Figure 5.18 – Template-level macros

3. Click on Update, and let’s move to Trigger to define a new trigger:

Figure 5.19 – Trigger creation window for the SNMP template

4. Let’s also add the trigger tag:

Figure 5.20 – Trigger creation window for the SNMP template tag tab

5. Now, change the hostname entry by executing the following command on the host CLI:

hostnamectl set-hostname dev-book-agent

6. Then, make sure the changes take effect by executing the following command:

exec bash

systemctl restart snmpd

7. Our trigger should fire, as shown in the following screenshot:

Figure 5.21 – Trigger created problem for a hostname prefix on the lar-book-
templated_snmp host

Using built-in macros
1. Now, let’s work on defining a built-in macro on our template. Navigate to Data collection |

Templates and click on our Custom Linux by SNMP template.

2. Now, click Triggers and, in the top-right corner, click on Create trigger. Create a trigger with the
following settings:

Figure 5.22 – Trigger creation window for hostname match

3. Let’s also add the trigger tag:

Figure 5.23 – Trigger creation window for the SNMP template – tag

4. This will then trigger a problem, as expected.

Figure 5.24 – Trigger created problem Hostname does not match

How it works…

There are four types of macros: built-in macros, user macros, expressions
macros, and LLD macros. All of these macros can be used on templates, but
also directly on hosts and various other locations. Macros are useful for
creating unique values in places that would otherwise contain static
information.

Let’s discover how they work.

How a user macro works

Because we want all of our hosts on this template to contain lar as a prefix,
we create a user macro at the template level. This way, the user macro that
will be used on every host with this template will be the same.

We then define our user macro in our trigger to use the value, which is lar-

in this case. We can reuse this user macro in other triggers, items, and more.
The great thing is that defining a user macro on a template level isn’t all we
can do. We can override template-level user macros by defining a host-level
user macro. So, if we want a single host to contain a different prefix, we
simply use a host-level macro to override the template-level macro, like this:

Figure 5.25 – Host-level macros page

If we then look at the inherited and host-level macros screen on our host, we
will see the following:

Figure 5.26 – Inherited and host-level macros page

We see the effective value is now dev-, not lar-, which is exactly what we
would be expecting to happen here.

Keep in mind the syntax always starts with a curly bracket and a dollar sign
and ends with a curly bracket. You are allowed to break the text in between
with either dots or underscores. Here are some examples:

{$MACRONAME}

{$MACRO.NAME}

{$MACRO_NAME}

How a built-in macro works

Now, a built-in macro comes from a predefined list of macros, hardcoded
within Zabbix. They are used to get data from your Zabbix system and put

them in items, triggers, and more. This means that the built-in macro used in
this case already contains a value.

In this case, we used {HOST.HOST}, which is the hostname we defined on our
Zabbix host, like this:

Figure 5.27 – Zabbix host configuration page for host lar-book-templated_snmp

For every single host, this built-in macro would be different as our Host
name value will be unique. This means that our trigger, although defined on
a template level, will always be unique as well. This method is a very
powerful way to use built-in macros in triggers, as we’ll pull information
from Zabbix directly into Zabbix again.

Keep in mind the syntax always starts with a curly bracket and ends with a
curly bracket. You are allowed to break the text in between with either dots
or underscores. Here are some examples:

{HOST.NAME}

{INVENTORY.LOCATION.LAT}

There’s more…

A complete list of supported (built-in) macros can be found here:

https://www.zabbix.com/documentation/current/en/manual/appendix/macros/
supported_by_location

This list will be updated by Zabbix, just as with every good Zabbix
documentation page. This way, you can always use this page as a reference
for up-to-date (built-in) macros for building your Zabbix elements.

Using LLD on templates
Now, let’s get started on my favorite part of template creation: LLD. I think
this is one of the most powerful and most widely used parts of Zabbix.

Getting ready

To get ready for this recipe, you will need your Zabbix server, the SNMP-
monitored host from the previous recipes, and our template from the previous
recipe.

Working knowledge of the SNMP tree structure is also recommended. So,
make sure to read the Working with SNMP monitoring recipe in Chapter 3,
Setting Up Zabbix Monitoring, thoroughly.

How to do it…
1. Let’s get started by navigating to Data collection | Templates and selecting our Custom Linux

by SNMP template.

IMPORTANT NOTE

First, we will add a value mapping, which we’ll use for multiple item prototypes. Keep in mind
that value mappings since Zabbix 6 are no longer global, but template- or host-specific. This is
to make sure that the templates and hosts (once exported) are even more independent from
the global Zabbix settings.

2. Click on the Value mapping tab and the dotted Add button. Add the following:

Figure 5.28 – Zabbix add Value mapping page

3. Make sure to save this change by clicking the blue Add button and then the blue Update button.

4. Now, go back to the template and go to Discovery rules, and in the top-right corner, click Create
discovery rule. This will take you to the LLD creation page:

Figure 5.29 – Zabbix LLD creation page, empty

Now, we will be making a discovery rule to discover our interfaces on the
Linux host. The Linux SNMP tree for interfaces is at OID .1.3.6.1.2.1.2.

IMPORTANT NOTE
Make sure that Linux net-snmp is configured correctly in the /etc/ snmp/snmpd.conf

file. It’s important to change the view in this file to show everything from .1 and up, like this:
view systemview included .1

5. Now, let’s continue with creating our LLD rule by adding the following to our LLD creation page:

Figure 5.30 – Zabbix LLD creation page filled with our information for network interface
discovery

6. After clicking the Add button, we can navigate back to our template at Data collection |
Templates and click Custom Linux by SNMP.

IMPORTANT NOTE
We define Delete lost resources as immediately; we do this because this is a test template.
This option is used by LLD to remove created resources (such as items and triggers) if they
are no longer present on our monitored host. Using immediately can lead to lost data
because we might get a resource back within a set amount of time, so make sure to adjust
this value to your production environment’s standard.

7. Go to Discovery rules and click our newly created rule, Discover Network interfaces.

8. Now, go to Item prototypes and click Create item prototype in the top-right corner. This will
open the Item prototype creation popup, as shown in the following screenshot:

Figure 5.31 – Zabbix LLD Item prototype creation page, empty

Here, we will create our first prototype for creating items from LLD. This
means we have to fill it with the information we want our items to contain.

9. Let’s start by filling in an item prototype for the interface operational status, like this:

Figure 5.32 – Zabbix LLD item prototype creation page filled with our information for the
interface’s operational status

10. On the Tags tab, make sure to also add a tag prototype as follows:

Figure 5.33 – Zabbix LLD item prototype tag creation tab

TIP

In the next step, we’ll create an item that is very similar to the item we just created. It’s super
useful to use the Clone button instead of filling in the entire form from scratch again.

11. After clicking the Add button, let’s repeat the process and also add the following item prototype:

Figure 5.34 – Zabbix LLD item prototype creation page filled with our information for the
interface admin status

12. Do not forget the Tags tab:

Figure 5.35 – Zabbix LLD item 2 prototype tag creation tab

13. Now, move over to the Trigger prototype page, click the Create trigger prototype button in the
top-right corner, and create the following trigger:

Figure 5.36 – Zabbix LLD trigger prototype creation page filled with our information for
interface link status

14. Last but not least, add the trigger tag:

Figure 5.37 – Zabbix LLD trigger prototype creation page Tags tab

How it works…

LLD is quite an extensive topic in Zabbix, but by following the steps in this
recipe you should be able to apply what you learn here to almost every form
of LLD there is to configure in Zabbix. First of all, let’s look at how
discovery works.

In the discovery rule, we just configured the following:

Figure 5.38 – Zabbix LLD discovery key and OID for key net.if.discovery

TIP
Zabbix LLD works by using a specific JSON format. When creating discovery rules, we can
always go to the discovery rules at the host level and use the Test button. This should then
show us what the JSON Zabbix uses looks like.

What we are basically saying here is that for every interface after OID
.1.3.6.1.2.1.2.2.1.2, we fill in the {#IFNAME} LLD macro. In our case, we
will end up with the following OIDs:

.1.3.6.1.2.1.2.2.1.2.1 = STRING: lo

.1.3.6.1.2.1.2.2.1.2.2 = STRING: ens192

So, we are saving these for use in our prototypes. Now, when we look at what
we did to our Operational status prototype, this all comes together:

Figure 5.39 – Zabbix LLD item prototype name, type, key, and OID

We are telling our item prototype to create an item for every single {#IFNAME}

value using the key defined plus the {#SNMPINDEX} LLD macro. SNMPINDEX is
the last number of our SNMP poll. In this case, we would see the following:

.1.3.6.1.2.1.2.2.1.8.1 = INTEGER: up(1)

.1.3.6.1.2.1.2.2.1.8.2 = INTEGER: up(1)

For all the vendors in the world, there’s a set of predefined SNMP rules they
should adhere to. Our first interface entry when polling
.1.3.6.1.2.1.2.2.1.2 was the .1 SNMPINDEX with the value lo. This
means that when polling .1.3.6.1.2.1.2.2.1.8, the .1 SNMPINDEX here
should still contain a value for lo.

Zabbix LLD will now create an item with the name Interface lo:

Operational status, which will poll the SNMP OID:

.1.3.6.1.2.1.2.2.1.8.1 = INTEGER: up(1)

It will also create an item with the name Interface ens192: Operational

status, which will poll the SNMP OID:

.1.3.6.1.2.1.2.2.1.8.2 = INTEGER: up(1)

The created items will then look like this:

Figure 5.40 – Zabbix latest data screen for our SNMP-monitored host

Besides creating these LLD items, we also created an LLD trigger prototype.
This works in the same manner as item prototypes. If we check our host

triggers, we can see two created triggers:

Figure 5.41 – Our SNMP-monitored host triggers

These triggers have been created in the same manner as the items and are
then filled with the correct items for triggering on:

Figure 5.42 – Our SNMP-monitored host trigger for ens192

We can see that for the interface operation status, we have an SNMPINDEX
of 2, and we have the same for the Interface ens192: Admin status item as
well. Our trigger will now trigger when the operation status is 0 (down) and
our admin status is 1 (up).

A neat trigger, to make sure we only have a problem when the admin status is
up; after all, we only want our interface down alert when we configure the
interface to be admin up.

TIP
It’s possible to use discovery filters to only add the interfaces that have admin status up to our
monitoring. This way, we keep our required Zabbix server performance lower and our data
cleaner. Consider using discovery filters for use cases such as this.

See also

Discovery is an extensive subject and takes a while to master. It’s something
that can be used like we did in this chapter with SNMP, but also with the
Zabbix agent, and for a lot of other use cases. Once you start working with
Zabbix discovery and you keep it structured, that’s when you’ll start building
the best templates you’ve seen yet.

Check out the following link for the Zabbix LLD documentation:

https://www.zabbix.com/documentation/current/en/manual/discovery/low_le
vel_discovery

Nesting Zabbix templates
Using a simple template per device or group of devices is in most cases the
best practice way to create Zabbix templates, but it isn’t the only way. We
can also use nested templates to break pieces of them apart and put them back
together in the highest template in the hierarchy.

In this recipe, we’ll go over how to configure this and why.

Getting ready

We are going to need our Zabbix server, our SNMP-monitored host, and the
template we created in the previous recipe.

How to do it…
1. Let’s start by navigating to our Data collection | Templates page and clicking the Create

template button in the top-right corner.

2. We are going to create a new template for monitoring the uptime of our SNMP host. Input the
following information:

Figure 5.43 – New template creation page for uptime with SNMP

3. Next, we are going to click the Add button and click our Custom Linux uptime by SNMP
template name. This will take us to the template editing screen.

4. Click on Items and Create item in the top-right corner. We will create an example item here, like
this:

Figure 5.44 – A new item on the template creation page called System Uptime

5. Do not forget to add a tag, as shown in the screenshot, by going to the Tags tab:

Figure 5.45 – New item on the template creation page, System Uptime, Tags tab

6. Make sure to click the blue Add button to finish adding this item.

7. Now, let’s navigate to our original template by going back to the Data collection | Templates
page and clicking Custom Linux by SNMP.

8. On this page, link a template to the current template by adding it in the Templates entry field, like
this:

Figure 5.46 – Template link page for master SNMP template

9. Click on the blue Update button to finish linking the template.

10. Last, but not least, navigate to Data collection | Hosts, click our lar-book-

templated_snmp SNMP-monitored host, and check out the Items page if the item is present:

Figure 5.47 – Our Hosts | Items page for host lar-book-templated_snmp

The item is present, and it shows it’s actually from another template. That’s
all there is to do to link a template—using these nested templates is easy to
work with but harder to keep it structured. Let’s see how this works.

How it works…

Nesting templates have a simple tree structure, just like this:

Figure 5.48 – Template nesting tree structure

So, we have our Zabbix-monitored host, which in turn has Custom Linux by

SNMP linked as the only template. Now, because we have a nested template on
Custom Linux by SNMP (which is, of course, Custom Linux uptime by SNMP),
the items on that template will also be linked to our Zabbix-monitored host.

We can use this for a great deal of cases—one of my favorites is for
networking equipment. If we have a Juniper EX (or Cisco Catalyst) and a
Juniper QFX (or Cisco Nexus) series switch, both series switches use the
same SNMP discovery for interfaces. So, we can create a template for
interfaces and nest it in the main template of the EX or QFX series, which use
different SNMP OIDs for other values.

This way, we don’t have to write the same discovery rules, items, graphs, and
everything else on a template a hundred times. We can simply do it once and
nest the template neatly.

6

Visualizing Data, Inventory, and Reporting
When working with Zabbix, collected data must be put to good use. After all,
the data is of no use if we don’t have a place to easily access it. Zabbix
already puts our data to good use with the Latest data page and with
problems created from triggers, but we can also put our data to good use by
building some stuff ourselves, such as graphs, maps, an inventory, and
completely custom dashboards. We can even create reports from the
dashboards and use built-in reports in the frontend.

After working through these recipes, you’ll be able to set up the most
important parts of Zabbix data visualization. You’ll also be able to make
good use of your inventory and reporting systems to get the most out of their
useful features.

In this chapter, we’ll cover the following recipes to show you how to achieve
good results:

Creating graphs to access visual data

Creating maps to keep an eye on infrastructure

Creating dashboards to get the right overview

Templating dashboards to work at the host level

Setting up Zabbix inventory

Using the Zabbix Geomap widget

Working through Zabbix reporting

Setting up scheduled PDF reports

Setting up improved business service monitoring

Technical requirements
For this chapter, we will need our Zabbix server, our Simple Network
Management Protocol (SNMP)-monitored host from Chapter 5, Building
Your Own Structured Templates. We’ll be doing most of our work in the
frontend of Zabbix, so have your mouse at the ready.

The code files for this chapter can be found in this book’s GitHub repository:
https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/tree/main/chapter06.

Creating graphs to access visual data
Graphs in Zabbix are a powerful tool to show what’s going on with your
collected data. You might have already created some ad hoc graphs by using
the Latest data page, but we can also create o predefined graphs. In this
recipe, we will go over doing just that.

Getting ready

Make sure to get your Zabbix server ready, along with a Linux host that we
can monitor (with SNMP). If you followed the recipes in Chapter 5, Building
Your Own Structured Templates, you should already have a template.

Alternatively, you can download the templates available at
https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/tree/main/chapter06.

If you’re using the downloaded templates, download and import Custom
Linux uptime by SNMP first, then Custom Linux by SNMP. You can
import a template by going to Data collection | Templates and clicking the
blue Import button in the top-right corner.

Make sure you put the template on a host and monitor it.

How to do it…

Follow these steps:

1. Let’s start by navigating to our templates by going to Data collection | Templates and selecting
the template. For me, it is still called Custom Linux by SNMP.

2. Go to Items and create the following item on the template:

Figure 6.1 – ICMP item creation page

3. Make sure you go to the Tags tab and add a tag, as follows:

Figure 6.2 – ICMP item creation page – the Tags tab

4. Click the blue Add button to save this item.

5. Now, back at the template configuration page, go to Graphs. This is where we can see all of our
configured graphs for this template; at the moment, there are none.

6. Click Create graph in the top-right corner. This will take you to the graph creation page:

Figure 6.3 – Graph creation page

This is where we can create graphs for standalone items. Let’s create a graph
to see our uptime.

7. Fill in the graph creation page with the following information:

Figure 6.4 – Graph creation page filled with our information

TIP
When working with graphs, it’s a good idea to keep colorblind people in mind. Worldwide,
about 8% of all males and 0.5% of all females are affected by this condition. There are great
sources online that explain which colors to use for your production environment. You can find
one such source here: https://www.tableau.com/about/blog/2016/4/examining-data-viz-rules-
dont-use-red-green-together-53463.

8. Now, ping your SNMP-monitored host for a while. Do this from your Zabbix server command-
line interface (CLI):

ping 10.16.16.153

9. Afterward, navigate to Monitoring | Hosts and click the Graphs button next to your host. In my
case, the host is still called lar-book-templated_snmp.

10. This will immediately take us to an overview of graphs for this host, where we can see our new
Incoming ICMP messages graph:

Figure 6.5 –Monitoring | Hosts graph page with our graph

We can also make graphs for discovery items; this is called a graph
prototype. They work in about the same way as our item prototypes. Let’s
create one of these as well:

1. Navigate to Data collection | Templates and select our Custom Linux by SNMP template.

2. Go to Discovery rules. Then, for the Discover Network Interfaces discovery rule, click on Item
prototypes. In the top-right corner, click Create item prototype and create the following item
prototype:

Figure 6.6 – Item prototype – the Incoming bits page filled with our information

3. Now, let’s add a tag on the Tags tab:

Figure 6.7 – Item prototype Incoming bits – the Tags tab

4. Lastly, make sure you add the following on the Preprocessing page:

Figure 6.8 – Item prototype – the Incoming bits Preprocessing tab filled with our
information

IMPORTANT NOTE
Preprocessing is quite an extensive topic. In short, the preprocessing in this step will ensure
that our data is calculated at a change per second, with the mathematical formula (value -
prev_value)/(time - prev_time), and that our data is multiplied by 8 so that it’s changed from
bytes to bits.

5. Click the blue Add button to finish creating this item prototype.

6. Now, back at our Discover Network interfaces discovery rule, click the Graph prototypes
button.

7. In the top-right corner, click Create graph prototype and fill in the next page with the following
information:

Figure 6.9 – Graph prototype – the Incoming bits page filled with our information

8. Now, if we go back to Monitoring | Hosts and click the Graphs button, we’ll see two new
graphs:

Figure 6.10 – Graphs page for our host

It might take some time for the graph to fill with data since we’ve only just
added the item. Give it some time and you will start to see them fill up.

How it works…

Graphs work by putting your collected values in a visual form. We collect
our data from our host – through SNMP, for example – and we put that data
in our database. Our graphs, in turn, collect this data from the database and

put it in this visual form. For humans, this is a lot better to read, and we can
interpret the data easily.

The graph prototype works in almost the same way as our item prototype. For
every discovered interface, we create a graph using a name containing the
{#IFNAME} low-level discovery (LLD) macro. This way, we get a versatile
structured environment because when a new interface is created (or deleted),
a new graph is also created (or deleted).

Creating maps to keep an eye on
infrastructure
Maps in Zabbix are a great way to get an overview of infrastructure. For
instance, they’re amazing for following traffic flows or seeing where
something is going off in your environment. They’re not only super-useful
for network overviews but also for server management overviews, and even
for a lot of cool customization.

Maps are super useful, and we use them a lot in environments we build. Since
we love maps so much, we’ve also taken the liberty of opening a feature
request suggesting some collected map improvements to make them even
better: https://support.zabbix.com/browse/ZBXNEXT-7680.

Getting ready

We will need our Zabbix server, our SNMP-monitored host, and the
templates from the previous recipe.

How to do it…

Follow these steps:

1. Let’s start this recipe off by navigating to Data collection | Templates and selecting our Custom
Linux by SNMP template.

2. Go to Discovery rules and then Item prototypes. Create the following item prototype by filling in
the fields on the Item prototype creation page:

Figure 6.11 – Item prototype creation page

3. We’ll also need to go to Tags to add a new tag, as shown in the following screenshot:

Figure 6.12 – Item prototype creation page – the Tags tab

4. Lastly, don’t forget to add preprocessing by going to the Preprocessing tab:

Figure 6.13 – Item prototype – the Preprocessing tab

5. Click on the blue Add button to finish.

6. Next, navigate to Monitoring | Maps. There’s already a default map here that’s included in all
Zabbix server installs called Local network. Feel free to check it out:

Figure 6.14 – The default local network map

7. There’s not much to see here besides your local Zabbix server host and whether it is in a problem
state or not. So, let’s click on All maps.

8. We’re going to create our own map, so click the Create map button in the top-right corner. Create
the map by filling in the following fields:

Figure 6.15 – Map creation page

9. After clicking the blue Add button, the frontend will take you back to the Map overview page.
Click the newly created Templated SNMP host map here.

10. Click Edit map in the top-right corner to start editing the map.

11. Now, what we want to do here is select the Add button next to Map element, which is in the
horizontal menu at the top of the map. This will add the following element:

Figure 6.16 – The added element

12. Click the newly added element. This will open the following screen:

Figure 6.17 – The Map element edit window

13. Here, we can fill out our host information. Let’s add the following information to the fields:

Figure 6.18 – Map element – lar-book-templated_snmp

Click Apply and move the element by dragging it to X:400 and Y:100 (see
Figure 6.20).

14. Now, add another element by clicking the Add button next to Map element. Edit the new element
and add the following information:

Figure 6.19 – Map element vSwitch edit window filled with information

After creating both elements, move the new switch element to X:150 and
Y:80, as seen in Figure 6.20.

15. Now, select both elements by holding the Ctrl key (command on Mac) on your keyboard.

16. Then, click Add next to Link to add a link between the two elements. It should now look like this:

Figure 6.20 – Our newly created map

17. Edit the information for our server again after creating the link by clicking on our icon. Click on
Edit next to the newly created link, as shown in the following screenshot:

Figure 6.21 – The Edit link in the Map element edit window

18. Add the following information to the window:

Figure 6.22 – Editing the link in the Map element edit window with our information

IMPORTANT INFORMATION

Make sure the hostname (in this example, lar-book-templated_snmp) is an exact match

with the hostname in your Zabbix system. We’re requesting data specifically from that host.
We cannot omit the hostname or use macros such as {HOST.HOST} here since the link

belongs to two hosts and Zabbix won’t understand the context.

19. Let’s also click Add in the Link indicators section and add the following trigger with the color
red:

Figure 6.23 – Link indicator filled with a trigger

20. Now, click Apply at the bottom of the window and then Update in the top-right corner of the
page. That’s our first map created!

How it works…

After creating and opening our map, we’ll see the following:

Figure 6.24 – Our newly created map

The map shows our switch (which is not a monitored host at the moment) and
our server (which is a monitored host). This means that when something is
wrong with our server, the OK status will turn into a PROBLEM status on
the map.

We can also see our configured label (see Figure 6.24), which shows us real-
time information on traffic statistics. Now, when we break down the label, we
get the following:

Figure 6.25 – Map label breakdown

We can pull real-time statistics into a label by defining which statistics we
want to pull into the label between {}. In this case, we collect our values for
interface traffic and put them directly in the label, creating a real-time traffic
analysis map.

We also put a trigger on this link. The cool thing about putting triggers such
as this on our map is that when our link goes down, we can see the following
happen:

Figure 6.26 – Map showing problems

Traffic has stopped flowing because the link is now down, and our line has
turned red. Also, our host is now showing a PROBLEM state under the
hostname.

We can even create orange lines with triggers that state 50% traffic utilization
like this and trace Distributed Denial-of-Service (DDoS) traffic through our
network.

Creating dashboards to get the right
overview
Now that we’ve created some graphs and a map, let’s continue by not only
visualizing our data but also getting the visualization in an overview. In this
recipe, we’re going to create a dashboard for our Linux-monitored hosts.

Getting ready

Make sure you followed the previous two recipes and that you have your
Zabbix server ready. We’ll be using our SNMP-monitored host from the
previous recipe, as well as some items, triggers, and a map we created earlier.

Feel free to substitute any items you might not have with anything else from
your environment. With dashboards, the most important thing is to play
around with data, something you can do once you understand the concept of a
widget.

How to do it…

Follow these steps:

1. From the sidebar, navigate to Dashboards and click All dashboards in the left corner of the page.

2. Now, click the Create dashboard button in the top-right corner and fill in your dashboard’s
name, like this:

Figure 6.27 – The Dashboard properties area

Start slideshow automatically is enabled here, but it’s only useful if you
want to use this dashboard in a slideshow, such as on a big screen (TV) in a
Network Operating Center (NOC) room. I always disable it for dashboards
that are used on personal computers so that my pages don’t jump around
while troubleshooting.

3. I’ve also opened a case to ask Zabbix to change the default behavior:
https://support.zabbix.com/browse/ZBXNEXT-7713.

TIP
Keeping Zabbix elements such as maps and dashboards that are meant to be used by entire
departments owned by the Zabbix Admin user is a good idea. This way, they aren’t
dependent on a single user who might leave your environment at a later stage, which means
we have to change the map owner once we want to delete their account. The elements can
be owned by a disabled user as well. If you’re not a super admin, don’t forget to share the
dashboard with yourself before changing the owner.

4. Now, click Apply; you’ll be taken to your dashboard:

Figure 6.28 – New empty dashboard

After creating our dashboard, we will see that it is empty. We need to fill it
with several widgets to create a good overview.

5. Let’s start by adding a problem widget. Click + Add in the top-right corner. Add the following
widget by filling out all the fields:

Figure 6.29 – New problem widget creation window

6. Click Add. By doing this, we’ll have our first widget on our dashboard, displaying all
Unacknowledged problems. It will only show them for the Severity warning and higher on all
Linux servers:

Figure 6.30 – The Unacknowledged problems widget

7. Let’s immediately add some more widgets, starting with our Map widget. Click + Add in the top-
right corner and add the following widget:

Figure 6.31 – The Add widget page

8. Also, add a Graph type widget by clicking + Add in the top-right corner again. This one is a bit
more difficult. Let’s add our name first:

Figure 6.32 – New graph widget creation window

9. Then, we need to add our first Data set, like this:

Figure 6.33 – Adding a dataset

10. Then, add a second one by clicking + Add new data set and adding the following:

Figure 6.34 – Adding another dataset

11. We can then click Add, and our graph will be added to our dashboard.

12. Let’s also add the Item value widget to the page. Click on + Add again. Then, set up the
following widget:

Figure 6.35 – Adding the Item value widget

If you’re interested in changing exactly how this widget looks, be sure to use
the Advanced configuration fields in this widget configuration screen.

13. Another widget we love is the very useful new Top hosts widget. Let’s add it by using the + Add
button again.

14. On the widget configuration screen, set Host groups to Linux servers.

15. Next, click on the Add button next to Columns to add a column with information. Fill out the
form like this:

Figure 6.36 – Top hosts widget 1, column 1

16. Click on the Add button next to Columns again and add the following:

Figure 6.37 – Top hosts widget 1, column 2

17. The result should look like this:

Figure 6.38 – Top hosts widget 1

18. Don’t forget to click the blue Add button at the bottom of the form to save your changes.

19. Let’s create one more Top hosts widget by using the + Add button again.

20. Set Host groups to Linux servers again. Then, click on the Add button next to Columns

again. Add the following:

Figure 6.39 – Top hosts widget 2, column 1

21. Click on the Add button next to Columns again and add the following:

Figure 6.40 – Top hosts widget 2, column 2

22. The result will look like this:

Figure 6.41 – Top hosts widget 2

23. Now, we can freely move around the widgets until we see this:

Figure 6.42 – Our dashboard filled with information

24. Now, let’s add another page. Click on the drop-down arrow next to + Add and click Add page.
This will open the following popup, where we will add a new page called Host data:

Figure 6.43 – Adding a new Host data page

25. Click on Apply to add the new page. We can now immediately start adding additional widgets on
the first page.

26. Let’s click on + Add again to add a new widget and select the widget called Gauge first.

27. Let’s select an item from the default Zabbix server host. Click Select next to the Item field

and search your host groups for the Zabbix server host. From the list, select the Available

memory in % item.

28. Make sure the form looks like as follows:

Figure 6.44 – Dashboard Gauge widget creation form

29. Click on the Add button at the bottom of this window to save the changes and add this widget.

30. Now, let’s add our last widget by clicking + Add again. We’ll add a new widget called Pie chart.

31. Set Name to CPU timings. For host pattern, set Zabbix server, and for item pattern, set

CPU * time. It should look like this:

Figure 6.45 – Dashboard Pie chart widget creation form

32. On the Legend tab, set Number of rows to 3.

33. Now, click on the Add button at the bottom of the page to save the changes and add the widget.

34. Your new page should now look like this:

Figure 6.46 – Zabbix global dashboard second page

35. I don’t like the name of our first page, so let’s click on Page 1 and then on the three dots next to
Page 1. It should open a dropdown, where we can select Properties.

36. Here, give your page a new name. I will name it Overview. I always rename the first page to keep
things organized and not have any default non-descriptive names in my dashboard (or anywhere
for that matter). It should now show us two pages with different names:

Figure 6.47 – Zabbix Linux servers global dashboard page names

37. Click Save changes in the top-right corner and you’re done.

How it works…

Creating dashboards is the best way to create overviews for quick access to
data during troubleshooting, day-to-day problem monitoring, and – of course
– for use with big TV walls. We’ve probably all seen the big operation
centers with TVs displaying data. Zabbix is great for all these purposes and
more, as you saw in this recipe.

There’s more…

Zabbix has added a lot of new widgets in 7.0 as a big focus for them has been
visualization. New widgets will be added in even newer versions of Zabbix as
well, so keep your eye on the roadmap if you’re still missing something:
https://www.zabbix.com/roadmap.

We also haven’t talked about every single new widget yet, so check out the
what’s new page here: https://www.zabbix.com/whats_new_7_0.

Templating dashboards to work at the host
level
When Zabbix removed the screens functionality and replaced it with
dashboards completely, a lot of people in the Zabbix community got very
excited about using the newer widgets on their host-level dashboards.
Unfortunately, development time is limited and at the time of writing, the
feature is limited to only six widgets.

In Zabbix 7.0, this all changes. All the widgets available on your global
dashboards are now available on host-level dashboards, making the whole
feature incredibly useful.

Getting ready

Make sure you followed the first two recipes in this chapter and that you have
your Zabbix server ready. We’ll be using our SNMP-monitored host from the
first two recipes, as well as our item, triggers, and map.

Alternatively, anyone can create host-level dashboards, so long as they have
some data available on a host that has a template assigned. As such, feel free
to apply your own datasets instead.

How to do it…

Let’s start building some templated dashboards:

1. Navigate to Data collection | Templates and edit the Custom Linux by SNMP template by

clicking on Dashboards next to it.

2. Now, in the top-right corner, click on Create dashboard to start creating your first templated
host-level dashboard.

3. We will call this dashboard Host overview as it will contain several different statistics about

our host:

Figure 6.48 – Host dashboard creation

4. Start slideshow automatically is enabled here, but this is only useful if you want to use this
dashboard in a slideshow, such as on a big screen (TV) in a NOC room. I always disable it for
dashboards used on personal computers so that my pages don’t jump around while
troubleshooting.

5. Click Apply to add this new dashboard.

6. Now that the dashboard has been created, we can start adding some widgets. Add your first widget
by clicking on + Add in the top-right corner.

7. Let’s start with a simple Item value widget. Add the following information:

Figure 6.49 – Host dashboard, Item value widget

8. Make sure you apply your changes and add the widget by clicking + Add.

9. Next up, we’ll add a graph widget. Click + Add to create another widget and add the following
information:

Figure 6.50 – Host dashboard, Graph widget

10. Still on the widget creation form, we’ll also create a dataset. In this case, we can keep it simple by
just adding a single-item dataset:

Figure 6.51 – Host dashboard, Graph widget dataset

11. Click Add to save your changes and add the widget to the dashboard.

This dataset will simply show the number of incoming ICMP messages in
a graph for us. However, it is also possible to use wildcards by using the
asterisk symbol (*) to grab multiple items in a single-item pattern.

12. Let’s also create a problem overview of the host here. Add the Problems widget, as follows:

Figure 6.52 – Host dashboard, Problems widget

13. Click Add to save your changes and add the widget to the dashboard.

14. Now, make sure you arrange these widgets so that they form a proper dashboard:

Figure 6.53 – Host dashboard, completed and arranged

At this point, you might be wondering why this dashboard is empty.
Templates do not contain data, meaning we have to navigate to a host to look
at the actual data.

15. Navigate to Monitoring | Hosts and go to the lar-book-templated_snmp host. Click

Dashboards next to it:

Figure 6.54 – Host dashboard for host lar-book-templated_snmp

As you can see, the dashboard now contains data about our specific host.

How it works…

Host-level dashboards are super useful since they completely rely on
templates. We have to set them up at the template level; when we do, all of
the hosts that are using that template will have the same dashboard with
unique information shown in the widgets. This makes it possible for us to
create hundreds or even thousands of dashboards by simply setting it up at
the template level.

However, we have to keep in mind that host-level dashboards are different
than the global dashboards we set up in the previous recipe. Not only do we
access them differently, but they also operate at the host level. This means
that they are mainly used to show information about a single host.

With Zabbix 7.0, we can add all of the widgets we have available on the
global dashboard level, making host-level dashboards very useful. If we have
several templates with one or even multiple dashboards, we can also use the
pages at the top to easily navigate several dashboards:

Figure 6.55 – Host dashboard selector for the Zabbix server host

Setting up Zabbix inventory
Zabbix inventory is a feature I love, but it hasn’t had a lot of love from the
Zabbix development team lately, even though it was on the roadmap for 7.0.
Sorry – I still love you Zabbix developers, but if you’re reading this, feel free
to put some time into the feature!

Specifically, I’m talking about this old gem of a feature request:
https://support.zabbix.com/browse/ZBXNEXT-336.

The inventory feature makes it possible for us to automatically put collected
data in a visual configuration management database (CMDB) such as
inventory in the Zabbix frontend. I think we’ve all seen CMDB inventory
systems not be updated and thus missing out on data we need once we look
into the system. Zabbix inventory fixes this by getting the data from the
monitored systems. Let’s get started.

Getting ready

Make sure that you log in to the Zabbix frontend and keep your SNMP-
monitored host from the previous recipes ready.

How to do it…

Follow these steps:

1. Let’s start by making sure our Zabbix server puts all of our hosts’ inventory information into the
fields. I like to do this by going to Administration | General and then selecting Other from the
dropdown in the top-left corner.

2. We can then set our Default host inventory mode parameter to Automatic. Don’t forget to click
Update:

Figure 6.56 – Administration | General | Other configuration parameters

3. Alternatively, we can do this at the host level. Go to Configuration | Hosts and select our lar-

book-templated_snmp SNMP-monitored host.

4. Select Inventory and set it to Automatic here as well. As you may have noticed, the default only
applies to newly created hosts from now on.

IMPORTANT NOTE
Changing the global setting does not apply it to all existing hosts, only to newly created hosts.
It might be a good idea to run a Mass update operation for all the hosts or change the
inventory mode manually, host by host.

5. Now, let’s go to Data collection | Templates and select Custom Linux by SNMP.

6. Go to Items and edit System hostname. We have to change the Populates host inventory field
setting, like this:

Figure 6.57 – Edit item page

7. Click Update and navigate to Inventory | Hosts. You will see the following:

Figure 6.58 – Inventory | Hosts

How it works…

Zabbix inventory is simple but underdeveloped at the moment. It’s not
amazing to filter to a point where it shows exactly what we want to see, but it
can be very useful nonetheless.

If you’re working with a lot of equipment, such as in an MSP environment, it
can become overwhelming to log in to every device and get the serial number
by hand. If you poll the serial number and populate the inventory field, you
suddenly have an active list of up-to-date serial numbers.

The same works with anything from hardware information to software
versions. We could get the active operating system versions from devices and
generate an extensive list of all our operating system versions, which is very
useful if you ever have to patch something, for example.

Use Zabbix inventory wisely when creating items, and set the population to
Automatic, as we did in this chapter – you’ll never have to think too much
about the feature. You configure it almost automatically this way and have
nice lists waiting for you when you need them.

Using the Zabbix Geomap widget
Now that we’ve seen how to create dashboards, let’s set up another
dashboard. We’ll use this one to create a full-fledged geographical overview

of some of our hosts in Zabbix. We’ll do this by using the Zabbix inventory
functionality we have just learned how to use.

Getting ready

All we need for this recipe is our Zabbix setup with access to the frontend. It
is also smart to follow the previous two recipes about dashboards and
inventory. If you haven’t followed those yet, it is recommended that you
follow them first.

How to do it…

Using the Zabbix Geomap functionality is quite easy – we simply need to use
our Zabbix inventory on our hosts in combination with a dashboard widget:

1. First, let’s navigate to our Data collection | Hosts page and edit one of our hosts. I’ll be using the
lar-book-templated_snmp host, but it doesn’t matter which host you use, so long as it is in

the Linux servers host group.

2. Go to the Inventory tab and make sure that it is set to Manual or Automatic:

Figure 6.59 – Inventory mode selector on the Zabbix host Inventory tab

3. Now, in the Location latitude and Location longitude fields, fill in the following:

Figure 6.60 – Inventory tab fields on a Zabbix host

4. Click on the blue Update button to save these changes.

5. Back at Data collection | Hosts, let’s do the same thing for another host. I’ll use lar-book-

agent_simple.

6. Go to the Inventory tab and fill in the Location latitude and Location longitude fields again:

Figure 6.61 – Inventory tab fields on another Zabbix host

7. Click on the blue Update button to save these changes.

8. Now, let’s go to Dashboards and, at All dashboards, create a new dashboard or use our existing
Linux servers dashboard. This is what I’ll do.

9. Click on the blue Edit dashboard button in the top-right corner and use the Add button dropdown
to click on Add page:

Figure 6.62 – Existing dashboard Add page button

10. We’ll add the following new page:

Figure 6.63 – Dashboard page properties

11. Click Apply to add this new page.

12. We can now add our Geomap widget simply by clicking anywhere on the page. Fill it in as
follows:

Figure 6.64 – Zabbix Geomap widget properties

13. Click Apply to save the widget configuration.

14. We can now click on the blue Save changes button in the top-right corner to save our dashboard
changes.

15. This will take us back to our dashboard, where we can click the Geomap page of this dashboard:

Figure 6.65 – Zabbix Geomap widget on a dashboard with two hosts

We now have a functioning Geomap in our Zabbix dashboard that uses the
latitude and longitude that are available in our Zabbix inventory.

How it works…

Instead of creating an entirely new Monitoring | Geomap page, Zabbix has
chosen to include this new feature via a widget, giving us the option to create
even more advanced dashboards. It’s important to note here that Zabbix also

chose to use existing inventory data. Because it is possible to automatically
fill in inventory data, as we saw in the Setting up Zabbix inventory recipe, we
can also automate our Geomap widget content.

So, whether you go the manual route or the automatic route, the Geomap
widget is a valuable extension of our dashboard. In general, Zabbix is
extending the dashboard functionality quite a bit by including a bunch of new
widgets in Zabbix 7.

We will set up our Zabbix automatic reporting in this chapter, which will also
use the dashboard functionality. f you’d like, you can combine a Geomap
widget with your automatic report to send out a geographical report. The key
takeaway here is that Zabbix is building interoperability between components
and giving us flexibility in the way we want to use a new widget like this.

When working with the initial release of the Geomap widget, some people
asked us if it was possible to change the kind of map that’s used by the
Geomap widget. If we navigate to Administration | General | Geographical
maps, we can choose several built-in map providers:

Figure 6.66 – Administration | General | Geographical maps

If that isn’t enough, it is also possible to add a custom map provider using the
Other option under Tile provider. Simply fill in the form and you’re all set:

Figure 6.67 – Administration | General | Geographical maps – Other

As you can see, a lot of possibilities have been added through this single
widget. One of the most requested features from the Zabbix community, we
can now set it up and use it in the latest Zabbix releases.

Working through Zabbix reporting
Zabbix reporting got some well-deserved love from Zabbix development,
especially concerning getting reports out of the system and improving the
audit log. First, let’s take a look at some powerful features to show you
exactly what’s going on with your statistics right from the Zabbix frontend.
Then, in the next recipe, we’ll take a look at how to create automatic PDF
reports, a new and much-anticipated feature.

Getting ready

For this recipe, all you’ll need is the Zabbix frontend and a monitored host.
I’ll be using the SNMP-monitored host from the previous recipes.

How to do it…

There isn’t anything to configure really as reporting is present in Zabbix from
the start. So, let’s dive into what each page of reporting offers us.

System information

If you navigate to Reports | System information, you will find the following
table:

Figure 6.68 – Reports | System information

You might have seen this table before as it can also be configured as a
dashboard widget. This page gives us all of the information we need about
our Zabbix server, such as the following:

Zabbix server is running: This informs us whether the Zabbix server backend is running and
where it is running. In this case, it’s running, and it’s running on localhost:10051.

Zabbix server version: The version of the Zabbix server daemon installed on our instance.

Zabbix frontend version: The version of the Zabbix frontend currently running on our web
server.

Software update last checked: Details when Zabbix last checked for a new available version.

Latest release: This shows us if there is a new version of Zabbix available.

Number of hosts: This will detail the number of hosts enabled (16) and the number of hosts

disabled (5). It gives us a quick overview of our Zabbix server host information.

Number of templates: A simple counter showing the number of templates currently available on
this Zabbix system.

Number of items: Here, we can see details of our Zabbix server’s items – in this case, enabled
(565), disabled (241), and not supported (217).

Number of triggers: This details the number of triggers we have. We can see how many are
enabled (373) and disabled (38), but also how many are in a problem state (12) and how many

are in an OK state (361).

Number of users (online): The first value details the total number of users. The second value
details the number of users currently logged in to the Zabbix frontend.

Required server performance, new values per second: Perhaps I’m introducing you to a
completely new concept here, which is new values per second (NVPS). A server receives or
requests values through items and writes this to our Zabbix database. The information detailed
here shows the estimated number of NVPS received by the Zabbix server.

You might also see two additional values here, depending on your setup:

Database name: If you see the name of your database with the value of your version, it might
indicate you are running a non-supported database version. You could see a message like

Warning! Unsupported <DATABASE NAME> database server version.

Should be at least <DATABASE VERSION>.

High availability cluster: If you are running a Zabbix server high availability cluster, you will see
if it is enabled here and what the failover delay is. Additionally, the Reports | System
information page will display additional high-availability information.

Availability report

Navigating to Reports | Availability report will give us some useful
information about how long a trigger has been in a Problems state versus an
Ok state for a certain period:

Figure 6.69 – Reports | Availability report

Looking at one of our hosts, we can see that in the last 30 days, the Zabbix
agent is not available (for 3m) trigger has been in a Problems state for
10.0000% of the time. This might be useful for us to know so that we can
determine how often a certain problem arises.

Trigger top 100

Upon navigating to Reports | Trigger top 100, we will find the top 100
triggers that have been firing in a certain amount of time:

Figure 6.70 – Reports | Trigger top 100

For my Zabbix server, the busiest trigger was a Zabbix agent is not
available trigger on a server. It’s a useful page to see what we are putting
most of our time into, problem-wise.

Audit

The audit log, which is a handy addition to Zabbix, can be found by going to
Reports | Audit:

Figure 6.71 – Reports | Audit

Here, we can see which user has done what on our Zabbix server –
identifying a culprit for something that shouldn’t have been done, for
instance.

Action log

When we go to Reports | Action log, we land on a page that shows which
actions have been fired. If you’ve configured Actions, then you can get a list
here, like this:

Figure 6.72 – Reports | Action log

If you’re not sure if your action succeeded, then look at this list. It is very
useful to troubleshoot your actions to a point where you get them up and
running as you want.

When you hover over the Info box, you also get to see what went wrong. For
example, for the Failed items on my Zabbix instance, I must define the
appropriate media type for the Admin user:

Figure 6.73 – Reports | Action log – Info

Notifications

Last, but not least, navigating to Reports | Notifications will show us the
number of notifications that have been sent to a certain user over a certain
period:

Figure 6.74 – Reports | Notifications

In my case, 50 notifications have been sent to the Admin user this year, and 0

to other users.

Setting up scheduled PDF reports
A much-wanted feature was added in Zabbix 5.4: sending automatic PDF
reports through email. Let me start by stating that this implementation might
not fully cover every Zabbix user’s situation yet. What this feature does is
take a screenshot of any Zabbix dashboard and send it through email. It’s not
just a screenshot, though – data is converted into text in the PDF file and the
resolution is very high. It’s the first setup from the Zabbix developers and I
think we should appreciate it for what it is.

On top of that, it is a very flexible way of implementing this as we can
choose any kind of widget available, along with its filters, and send it in an
automatic report. On top of that, it gives the Zabbix development team the
flexibility to add new widgets on the fly that immediately work with your
PDF reports.

Getting ready

We will need an existing Zabbix installation with access to the frontend and
the CLI. You can use the server we have been using throughout this book for
this or you can use your own installation.

In the case of a multi-host setup, the easiest method is to install this where the
Zabbix server is also running, but it is possible to run this on any host. In this
example, we’ve used our single-host installation.

You will also need to set up a user with an email media type.

How to do it…

To get started with Zabbix scheduled reports, we need to install some things
on our Zabbix server:

1. Let’s log in to our Zabbix server CLI and execute the following command to install the Google
Chrome browser.

On RHEL-based systems, run the following command:
vim /etc/yum.repos.d/google-chrome.repo

Then, add the following to the file:
[google-chrome]

name=google-chrome

baseurl=http://dl.google.com/linux/chrome/rpm/stable/$basearch

enabled=1

gpgcheck=1

gpgkey=https://dl-ssl.google.com/linux/linux_signing_key.pub

Finally, install Google Chrome:
dnf install -y google-chrome-stable

On Ubuntu systems, run the following command:
wget -q -O - https://dl-

ssl.google.com/linux/linux_signing_key.pub | sudo apt-key add -

sudo sh -c 'echo "deb http://dl.google.com/linux/chrome/deb/

stable main" >> /etc/apt/sources.list.d/google.list'

sudo apt update

sudo apt-get install google-chrome-stable

2. Now, let’s install our required Zabbix web services package with the following commands.

Here’s the command for RHEL-based systems:
dnf install zabbix-web-service

Here’s the command for Ubuntu systems:
apt install install zabbix-web-service

3. Now, let’s edit our new Zabbix web service configuration file:

vim /etc/zabbix/zabbix_web_service.conf

4. We can find a bunch of Zabbix web-service-specific parameters here, including encryption. Make
sure the following line is set up to match your Zabbix server(s) IP(s):

AllowedIP=127.0.0.1,::1

5. Now, let’s edit our Zabbix server configuration file:

vim /etc/zabbix/zabbix_server.conf

6. Edit the WebServiceURL parameter so that it matches your Zabbix web service IP and

StartReportWriters to make sure we have a reporting subprocess:

WebServiceURL=https://localhost:10053/report

StartReportWriters=3

IMPORTANT NOTE
For scheduled reporting to work, you will need to set up SSL encryption for your Zabbix
frontend; we recommend using Let’s Encrypt. Alternatively, set the
IgnoreURLCertErrors=1 parameter in /etc/zabbix/zabbix_web_service.conf.

7. That’s it for the CLI part. Let’s log in to our frontend and navigate to Administration | General |
Other.

8. Make sure you fill out the Frontend URL parameter on this page with your frontend URL, like
this:

Figure 6.75 – Administration | General | Others with Frontend URL filled in

9. Click the blue Update button at the bottom of the page and navigate to Reports | Scheduled
reports.

10. Now, we are on the page where we can set up and maintain our scheduled reports. So, let’s create
a new one using the blue Create report button in the top-right corner.

11. This will take us to a new page where we can set up a new report. Let’s set up a weekly report
using our existing dashboard’s Global view. First, we’ll name this report Weekly overview

of the Global view dashboard.

12. Select the dashboard’s Global view by clicking the Select button next to Dashboard.

13. Set Cycle to Weekly with a start time of 9:00 and set Repeat on to Monday:

Figure 6.76 – Reports | Scheduled reports – creating a new report, part I

14. Also, make sure to fill in Subject and Message and set up Subscriptions so that they match users
that have media with the type of email set on their user profile:

Figure 6.77 – Reports | Scheduled reports – creating a new report page, part II

15. You can now click the Test button to see if the report is working. Once it is, use the blue Add
button to finish setting up this scheduled report.

How it works…

This feature is long-awaited and is finally here, but it’s not finished and is
simply still a building block for more advanced scheduled reports coming
later. There are some key things to keep in mind with this new reporting
functionality. I always state that Zabbix development tries to keep everything
as customizable as possible by adding features and interconnecting them to
make sure we can use existing functionality in new ways.

The Zabbix development team could have decided to create a fully fledged
PDF reporting engine for Zabbix. But by going the way of using Zabbix
dashboards as building blocks for all your PDF reports, they have created
versatility and customizability. Every single new dashboard widget that is
added is now available for you to use in your PDF reports, and more and
more reporting-focused widgets will be added in the near future.

Zabbix simply grabs the information from your dashboard and sends it to you
in a PDF form using the new Zabbix web services module and the Google
Chrome browser. Once we get these prerequisites out of the way, we are
provided with a way to send PDF reports to any of our Zabbix users,
provided they have an email media type set up.

Setting up improved business service
monitoring

Business service monitoring is a way to monitor the services that we, as a
business, offer to our customers or internally. Think of a CRM system, email,
and our website. It all has to work and we’d like to know if it does for the
people using them. It also allows us to monitor the SLA of those services, if
we want to define them.

Starting from Zabbix 6.0, business service monitoring has had an entire
overhaul. If you’ve set it up in versions before 6.0, it might be wise to spend
some time rediscovering the basics using this recipe. If you’re starting with
7.0 here and you’re entirely new to business service monitoring, don’t worry
as we will go through setting it up step by step in this recipe.

Getting ready

We will need our Zabbix server and access to its frontend. I’ll be using my
lar-book-centos host with the configuration we have done so far. We will
also need a monitored host, for which I will use the Zabbix server itself.

How to do it…

I’ll be using the Zabbix frontend as an example to set up business service
monitoring, for which we will create a new host called lar-book-zabbix-

frontend with some items and triggers.

Setting up items and triggers

If you have followed the previous recipes, you should have a good
understanding of setting up items and triggers. Let’s go through it again and

set up some for our business service monitoring example:

1. First, let’s create a new template by logging in to our Zabbix frontend and navigating to Data
collection | Templates.

2. Click on the blue Create template button in the top-right corner and fill in the page, as follows:

Figure 6.78 – New Zabbix frontend template configuration page

3. Make sure you save this new template by clicking the blue Add button.

4. Now, let’s set up our new host by navigating to Data collection | Hosts.

5. Click on the blue Create host button in the top-right corner and fill in the page, as follows:

Figure 6.79 – New Zabbix frontend host configuration page

6. Then, add the following tag by navigating to the Tags tab:

Figure 6.80 – New Zabbix frontend host configuration page – the Tags tab

7. Click the blue Add button to save this new host configuration and navigate to Data collection |
Templates.

8. Edit the Zabbix frontend by Zabbix agent template and go to Value mapping.

9. Click on the small Add button with the blue dotted line under it and add the following value
mapping:

Figure 6.81 – Template Zabbix frontend by Zabbix agent, Service state value mapping

10. Make sure you click the blue Update button. Then, back on the template, go to Items.

11. Click on the blue Create item button and add the following:

Figure 6.82 – ICMP ping item

12. Before adding the item, make sure you also add the Value mapping value, as follows:

Figure 6.83 – ICMP ping item value mapping

13. We must also go to the Tags tab to add some tags to this item:

Figure 6.84 – ICMP ping item – the Tags tab

14. Now, click the blue Add button at the bottom of the page.

15. Back at Items, click on the blue Create item button to create another item. Fill it in, as follows:

Figure 6.85 – Agent ping item

16. We must also go to the Tags tab to add some tags to this item:

Figure 6.86 – HTTP service state item – the Tags tab

17. Now, save the new item by clicking the blue Add button at the bottom of the page.

18. Now that we have two new items, let’s navigate to the Triggers page for this template.

19. Click the Create trigger button in the top-right corner and add the following trigger:

Figure 6.87 – ICMP down trigger configuration

20. On the Tags tab, we need to add a new tag, indicating that this trigger will be used in our SLA
monitoring:

Figure 6.88 – ICMP down trigger – the Tags tab

21. Now, let’s click the blue Add button to add this trigger. Then, create another trigger using the
Create trigger button in the top-right corner.

22. Let’s add the following trigger:

Figure 6.89 – Zabbix agent is unreachable trigger configuration

23. Make sure you add a tag for the SLA on this trigger as well by going to the Tags tab:

Figure 6.90 – Zabbix agent is unreachable trigger – the Tags tab

24. Click the blue Add button to finish setting up this trigger.

Adding the business service monitoring
configuration

That concludes our item and trigger configuration. We can now continue with
setting up our business service monitoring:

1. First, let’s define our SLA period by going to Services | SLA and clicking on the blue Create
SLA button in the top-right corner. We’ll define the following SLA:

Figure 6.91 – Services | SLA – Zabbix SLA setup

2. Click Add at the bottom of the window to save this SLA.

3. Next, go to Service | Service and select Edit using the slider in the top-right corner.

4. Now, click Create service in the top-right corner to add a new service. Here, we will add a new
service for our Zabbix setup:

Figure 6.92 – Service | Service – Zabbix setup service

5. On the Tags tab, make sure to add the following:

Figure 6.93 – Service | Service – Zabbix setup service – the Tags tab

6. Click on the blue Add button at the bottom of the window to add this new service. Then, click
Create service in the top-right corner again to add the following:

Figure 6.94 – Service | Service – Zabbix server service

7. On the Tags tab, make sure to add the following:

Figure 6.95 – Service | Service – Zabbix server service – the Tags tab

8. Click the blue Add button again and then Create service in the top-right corner. Add another
service at the same level, as follows:

Figure 6.96 – Service | Service – Zabbix database service

9. On the Tags tab, make sure to add the following:

Figure 6.97 – Service | Service – Zabbix database service – the Tags tab

10. Click Add again to add this service.

11. Finally, we’ll add the last child of the Zabbix setup by clicking the Create service button again:

Figure 6.98 – Service | Service – Zabbix frontend service

12. Select Advanced configuration and click Add under New additional rule. We will add the
following calculation here:

Figure 6.99 – Service | Service – Zabbix frontend service, additional rules

13. On the Tags tab, make sure to add the following:

Figure 6.100 – Service | Service – Zabbix database service – the Tags tab

14. Finish setting up this service by clicking the Add button at the bottom of the window.

15. Now, we’ll have to add two more services, but this time under the Zabbix frontend. Click on
Zabbix frontend and then Create service again and add the following:

Figure 6.101 – Service | Service – Zabbix frontend, ICMP status child service

16. Click the blue Add button and then Create service again to add the last service.

17. Add the final service:

Figure 6.102 – Service | Service – Zabbix frontend, Zabbix agent status child service

18. Click the blue Add button to add this service. Let’s see if it works as expected.

How it works…

Let’s take a look at what we have set up in our current configuration. We’ve
used business service monitoring to monitor part of our Zabbix stack. Look at
business service monitoring as a tree, where we just created two levels. Our

initial level is the Zabbix setup, which consists of our Zabbix server, Zabbix
database, and Zabbix frontend.

Beneath the Zabbix frontend level, we have one more level where we have
defined two more services that represent the status of ICMP and the Zabbix
agent. We only want to calculate the SLA if both the ICMP and Zabbix agent
are in a problem state:

Figure 6.103 – Business service monitoring tree structure example

As you can see, we have a distinct tree structure forming once we start to
visualize this. The part where the magic happens in this case is the Zabbix
frontend service because this is where we defined what should happen to our
SLA once something goes wrong with services.

Let’s take another look at that level:

Figure 6.104 – Zabbix frontend service completed

Because we defined that the service should always Set status to OK, it will
only use what we defined in our Additional rules section. This is where we
specified that we only want to affect our SLA calculation: If at least 2 child
services have High status or above. Effectively, this means that our SLA is
only going down if the Zabbix agent can’t be reached and ICMP is down.

We’ve built in a security measure for ourselves here, making sure that if
someone stops the Zabbix agent but the server can still be reached by ICMP,

the SLA won’t be affected.

Now, let’s take a look at the result, which we can use to monitor these SLAs.
Over at Services | SLA report, we can find all we need to know about
whether our SLA is being met. We can set the filter to the period for which
we want to find the SLA. We’ll see the following output:

Figure 6.105 – Service | SLA report, all services with our SLA:24x7 tag

Here, we can see our monthly 24/7 SLA, where a SLA of 99.9% is expected.
For our Zabbix setup back in October 2021, the SLA was 100, so we met our
required SLA. However, in November 2021, we noticed that the SLA
dropped below 100, clearly indicating in red that our SLA was not met.

Drilling down even further and selecting our specific service Zabbix setup,
we can create a more detailed overview:

Figure 6.106 – Service | SLA report, Zabbix setup services with our SLA:24x7 tag

Here, we can see all the details regarding the uptime and downtime of our
service and what our leftover error budget is like.

Using business service monitoring calculations like this, we can narrow down
where weak points in our services might be while attaching useful statistics to
that measure. In this case, we used a simple example with ICMP and the
Zabbix agent trigger, but the possibilities are endless when using services in
combination with tags.

There’s more...

One of the main concerns with the old way of monitoring services through
business service monitoring was the inability to automate and customize it.
This automation has been mostly resolved through the use of tags as we can
now define tags at the host, template, or trigger level to define what’s used in
the business service monitoring configuration.

In terms of customization, Zabbix has given us a lot more options to do
calculations:

Figure 6.107 – Zabbix service, additional rule options

Looking at the numerous options here, we can see that we have a lot more to
play around with. Not only can we specify the exact number of child services
we’d like to use in our calculations, but we can also work with weights and
percentages, giving us the options we might need to build more complex
setups.

7

Using Discovery for Automatic Creation
This chapter is going to be all about making sure that you as a Zabbix
administrator are doing as little work as possible on host and item creation.
We are going to learn how to perform (or perfect, maybe) automatic host,
item trigger, and graph creation. Check out the recipes featured here to see
just what we are going to discover.

In this chapter, we will first learn how to set up Zabbix network discovery
with Zabbix agent and Simple Network Management Protocol (SNMP).
We will then set up active agent autoregistration. Later, we will also cover
the automatic creation of Windows performance counters, Java
Management Extensions (JMX), and SNMP items using low-level
discovery (LLD).

In this chapter, we will cover the following recipes:

Setting up Zabbix agent host discovery

Working with Zabbix SNMP network discovery

Automating host creation with active agent autoregistration

Using Windows performance counter discovery

Discovering JMX objects

Setting up Zabbix SNMP discovery the new way

Creating hosts with LLD and custom JSON

Technical requirements
As this chapter is all about host and item discovery, besides our Zabbix
server, we will need one new Linux host and a Windows host. Both these
hosts will need Zabbix agent 2 installed, but not configured just yet.

Furthermore, we are going to need our JMX host, as configured in Chapter 3,
Setting Up Zabbix Monitoring, and a new host with SNMP set up. To learn
more about setting up an SNMP-monitored host, check out the Working with
SNMP monitoring the old way recipe in Chapter 3, Setting Up Zabbix
Monitoring.

Setting up Zabbix agent network discovery
A lot of Zabbix administrators use Zabbix agent extensively and thus spend a
lot of time creating Zabbix agent hosts by hand. Maybe they don’t know how
to set up Zabbix agent discovery, maybe they didn’t have time to set it up yet,
or maybe they just prefer it this way. If you are ready to get started with
Zabbix agent discovery, in this recipe we will learn just how easy it is to set it
up.

Getting ready

Besides our Zabbix server, in this chapter’s introduction, I mentioned that we
will need two (empty) hosts with Zabbix agent 2 installed: one Windows host
and one Linux host. If you don’t know how to install Zabbix agent 2, check
out Chapter 3, Setting Up Zabbix Monitoring, or see the Zabbix

documentation at
https://www.zabbix.com/documentation/current/en/manual/concepts/agent2.

Let’s give the servers the following hostnames:

lar-book-disc-lnx: For the Linux host (use Zabbix agent 2)

lar-book-disc-win: For the Windows host (use Zabbix agent 2)

How to do it…

Follow these steps:

1. Let’s get started by logging in to our lar-book-disc-lnx Linux host and editing the

following file:

vim /etc/zabbix/zabbix_agent2.conf

2. Now, make sure your Zabbix agent 2 configuration file contains at least the following line:

Hostname=lar-book-disc-lnx

3. For your Windows Zabbix agent, it’s important to do the same. Edit the following file:

C:\Program Files\Zabbix Agent 2\zabbix_agent2.conf

4. Now, change the hostname by editing the following line:

Hostname=lar-book-disc-win

5. Next up, in our Zabbix frontend, navigate to Data collection | Discovery, and on this page, we
click on Create discovery rule to create a rule with the following settings:

Figure 7.1 – Discovery rules page for Zabbix agent hosts

IMPORTANT NOTE
We are using an update interval of 5 minutes in this example. As this might take up a lot of

resources on your server, make sure to adjust this value for your production environment. For
example, one hour might be a better production value to make sure we put less load onto our
Zabbix processes. Depending on the size of the IP range we are scanning and how fast you
want to discover things, we can adjust this value.

6. Click the blue Add button to move on.

7. After setting up the discovery rule, we will also need to set up an action to actually create the host
with the right template. Navigate to Alerts | Actions | Discovery actions:

Figure 7.2 – Alerts | Actions | Discovery actions

8. Here, we will click the Create action button in the top-right corner and fill out the next page with
the following information:

Figure 7.3 – The discovery action creation page for Zabbix agent hosts

TIP
When creating Zabbix actions, it’s important to keep the order of creation for Conditions in
mind. The labels seen in the preceding screenshot will be added in order of creation. This
means that it’s easier to keep track of your Zabbix actions if you keep the order of creation the
same for all actions.

9. Next up, click the Operations tab. This is where we will add the following:

Figure 7.4 – The Operations page for Zabbix agent hosts

10. That’s it for the Linux agent. Click the blue Add button, and let’s continue with our Windows
discovery rule.

11. Navigate to Data collection | Host groups. Create a host group for our Windows hosts by clicking
Create host group in the top-right corner and filling out the group name:

Figure 7.5 – The Create host group page for Windows server hosts

12. Click the blue Add button and navigate to Alerts | Actions.

13. Go to Discovery actions again and click Create action. We will fill out the same thing but for our
Windows hosts this time:

Figure 7.6 – Discovery action creation page for Windows Zabbix agents

14. Before clicking Add, let’s also fill out the Operations page with the operations shown in the
following screenshot:

Figure 7.7 – The Operations page for Windows Zabbix agents

15. Now, we can click the blue Add button, and our second discovery action is present.

16. Move on to Monitoring | Discovery. This is where we can see whether and when our hosts are
discovered:

Figure 7.8 – The Monitoring | Discovery page

TIP

Use the Monitoring | Discovery page to keep a close eye on the hosts you expect to show
up in your Zabbix setup. It’s very useful to track new hosts coming in and see which Zabbix
discovery rule was used to create the host.

How it works…

Network discovery might not be very hard to set up initially, but there are
loads of options to configure. For this example, we chose to use the
agent.hostname key as our check. We create the Zabbix hostname based on
what’s configured in the Zabbix agent configuration file.

What happens is that Zabbix network discovery finds our hosts and performs
our check. In this case, the check is What is the hostname used by Zabbix
agent? This information, plus our IP address, is then triggering the action.
Our action then performs our configured checks:

Does the hostname contain lnx or win?

Is the discovery status UP?

Is the service type Zabbix Agent?

If all of those checks are true, our action will then create our newly
discovered host with the following:

Our configured host group plus the default Discovered hosts host group

Our template as configured in our action

We will end up with two newly created hosts, with all the right settings:

Figure 7.9 – The Data collection | Hosts page with our new hosts, Windows and Linux

There’s more…

Creating the host by using the configuration file settings isn’t always the right
way to go, but it’s a solid start to working with network discovery.

If you want a more flexible environment where you don’t have to even touch
the Zabbix agent configuration file, then you might want to use different
checks on the discovery rule. Check out which keys we can use to build
different discovery rules in the Zabbix documentation at
https://www.zabbix.com/documentation/current/en/manual/config/items/itemt
ypes/zabbix_agent.

Working with Zabbix SNMP network
discovery
If you work with a lot of SNMP devices but don’t always want to set up
monitoring manually, network discovery is the way to go. Zabbix network
discovery uses the same functionality as Zabbix agent discovery but with a
different configuration approach.

Getting ready

To get started with network discovery, we are going to need a host that we
can monitor with SNMP. If you don’t know how to set up a host such as this,
check out the Working with SNMP monitoring the old way recipe in Chapter
3, Setting Up Zabbix Monitoring. We’ll also need our Zabbix server.

How to do it…

Follow these steps:

1. First, log in to your new SNMP-monitored host and change the hostname to the following:

hostnamectl set-hostname lar-book-disc-snmp

exec bash

2. Then, restart the SNMP daemon using the following command:

systemctl restart snmpd

3. Now, navigate to Data collection | Discovery and click on Create discovery rule in the top-right
corner.

4. We are going to create a new SNMP discovery rule, with an SNMP object identifier (OID) check
type. Fill out the Name and IP range fields first, like this:

Figure 7.10 – Data collection | Discovery, discovery rule creation page for SNMPv2

5. Make sure to fill out your own IP range in the IP range field.

6. Now, we are going to create our SNMP check. Click on Add next to Checks, and you’ll see the
following pop-up screen:

Figure 7.11 – Data collection | Discovery, discovery check creation pop-up window

7. We want Check type to be SNMPv2 agent and we want to fill it with our community and a useful
OID, which in this case will be the OID for the system name. Fill it out like this:

Figure 7.12 – Data collection | Discovery, discovery check creation pop-up window filled
with an SNMPv2 check

IMPORTANT NOTE
Please note that our check type is not SNMP version independent. We have three SNMP
versions and thus three different check types to choose from, unlike our new SNMP interface
selection on the Zabbix 7 host screen.

8. After clicking Add again, fill out the rest of the page, as follows:

Figure 7.13 – The Data collection | Discovery page for SNMPv2 agents

9. Last, but not least, click the Add button at the bottom of the page. This concludes creating our
Zabbix discovery rule.

10. We will also need an action for creating our hosts from the discovery rule. Navigate to Alerts |
Actions, and after using the dropdown to select Discovery actions, click on Create action.

11. We will fill out the page with the following information:

Figure 7.14 – Alerts | Actions, action creation page for SNMPv2 agents

12. Before clicking Add, navigate to Operations and fill out this page with the following details:

Figure 7.15 – Alerts | Actions, the action creation Operations tab for SNMPv2 agents

13. Now, click Add and navigate to Monitoring | Discovery to see whether our host gets created:

Figure 7.16 – The Monitoring | Discovery page for SNMPv2 agents

How it works…

In this recipe, we’ve created another discovery rule, but this time for SNMP.
As you’ve noticed, the principle remains the same, but the application is a bit
different.

When we created this Zabbix discovery rule, we gave it two checks instead of
the one check we did in the previous recipe. We created one check on the
.1.3.6.1.2.1.1.5.0 SNMP OID to retrieve the hostname of the device
through SNMP. We then put the hostname retrieved from the system into
Zabbix as the Zabbix hostname of the system.

We also created a check on the .1.3.6.1.2.1.25.1.4.0 SNMP OID. This
check will retrieve the following string, if present:

"BOOT_IMAGE=(hd0,gpt2)/vmlinuz-4.18.0-193.6.3.el8_2.x86_64

root=/dev/mapper/cl-root ro crashkernel=auto resume=/dev/mapper/cl-

swa"

If the string is present, it means that the boot image is Linux on this host.
This is a perfect example of how we can retrieve multiple OIDs to do
multiple checks in our Zabbix discovery rules. If we’d been monitoring a
networking device, for instance, we could have picked an OID to see whether
it was a Cisco or a Juniper device. We would replace .1.3.6.1.2.1.25.1.4.0

with any OID and poll it. Then, we would create our action based on what we
received (Juniper or Cisco) and add our templates accordingly.

IMPORTANT NOTE
General knowledge of SNMP structure is very important when creating Zabbix discovery
rules. We want to make sure we use the right SNMP OIDs as checks. Make sure to do your
research well, utilize SNMP walks, and plan out what OIDs you want to use to discover SNMP
agents. This way, you’ll end up with a solid monitoring infrastructure.

Automating host creation with active agent
autoregistration
Using discovery to set up your Zabbix agents is a very useful method to
automate your host creation. But what if we want to be even more upfront
with our environment and automate further? That’s when we use a Zabbix
feature called active agent autoregistration.

Getting ready

For this recipe, we will need a new Linux host. We will call this host lar-
book-lnx-agent-auto. Make sure to install Zabbix agent 2 on this host.
Besides this new host, we’ll also need our Zabbix server.

How to do it…
1. Let’s start by logging in to our new lar-book-lnx-agent-auto host and changing the

following file:

vim /etc/zabbix/zabbix_agent2.conf

2. We will then edit the following line in the file. Make sure to enter your Zabbix server IP on this
line:

ServerActive=10.16.16.152

3. We can also change the following line in the file if we want to set our hostname in the file
manually:

Hostname=lar-book—lnx-agent-auto

This is not a requirement though, as Zabbix agent will use the system
hostname if it is not filled out.

4. Next up, we will navigate to our Zabbix frontend, where we’ll go to Alerts | Actions.

5. Use the drop-down menu to go to Autoregistration actions, as in the following screenshot:

Figure 7.17 – The Alerts | Actions page drop-down menu

6. Now, we will click the blue Create action button in the top-right corner to create a new action.

7. Fill out the Name field and then click on the Add text link:

Figure 7.18 – Alerts | Actions, create new action page

8. We can set up a condition here to only register hosts with a certain hostname. Let’s do this by
filling out the window like this:

Figure 7.19 – Create action | New condition for the lar-book-lnx host

Your page should now look like this:

Figure 7.20 – The Create action page, filled with our information for the lar-book-lnx host

TIP
We can set up conditions for different types of hosts. For instance, if we want to add Windows
hosts, we set up a new action with a different hostname filter. This way, it is easy to maintain
the right groups and templates, even with autoregistration.

9. Before clicking the blue Add button, let’s go to the Operations tab.

10. Click on the Add text link, and you will see the following window:

Figure 7.21 – The Send message operation for the lar-book-lnx host

11. Create an action to add the host to the Linux servers host group:

Figure 7.22 – The Add to host group operation creation

12. Create an action to add the host to the Linux by Zabbix agent active template:

Figure 7.23 – The Link to template operation creation

13. Your finalized Operations page should now look like this, and we can click the blue Add button:

Figure 7.24 – The Operations page, filled with our information

14. Navigate to Data collection | Hosts, and we can see our new active autoregistered host:

Figure 7.25 – The Data collection | Hosts page with host lar-book-lnx-agent-auto

How it works…

Active agent autoregistration is a solid method to let a host register itself.
Once the ServerActive= line is set up with the Zabbix server or proxy IP, the

host agent will start requesting configuration data from the Zabbix server or
Proxy. The Zabbix server will receive these requests, and if there is an action
set up in Zabbix (as we just did in this recipe), the host autoregisters to
Zabbix:

Figure 7.26 – Host autoregistration process

We can do a bunch of cool automation with this functionality. We could
create a script to fill up our Zabbix agent configuration file with the right
ServerActive= line on our hosts in a certain IP pool.

It would also be super easy to set up new hosts with Ansible. We can
automate the Zabbix agent installation with Ansible and we can add the
ServerActive= line in the /etc/zabbix/zabbix_agent2.conf file using
Ansible as well. Our Zabbix server autoregistration action will take care of
the rest from here.

Zabbix agent autoregistration is a perfect way to get a zero-touch monitoring
environment that’s always up to date with our latest new hosts.

There’s more…

Not every company uses hostnames that reflect the machine’s OS or other
attributes. This is when Zabbix HostMetadata can come in very useful. We
can add this field to the active Zabbix agent configuration to reflect the
attributes of the machine.

Afterward, we can use HostMetadata in our Zabbix discovery action to do the
same kind of filtering we did on the hostname.

We also have the HostInterface and HostInterfaceItem parameters in the
Zabbix agent configuration file, which are used for autoregistration. The host
will use the specified IP or DNS name as its Zabbix agent interface IP or
DNS, as seen in the Zabbix frontend. We can also use this functionality to
enable passive agent monitoring while using autoregistration to create the
host.

Check out this link for more information:

https://www.zabbix.com/documentation/current/manual/discovery/auto_regis
tration#using_host_metadata

Using Windows performance counter
discovery
In Zabbix 7, it is possible to discover Windows performance counters. In this
recipe, we will go over the process of discovering Windows performance
counters to use in our environments.

Discovering Windows performance counters might seem to be a little tricky
at first, as it uses both Windows- and Zabbix-specific concepts. However,

once we finish this recipe, you’ll know exactly how to set it up.

Getting ready

In this chapter, we added the lar-book-disc-win host to our setup, which is
the host used in our Zabbix agent discovery process. We can reuse this host
to discover Windows performance counters easily.

Of course, we’ll also need our Zabbix server.

How to do it…
1. Let’s start by navigating to Data collection | Templates and creating a new template by clicking

Create template in the top-right corner.

2. Create the following template:

Figure 7.27 – The Windows performance by Zabbix agent template creation

3. Click on the blue Add button, which will bring you back to Data collection | Templates. Select
the new template.

4. Now, before continuing with our template, navigate to your Windows frontend and open
perfmon.exe:

Figure 7.28 – Windows search bar – perfmon.exe

5. Doing so will open the following window:

Figure 7.29 – Windows perfmon.exe

6. Let’s click on Performance Monitor and then on the green + icon. This will show you all

the available Windows performance counters.

7. Let’s start by using the Processor counter.

8. Go back to the Data collection | Templates page in Zabbix and edit our new Windows
performance by Zabbix agent template.

9. When you are at the Edit template page, click on Discovery rules in the bar next to your template
name.

10. Click on Create new discovery rule in the top-right corner and add the following rule:

Figure 7.30 – Create an LLD rule page – Discover counter Processor

IMPORTANT NOTE
We are using an update interval of 1 minute in this example. As this might take up a lot of

resources on your server, make sure to adjust this value to your production environment. For
example, one hour is a much better production value.

11. Click the blue Add button at the bottom and click our new Discover counter Processor discovery
rule.

12. Click on Item prototypes, and in the top-right corner click on Create item prototype. We will
then create the following item prototype:

Figure 7.31 – The CPU instance C1 time item prototype creation

13. On the Tags tab, do not forget to add some new tags as follows:

Figure 7.32 – The Tags tab

14. Save the new Item prototype, go to Data collection | Hosts, and click on lar-book-disc-

win.

15. Add our Windows performance by Zabbix agent template:

Figure 7.33 – Add Windows performance by Zabbix agent template to lar-book-disc-win

16. After clicking on the blue Update button, we can navigate to Monitoring | Latest data. Add the
following filters:

Figure 7.34 – Latest data filter on host lar-book-disc-win

17. We can now see our three newly created items:

Figure 7.35 – The Monitoring | Latest data page for our host lar-book-disc-win

How it works…

Windows performance counters have been around for a long time and they
are very important to anyone who wants to monitor Windows machines with
Zabbix. Using LLD in combination with Windows performance counters
makes it a lot easier and more flexible to build solid Windows monitoring.

In this recipe, we created a very simple but effective Windows performance
counter discovery rule by adding the discovery rule with the
perf_instance.discovery[Processor] item key. The [Processor] part of this
item key directly correlates to the perfmon.exe window we saw. If we look at
the following screenshot, we already see Processor listed:

Figure 7.36 – perfmon.exe | Add Counters – Processor

When our discovery rule polls this item key, Zabbix agent will return the
following value for our host:

[

{

"{#INSTANCE}":"0"

},

{

"{#INSTANCE}":"1"

},

{

"{#INSTANCE}":"_Total"

}

]

This value means that Zabbix will fill the {#INSTANCE} macro with three
values:

0

1

_Total

We can then use these three values by using the {#INSTANCE} macro in Item
prototype, as we did here:

Figure 7.37 – Our created item prototype, CPU C1 time

It will then create three items with our macro values, with the right keys to
monitor the second part of our counter – % C1 time. If you expand the
window in your perfmon.exe file, you can see all the different counters we
could add to our item prototypes to monitor more Windows performance
counters:

Figure 7.38 – Perfmon.exe | Add Counters – Processor expanded

Discovering JMX objects
In Chapter 3, Setting Up Zabbix Monitoring, we went over setting up JMX
monitoring in the recipe titled Setting up JMX monitoring. What we didn’t
cover yet though was discovering JMX objects.

In this recipe, we will go over how to set up JMX objects with LLD, and after
you’ve finished this recipe, you’ll know just how to set it up.

Getting ready

For this recipe, we will need the JMX host that you set up for the Setting up
JMX monitoring recipe in Chapter 3, Setting Up Zabbix Monitoring. Make
sure to finish that recipe before working on this one.

We will also need our Zabbix server with our Zabbix JMX host titled lar-

book-jmx.

How to do it…
1. Let’s start this recipe off by logging in to our Zabbix frontend and navigating to Data collection |

Templates.

2. Create a new template by clicking on Create template in the top-right corner. Fill in the following
fields:

Figure 7.39 – The App Apache Tomcat JMX discovery template creation

3. After clicking the blue Add button, you will be taken back to Data collection | Templates. Click
on your new App Apache Tomcat JMX discovery template.

4. We will now add our JMX discovery rule. Click on Discovery rules next to our template name.

5. Now, click on Create discovery rule and fill in the following fields:

Figure 7.40 – The Discover JMX object MemoryPool discovery rule creation

6. Click on the blue Add button at the bottom of the page. Then, click on Item prototypes next to
your newly created Discover JMX object MemoryPool discovery rule.

7. We will now click on the Create item prototype button in the top-right corner and create the
following item prototype:

Figure 7.41 – The Item prototype creation page – MemoryPool Memory type

8. Also, make sure that on the Tags tab, you add a new tag with the name of component and a

value of memory pool:

Figure 7.42 – The Tags tab – the MemoryPool Memory type

9. Let’s click on the blue Add button and move on.

10. Go to Data collection | Hosts and click on lar-book-jmx. We will add our template to this

host.

11. Click on Templates and add the template, like this:

Figure 7.43 – Data collection | Host – add a template to the lar-book-jmx host

12. Click on the blue Update button.

13. When we navigate to Monitoring | Latest data now, we will select lar-book-jmx for Hosts

and component for Tags with memory pool as its value, like this:

Figure 7.44 – The Monitoring | Latest data page filters – the lar-book-jmx host

14. We will then see the following results:

Figure 7.45 – The Monitoring | Latest data page for the lar-book-jmx host with our results

How it works…

Monitoring JMX applications can be quite daunting at first, as there is a lot of
work to figure out while building your own LLD rules. But now that you’ve
built your first LLD rule for JMX, there is a clear structure in it.

First, for our discovery rule, we’ve picked the item key:

jmx.discovery[beans,"*:type=MemoryPool,name=*"]

MemoryPool is what we call an MBean in Java. We poll this MBean object for
several JMX objects and fill the macros accordingly.

We picked the name=* object to fill the {#JMXNAME} macro in this discovery
rule. Our macro is then used in our item prototype to create our items.

Our items are then created, like this:

Figure 7.46 – Items on our JMX-monitored host

If we look at the keys of the items, we can see that we poll the Type JMX
attribute on every MemoryPool with different names.

That’s how we create JMX LLD rules with ease.

There’s more…

If you are not familiar with MBeans, then make sure to check out the Java
documentation. This will explain to you a lot about what MBeans are and
how they can be used for monitoring JMX attributes:
https://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html.

TIP
Before diving deeper into using JMX object discovery, dive deeper into the preceding JMX
object documentation. There’s a lot of information in it and it will greatly improve your skills in
creating these LLD rules.

Setting up Zabbix SNMP LLD the new way

Zabbix 6.4 introduced an overhaul to using SNMP in our Zabbix
environments. Although the old way is still available (and explained in this
book) as an option, it might be better to use the new way to build your SNMP
monitoring as it will actually use the GetBulk requests. This makes SNMP
monitoring a lot more efficient and less strenuous on the SNMP device we
are collecting data from.

Getting ready

Before starting with the recipe, please make sure to read Chapter 3, Setting
Up SNMP Monitoring the New Way, first. We will need the knowledge from
that chapter to set up SNMP LLD discovery as well as we will use some
hosts and items from that chapter. Make sure you have the following:

Your Zabbix environment

The lar-book-snmp_bulk host as set up in Chapter 3, Setting Up Zabbix Monitoring

How to do it…

As we have already set up the SNMP server to start monitoring in Chapter 3,
Setting Up Zabbix Monitoring, we can start immediately on the frontend. In
Chapter 5, Building your own Structured Templates, we also learned about
creating templates for all our monitoring, so let’s start by doing that. Follow
these steps:

1. In the Zabbix frontend, navigate to Data collection | Templates and click on Create template in
the top-right corner. We will create a new template as follows.

Figure 7.47 – The BOOK Linux by SNMP template

2. Also, make sure to switch to the Tags tab to add some tags according to the new tag policy:

Figure 7.48 – Template BOOK Linux by SNMP Macros tab

3. At the bottom of the window, click on the big Add button to finish setting up this new template.

We already created a value mapping and some items on the lar-book-

snmp_bulk host we set up earlier. Let’s start by using the mass update
functionally to copy the value mapping to our new template.

4. Select your template in the list with the checkbox and click on the big Mass update button at the
bottom of the window.

Figure 7.49 – Mass update

5. At Mass update, switch to the Value mapping tab, check the box, and click on the small dotted
underlined Add from host button.

6. Find your lar-book-snmp_bulk host and select Interface Up/Down from the list. It should

look like this.

Figure 7.50 – Mass update – add value mapping from the host

7. You can now press the big Update button at the bottom of the window to add this value mapping.

8. Now, let’s copy over our existing items from the template. Go to Data collection | Hosts and go to
Items for lar-book-snmp_bulk. Select the two items we created earlier and click on Copy at

the bottom of the window.

Figure 7.51 – The lar-book-snmp_bulk items to copy

9. Set Target type to Templates and type in BOOK Linux by SNMP. Select it and then press

Copy.

Figure 7.52 – The lar-book-snmp_bulk items copy window

10. Now, go back to Data collection | Templates and click on Discovery for your BOOK Linux by
SNMP template.

11. In the top-right corner, click on the Create discovery rule button. We will create the following
LLD rule here.

Figure 7.53 – Discovery rule

We will make the LLD rule of the Dependent item type to make sure we use
the data collected in bulk earlier on the SNMP interfaces bulk item.
However, all LLD data has to be presented in the JSON data format, so let’s
make sure to convert the data first.

12. Switch to the Preprocessing tab and add the following.

Figure 7.54 – Preprocessing

13. Now, press the big Add button at the bottom of the window to add the LLD rule. Then, go to Item
prototypes to add our first item in an automated manner.

14. In the top-right corner, press Create item prototype and create the following item prototype:

Figure 7.55 – Item prototype

15. Don’t forget to add your tags at the Tags tab before adding the item prototype:

Figure 7.56 – Item tags

16. We will need a preprocessing step to extract the right information as well, so let’s add that too by
going to the Preprocessing tab:

Figure 7.57 – Preprocessing

17. Now, press the big Add button at the bottom of the page to finish setting up this new item
prototype.

18. We aren’t using the template on our host yet, so let’s navigate to Data collection | Hosts and click
on our lar-book-snmp_bulk host. Then, add the template.

Figure 7.58 – Adding the BOOK Linux by SNMP template to lar-book-snmp_bulk

19. Click on Update at the bottom of the window to add the template.

20. The LLD rule should now be added and executed. Let’s see whether the items are created by
navigating to Monitoring | Latest data and filtering on the lar-book-snmp_bulk host.

Please keep in mind it can take around one minute for the item to show up and another minute for
it to collect data.

Figure 7.59 – lar-book-snmp_bulk – latest data after LLD rule

How it works…

So, how does this new LLD discovery work? As you might have noticed, we
are still using the same item as we used in Chapter 3, Setting Up Zabbix
Monitoring. The values are for everything under OID .1.3.6.1.2.1.2.2.1 are

being collected in bulk still. As a remember of the bulk metric collection,
let’s have another look at the data:

Figure 7.60 – The lar-book-snmp_bulk raw bulk metrics

We have all the data we need right there in the SNMP walk item. All of the
items and discovery rules we then added afterward are using that data and
parsing it internally using the Zabbix server (or proxy) preprocessing
processes.

In the case of LLD, we have to add the SNMP walk to JSON preprocessing
step, as you can see in Figure 7.54, which is what will convert the normal
SNMP walk data to a JSON data format. It will look like this afterward:

Figure 7.61 – The lar-book-snmp_bulk raw bulk metrics converted to JSON

It collects the values we want by finding the OID .1.3.6.1.2.1.2.2.1.2 and
adding its values to the {#IFDESCR} discovery macro. It also retains the SNMP
index and it’s it to the {#SNMPINDEX} macro.

Now, all that’s left to do is set up our item prototypes and use the same raw
SNMP walk item to extract data with the preprocessing step SNMP walk
value as we see in Figure 7.57. We also have to make sure it’s unique for
each item, so we add the {#SNMPINDEX} macro to find the correct value for
every item that will be created.

Just like that, we did a single SNMP GetBulk call in the SNMP interfaces
bulk item and used the power of Zabbix-dependent items and preprocessing
to split it up further.

Creating hosts with LLD and custom JSON
Creating hosts from LLD works the same as creating anything else from LLD
rules. We will simply feed our Zabbix installation with a compatible JSON
formatted dataset and use that data to create new hosts. However, starting
with Zabbix 6.2, something has changed. Hosts created by LLD are now
customizable after creation, so, let’s have a look at how to do it and how it
works.

Getting ready

For this recipe, we are going to need two things: any Zabbix 7 installation
and a compatible JSON-formatted dataset containing hosts and their data.
Some good default template examples to create hosts from LLD are as
follows:

VMware host and hypervisors

Kubernetes

Azure and AWS

For the example, however, we will be using a custom dataset, which you can
find on GitHub here: https://github.com/PacktPublishing/Zabbix-7-IT-
Infrastructure-Monitoring-Cookbook/blob/main/chapter07/lldhosts.json.

It’s also important to have a basic understanding of Zabbix sender, dependent
items, and preprocessing. I recommend reading the following recipes from
Chapter 3, Setting Up Zabbix Monitoring, first:

Creating Zabbix simple checks and the Zabbix trapper

Working with calculated and dependent items

Using Zabbix preprocessing to alter item values

How to do it…

Let’s get started on building this new LLD rule with a custom JSON dataset.
To do that, we will first need to build a JSON file or get it from some of our
own data sources. We have one prepared for you:

1. First, let’s have a look at the JSON file located here:

https://raw.githubusercontent.com/PacktPublishing/Zabbix-7-IT-
Infrastructure-Monitoring-Cookbook/main/chapter07/lldhosts.json

2. Next up, let’s log in to the Zabbix server CLI and make sure we have our Zabbix sender
application installed. We are going to use this to send the file to our Zabbix environment:

For RHEL-based systems, use the following:
dnf install zabbix-sender

For Ubuntu systems, use the following:
apt install zabbix-sender

3. Let’s set up the zabbix-sender application to send this JSON file to our system every minute.

We will use a CronJob to make things easy for now:

crontab -e

4. Add the following to the CronJob file:

* * * * * zabbix_sender -z 127.0.0.1 -s lar-lldhost-creation -k

lldhosts.raw -o '[{"vmname":"lar-lld-

host1","vmip":"10.16.16.200","vmlocation":"Amsterdam"},

{"vmname":"lar-lld-

host2","vmip":"10.16.16.201","vmlocation":"London"},

{"vmname":"lar-lld-

host3","vmip":"10.16.16.202","vmlocation":"Chicago"},

{"vmname":"lar-lld-

host4","vmip":"10.16.16.203","vmlocation":"Tirana"}]'

>/dev/null 2>&1

The preceding is just the CronJob + Zabbix sender command built up as
follows:

* * * * *

zabbix_sender -z 127.0.0.1 -s lar-lldhost-creation -k

lldhosts.raw -o

FILE CONTENT FROM GITHUB

>/dev/null 2>&1

5. Now, let’s switch to our Zabbix frontend where we will add a host to receive the JSON file from.

6. To add the host, navigate to Data collection | Hosts and click on the Create host button in the
top-right corner. Add the following host:

Figure 7.62 – The Zabbix host creation window for the lar-lldhost-creation host

7. Click on the Add button at the bottom of the window to finish creating this host. You will be
brought back to Data collection | Hosts.

8. On this page, click on Items next to the lar-lldhost-creation host we just created. In the

top-right corner, click on Create item and create the following item:

Figure 7.63 – The Zabbix item creation page for the lar-lldhost-creation host

9. Make sure to also add a tag to the item:

Figure 7.64 – The Zabbix tag creation page for the lldhosts.raw item

10. Now, press the big Add button at the bottom of the page. After the Zabbix server reloads its
configuration cache, we should see data coming into this item within a minute or two.

11. Meanwhile, we can start building the LLD rule. While still on the host edit page, navigate to
Discovery rules. Click on Create discovery rule in the top-right corner. We will add the
following:

Figure 7.65 – The Zabbix LLD rule creation page for hosts.from.json

12. Next, click on LLD macros, and let’s define some macros to use from the file:

{

"vmname":"lar-lld-host1",

"vmip":"10.16.16.200",

"vmlocation":"Amsterdam"

}

We are going to use JSONPath to convert the preceding blocks of data to
the following:

{

"{#VMNAME}":"lar-lld-host1",

"{#VMIP}":"10.16.16.200",

"{#VMLOCATION}":"Amsterdam"

}

13. To do so, switch to the tab called LLD macros and define the following:

Figure 7.66 – The Zabbix LLD macros tab for the hosts.from.json LLD rule

14. Now, we can click on the big Add button at the bottom of this page and the LLD rule is created.

15. To do something with the LLD rule, however, we will have to create a new host prototype. To do
so, click on Host prototypes and then Create host prototype in the top-right corner. We will add
the following:

Figure 7.67 – The Zabbix LLD host prototype creation page

As you can see, we use our macros to create the name of the virtual machine
(VM) as well as make a unique host group.

16. We will also define an interface using our macro, by switching interface to Custom, pressing the
small underlined Add button, and adding the following:

Figure 7.68 – The Zabbix LLD host prototype creation page with a custom interface

17. You can now press the big Add button at the bottom of the page. This will add the host prototype.

18. Now, navigate to Data collection | Hosts where, after waiting for a few minutes, we should see
our new hosts:

Figure 7.69 – Zabbix hosts created from LLD

How it works…

LLD is an extensive topic in the Zabbix world and, as such, it can become
quite complicated. As we saw, we used a completely custom JSON file in this
recipe.

Before we dive deeper into what the results are, keep in mind that custom
JSON can be created from anywhere. This could be a custom (Python, Perl,
PowerShell) script, some API checks, or anything else. Also, sometimes,
JSON is already provided by the Zabbix environment itself. As long as we
follow the following format (with or without macros straight in the file),
anything can be parsed to Zabbix LLD rules:

[

{

"vmname":"lar-lld-host1",

"vmip":"10.16.16.200",

"vmlocation":"Amsterdam"

},

{

"vmname":"lar-lld-host2",

"vmip":"10.16.16.201",

"vmlocation":"London"

},

{

"vmname":"lar-lld-host3",

"vmip":"10.16.16.202",

"vmlocation":"Chicago"

},

{

"vmname":"lar-lld-host4",

"vmip":"10.16.16.203",

"vmlocation":"Tirana"

}

]

Check out the following link for more examples:

https://www.zabbix.com/documentation/current/en/manual/discovery/low_le
vel_discovery

Now, what did we actually create with the preceding JSON file? Well, we
used the vmname, vmip, and vmlocation JSON keys and their values to create
some custom hosts, fully automated. To do that first, we have to use
JSONPath to parse the JSON keys to the LLD macros every LLD rule
needs:

Figure 7.70 – JSONPath usage to convert keys to LLD macros

This converts vmip to {#VMIP}, vmlocation to {#VMLOCATION}, and vmname to
{#VMNAME}. JSONPath is searching for the keys and Zabbix is converting
them to macros for us.

We then use these macros in the LLD host prototype to define what the
values are going to be for each host:

Figure 7.71 – Our LLD macros in use

The result will be that our hosts are created with the correct settings:

Figure 7.72 – lar-lld-host4 created by our LLD rule

As you can see, our hostname is filled in, as is the custom host group. We
also have an interface defined with the correct IP. We will now use that IP on
the interface to start monitoring Zabbix agent on the host with the template
that we hooked up to the host.

There’s more…

But wait – there’s more! Starting from Zabbix 6.2, host prototypes are
actually practically useful, by introducing some major changes. It is now
possible to fully customize the host settings such as macros, tags, and even
templates.

This means that even though a host is created from a prototype, we can still
customize our monitoring. For example, if you discover your VMs in
VMware, we could customize the LLD rule to also automatically start
monitoring with the Zabbix agent. If you then want to override some macros
for the host, to change, let’s say, a trigger threshold, you actually can.

Do keep in mind, though, that if you remove the host or LLD rule that
discovered the hosts, all the discovered hosts will also be removed. Be

careful with removing things and always have backups at the ready!

8

Setting Up Zabbix Proxies
You can’t preach about Zabbix without actually preaching about the use of
Zabbix proxies – a nice addition at first, but a no-brainer by now. Anyone
who’s expecting to set up a Zabbix environment of a medium/larger size will
need proxies. The main reason to use proxies is scalability, as Zabbix proxies
offload the data collection and preprocessing load from the Zabbix server.
This way, we can scale up our Zabbix environment further and with greater
ease. Furthermore, proxies can provide an additional layer of security by
collecting data in a local network and then sending it to the Zabbix server,
splitting your data collection access requirements between hosts instead of
consolidating it on a single Zabbix server.

In this chapter, we will first learn how to set up a Zabbix proxy. We will then
learn how to work with passive and active Zabbix proxies, and also how to
monitor hosts with either form of the Zabbix proxy. Zabbix 7 also introduces
the possibility of adding proxies in a load-balancing pool together, which we
will also discover in this chapter. We will also cover some Zabbix network
discovery using the proxies, and we’ll learn how to monitor Zabbix proxies to
keep them healthy. After these recipes, you’ll have no more excuses for not
setting up the proxies, as we’ll cover most of the possible forms of proxy use
in this chapter.

So, let’s go through the following recipes and check out how to work with
Zabbix proxies:

Setting up a Zabbix proxy

Working with passive Zabbix proxies

Working with active Zabbix proxies

Monitoring hosts with a Zabbix proxy

Encrypting your Zabbix proxy connection with pre-shared keys

Setting up Zabbix proxy load balancing

Using discovery with Zabbix proxies

Monitoring your Zabbix proxies

Technical requirements
We are going to need several new Linux hosts for this chapter, as we’ll be
building them as Zabbix proxies.

Set up two proxies by installing your preferred RHEL-based or Ubuntu Linux
distribution on the following two new hosts:

lar-book-proxy-passive

lar-book-proxy-active

You’ll also need the Zabbix server, with at least one monitored host. We’ll be
using the following new host to monitor with a Zabbix agent installed:

lar-book-agent-by-proxy

Setting up a Zabbix proxy
Setting up a Zabbix proxy can be quite daunting if you don’t have a lot of
experience with Linux, but the task is quite simple once you get the hang of

it. We will install a Zabbix proxy on our lar-book-proxy-passive server; you
can repeat the task on lar-book-proxy-active.

Getting ready

Make sure to have a new empty Linux host, with your distribution of choice
ready and installed. We won’t need our Zabbix server in this recipe yet.

How to do it…
1. Let’s start by logging in to the command-line interface (CLI) of our new lar-book-proxy-

passive host.

2. Now, execute the following command to add the Zabbix repository. For RHEL-based systems, use
the following:

rpm -Uvh https://repo.zabbix.com/zabbix/7.0/rhel/8/

x86_64/zabbix-release-7.0-1.el8.noarch.rpm

dnf clean all

For Ubuntu systems, use the following:
wget https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/

main/z/zabbix-release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

3. Now, install the Zabbix proxy by executing the following command.

RHEL-based systems, use the following:
dnf install zabbix-proxy-sqlite3 zabbix-selinux-policy

Ubuntu systems, use the following:
apt install zabbix-proxy-sqlite3

TIP

On RHEL-based servers, don’t forget to set Security-Enhanced Linux (SELinux) to
permissive or allow Zabbix proxy in SELinux for production. For lab environments, it is fine to
set SELinux to permissive, but in production, I would recommend leaving it enabled. For
Ubuntu systems, in a lab environment, we can disable AppArmor.

4. Now, edit the Zabbix proxy configuration by executing the following command:

vim /etc/zabbix/zabbix_proxy.conf

Let’s start by setting the proxy mode on the passive proxy. The mode
will be 1 on this proxy. On the active proxy, this will be 0:

ProxyMode=1

5. Change the following line to your Zabbix server address:

Server=10.16.16.152

IMPORTANT NOTE
When working with a Zabbix server in high availability (HA), make sure to add the Zabbix
server IP addresses here for every single node in your cluster. The proxy will only be sending
data to the active node. Keep in mind that HA nodes are delimited by a semi-colon (;) instead

of a comma (,).

6. Change the following line to your proxy hostname:

Hostname=lar-book-proxy-passive

As we’ll be using the sqlite version of the proxy for the example, change
the DBName parameter to the following:

DBName=/tmp/zabbix_proxy.sqlite3

7. You can now enable the Zabbix proxy and start it with the following two commands:

systemctl enable zabbix-proxy

systemctl start zabbix-proxy

8. You should want to check that the Zabbix proxy logs are not showing any errors, with the
following command:

tail -f /var/log/zabbix/zabbix_proxy.log

How it works…

There are three versions of Zabbix proxy to work with:

zabbix-proxy-mysql

zabbix-proxy-pgsql

zabbix-proxy-sqlite3

We’ve just done the setup for the zabbix-proxy-sqlite3 package, which is
the easiest method if you ask me. The sqlite3 version of Zabbix proxy
makes it possible for us to set up a Zabbix proxy with great ease as we don’t
actually need to worry too much about database setup and maintenance.

Please do note that the sqlite3 versions might not be suited to Zabbix
proxies with a very high load as sqlite3 cannot be further scaled up. You get
more options to scale a mysql or postgresql database when using Zabbix
proxy by the fine-tuning mechanisms available in those database types.
However, since the idea behind proxies in most cases is dividing the load
between proxies, I find it easier to add the SQLite3 proxy once my database
has reached its capacity.

TIP
Always pick the right type of Zabbix proxy for what you expect to need in the future. Although
it is easy to switch proxies later, don’t go too easy on this choice as you might save yourself
hours in the future.

The amazing part about the sqlite3 version is that if we run into database
issues, it’s very easy to just remove the database by running the following:

rm /tmp/zabbix_proxy.sqlite3

With this, the sqlite3 Zabbix proxy then automatically creates a new
database on startup, and we’re all ready to start collecting again. Do note that

we might lose some information that is in the proxy database though, which
functions as a cache that might contain data still to be sent to Zabbix. If the
data hasn’t been sent to Zabbix yet and you delete the database, that’s when
you will lose the metrics still in the database.

In Zabbix 7, however, the proxy database concept has been changed slightly,
by the addition of an in-memory cache. By default, proxies in Zabbix 7 will
now run in one of three modes:

Hybrid (default for new installations)

Memory

Disk (default for existing installations)

We can adjust this setting by editing ProxyBufferMode= in the Zabbix proxy
configuration file.

This means that a Zabbix proxy will now buffer metrics to be sent in memory
instead of in the database by default. This is only in the case that the Zabbix
proxy memory cache is full with the proxy start buffering data to the
database.

One last thing to keep in mind is that, in hybrid mode, we can still restart the
Zabbix proxy safely; however, upon restarting, the Zabbix proxy process data
will be flushed into the database. In memory mode, however, this is not the
cache and data will be lost upon restarting the Zabbix proxy process.

There’s more…

More information about installing Zabbix proxies can be found here:

https://www.zabbix.com/documentation/current/manual/installation/install_fr
om_packages

Choose the distribution you are using, and you can find the guides for all the
different variants of proxy installations.

Working with passive Zabbix proxies
Now that we have installed our Zabbix proxy in the previous recipe, we can
start working with it. Let’s start by setting up our passive Zabbix proxy in the
frontend and see what we can do with it from the start.

Getting ready

You will need the lar-book-proxy-passive host for this recipe ready and
installed with Zabbix proxy. We will also be using our Zabbix server in this
recipe again.

How to do it…
1. Let’s start by logging in to our Zabbix frontend and navigating to Administration | Proxies:

Figure 8.1 – Administration | Proxies page, without proxies

Our Proxies page is where we do all frontend proxy-related configuration.

2. Let’s add a new proxy with the blue Create proxy button in the top-right corner.

This will show us to the Create proxy popup, where we will fill out the
following information:

Figure 8.2 – Administration | Proxies, Create proxy popup, lar-book-proxy-passive

Before clicking the blue Add button, let’s take a look at the Encryption tab:

Figure 8.3 – Administration | Proxies, Create proxy popup Encryption tab, lar-book-proxy-
passive

By default, No encryption is checked here, which we’ll address in another
recipe. For now, leave it set to No encryption.

IMPORTANT NOTE
A lot of valuable information is exchanged between Zabbix servers and Zabbix proxies. If you
are working with insecure networks or just need an extra layer of security, use Zabbix proxy
encryption. You can find more information on Zabbix encryption here:
https://www.zabbix.com/documentation/current/en/manual/encryption.

Before we move on, there’s one more tab in our Zabbix proxy creation popup
that we need to have a look at – Timeouts:

Figure 8.4 – Administration | Proxies, Create proxy popup Timeouts tab, lar-book-proxy-
passive

We won’t change anything on the Timeouts tab here, but since Zabbix 7, it is
possible to override global timeouts for various types of item checks,
allowing us to significantly tweak our Zabbix setup to avoid timeout
performance issues.

1. Now, click the blue Add button, which will take us back to our proxy overview page.

2. The Last seen (age) part of your newly added proxy should now show a time value, instead of
Never:

Figure 8.5 – Administration | Proxies page, Last seen (age)

How it works…

Adding proxies isn’t the hardest task after we’ve already done the installation
part. After the steps we took in this recipe, we are ready to start monitoring
with this proxy.

The proxy we just added is a passive proxy. These proxies work by receiving
configuration from the Zabbix server, which the Zabbix server sends to the
Zabbix proxy on port 10051:

Figure 8.6 – Diagram showing an active proxy connection

Once the passive proxy knows what to monitor, every time the Zabbix server
polls for data, data is sent back within the same TCP connection. This means
that the connection is always initiated from the Zabbix server side. Once it’s
set up, the Zabbix server will keep sending configuration changes and it will
keep polling for new data.

Working with active Zabbix proxies

We now know how to install and add proxies. Let’s set up our active proxy,
like we did with the passive proxy in the previous recipe, and see how it
works.

Getting ready

You will need the lar-book-proxy-active host for this recipe, ready and
installed with Zabbix proxy, as set up in the first recipe of this chapter. We
will also be using our Zabbix server in this recipe.

How to do it…
1. Let’s start by logging in to our Zabbix frontend and navigating to Administration | Proxies:

Figure 8.7 – Administration | Proxies page, no active proxies

Our Proxies page is where we do all configurations that are proxy related.

Let’s add a new proxy by clicking the blue Create proxy button in the top-
right corner.

2. This will open the Create proxy popup, where we will fill out the following information:

Figure 8.8 – Administration | Proxies, Create proxy popup, lar-book-proxy-active

TIP
The Proxy address field is actually optional for our active proxy. You do not have to add this
for the Zabbix proxy to function, but it is recommended to keep things clear. Adding the Proxy
address field also functions as a sort of whitelist in this case, as only the IP address listed will
be allowed to connect.

Before clicking the blue Add button, let’s take a look at the Encryption tab:

Figure 8.9 – Administration | Proxies, Create proxy popup Encryption tab, lar-book-proxy-
active

By default, No encryption is checked here, which we’ll leave be for this
recipe.

Before we move on, there’s one more tab in our Zabbix proxy creation popup
that we need to have a look at – Timeouts:

Figure 8.10 – Administration | Proxies, Create proxy popup Timeouts tab, lar-book-proxy-
passive

We won’t change anything on the Timeouts tab here, but since Zabbix 7, it is
possible to override global timeouts for various types of item checks,

allowing us to significantly tweak our Zabbix setup to avoid timeout
performance issues.

1. Now, click the blue Add button, which will take us back to the proxy overview page.

2. Log in to the CLI and check the configuration with the following command:

vim /etc/zabbix/zabbix_proxy.conf

Let’s change the proxy mode on the active proxy. The mode will be 0 on
this proxy instead of 1:

ProxyMode=0

3. Change the following line to your proxy hostname:

Hostname=lar-book-proxy-active

4. Then, restart the proxy:

systemctl restart Zabbix-proxy

5. The Last seen (age) part of your newly added proxy should now show a time value, instead of
Never.

Figure 8.11 – Administration | proxies page, Last seen (age)

Depending on your setting in the proxy configuration file, the Last seen
(age) part may take a while to change.

How it works…

If you followed the Working with passive Zabbix proxies recipe from this
chapter, the steps are about the same, except for the part where we add the
proxy mode.

The proxy we just added is an active proxy that works by requesting a
configuration from the Zabbix server on port 10051.

Figure 8.12 – Diagram showing an active proxy connection

The Zabbix proxy keeps requesting configuration changes, and it keeps
sending any newly collected data to the Zabbix server every second or it
sends out a heartbeat if no data is available.

IMPORTANT NOTE
It is recommended to use active Zabbix proxies, as we can use them to reduce the load on
our Zabbix server. Use the passive proxy only when you have a good reason to do so.

Monitoring hosts with Zabbix proxy
We have our active and passive Zabbix proxies ready to use, so it’s now
time to add some hosts to them. Setting up the Zabbix frontend to monitor
hosts with Zabbix proxies works in about the same way as monitoring
directly from the Zabbix server. The backend and design change completely
though, which I’ll explain in the How it works… section of this recipe.

Getting ready

Make sure you have your lar-book-proxy-passive passive proxy and your
lar-book-proxy-active active proxy ready by following all of the previous

recipes in this chapter.

You will also need your Zabbix server and at least two hosts to monitor. We
will be using lar-book-agent_snmp and lar-book-agent in the example, but
any host with an active and passive Zabbix agent will work.

How to do it…

We’ll configure a host on both our active and our passive proxies to show
you what the difference is between these two. Let’s start with the passive
proxy.

Passive proxy
1. Let’s start this recipe by logging in to our Zabbix frontend and navigating to Data collection |

Hosts.

Let’s add the host with the passive agent to our passive proxy. In my case,
this is the lar-book-agent_snmp host.

Click on the lar-book-agent_snmp host and change the Monitored by proxy
field to lar-book-proxy-passive, as in the following screenshot:

Figure 8.13 – Configuration | Hosts, Edit host page for host lar-book-agent_snmp

Now, click on the blue Update button. Our host will now be monitored by
the Zabbix proxy.

IMPORTANT NOTE
Due to the configuration update interval and the fact we just switched the monitoring source to
a proxy, we can see the SNMP icon turn gray temporarily.

Active proxy
1. Let’s do the same for our other lar-book-agent host by navigating back to Data collection|

Hosts.

2. Click on the lar-book-agent host and change the Monitored by proxy field to lar-book-

proxy-active, as in the following screenshot:

Figure 8.14 – Configuration | Hosts, Edit host page for host lar-book-agent

3. Now, click on the blue Update button.

4. On the CLI of our monitored Linux host, the lar-book-agent host, execute the following

command:

vim /etc/zabbix/zabbix_agent2.conf

5. When working with an active Zabbix agent, we need to make sure to add the proxy IP address to
the following line:

ServerActive=

Our host will now be monitored by the Zabbix proxy once the proxy has
received its new configuration data and the agent has executed the checks.

How it works…

Monitoring hosts with a Zabbix proxy in passive or active mode works in the
same way from the frontend. We merely configure which host is monitored
by which proxy in our Zabbix frontend, and it will be done.

Let’s take a look at how our Simple Network Management Protocol
(SNMP) agent is now monitored by the passive proxy:

Figure 8.15 – A completely passive Zabbix setup with proxy

Our passive Zabbix proxy now collects data from our SNMP agent, and after
this is collected, the Zabbix server collects this data from our Zabbix proxy.
Sounds like a whole process already, right?

Let’s look at our active Zabbix proxy setup:

Figure 8.16 – A completely active Zabbix setup with proxy

Our active Zabbix proxy receives data from our active Zabbix agent and then
sends this data to our Zabbix server. We’ve eliminated the part where the
passive proxy is waiting to be polled in this proxy setup altogether.

Furthermore, we only have to allow firewall connections going toward the
proxy or server, meaning this could provide additional security.

There are some of the reasons I would always recommend working with
active proxies – and even active agents – as much as possible. If we look at
the following screenshot, we can see a setup that you might see at a company:

Figure 8.17 – An active Zabbix proxy setup with different monitored types

Fortunately, we have the option of using a lot of different combinations of
setups. It is perfectly possible – and even logical – to combine your checks
from a proxy, just as much as it would be with a Zabbix server. We can
monitor all types from our proxy, whether it’s a Zabbix agent, SNMP, or
even Java Management Extensions (JMX) and the Intelligent Platform
Management Interface (IPMI).

TIP
When designing a new Zabbix hosting infrastructure, start with adding proxies to your design
if possible. This way, you don’t have to change a lot later. It’s easy to add and change proxies,

but it’s harder to go from just using the Zabbix server to using Zabbix proxies in your design.

There’s more…

We now have a solid setup with some proxies up and running. We’ve figured
out the difference between active and passive proxies and how they affect
monitoring. But why would we build a setup like this? Well, Zabbix proxies
are great for many environments – not just the big ones, but even sometimes
in the smallest ones.

We can use Zabbix proxies to offload polling and preprocessing from our
main Zabbix server, thus keeping the server clear for handling data such as
when writing to the Zabbix database.

We can use Zabbix proxies to monitor offsite locations, such as when you’re
a managed service provider (MSP) and want to monitor a customer
network. We simply place a proxy on-site and monitor it. We can use
industry-standard techniques such as monitoring through a virtual private
network (VPN) or simply set up a connection using built-in Zabbix proxy
encryption.

When the connection to the remote site goes down, our proxy will keep
collecting data on-site and send this to our Zabbix server when the
connection comes back up. By default, Zabbix will keep the data on disk for
one hour, which is specified by the ProxyOfflineBuffer= parameter in the
Zabbix proxy configuration file.

We can also use the Zabbix proxy to bypass firewall complications. When we
place a proxy behind a firewall in a monitored network, we only need one
firewall rule between the Zabbix server and the Zabbix proxy. Our Zabbix

proxy then monitors the different hosts and sends the collected data in one
stream to the Zabbix server. This means we don’t have to poke holes for ports
161, 162, 10050, and 10051, Java, API ports, and many more through our
firewall.

With this, you have loads of options to use Zabbix proxies already.

See also

Check out this interesting blog post about some more cool hidden benefits of
Zabbix proxies: https://blog.zabbix.com/hidden-benefits-of-zabbix-
proxy/9359/.

Encrypting your Zabbix proxy connection
with pre-shared keys
For additional security, it’s recommended to make sure your Zabbix proxy is
connecting over the network encrypted. The simple reason for this is to make
sure that any possible intruder on your network cannot see all the data sent
between the Zabbix server and Zabbix proxy from your network in plain text.

Image you have macros configured with important passwords. These macros
will flow over the network in plain text if you do not encrypt the connection
between the Zabbix server and proxy.

Getting ready

For this recipe, we will need our Zabbix server and a connected proxy of
either the passive or active type.

How to do it…

Let’s get started on the CLI of our proxy, where we need to make some
configuration changes:

1. First things first, let’s edit the Zabbix proxy configuration file:

vim /etc/zabbix/zabbix_proxy.conf

2. We will find the following and edit the following variables:

TLSConnect=psk

TLSAccept=psk

TLSPSKIdentity=lar-book-proxy-active

TLSPSKFile=/etc/zabbix/proxy_psk.key

TLSConnect is used for active proxy connections and TLSAccept is used for
passive proxy connections. It is smart, however, to set both parameters at all
times, as then we will always ensure an encrypted connection.

IMPORTANT NOTE
In the example, I’m setting the identity to the hostname of the proxy for simplicity’s sake. If the
PSK identity and PSK itself are a unique combination every time, you can use anything
though. Do not use the same PSK with a different identity, as this will result in errors and the
proxy won’t connect.

1. Save your proxy configuration file and exit.

We will create a new file, the /etc/zabbix folder, which contains the
PSK. To do that, execute the following command:

openssl rand -hex 128 > /etc/zabbix/proxy_psk.key

This will create the file with the new pre-shared key. You can make sure
it was created correctly with the following command:

cat /etc/zabbix/proxy_psk.key

2. It should look as follows:

Figure 8.18 – Created proxy PSK file

Now, let’s make sure only the Zabbix proxy can read this PSK file:
chmod 400/etc/zabbix/proxy_psk.key

chown zabbix:zabbix /etc/zabbix/proxy_psk.key

3. Restart your Zabbix proxy to make the changes take effect:
Systemctl restart zabbix-proxy

4. Now, it’s time to move on to the frontend. Navigate to Administration |
Proxies.

You will probably see that the proxy is no longer connected and the Last
seen (age) value is getting higher. Edit the proxy on which you are adding
encryption and go to the encryption tab. For an active proxy, it will look as
follows:

Figure 8.19 – lar-book-proxy-active PSK settings

For a passive proxy, make sure Connections to proxy is set to PSK, and for
the active proxy, select PSK as the option we’d like to use for Connections
from proxy.

Fill in the PSK identity and PSK as set up in Steps 2 and 6 of this recipe.

5. Now, click on Update and your proxy should connect again.

How it works…

After setting up your active or passive Zabbix proxy encryption, not much
will change. Your proxy will still connect to or be connected from the Zabbix
server. The thing that changes is that the Zabbix server and proxy will now
use encryption when communicating with each other.

Figure 8.20 – Encrypted proxies connections

The method we have used utilizes a pre-shared key-based encryption method.
Although this provides a relatively safe method of adding encryption to these

connections, there’s always the chance of a pre-shared key leaking somehow.
Since a pre-shared key never expires, that would create a permanent hole in
your security that only patches whenever you are going to change the pre-
shared key. In practice, this is usually never.

One of the benefits of utilizing certificate-based encryption methods is that
certificates expire. This does mean for an added layer of security, but at the
same time it means that you will be regularly forced to update your
encryption settings or risk losing the connection between the Zabbix proxy
and server.

Setting up Zabbix proxy load balancing
Long awaited and finally implemented, Zabbix has finally introduced proxy
high availability and load balancing. This completes all the required
functionality to truly make Zabbix a product that is highly reliable even in
cases of outages.

It also means that Zabbix is now a lot easier to scale, utilizing the load
balancing on proxies to divide the load between available proxies.

Getting ready

For this recipe, we will utilize the active and passive proxy we’ve set up in
earlier recipes in this chapter. Besides that, all we need is the Zabbix setup
and a host to monitor for which we will use a Zabbix agent in active mode.

How to do it…

Let’s get started on the frontend, where we should already have two (or
more) Zabbix proxies available:

1. Navigate to Administration | Proxies and make sure you have two proxies available. It does not
matter what the proxy mode is, as we can combine active and passive proxies in proxy load
balancing.

Figure 8.21 – Administration | Proxies page with the two proxies we will use for load
balancing

2. Next, let’s navigate to Administration | Proxy groups to define our first proxy load balancing
and high availability group.

3. In the top-right corner, click on the Create proxy group button. This will open the following pop-
up window:

Figure 8.22 – Administration | Proxy groups, New proxy group popup

4. Here, we basically just have to give the proxy group a name and we will be done for now. Let’s
name this group lar-proxy-group. Then, we can press the Add button to finish adding this

proxy group.

5. Now, navigate back to Administration | Proxies, and let’s add our two proxies to the new proxy
group.

6. Click on a proxy and add it to the proxy group by filling in the Proxy group parameter or by using
the Select button.

Figure 8.23 – Administration | Proxies, add proxy group to a proxy

Do this for all proxies we want to add to the group.

7. Also, make sure to fill in the Address for active agents parameter as when we work with active
agents, we’ll need to know where to connect to on each proxy.

8. We’ll do the same for our second proxy:

Figure 8.24 – Administration | Proxies, add proxy group to a proxy

9. Now, let’s add a new host to be monitored by this proxy group. I will use a new host called lar-

book-proxyha-test. When creating the host, make sure to add the Proxy group parameter

like this:

Figure 8.25 – Data collection | Hosts, Edit or create host popup window

10. In the agent configuration file for the host we are adding, let’s change some parameters. If it’s a
Linux host, edit the configuration file:

vim /etc/zabbix/zabbix_agent2.conf

11. Now, edit the following two parameters:

ServerActive=192.168.2.175,192.168.2.174

Hostname=lar-book-proxyha-test

12. With two proxies active and configured as part of a proxy group and a host monitored by that
proxy, we are now done and ready to load balance our hosts between the proxies

How it works…

As you can see, proxy load balancing and high availability is a pretty
straightforward setup and there’s not much complexity to work with. We
simply add our proxies to a group and Zabbix will take care of the rest for us.

In our case, we’ve added two proxies to the group, an active and a passive
proxy. These two proxies will now work together, load balancing the load of
the hosts between them.

Figure 8.26 – Our proxy group working normally

Our active agent lar-book-proxyha-test host will connect to one of the two
proxies on the defined IP address under the ServerActive= parameter.
Because we entered Address for active agents under the proxy configuration
in the Zabbix frontend, all the proxies in the proxy group also know the
address for redirecting checks to in case load balancing needs to be done.

Our Zabbix proxy group will now make sure to load balance the hosts, even
if they are in active mode. In case there is an outage, the proxy group will
need to recalculate the load balancing.

Figure 8.27 – Our proxy group after an outage

The host will now be redirected to a different proxy in the proxy group for
further monitoring. This is why we do not even need any floating IPs or
virtual IPs to redirect active agent checks, as our proxies can take care of it
for us.

Do keep the proxy parameters in mind, however, to make sure our proxy
group is functioning optimally. If you have 4 proxies in a proxy group and set
Minimum number of proxies to 1, make sure to configure every single

proxy in the group to be able to handle the full load of all hosts in the proxy
group. Otherwise, your monitoring performance will still be compromised.

This is also true the other way around; if we have a proxy group of 4 proxies
and we set Minimum number of proxies to 3, the whole proxy group will go
down if we lose just two proxies. Make sure to find the correct balance
between the number of proxies in a group and the minimum proxies required
for the group to handle the full load of monitoring.

Figure 8.28 – Our proxy group settings

Furthermore, we can change the Failover period value to determine how fast
a failover needs to happen.

IMPORTANT NOTE
Keep in mind that if you’re working with certain other checks, you might need to do some
additional configuration with things such as floating IPs or virtual IPs. For a check with SNMP
traps, for example, you might need to send your traps to all proxies in a group if supported by
your device, adding additional load to the network.

Using discovery with Zabbix proxies
In Chapter 7, Using Discovery for Automatic Creation, we talked about
Zabbix and discovery. It is a very good idea to edit your discovery rules if
you followed along with that chapter. Let’s see how this would work in this
recipe.

Getting ready

You’ll need to have finished Chapter 7, Using Discovery for Automatic
Creation, or have some discovery rules and active agent autoregistration set
up.

I’ll be using the lar-book-lnx-agent-auto, lar-book-disc-lnx, and lar-

book-disc-win hosts in this example. We will also need our Zabbix server.

How to do it…

Let’s start with editing our discovery rule and then move on to editing our
active agent to autoregister to the proxy.

Discovery rules

Starting with Zabbix discovery rules, let’s look at how to make sure we do
this from the Zabbix proxy:

1. Log in to the CLI of lar-book-disc-lnx and edit the /etc/zabbix/

zabbix_agent2.conf file. Edit the following lines to include our Zabbix proxy address:

Server=127.0.0.1,10.16.16.152,10.16.16.160,10.16.16.161

ServerActive=10.16.16.160

2. Restart your Zabbix agent by executing the following command:

systemctl restart zabbix-agent2

3. Now, make sure to log in to lar-book-disc-win and edit the C:\Program

Files\Zabbix agent\zabbix_agent2 file. Edit the following lines to include our Zabbix

proxy address:

Server=127.0.0.1,10.16.16.152,10.16.16.160,10.16.16.161

ServerActive=10.16.16.160

IMPORTANT NOTE
On the ServerActive lines in our configuration files, make sure to only include the Zabbix

proxy we want to send data to. The Zabbix agent will actively try to send data to all our Zabbix
proxies or Zabbix servers listed here, so we should only list the one we want to use.

4. Restart your Zabbix agent by executing the following commands in the Windows command line:

zabbix_agent2.exe --stop

zabbix_agent2.exe --start

Or, use the Windows Services window to restart the agent.

Next, navigate to Data collection | Hosts and delete the discovered hosts:
lar-book-disc-lnx

lar-book-disc-win

We do this to prevent duplicate hosts.

5. Now, navigate to Data collection | Discovery.

6. Click on Discover Zabbix Agent hosts and change the Discovered by proxy field, as shown in
the following screenshot:

Figure 8.29 – Alerts | Actions, Discovery Actions by proxy lar-book-proxy-active

7. Click on the blue Update button, and that’s all there is to editing your discovery rule to be
monitored by a proxy.

8. You can now check out your newly discovered hosts under Configuration | Hosts and see that
they are monitored by the proxy:

Figure 8.30 – Data collection | Hosts page with our discovered hosts

Active agent autoregistration

Moving on to active agent autoregistration, let’s see how we can do this from
our Zabbix proxy:

1. Start by navigating to Data collection | Hosts and deleting lar-book-lnx- agent-auto.

To do active agent autoregistration to a proxy, we have to log in to our
lar-book-lnx-agent-auto host CLI.

2. Edit the Zabbix agent configuration file with the following command:

vim /etc/zabbix/zabbix_agent2.conf

3. Make sure to edit the following line to the Zabbix proxy address instead of the Zabbix server
address:

ServerActive=10.16.16.160

4. Restart the Zabbix agent:

systemctl restart zabbix-agent2

We can now see our host autoregister to the Zabbix proxy instead of the
Zabbix server:

Figure 8.31 – Data collection | Hosts page with our two auto registered hosts

How it works…

Discovery with a Zabbix proxy works the same as discovery with a Zabbix
server. The only thing that changes is the location of where we are registering
to or discovering from.

If you want to learn more about the process of discovery and autoregistration,
check out Chapter 7, Using Discovery for Automatic Creation, if you haven’t
already.

Monitoring your Zabbix proxies

A lot of Zabbix users – or even monitoring users in general – forget a very
important part of their monitoring. They forget to monitor the monitoring
infrastructure. I want to make sure that when you set up Zabbix proxies, you
also know how to monitor the health of these proxies.

Let’s check out how to do so in this recipe.

Getting ready

For this recipe, we will need our new lar-book-proxy-active Zabbix proxy.
We will also need our Zabbix server to monitor the Zabbix proxy.

How to do it…

We are going to build some monitoring in our Zabbix frontend, but we’ll also
check the integrated monitoring options for Zabbix proxies. Let’s start by
building our own.

Monitoring the proxy with Zabbix

We can monitor our Zabbix proxy with the Zabbix proxy itself to make sure
we know exactly what’s going on:

1. Let’s start by logging in to our lar-book-proxy-active Zabbix proxy CLI.

2. Issue the following command to install Zabbix agent 2 for RHEL-based systems:

dnf install zabbix-agent2

For Ubuntu, issue this command:
apt install zabbix-agent2

3. Edit the Zabbix agent configuration file by issuing the following command:

vim /etc/zabbix/zabbix_agent2.conf

4. Edit the following lines to point toward localhost:

Server=127.0.0.1

ServerActive=127.0.0.1

5. Also, make sure to add the hostname to the Zabbix agent file:

Hostname=lar-book-proxy-active

6. Now, log in to the Zabbix frontend and navigate to Data collection | Hosts.

7. Click on the blue Create host button in the top-right corner and add the following host:

Figure 8.32 – Data collection | Hosts, Create host popup, lar-book-proxy-active

Take extra care at the Monitored by proxy field – we want to monitor from
the proxy because we are doing Zabbix internal checks, which need to be

handled by the Zabbix daemon that received this configuration.

8. Before clicking the blue Add button, make sure to add Templates. Add the following templates to
the host:

Figure 8.33 – Data collection | Hosts, Create host popup templates for host lar-book-proxy-
active

9. We can now click the blue Add button to create the host.

10. Now, navigate to Monitoring | Latest data and add the following filters:

Figure 8.34 – Monitoring | Latest data page with filters, host lar-book-proxy-active

11. We can now see our Zabbix proxy statistics, such as the number of processed values and
utilization of certain internal processes:

Figure 8.35 – Monitoring | Latest data page with data from our Zabbix proxy

Monitoring the proxy remotely from our Zabbix
server

We can also monitor our Zabbix proxy remotely from our Zabbix server, so,
let’s see how that works:

1. Let’s start by logging in to our lar-book-proxy-active host CLI and editing the following

file:

vim /etc/zabbix/zabbix_agent2.conf

2. Edit the following lines to match your Zabbix server address (every node in a Zabbix server HA
cluster):

Server=127.0.0.1,10.16.16.152

ServerActive=127.0.0.1,10.16.16.152

3. Also, edit the following file:

vim /etc/zabbix/zabbix_proxy.conf

4. Edit the following line to match your Zabbix server address:

StatsAllowedIP=127.0.0.1,10.16.16.152

5. Now, navigate to the Zabbix frontend and go to Data collection | Hosts.

6. Click on the blue Create host button in the top-right corner and add the following host:

Figure 8.36 – Data collection | Hosts, Create host popup, lar-book-proxy-active_remotely

7. Before clicking the blue Add button, make sure to add the right Templates. Add the following
templates to the host:

Figure 8.37 – Data collection | Hosts, create new host popup templates, lar-book-proxy-
active_ remotely

8. We can now click the blue Add button to create the host.

Back at Data collection | Hosts, click on your new lar-book-proxy-

active_remotely host.

9. Go to Macros and add the following two macros:

Figure 8.38 – Data collection | Hosts, Edit host popup, Macros tab, lar-book-proxy-
active_remotely

Now, click on the blue Update button, and that’s it for this host.

10. If we navigate to Monitoring | Latest data and check the items for this host, we can see data
coming in:

Figure 8.39 – Monitoring | Latest data page for host lar-book-proxy-active_remotely

Monitoring the proxy from the Zabbix frontend
1. Let’s start this off by navigating to Administration | Queue.

2. Use the drop-down menu to go to Queue overview by proxy:

Figure 8.40 – Administration | Queue menu

This will bring us to the page shown in the following screenshot:

Figure 8.41 – Administration | Queue overview by proxy page

Let’s see how this works in the next section of our recipe.

How it works…

Monitoring your Zabbix proxies is an important task, thus we need to make
sure that whenever we add a new Zabbix proxy, we are taking care of it like
we would any other host.

Monitoring the proxy with Zabbix

By adding the Zabbix proxy as a host, we can make sure the Linux system
that is running our Zabbix proxy is healthy. We also make sure that the
Zabbix proxy applications running on this server are in good health.

Besides having the right triggers in these templates, we also get a load of
options to troubleshoot issues with the Zabbix proxy.

The Zabbix proxy works just like the Zabbix server when it comes to
monitoring. This means that just as with the Zabbix server, we need to keep
the proxies in great health by tweaking the Zabbix proxy configuration file to
our needs.

Scaling your proxies becomes a lot easier once you figure out what’s going
on with them. So, this is why we make sure to always monitor them. We
monitor them from the proxy itself to make sure that we get the right
information with the Zabbix internal checks.

Monitoring the proxy remotely from our Zabbix
server

Now, when we monitor with Remote Zabbix proxy health, things go a little
differently. Instead of doing our checks from the Zabbix proxy itself, we do
them remotely from the Zabbix server by defining the Zabbix proxy address
and port in the macros. The Zabbix internal check type will still be used for
this, executing the checks from the Zabbix server to the Zabbix proxy
remotely in this case.

On top of that, it is of course still recommended that we also keep our Zabbix
agent running in either passive or active mode.

Figure 8.42 – Zabbix agent running on Zabbix proxy monitored by Zabbix server

This way, our Zabbix server is the one requesting and receiving information.
Even when the proxy is having issues, the checks will still be done by the
Zabbix server.

We can use this template as a way to keep a closer eye on our proxy if we
suspect issues with internal checks being performed locally, or we can use
this template to bypass certain firewall setups. Both are valid reasons.

Monitoring the proxy from the Zabbix frontend

From the frontend, we can use the Administration | Queue page to monitor
our proxies. The Zabbix Queue page is an important page, but a lot of new
users neither know nor fully utilize this page.

When a part of Zabbix starts performing poorly, such as our example Zabbix
proxy here, that’s when we can see stuff happening in the queue. There are
six options on the Zabbix Queue page:

5 seconds

10 seconds

30 seconds

1 minute

5 minutes

More than 10 minutes

What the options in the Queue mean is that the Zabbix proxy has been
waiting on receiving a value that’s configured more than expected. I would
state that anything up to one minute doesn’t necessarily have to be an issue,
but this depends on the type of check. The 5 minutes or More than 10
minutes options can mean serious performance issues with your Zabbix
proxy, and you would have to troubleshoot this issue. Make sure to keep a
good eye on the Zabbix queue when you suspect issues, which are also
included as triggers in the templates we added to monitor our Zabbix proxies.

9

Integrating Zabbix with External Services
In this chapter, we are going to set up some of the useful external service
integrations that Zabbix has to offer. We can use these external services to
notify our Zabbix users of ongoing problems.

We will start by learning how to set up in-company chat applications such as
Slack and Microsoft Teams. Then, we will learn how to use a personal chat
application such as Telegram before learning how to integrate Atlassian
Opsgenie for even more extensive alerting.

Once you’ve completed these recipes, you will be able to effectively integrate
certain services with Zabbix. This is a good starting point for working with
external services in general and the easiest way to set up Slack, Teams,
Opsgenie, and Telegram.

In this chapter, we will cover the following recipes:

Setting up Slack alerting with Zabbix

Setting up Microsoft Teams alerting with Zabbix

Using Telegram bots with Zabbix

Integrating Atlassian Opsgenie with Zabbix

Let’s get started!

Technical requirements

For this chapter, we are going to need our Zabbix server, preferably how we
set it up throughout this book, though any Zabbix 7 server with some alerts
on it will do.

We will also need access to a few external services, as follows:

Slack (free, to an extent):

https://slack.com/

Microsoft Teams (free, to an extent):

https://www.microsoft.com/microsoft-teams

Opsgenie (free, to an extent):

https://www.atlassian.com/software/opsgenie/

Telegram (free):

https://telegram.org/

We will not cover how to set up the services themselves, only how to
integrate them with Zabbix. Make sure you have set up the required service
by following a guide and that you have some knowledge of the services in
general.

Setting up Slack alerting with Zabbix
Slack is a widely used tool for easy text messaging, voice/video chat, and
collaboration. In this recipe, we will learn how to use Zabbix Slack
integration to send our Zabbix problem information to Slack so that we can
gain a good overview of issues.

Getting ready

Make sure you have Slack set up. You can go to https://slack.com/intl/en-in/
and set it up for free there. We will also need a Zabbix server with some
active problems.

How to do it…
1. Once you have set up and opened Slack, you should see the following page:

Figure 9.1 – Slack default page

2. Let’s create a new channel for our Zabbix notifications by clicking the + Add channels button.
Then, from the dropdown that appears, click Create a new channel:

Figure 9.2 – Slack, Create a channel window

3. Click the Next button. Then, on the next window, click the Create button to make this a public (or
private) channel:

Figure 9.3 – Slack, setting the new channel visibility

4. You’ll be presented with one more step to add either specific or all people within your Slack to the
new channel. In my test, I’ll add everyone, so I’ll just click on Done.

Figure 9.4 – Slack, Add people window

5. Now, navigate to the following link to create a Slack bot for working with Zabbix:
https://api.slack.com/apps.

6. You will see the Create New App option on this page. Click on it, which brings us here:

Figure 9.5 – Slack, API Create an app page

7. After clicking the Create New App button, we have to click on From scratch.

8. Then, we’ll see a pop-up window where we can set up our new Slack bot:

Figure 9.6 – Slack, API Name app & choose workspace window

9. Click on Create App. This will take you to the Basic Information page. On this page, click on
Bots, as highlighted in the following screenshot:

Figure 9.7 – Slack, API Add features and functionality page

10. This will take you to the new app’s App Home page. On the left-hand side of the page, click the
OAuth & Permissions option.

11. Scroll down to Scopes and click on Add an OAuth Scope:

Figure 9.8 – Slack, API scopes

12. From the drop-down menu, click on chat:write to allow our bot to write to a channel:

Figure 9.9 – Slack, API Add an OAuth Scope dropdown

13. Do the same for im:write and groups:write.

14. Scroll back up and click on the Install to Workspace button to finish setting up this app:

Figure 9.10 – Slack, API Install to Workspace button

15. Next, you will see a pop-up message. Click the green Allow button that appears.

16. After clicking Allow, you will see your new token. Copy the token by clicking the Copy button:

Figure 9.11 – Slack, API Our new Bot User OAuth Token

17. Lastly, add your bot to the # zabbix-notifications channel by going back to your Slack channel,
clicking on the members in the top-right corner, and selecting Integrations:

Figure 9.12 – Slack, connect an app to a channel

18. Click on Add an App.

19. Simply add Zabbix-Alert-Bot by clicking the white Add button:

Figure 9.13 – Slack, connect an app with a bot

20. Now, navigate to your Zabbix frontend and go to Alerts | Media types.

21. Click on Slack to edit the Slack media type. You will see a whole list of preconfigured
parameters. We need to paste our OAuth token into the bot_token parameter, like this:

Figure 9.14 – Zabbix, Slack media type Edit page

22. Also, make sure Media type is enabled by scrolling all the way to the bottom.

23. On the Message templates tab, we already have five message types configured. We can edit these
to our liking if we would like to do so.

Figure 9.15 – Zabbix, media type Slack Edit page for message types

24. You can now click on Update to save the changes.

25. Now, let’s create a new user group for our media types by navigating to Users | User groups and
clicking the Create user group button in the top-right corner. Add the following user group:

Figure 9.16 – Zabbix, Create user group page for the External services group

26. Click on the Host permissions tab and then click on Select. Make sure that you select all the
groups and subgroups with at least Read permissions, like so:

Figure 9.17 – Zabbix, Create user group Host permissions for the External services group

IMPORTANT NOTE
When applying permissions to the user group, make sure that you only add the host groups
you want to receive notifications from. In my lab and even production environments, I add all
groups, but sometimes, we want to filter the notifications down. One way to do this is to use
different user groups and users so that you only receive notifications from host groups in
certain channels, although Actions are also a great way to do this. For a more in-depth look
into Zabbix user permissions and triggers, check out Chapter 2, Getting Things Ready with
Zabbix User Management, and Chapter 4, Working with Triggers and Alerts, respectively.

27. Now, click on the blue Add button and finish creating this user group.

28. Next, navigate to Users | User to create a Slack user. Click on the blue Create user button in the
top-right corner.

29. Add the following user to your Zabbix server and make sure to give it a secure password:

Figure 9.18 – Zabbix Create user page for the Slack user

TIP

When creating users for things such as alerting or just API access, it is best practice to also
add the user to a user group that disables the frontend access. This is why we added the No
access to the frontend group here.

30. Now, click on the Media tab and click on the underlined Add text. We will add the following
media to this user:

Figure 9.19 – Zabbix Create user media page for the Slack user

31. All users will also need a user role. To add it, go to Permissions and add the following:

Figure 9.20 – Zabbix Create user media page for the Slack user, Permissions

IMPORTANT NOTE
For convenience, we are adding the user in the Super admin user role in the example. This
overrides the read-only permissions we assigned to the External Services user group. For

security reasons, you might want to limit the permissions by choosing a User or Admin role
for your user, which will adhere to the host group permissions we assigned earlier.

32. Click on the blue Add button at the bottom of the window and then on the blue Add button at the
bottom of the page.

33. We will also need to add a macro to Administration | Macros. Let’s add the following macro,
which contains your Zabbix URL:

Figure 9.21 – Zabbix Administration | Macros page with Zabbix URL

34. Click on the blue Update button.

35. Last but not least, go to Alerts | Actions, and on the Trigger Actions page, click on the blue
Create action button.

36. Use Notify external services for the name of the action. We won’t set up any

conditions for this example, but it’s recommended to do so in production environments. If you do
not set any conditions, all problems will be matched on this action.

37. Go to Operations and add the following operations:

Figure 9.22 – Zabbix, Create action operations page for Notify external services

TIP
We could also use Notify all involved here to send a message to all the users involved in the
Operations steps.

38. Now, click on the blue Add button. With that, you’re done. You can now view any new problems
(once they are generated by Zabbix) in your Slack channel:

Figure 9.23 – Slack notification sent from our Zabbix server

How it works…

Working with media types might be something completely new to you, or
you might have done it in the past. Regardless, starting from Zabbix 5, the
process has changed a bit. In the days of Zabbix before Zabbix 5, we had to
find the right media types online or make them ourselves.

Now, with Zabbix 7, we get a lot of preconfigured media types that are ready
to be used. We just need to do the necessary setup and fill in the right
information, just like we just did for Slack. We are then ready to send our
problem-related information from Zabbix 7 to Slack every time a problem is
created.

In this recipe, we told our Zabbix server to only send problem-related
information with a severity of warning or higher to Slack, as shown in the
following screenshot:

Figure 9.24 – Zabbix Media page for the Slack user

We can fully customize these severities, but we can also fully customize what
severities we send to our Slack setup.

What we configured in this recipe is called a Zabbix webhook. A problem
gets created in Zabbix and this problem matches our configured criteria, such

as its severity. Our action matches the problem, and the media type will then
be executed by the Action operations and sent to the configured links:

Figure 9.25 – Zabbix Slack integration diagram

Zabbix sends the problem to the Slack API, and then the API processes the
problem. Then, the app we configured in Slack posts the problem to our
channel.

Now that we’ve completed this recipe, we can view problems in Slack and
keep an eye on our Zabbix alerts from there.

See also

If you want to do more with this integration, check out the Slack API
documentation. There’s a lot we can do with this API, and we can build a
number of awesome apps/bots for our channels: https://api.slack.com/.

Setting up Microsoft Teams alerting with
Zabbix
The previous edition of this book was written during the COVID-19
pandemic. At that time, a lot of IT companies had been requested to make
their employees work from home. Due to this, we noticed a rise in the use of
Microsoft Teams and similar applications. Suddenly, a lot of companies
started using Microsoft Teams and others to make working from home and
collaboration easier. Even after the pandemic ended, this is still the case,
which is why we added this recipe.

Let’s learn how we can make working with Microsoft Teams even better by
integrating our Zabbix alerting into it.

Getting ready

We will need our Zabbix server to be able to create some problems for us.
For this, you can use lar-book-rocky from our previous chapters or any
Zabbix server that you prefer.

We will also need general Microsoft Teams knowledge and, of course,
Microsoft Teams itself set up and ready to go.

How to do it…
1. Let’s start by opening our Microsoft Teams application on either Windows, macOS, or Linux and

creating a new channel. Go to Teams and click on the three dots (…) next to your team name, as
shown in the following screenshot:

Figure 9.26 – MS Teams, Add channel option

2. In the Add channel window, fill in the following information to create our new channel:

Figure 9.27 – MS Teams, Add channel window

3. Now, click the purple Add button to add the channel. Upon doing this, we will be able to see our
new channel in the list.

4. Click on the three dots (…) next to your channel, as shown in the following screenshot:

Figure 9.28 – MS Teams, Connectors option

5. We want to select the Connectors option from this drop-down menu. This allows us to add our
Microsoft Teams connector to this channel.

6. We are using the search field here to find the official Zabbix Webhook connector:

Figure 9.29 – MS Teams, Add connectors window

7. Click on the Configure button next to the Zabbix Webhook connector to add this connector to
our channel. This will open a pop-up window in which you need to copy the webhook URL.

Figure 9.30 – MS Teams – Webhook URL

8. Now, click the Save button. Upon doing this, you can close the pop-up window.

9. Go to the Zabbix frontend and navigate to Alerts | Media types. Click on the MS Teams media
type here.

10. Scroll down until you see teams_endpoint. Paste the URL you copied previously here, as shown
in the following screenshot:

Figure 9.31 – Zabbix Alerts | Media types, edit MS Teams page

11. Make sure to scroll down and enable the media type before saving.

12. Now, click the blue Update button at the bottom of the page.

13. If you didn’t follow the previous recipe, then create a new user group for our media types by
navigating to Users | User groups and clicking the Create user group button in the top-right
corner. Add the following user group:

Figure 9.32 – Zabbix, Create user group page, the External services group

14. Click on the Host permissions tab and click on Select. Make sure that you select all the groups
and subgroups with Read permissions. The Permissions tab will look like this:

Figure 9.33 – Zabbix, Create user group permissions page, the External services group

15. Now, click on the blue Add button and finish creating this user group.

16. Navigate to Users | Users and click on the blue Create user button in the top-right corner. Add
the following user:

Figure 9.34 – Zabbix Users | Users, Create new user page, MS Teams

TIP
When creating users for things such as alerting or just API access, it is best practice to also
add the user to a user group that disables the frontend access. This is why we added the No
access to the frontend group here.

17. Next, go to the Media tab of the Create user page. Click the underlined Add text here to create
the following media:

Figure 9.35 – Zabbix Users | Users, Create new user media page, MS Teams

18. All users will also need a User role. To add it, go to Permissions and add the following:

Figure 9.36 – Zabbix – Create user media page, MS Teams user, Permissions

IMPORTANT NOTE
For convenience, we are adding the user in the Super admin user role in the example. This
overrides the read-only permissions we assigned to the External services user group. To
limit the permissions, choose a User or Admin role for your user, which will adhere to the
host group permissions we assigned earlier.

19. Once you’ve filled in this information, click the blue Add button at the bottom of the window and
then the blue Add button at the bottom of the page.

20. If you didn’t follow the previous recipe, then you will also need to add a macro to Administration
| Macros and add the following macro. This macro will contain your Zabbix URL:

Figure 9.37 – Zabbix Administration | Macros page, Zabbix URL for use with MS Teams

21. Click on the blue Update button. You will also need to go to Alerts | Actions if you didn’t follow
the previous recipe and, on the Trigger Actions page, click on the blue Create action button.

22. Use Notify external services for the name of the action. We won’t set up any

conditions for this example, but it’s recommended to do so in production environments. If you do
not set any conditions, all problems will be matched on this action.

23. Go to Operations and add the following operations:

Figure 9.38 – Zabbix, Create action Operations page, Notify external services for use with
MS Teams

24. Now, click on the blue Add button and you’ll be done. You can now view new problems as they
occur in your MS Teams channel:

Figure 9.39 – Zabbix problem in an MS Teams channel

How it works…

Microsoft Teams works in about the same way as our Slack setup. A problem
is created in the Zabbix server and, if that problem matches our configured
conditions in Zabbix, we send that problem to our Microsoft Teams
connector.

For instance, we configured Zabbix so that it only sends problems with a
severity of warning or higher to Microsoft Teams, as shown here:

Figure 9.40 – Zabbix Media page for MS Teams users

Our Microsoft Teams connector catches our problem and, since this
connector is configured directly on our channel, it posts a notification to the
channel:

Figure 9.41 – Zabbix Microsoft Teams integration diagram

Now, we can see our Teams notifications in our channel and keep up to date
with all our Zabbix issues directly via Microsoft Teams.

See also

For more information about the Zabbix webhook connector, check out this
page: https://appsource.microsoft.com/en-us/product/office/WA200001837?
tab=Overview.

Using Telegram bots with Zabbix
If you love automation in chat applications, you might have heard of or used
Telegram Messenger. Telegram has an extensive API and amazing bot
features.

In this recipe, we are going to use a Telegram bot to create a Telegram group
for Zabbix alerts. Let’s get started.

Getting ready

Make sure you have your Zabbix server ready. You can use lar-book-rocky

or any Zabbix server capable of sending some alerts.

It would be useful if you have some knowledge of Telegram, but I’ll be
describing how to set it up step by step, even for those of you who have never
used Telegram bots. Just make sure that you have the Telegram app on your
computer and that your account is set up.

How to do it…
1. First, let’s create a new channel in Telegram. Click on the create icon next to the search box and

select New Group:

Figure 9.42 – Telegram New Group button

2. Add another user – someone in your team who needs to get notifications as well. Fill in a group
name and add a picture if you want:

Figure 9.43 – Telegram New Group page

3. Now, click on the Create button in the top-right corner. This will take you to the New Group
page.

4. Working with Telegram bots is made easy with the @BotFather user on Telegram. We can start

creating our bot by searching for botfather and clicking the specified contact:

Figure 9.44 – Telegram, BotFather user

5. Let’s start by issuing the /start command in the chat. This will provide you with a list of

commands you can use:

Figure 9.45 – Telegram, BotFather user help list

6. Now, let’s immediately create a new bot by typing /newbot into the BotFather chat. Press Enter

to send your message. This will give us the following result:

Figure 9.46 – Telegram, BotFather /newbot command

7. Type in the new name of the bot; we will call it zabbix-notfication-bot. Press Enter to

send your name:

Figure 9.47 – Telegram, BotFather bot username

8. You will then be asked what username you want to give the bot. I will use lar_

zbx_notfication_bot:

Figure 9.48 – Telegram, BotFather bot token

IMPORTANT NOTE
Your bot username must be unique, so you can’t use lar_zbx_ notification_bot here.

Pick a unique bot name that suits you and then use that name throughout this recipe.

9. Make sure that you save the HTTP API key somewhere safe.

10. Let’s go back to our Zabbix notifications group and add our bot. Click on the group in your list of
chats and click on the group’s name.

11. Now, click on Add to add the bot, as follows:

Figure 9.49 – Telegram, Add user to group button

12. Next, you will need to search for your bot using its username, as shown in the following
screenshot:

Figure 9.50 – Telegram, Add user to group page

13. Click on the bot and click on the Add button. With that, your bot has been added to the channel.

14. Let’s navigate to the Zabbix frontend and go to Alerts | Media types. Click on the media type
titled Telegram.

15. Here, you must add the HTTP API key you generated earlier to the Token field of our media
type:

Figure 9.51 – Zabbix Alerts | Media types, Edit Telegram Media type page

16. Also, scroll down and make sure this media type is enabled.

17. Click on the blue Update button at the bottom of the page to finish editing the Telegram media
type.

18. Now, let’s go back to Telegram and add another bot to our group. Go to our new group and click
on the group’s name. Click on Add to add the IDBot user:

Figure 9.52 – The Add user page for a Telegram group

19. Click on the user and click on Add. Then, navigate back to the Zabbix frontend.

20. If you haven’t followed any of the preceding recipes, create a new user group for our media types
by navigating to Users | User groups and clicking the Create user group button in the top-right
corner. Add the following user group:

Figure 9.53 – Zabbix Create user group page and the External services group for use with
Telegram

21. Click on the Host permissions tab and click on Select. Make sure that you select all the groups
and subgroups with Read permissions, as follows:

Figure 9.54 – Zabbix Create user group Permissions page, External services for use with
Telegram

22. Now, click on the blue Add button and finish creating this user group.

23. At this point, you must create a new user in Zabbix. However, to create this user, you are going to
need our new group ID. Go back to Telegram and issue /getgroupid@myidbot in the group

chat. You will receive a value that you will need to copy:

Figure 9.55 – Telegram user group ID

24. Let’s navigate to Users | Users and click the blue Create user button. Add the following user:

Figure 9.56 – Zabbix Create user page, Telegram user

TIP
When creating users for things such as alerting or just API access, it is best practice to also
add the user to a user group that disables the frontend access. This is why we added the No
access to the frontend group here.

25. Now, select the Media tab and click on the underlined Add text. Add the following media:

Figure 9.57 – Zabbix Create user media page, Telegram user

26. All users will also need a User role. To add it, go to Permissions and add the following:

Figure 9.58 – Zabbix Create user media page, Telegram user, Permissions

IMPORTANT NOTE
For convenience, we are adding the user in the Super admin user role in the example. This
overrides the read-only permissions we assigned to the External services user group. To
limit the permissions, choose a User or Admin role for your user, which will adhere to the
host group permissions we assigned earlier.

27. Make sure that you add the group ID to the Send to field with the – text and click on the blue Add

button.

28. If you haven’t followed the previous recipes, you will also need to go to Alerts | Actions. Then,
on the Trigger Actions page, click on the blue Create action button.

29. Use Notify external services for the name of the action. We won’t set up any

conditions for this example, but it’s recommended to do so in production environments. If you do
not set any conditions, all problems will be matched on this action.

30. Go to Operations and add the following operations:

Figure 9.59 – Zabbix – Create action operations page, Notify external services for use with
Telegram

31. Now, click on the blue Add button. With that, you’re done. You can now view new problems in
your Telegram group:

Figure 9.60 – Zabbix notifications in Telegram chat

How it works…

Slack apps, Microsoft connectors, and Telegram bots all work kind of the
same in the end. There’s just another backend (API) provided by the
respective companies, but the Zabbix webhook remains.

Now that we’ve added our Zabbix Telegram integration, we are receiving
notifications in our Telegram group via the Zabbix webhook:

Figure 9.61 – Zabbix Users | Users, Edit user media page

However, we will only receive these notifications if they match our
configured settings. For instance, we’ve added our media type so that it only
sends problems with a severity of warning or higher to our Telegram bot:

Figure 9.62 – Zabbix Telegram integration diagram

Our Zabbix server is now sending our problems that match the Action
conditions to our Telegram bot. The bot catches these problems successfully.
Because our bot is in our Telegram group, the problems are posted in our
Telegram group.

There’s more…

There’s a very cool Zabbix community group on Telegram. Now that you
have Telegram, do not forget to join using the following invitation link:
https://t.me/ZabbixTech.

See also

Make sure that you check out all the awesome features Telegram bots have to
offer. There’s a lot of information available directly from Telegram, and you
can build amazing integrations by using them: https://core.telegram.org/bots.

Integrating Atlassian Opsgenie with Zabbix
Atlassian Opsgenie is so much more than just another integration service for
receiving notifications. Opsgenie offers us a call system, an SMS system, iOS
and Android apps, two-way acknowledgments, and even an on-call schedule.

I think Opsgenie (and PagerDuty) are the best tools for replacing old-school
call and SMS systems and fully integrating them with Zabbix. So, let’s get
started with Opsgenie and see how we can get this amazing tool set up.

Getting ready

Ensure that your Zabbix server is ready. I’ll be using the lar-book-rocky

server, but any Zabbix server ready to send problems should work.

You are also going to need an Atlassian Opsgenie account with Opsgenie
ready to go. This integration is slightly different from the previous examples,
as we’ll also be utilizing some scripts.

I won’t show you how to create accounts, but we’ll start this recipe with
Opsgenie ready to go.

How to do it…
1. Let’s start by logging in to our Atlassian Opsgenie setup and going to Settings on the home page.

From the left sidebar, click on Notifications.

2. Make sure that you add your email and phone number here by using the + Add email and + Add
phone number buttons. We need these in order to receive notifications:

Figure 9.63 – Opsgenie profile, Contact methods

3. Your settings will be automatically saved once you’ve added them, which means we can navigate
away from Settings to Teams using the top bar.

4. From the Teams tab, click on the blue Add team button in the top-right corner. Then, add the
following information:

Figure 9.64 – Opsgenie, Add team window

5. I’ve set up our Consultancy team with two users that are part of this team. Click on the blue

Add button at the bottom of the window to add the new team.

6. This will take you to the new Consultancy team page. Click on Integrations and click on the blue
Add integration button in the top-right corner.

7. When we use the search field to search for the Zabbix integration, we can see it immediately, as
shown in the following screenshot:

Figure 9.65 – Opsgenie, Add integration page

8. Click on the Zabbix integration. This will take you to the next page, where a Name and API Key
value will be generated:

Figure 9.66 – Opsgenie, Add Zabbix integration page

9. Copy the API Key information and scroll to the bottom of the page. Here, click on the blue Save
integration button.

10. Now, navigate to your Zabbix server CLI and execute the following code.

For RHEL-based systems, use the following:
wget https://github.com/opsgenie/oec-

scripts/releases/download/Zabbix-1.1.6_oec-1.1.3/opsgenie-

zabbix-1.1.6.x86_64.rpm

For Ubuntu systems, use the following:
wget https://github.com/opsgenie/oec-

scripts/releases/download/Zabbix-1.1.6_oec-1.1.3/opsgenie-

zabbix_1.1.6_amd64.deb

11. We can now install the downloaded Zabbix Opsgenie plugin by issuing the following
command(s):

For RHEL-based systems, use the following:
rpm -i opsgenie-zabbix-1.1.6.x86_64.rpm

For Ubuntu systems, use the following:
dpkg -i opsgenie-zabbix_1.1.6_amd64.deb

12. Once you’ve installed the plugin, go to the Zabbix frontend. If you haven’t followed any of the
previous recipes, create a new user group for our media types by navigating to Users | User
groups and clicking the Create user group button in the top-right corner. Add the following user
group:

Figure 9.67 – Zabbix Create user group page, the External services group for use with
Opsgenie

13. Click on the Permissions tab and click on Select. Make sure that you select all the groups and
subgroups with Read permissions, as follows:

Figure 9.68 – Zabbix Create user group permissions page, the External services group for
use with Opsgenie

14. Now, click on the blue Add button and finish creating this user group.

15. Let’s navigate to Users | Users and click the blue Create user button. Add the following user:

Figure 9.69 – Zabbix Create user page, Opsgenie user

TIP
When creating users for things such as alerting or just API access, it is best practice to also
add the user to a user group that disables the frontend access. This is why we added the No
access to the frontend group here.

16. All users will also need a User role. To add it, go to Permissions and add the following:

Figure 9.70 – Zabbix Create user media page, Opsgenie user, Permissions

IMPORTANT NOTE
For convenience, we are adding the user in the Super admin user role in the example. This
overrides the read-only permissions we assigned to the External services user group. To
limit the permissions, choose a User or Admin role for your user, which will adhere to the
host group permissions we assigned earlier.

17. For use in our action, we need to set up a script; to do so, navigate to Alerts | Scripts and click on
Create script in the top-right corner.

18. We’ll name the script Opsgenie connector. Set Scope to Action operation, Type to Script,

and Execute on to Zabbix server.

19. Paste the contents of the /home/opsgenie/oec/opsgenie-

zabbix/actionCommand.txt file on the CLI into Commands. It should look like the

following screenshot:

Figure 9.71 – Zabbix Opsgenie connector script

20. Don’t forget to press the Add button at the bottom of the page to save this new script.

21. Next, navigate to Alerts | Actions. On the Trigger actions page, click on the blue Create action
button in the top-right corner.

22. In the Name field, type Opsgenie action and add the following items to Conditions:

Figure 9.72 – Zabbix Create new action page, Opsgenie action

23. Now, click on the Operations tab.

24. Click the underlined Add text option next to Operations to add your first operation. For the
Operation dropdown, select Opsgenie connector.

Figure 9.73 – Zabbix Create action operations window, Opsgenie connector

25. Repeat step 24 for Recovery operations and Update operations. It should look like this:

Figure 9.74 – Zabbix Create action operations page, Opsgenie action

26. Click on the blue Add button at the bottom of the page to finish setting up the action.

27. Now, you must configure the Opsgenie Zabbix integration. Edit the config file with the

following command:

vim /home/opsgenie/oec/conf/config.json

28. Make sure that you edit the apiKey, command_url, user, and password lines, as shown in

the following screenshot:

Figure 9.75 – Opsgenie config.json file

IMPORTANT NOTE
You will need to edit baseUrl if you are not located in the United States. I am in Europe, so I

changed it to https://api.eu.opsgenie.com.

29. That’s it! You can now see your alerts coming in and acknowledge them from Opsgenie:

Figure 9.76 – Opsgenie alert from Zabbix

How it works…

When an alert is created in Zabbix, it is sent to Opsgenie via the Zabbix
integration. This integration utilizes the Opsgenie API to catch our Zabbix
information and send back a reply if required. This way, we have two-way
communication between the two applications:

Figure 9.77 – Opsgenie setup diagram

Opsgenie is an amazing tool that can take several tasks away from your
Zabbix server. I’ve used it in the past to migrate away from another
monitoring tool to Zabbix. Opsgenie makes it easy to receive alerts from our
products and centralize notifications:

Figure 9.78 – Opsgenie setup example, inspired by Wadie

Another great feature of Atlassian Opsgenie is the integration it offers with
other Atlassian products. We can build a setup like the one shown in the
preceding diagram to integrate all the products used in our company.

There’s more…

Opsgenie doesn’t just allow us to send notifications. It also enables us to
define entire on-call schedules within the product, making it super easy for us
to create schedules within the program, where Zabbix might be a bit too
static. Check out the following link for more information about how to do
that:

https://support.atlassian.com/opsgenie/docs/manage-on-call-schedules-and-
rotations/

Furthermore, there are also competitive products that integrate just as well as
Opsgenie. PagerDuty is one of these, with native Zabbix integration. It has a

similar feature set and it all boils down to preference, other software we
might already have, and… price!

10

Extending Zabbix Functionality with
Custom Scripts and the Zabbix API
Zabbix offers a lot of functionality out of the box. But where Zabbix really
shines is customization, not only through the default frontend but especially
with scripts and the Zabbix API.

In this chapter, I will go over the basics of using the Zabbix API. We will
then see how a Python script can utilize the API to build something cool,
such as a jumphost. After that, we’ll use some scripts written by Brian van
Baekel to enable and disable hosts with limited permissions from a Zabbix
map.

After following these recipes, you’ll be more than ready to tackle the Zabbix
API and you’ll know how to use scripts to extend Zabbix functionality. This
chapter will expand your possibilities with Zabbix to almost endless
proportions and you’ll be ready to become a professional Zabbix user
yourself.

In this chapter, we will cover the following recipes:

Setting up and managing API tokens

Using the Zabbix API for extending functionality

Building a jumphost using the Zabbix API and Python

Enabling and disabling a host from Zabbix maps

Technical requirements
We are going to need a Zabbix server as well as some new Linux hosts. We
will also need to have general knowledge of scripting and programming. We
are going to use Python to extend some functionality of Zabbix, which we’ll
provide scripts for.

The code required for the chapter can be found at the following link:

https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/tree/main/chapter10

Make sure to keep all of this ready and you’ll be sure to nail these recipes.

Setting up and managing API tokens
Let’s start off our chapter by doing some configuration for working with
APIs in Zabbix. If you’ve worked with the Zabbix API before, you might
know it can be quite a hassle to use API calls to authenticate and get an API
token for using it in your scripts. This is no longer the case, as we can
generate API tokens using the Zabbix frontend.

Getting ready

For this recipe, all we’ll need is the Zabbix setup running. We’ll be using the
frontend to generate the API token. From here, we can use the API token in
any of our integrations further on in this chapter.

How to do it…

1. First, let’s log in to the Zabbix frontend as a Super admin user.

2. Navigate to Users | User groups and click the blue Create user group button in the top-right
corner.

3. Here, we’ll create a new user group. Fill in the Group name field as API Users.

4. Switch to the Host Permissions tab and give your API user group permission to every host by
clicking the Select button and selecting every host group.

Figure 10.1 – Zabbix Users | User groups, creating user group host permissions, API
Users

5. Move on to the Template permissions tab and do the same thing here.

Figure 10.2 – Zabbix Users | User groups, creating user group template permissions, API
Users

6. Click the blue Select button at the bottom of this popup and click on Read-write followed by the
small dotted Add button. It should now look like this:

Figure 10.3 – Zabbix Users | User groups, user group permissions page, API Users

TIP

Instead of creating the API user as Super admin, we can also limit the permissions by limiting
the host and template group access on the API Users user group. This could be preferred in
production environments, as you might want to limit API access. Use whatever fits your
preference.

7. Click the blue Add button at the bottom of the page to add this new user group.

8. Now, let’s go to Users | Users and click the blue Create user button in the top-right corner.

9. Here we will create a new user called the API user. Create the user as follows:

Figure 10.4 – Zabbix Users | Users, user creation page, API user

10. Before adding the user, switch to the Permissions tab and add Super admin role.

Figure 10.5 – Zabbix Users | Users, user permissions page, API user

11. We can now add the user by clicking the blue Add button at the bottom of the page.

12. Next up, we need to create some API tokens for this user. Navigate to Users | API tokens.

13. Let’s click the blue Create API token button in the top-right corner and fill in the User field as
API and the Name field as API book key. Set Expires at to somewhere far in the future or

disable expiration entirely – whatever you think might be secure. It will look like this:

Figure 10.6 – Administration | General | API token, API token creation page

14. Click the blue Add button at the bottom of the page to generate the new API token. This will bring
us to the next page:

Figure 10.7 – Zabbix API user API token generated page

15. Make sure to save the Auth token value to a secure location, such as a password vault. It will be
important later in the labs.

16. We can click the Close button at the bottom of this page now. This will bring us back to the API
tokens page where we can manage all of our created API tokens.

Figure 10.8 – Zabbix API user API tokens page

How it works…

Because Zabbix now comes with built-in API token management, it has
become a lot easier to work with the Zabbix API. Using a dedicated API user,
we can manage all of our tokens in a single location or we can set up private
API tokens under our own user account.

In this case, we created a new API Users group. This is important because
our API tokens are still part of a user account meaning they will respect that
user its permissions. If we create an API user under any other user type than
Super admin, we can restrict our API access using the API Users group.

Make sure that you apply the role to the user and the permissions to the user
group as you see fit in your environment. Also, make sure to set a reasonable
expiration date for your API tokens so we can regenerate them from time to
time.

There’s not much else to say about setting up and managing your API tokens,
but let’s see how we can apply what we have learned in this recipe in the next

recipes.

Using the Zabbix API for extending
functionality
An API is your gateway to getting started with extending the functionality of
any piece of software. Luckily, Zabbix offers a solid working API that we
can use to extend our functionality with ease. Zabbix has also released
zabbix-utils for Python, making building scripts a lot easier for everyone.
It’s an amazing addition, but as it’s not allowed in every environment and we
want to keep the dependencies to a minimum, we won’t utilize it in our test
here. Nevertheless, check out the library here:

https://github.com/zabbix/python-zabbix-utils

In this recipe, we’ll explore the use of the Zabbix API to do some tasks,
creating a good basis to start working with the Zabbix API in your actual
production environments.

Getting ready

We are going to need a Zabbix server with some hosts. I’ll be using our lar-
book-centos host from the previous chapters, but feel free to use any Zabbix
server. I will also use another Linux host to do the API calls from, but this
can be done from any Linux host.

We will need to install Python 3 on the Linux host, though, as we’ll be using
this to create our API calls.

Also, make sure you have an API user with an API token. It is recommended
to use the one we created in the first recipe.

How to do it…
1. First, on our Linux CLI, let’s move to a new directory:

cd /home/zabbix/

2. Install Python 3 on the host with the following command.

For RHEL-based systems, use this command:
dnf install python3

For Ubuntu systems, use this command:
apt install python3

3. Python pip should’ve been installed with this package by default as well. If not, issue the

following command.

For RHEL-based systems, use this command:
dnf install python3-pip

For Ubuntu systems, use this command:
apt install python3-pip

IMPORTANT NOTE
It is possible to have an older version of Python(3) shipped with your Linux distribution. If you
run into any errors with the scripts later in the chapter, make sure to check for any error
messages indicating that your Python version might not support certain functionality.

4. Now. let’s install our dependencies using Python pip. We’ll need these dependencies as they’ll be

used in the script:

pip3 install requests

5. Download the start of our script from the Packt GitHub repo of this book by issuing the following
command:

wget https://raw.githubusercontent.com/PacktPublishing/Zabbix-

7-IT-Infrastructure-Monitoring-

Cookbook/main/chapter10/api_test.py

6. If you can’t use wget from your host, you can download the script at the following URL:

https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/tree/main/chapter10/api_test.py.

7. Next up, we are going to edit our newly downloaded script by executing the following command:

vim api_test.py

8. First, let’s change the IP address, 10.16.16.152, in the url variable to the IP or DNS of your

Zabbix server. Then, make sure to edit the api_token variable by replacing

PUT_YOUR_TOKEN_HERE with the API token we generated in the first recipe of this chapter:

url = "http://10.16.16.152/api_jsonrpc.php"

api_token = "c01ce8726bfdbce02664ec8750f99da

1bbbcb3cb295d924932e2f2808846273"

9. We will also add some lines of code to our script to retrieve our host ID, hostname, and the
interfaces of all our Zabbix hosts. Make sure to add your new code between the comments shown
in the following screenshot:

Figure 10.9 – Comments showing where to put code

10. Now, add the following lines of code:

#Function to retrieve the hosts and interfaces

def get_hosts(api_token, url):

payload = {

"jsonrpc": "2.0",

"method": "host.get",

"params": {

"output": [

"hostid",

"host"

],

"selectInterfaces": [

"interfaceid",

"ip",

"main"

]

},

"id": 2,

"auth": api_token

}

resp = requests.post(url=url, json=payload)

out = resp.json()

return out['result']

11. Then, we’ll also add lines to write the requested information to a file so we can see what happens
after execution:

#Write the results to a file

def generate_host_file(hosts,host_file):

hostname = None

f = open(host_file, "w")

#Write the host entries retrieved from Zabbix

for host in hosts:

hostname = host['host']

for interface in host["interfaces"]:

if interface["main"] == "1":

f.write(hostname + " " + interface["ip"] +

"\n")

f.close()

return

12. You should be able to execute this now by executing the following:

python3 api_test.py

13. This should run but it won’t give you any output. If this doesn’t work, make sure to retrace your
steps.

14. Let’s check out the file to see what happened by executing the following:

cat /home/zabbix/results

15. The output of the preceding command should look something like this:

Figure 10.10 – The cat command with our results showing in the file

We’ve now written a short script in Python to use the Zabbix API.

How it works…

Coding with the Zabbix API can be done with Python, but it’s definitely not
our only option. We can use a wide variety of coding languages, including
Perl, Go, C#, and Java.

In our example, though, we’ve used Python, so let’s see what we do here. If
we look at the script, we have two main functions:

get_hosts

generate_host_file

First, we filled in our api_token and url variables, which are used to
authenticate against the Zabbix API. We then used these to call on the
get_hosts function to retrieve information from the Zabbix API:

Figure 10.11 – Python function Zabbix API payload

Looking at the code, we used a JSON payload to request information such as
host for the hostname, hostid for the host ID, and ip for the interface’s IP
address.

Now, if we look at our last function, generate_host_file, we can see that we
write the host with an interface IP to the /home/results file. This way, we
have a solid script for writing host information to a file.

If you’re not familiar with Python or coding in general, working with the
Zabbix API might be a big step to take. Let’s take a look at how the API
actually works:

Figure 10.12 – Python script Zabbix API functionality diagram

In step 1, we make an API call, using our target URL and API token as
specified in our variables for authentication. Next, in step 2, we receive the
data as requested in our Python function from Zabbix to further use in our
Python script.

Step 3 is our data processing step. We can do anything we want with the data
received from the Zabbix API, but in our case, we format the data and write it
to a file. That’s how we use the Zabbix API for extending functionality. This
is the step where our file gets filled with hostnames and IP information.

See also

If you are interested in learning more about the Zabbix API and its available
functionality, check out the Zabbix documentation at
https://www.zabbix.com/documentation/current/en/manual/api.

Building a jumphost using the Zabbix API
and Python
A lot of organizations have a jumphost (sometimes referred to as a bastion
host) to access servers, switches, and their other equipment from a host. A
jumphost generally has all the firewall rules needed to access everything
important. Now, if we keep our monitoring up to date, we should have every
single host in there as well.

My friend, ex-colleague, and fellow Zabbix geek, Yadvir Singh, had the
amazing idea to create a Python script to export all Zabbix hosts with their

IPs to the /etc/hosts file on another Linux host. Let’s see how we can build
a jumphost just like his.

Getting ready

We are going to need a new host for this recipe with Linux installed and
ready. We’ll call this host lar-book-jump. We will also need our Zabbix
server, for which I’ll use lar-book-centos.

Also, it is important to navigate to Yadvir’s GitHub account, drop him a
follow, and star his repository if you think this is a cool script:
https://github.com/cheatas/zabbix_scripts.

IMPORTANT NOTE
Setting up this script will override your /etc/hosts file every time the script is executed.

Only use this script when you understand what it’s doing, make sure you use an empty host
for this lab, and check the default /etc/hosts settings.

How to do it…
1. If you haven’t already created an API user with an API token, make sure to check out the first

recipe of this chapter first.

2. Install Python 3 on the host CLI with the following command.

For RHEL-based systems, use this command:
dnf install python3

For Ubuntu systems, use this command:
apt-get install python3

3. Python pip should’ve been installed with this package by default as well. If not, issue the

following command

For RHEL-based systems, use this command:
dnf install python3-pip

For Ubuntu systems, use this command:
apt-get install python3-pip

4. Now, let’s install our dependencies using Python pip. We’ll need these dependencies as they’ll be

used in the script:

pip3 install requests

5. First things first, log in to our new Linux host, lar-book-jump, and download Yadvir’s script

to your Linux host with the following command:

wget

https://raw.githubusercontent.com/cheatas/zabbix_scripts/main/host_pull_zabbix.py

6. If you can’t use wget from your host, you can download the script at the following URL:

https://github.com/cheatas/zabbix_scripts/blob/main/host_pull_zabbix.py.

As a backup, we also provide this script in the Packt repository. You may
download this version at https://github.com/PacktPublishing/Zabbix-7-IT-
Infrastructure-Monitoring-
Cookbook/tree/main/chapter10/host_pull_zabbix.py.

7. Now, let’s edit the script by executing the following command:

vim host_pull_zabbix.py

8. First, let’s edit the zabbix_url variable by replacing https://myzabbix.com/api_jsonrpc.php

with the IP address or DNS name of our Zabbix frontend:

zabbix_url = "http://10.16.16.152/api_jsonrpc.php"

9. We do not need to fill out our username and password as that was only required on older Zabbix
versions. Instead, we will need an API token, as generated in the first recipe in this chapter. Fill in
the api_token variable in the script as follows:

api_token = "c01ce8726bfdbce02664ec8750f99da1bbbcb3cb295

d924932e2f2808846273"

You can find this variable at the bottom of the file.

10. We also need to uncomment the following lines:

zabbix_hosts = get_hosts(api_token,zabbix_url)

generate_host_file(zabbix_hosts,"/etc/hosts")

11. The end of the script should now look like this:

Figure 10.13 – End of the script after receiving the API token and with commenting
removed

12. Last but not least, make sure to comment and uncomment the right lines for your Linux distro. It
will look like the following figures.

For Ubuntu, it will look like this:

Figure 10.14 – Print to file for Ubuntu systems

For RHEL-based systems, it will look like this:

Figure 10.15 – Print to file for RHEL-based systems

13. That’s all there is to do, so we can now execute the script again and start using it. Let’s execute the
script as follows:

python3 host_pull_zabbix.py

14. Test whether it worked by looking at the host file with the following command:

cat /etc/hosts

This should give us an output like that shown in the following screenshot:

Figure 10.16 – /etc/hosts filled with our script information

15. We can now try to SSH directly to the name of a host, instead of having to use the IP, by issuing
the following command:

ssh lar-book-agent_passive

16. We can also use it to find hosts from the file with the following command:

cat /etc/hosts | grep agent

17. Let’s do one more thing. We want this script to be as up to date as possible. So, let’s add a
cronjob. Issue the following command to add a cronjob:

crontab -e

18. Then add the following line, making sure to fill in the right script location for your setup:

*/15 * * * * $(which python3) /home/host_pull_zabbix.py >>

~/cron.log 2>&1

That’s it – we will now have an up-to-date /etc/hosts file all the time with
our new Python script and Zabbix.

How it works…

If your organization uses Zabbix as the main monitoring system, you now
have the skills and knowledge to create an organized, reliably up-to-date, and
easy-to-use jumphost.

Jumphosts are super useful when set up correctly, but it’s important to keep
them clean so that they are easy to update.

By using this script, we only add Python 3 and a simple script as a
requirement to the server, but the end result is a jumphost that knows about
all hosts in the environment.

If you’ve followed along with the previous Using the Zabbix API for
extending functionality recipe, then you might notice that it works in roughly
the same way. We can see in the following diagram how we utilize the script:

Figure 10.17 – Jumphost using script functionality diagram

After editing, our script will start at step 1 of the diagram to request data with
an API call, where we use the API token to authenticate. We receive this data
in step 2. In the script, we add our default values and then write all the
hostnames and IP addresses to the /etc/hosts file.

Now, because a Linux host uses the /etc/hosts file for hostname-to-IP
translation, we can use the real names of servers in Zabbix to SSH to the
hosts. This makes it easier for us to use the jumphost, as we can use the same
name as the hostname we know from the Zabbix frontend.

See also

Yadvir will keep updating the script after writing this recipe (we’ve been
using version 1.0 so far). Make sure to follow his GitHub account and star his
repository to get the updates. Also, if you have some cool ideas for additions,
you can always open a pull request.

The Zabbix community is all about sharing cool ideas and useful scripts like
this one. As Yadvir has shown, we can get very valuable stuff from each
other. Be like Yadvir – use the Zabbix community GitHub and support other
Zabbix users by adding to their GitHub repositories. You can find the Zabbix
community GitHub using the link here:

https://github.com/zabbix/community-templates

Enabling and disabling a host from Zabbix
maps
We’ve noticed that it is not possible to enable and disable hosts as a Zabbix
user. For some companies, this may be a requirement, so we’ve created an
extension for it. In this recipe, I will show you just how to work with this
Python script and execute it from a map.

Getting ready

For this recipe, all we are going to need is our Zabbix server, some
knowledge of Python, and some knowledge of the Zabbix API.

How to do it…
1. First, let’s log in to our Zabbix server CLI and create a new directory:

mkdir /etc/zabbix/frontendscripts

2. Change to the new directory:

cd /etc/zabbix/frontendscripts

3. Now, download the public script from the Opensource ICT Solutions GitHub:

wget https://github.com/OpensourceICTSolutions/zabbix-toggle-

hosts-from-frontend/archive/v2.0.tar.gz

4. If you can’t use wget from your host, you can check out the script here:

https://github.com/OpensourceICTSolutions/zabbix-toggle-hosts-from-frontend/releases/tag/v2.0.

5. Unzip the file with the following command:

tar -xvzf v2.0.tar.gz

6. Remove the tar file using the following command:

rm v2.0.tar.gz

7. Move the script over from the newly created folder with the following command:

mv zabbix-toggle-hosts-from-frontend-2.0/enable_disable-host.py

./

8. We are going to need Python to use this script, so let’s install it as follows.

For RHEL-based systems, use this command:
dnf install python3 python3-pip

For Ubuntu systems, use this command:
apt-get install python3 python3-pip

9. We will also need the requests module from pip. Install it as follows:

pip3 install requests

10. Now, let’s edit the script with the following command:

vim enable_disable-host.py

11. In this file, we will change the url and token variables. Change the url variable to match your

own Zabbix frontend IP or DNS name. Then, replace PUT_YOUR_TOKEN_HERE with your

Zabbix API token. I will fill in the following, but be sure to enter your own information:

url = 'http://10.16.16.152/api_jsonrpc.php?'

token = " c01ce8726bfdbce02664ec8750f99da1bbbcb3cb295d

924932e2f2808846273 "

12. Now, we can move on to our Zabbix frontend to add a frontend script. Navigate to Alerts |
Scripts, then click the blue Create script button at the top right.

13. Add the following script:

Figure 10.18 – Zabbix Alerts | Scripts, the Create script page, Enable

14. Click on the blue Add button and then, on the next page, click the blue Create script button in the
top-right corner again.

15. Now, add the second and final script as follows:

Figure 10.19 – Zabbix Alerts | Scripts, the Create script page, Disable

16. Now, navigate to Monitoring | Maps, and you should see a map called Local network here, as
it’s included with Zabbix by default. Click this map (or any other map with hosts in it).

17. Now, if you click on a host on the map, you will see a drop-down menu like this:

Figure 10.20 – Zabbix Monitoring | Maps, the Local network map drop-down menu

18. If we click on Disable here, we will get a pop-up message as follows:

Figure 10.21 – Zabbix script confirmation window

19. Click on the blue Execute button and this host will be disabled. Navigate to Monitoring | Hosts to
confirm whether this worked. You should see that the host is set to Disabled.

20. Back at Monitoring | Maps, you can enable the host again with the same drop-down menu. This
time, select Enable.

How it works…

The script we just used was built in Python utilizing the Zabbix API. With
this script, we can now enable and disable hosts from the Zabbix frontend as
a Zabbix user.

This works because the Monitoring | Maps option is available even to
Zabbix users. This script uses the API user for execution, though. Since our
Zabbix API user has more user permissions, it can execute the script that gets
host information from a Zabbix database and creates a maintenance period
using the information. As we can see in the following diagram, our script
follows roughly the same steps as the other Zabbix API utilities:

Figure 10.22 – Python script maintenance.py execution diagram

Because the Zabbix API is very flexible, we can pull data and write data to do
almost anything we could do from the frontend.

We can now use this cool function from anywhere in the Zabbix frontend
where we see a dotted line with the hostname, even from Monitoring |
Hosts.

There’s more…

In Zabbix 7, it is possible to provide input from the frontend onto your
scripts. If you’d like to test this, we can edit the script slightly:

1. Go to Alerts | Scripts and edit the Host/Enable and Host/Disable scripts.

2. In the Commands field, replace {HOST.HOST} with {MANUALINPUT} to make this script

accept dynamic input.

3. Then open up Advanced configuration and fill in the Input prompt, Default input string, and
Input validation rule fields. It should now look like the following figure:

Figure 10.23 – Manual script input

4. Now, when we execute the script, it will ask us for input. Fill in a hostname here and the host that
we wrote in the field will be enabled or disabled.

Figure 10.24 – Manual script input execution

As you can see, with this new script input method, it is now possible to make
the whole execution process a lot more flexible. We can execute scripts like
this in a non-static way, allowing us to provide user input data before
execution. Neat!

See also

Brian van Baekel created this script for a customer at Opensource ICT
Solutions and then open sourced it. Because Zabbix has a very cool
community that continues to extend the possibilities of Zabbix even further,
we too upload some of our scripts. Sharing is caring, so check out the other
open source scripts at https://github.com/OpensourceICTSolutions.

11

Maintaining Your Zabbix Setup
Like any good piece of software, Zabbix needs to be maintained in order to
keep working over the years. A lot of users have been running their setups
since the days of Zabbix 2.0. It’s perfectly viable to do this if you bring the
right knowledge of Zabbix to the equation.

In this chapter, we are going to see how to do some of the most important
parts of Zabbix maintenance to make sure you can keep your setup available
and running smoothly. We are going to cover creating maintenance periods,
how to make backups, how to upgrade Zabbix and various Zabbix
components, and how to do some performance maintenance.

We’ll cover these in the following recipes:

Setting Zabbix maintenance periods

Backing up your Zabbix setup

Upgrading the Zabbix backend from older PHP versions to PHP 8.2 or higher

Upgrading a Zabbix database from older MariaDB versions to MariaDB 10.11

Upgrading your Zabbix setup

Maintaining Zabbix performance over time

Technical requirements
We are going to need several important servers for these recipes. First of all,
we are going to need a running Zabbix 7 server for which to set up

maintenance periods and do performance tuning.

For the upgrade part, we will need one of the following servers:

A Rocky Linux 8 server running Zabbix server 6, a PHP version before 8.2, and a MariaDB
version before 11.4

An Ubuntu 22.04 server running Zabbix server 6 a PHP version before 8.3, and a MariaDB
version before 11.4

I will call the upgrade server lar-book-zbx6, which you can run with a
distribution of your choice.

If you do not have any prior experience with Zabbix, this chapter may prove
a good challenge, as we are going to go into the more advanced Zabbix
processes in depth.

Setting Zabbix maintenance periods
When we are working on our Zabbix server or on other hosts, it’s super
useful to set up maintenance periods in the Zabbix frontend. With
maintenance periods we can make sure that our Zabbix users don’t get alerts
going off because of our maintenance. One improvement you’ll find in
Zabbix 7 is the inclusion of near-instant maintenance periods. As we no
longer have to wait long for the config cache reload, Zabbix also altered the
timer process to instantly enable a new maintenance period.

Let’s see how we can schedule maintenance periods in this recipe.

Getting ready

All we are going to need in this recipe is our Zabbix server, for which I’ll use
lar-book-rocky. The server will need at least some hosts and host groups to
create maintenance periods for. Furthermore, we’ll need to know how to
navigate the Zabbix frontend.

How to do it…
1. Let’s get started with this recipe by logging in to our frontend and navigating to Data collection |

Maintenance.

2. We are going to click on the blue Create maintenance period button in the top-right corner.

3. This will show us a popup, where we can set up our maintenance period. Let’s start by defining
the maintenance period parameters. Fill in the following:

Figure 11.1 – Zabbix Data collection | Maintenance, create maintenance window, Patch
Tuesday

4. Now, at the Periods part, we’ll create a new maintenance period. We need to click on the
underlined Add text.

5. This will bring us to another pop-up window where we can set the maintenance period. We need
to fill in the following information:

Figure 11.2 – Zabbix Data collection | Maintenance, create maintenance period window,
Patch Tuesday

6. Now click the blue Add button to continue. You should now see that our maintenance period is
filled in:

Figure 11.3 – Zabbix Configuration | Maintenance, create maintenance period page, Patch
Tuesday

7. Now, next to the Host groups field, click on the Select button and select the Linux servers host
group. Our page should look like this:

Figure 11.4 – Zabbix Configuration | Maintenance, add hosts to maintenance page, Patch
Tuesday

8. You can still add a Description if you’d like.

9. Next, click on the blue Add button at the bottom of the page to finish creating the maintenance
period. This will bring us back to our Maintenance periods page, where we should see that our
maintenance window has been created.

How it works…

When configuring actions in Zabbix, we tell Zabbix to do a certain defined
operation when a trigger is fired. Maintenance periods (with data collection)
work by suppressing these Zabbix operations for the time period defined in
the maintenance period. We do this to make sure that no Zabbix users are
notified of any problems going on as maintenance is being done on a host. Of
course, it’s a good idea to only use this during the time that we are actually
working on the hosts in question. This only works if the Pause operations
for suppressed problems checkbox is ticked on the action, though.

In the case of this recipe, we’ve created a recurring maintenance period (with
data collection) for the entire year of 2023. Let’s say the organization we’re
working for has a lot of Linux hosts that need to be patched weekly. We set
up the maintenance period to recur weekly every Tuesday between 22:00 and
04:00.

Now keep in mind that after December 31, 2023, Zabbix will stop this
maintenance period as it won’t be active any longer. We have two time/date
values to bear in mind when setting up scheduled maintenance. The Active
since/Active till time/date value of the maintenance period and the Periods

time/date value of the maintenance period. This allows us to create more
flexible periods, along with recurring ones as we just did.

Also, note that this maintenance period is With data collection. We can also
create a maintenance period with the option of No data collection. When we
use the With data collection option, we will keep collecting data but won’t
send any alerts to Zabbix Users. If you want to stop collecting the data,
simply select the No data collection option. Keep in mind, no data collection
also means your triggers won’t fire anymore, nor will they resolve. The
nodata trigger function is also affected by maintenance and it won’t fire in
both situations.

Backing up your Zabbix setup
Before working on any Zabbix setup, it is vital to make a backup of
everything important. In this recipe, we will go through some of the most
important steps you should always take before doing maintenance on your
Zabbix setup.

Getting ready

We are going to need our Zabbix server, for which I’ll use lar-book-rocky.
Make sure to get the CLI to the server ready, as this whole recipe will use the
Linux CLI.

How to do it…

1. Let’s start by logging in to our Zabbix server via the Linux CLI and create some new directories
that we are going to use for our Zabbix backups. Preferably, this directory would be on another
partition:

mkdir /opt/zbx-backup/

mkdir /opt/zbx-backup/database/

mkdir /opt/zbx-backup/zbx-config/

mkdir /opt/zbx-backup/nginx/

mkdir /opt/zbx-backup/lib/

mkdir /opt/zbx-backup/shared/

mkdir /opt/zbx-backup/shared/zabbix/

mkdir /opt/zbx-backup/shared/doc/

2. It’s important to back up all of our Zabbix configuration data, which is located at
/etc/zabbix/. We can manually copy the data from our current folder to our new backup

folder by issuing the following command:

cp -r /etc/zabbix/ /opt/zbx-backup/zbx-config/

3. Now, let’s do the same for our nginx configuration:

cp -r /etc/nginx/ /opt/zbx-backup/nginx/

IMPORTANT NOTE
Please note that if you are using Apache, your web configuration location might be different.
Adjust your command accordingly. For Red Hat-based systems it’s usually /etc/httpd and

for Debian-based systems, /etc/apache2.

4. It’s also important to keep our Zabbix PHP files and binaries backed up. We can do that using the
following commands:

cp -r /usr/share/zabbix/ /opt/zbx-backup/shared/zabbix/

cp -r /usr/share/doc/zabbix-* /opt/zbx-backup/shared/doc/

5. Lastly, let’s make sure to also back up the Zabbix files in /usr/lib:

cp -r /usr/lib/zabbix/ /opt/zbx-backup/lib/

6. We could also create a cronjob to automatically compress and back up these files for us every day
at 00:00. Simply issue the following command:

crontab -e

7. And add the following information:

0 0 * * * tar -zcvf /opt/zbx-backup/zbx-config/zabbix.tar.gz

/etc/zabbix/ >/dev/null 2>&1

0 0 * * * tar -zcvf /opt/zbx-backup/web-config/zabbix-

web.tar.gz /etc/nginx/ >/dev/null 2>&1

0 0 * * * tar -zcvf /opt/zbx-

backup/shared/zabbix/zabbix_usr_share.tar.gz /usr/share/zabbix/

>/dev/null 2>&1

0 0 * * * tar -zcvf /opt/zbx-

backup/shared/doc/zabbix_usr_share_doc.tar.gz /usr/share/doc/

>/dev/null 2>&1

0 0 * * * tar -zcvf /opt/zbx-backup/lib /zabbix_usr_lib.tar.gz

/usr/lib/zabbix/ >/dev/null 2>&1

8. These are all of the most important files we need to back up from our Zabbix stack. Let’s move on
to our database. We could now additionally use a rotation tool such as logrotate to manage

our files.

9. Backing up our database is quite easy. We can simply use the built-in tools provided by MySQL
and PostgreSQL. Issue the following command for your respective database (make sure to fill in
the right username, database name, and password):

For MySQL databases:
mysqldump --add-drop-table --add-locks --extended-insert --

single-transaction --quick -u zabbixuser -p zabbixdb >

/opt/zbx-backup/database/backup_zabbixDB_<DATE>.sql

For PostgreSQL databases:
pg_dump zabbixdb > /opt/zbx-backup/database/backup_

zabbixDB_<DATE>.bak

10. Make sure to add the right location, as the database dump will be quite large if the database itself
is large. Preferably, dump to another disk/partition or even better, another machine. As such,
/opt/ might not be the best location.

11. We can also do this with a cronjob by issuing the following command:

crontab -e

12. Then for MySQL, add the following line where -u is the username, -p is the password, and the

database name is zabbix. This is the command for MySQL:

55 22 * * 0 mysqldump -u'zabbixuser' -p'password' zabbixdb >

/opt/zbx-backup/database/backup_zabbixDB.sql

13. If you want to back up a PostgreSQL database with a cronjob, we will need to create a file in our
user’s home directory:

vim ~/.pgpass

14. We add the following to this file, where zabbixuser is the username and zabbixdb is the

database name:

#hostname:port:database:username:password

localhost:5432:zabbixdb:zabbixuser:password

15. Then we can add a cronjob for PostgreSQL as follows:

55 22 * * 0 pg_dump --no-password -U zabbixuser zabbixdb >

/opt/zbx-backup/database/backup_zabbixDB_date.bak

16. We can also add a cronjob to only keep a certain number of days’ worth of backups. Issue the
following command:

crontab -e

17. Then add the following line, where +60 is the number of days you want to keep backups for:

55 22 * * 0 find /opt/zbx-backup/database/ -mtime +60 -type f -

delete

18. That concludes our demonstration of backing up our Zabbix components the easy way.

IMPORTANT NOTE
For MySQL databases, there are also tools such as ExtraBackup, and for Postgres we could
use PGBarman. It’s never a bad idea to look into tools such as these to create backups for
your system, but the built-in examples provided here can prove to be just as useful.

How it works…

A Zabbix setup consists of several components. We have the Zabbix
frontend, Zabbix server, and Zabbix database. These components in this setup
require different pieces of software to run on, as shown in the following
diagram:

Figure 11.5 – Zabbix key components setup diagram

Looking at the preceding diagram, we can see that our Zabbix frontend runs
on a web engine such as NGINX or Apache. We also need PHP to run our
Zabbix web pages. This means that we have to back up two components:

The web engine: NGINX, Apache, or another

PHP

The Zabbix server is the application designed by Zabbix, so we only need to
back up one thing here: the Zabbix server config files.

Then last, but definitely not least, we need to make a backup of our database.
The most common databases used are MySQL and PostgreSQL, so we only
need to do one thing for this: create a dump of the Zabbix database.

There’s more…

Backing up your Zabbix setup like this is one thing, but of course, it’s not
everything. Make sure you take the correct backups of your Linux system
using snapshots and other technologies.

When you follow standard backup implementations, you should be prepared
for any unforeseen circumstances with your Zabbix setup.

Upgrading the Zabbix backend from older
PHP versions to PHP 8.2 or higher
RHEL7, Ubuntu 20.04, and Debian 9 (Stretch) are no longer supported by
Zabbix, thus our upgrade recipe no longer includes any information about the
upgrade path from PHP versions before 7.2 to version 8.2 or higher. Newer
Linux versions already ship with PHP8.0 or higher, which means that when
we are upgrading a Zabbix setup from Zabbix version 6 to Zabbix 7, we can
upgrade immediately.

The PHP requirement for Zabbix 7 is different than it was for Zabbix 6,
meaning that if we are running PHP 7.2, we actually have a mandatory
upgrade to do before we can run the latest Zabbix 7 release. I also like to
work in a future-proofing kind of way, so in this recipe, we will go over how
to upgrade PHP 7.2 to 8.2 which is the latest supported version on RHEL8-
based systems at the time of writing.

Getting ready

For this recipe, we will need our server installed with a RHEL8-based
system, which will be running Zabbix server 6 with PHP version 7.2.

Another possibility is that you have a server running a Debian-based
distribution such as Ubuntu 20.04, Debian 11, or a newer version of those
Linux distributions. These include PHP version 7.2 or higher by default.

I will refer to both possible servers as lar-book-zbx6 throughout this recipe.

Lastly, make sure to take backups of your system and read the release notes
for the new version you’re installing.

How to do it…

This recipe is split into two different sections, one for RHEL8-based systems
and another for Ubuntu systems. We will start by going through the steps for
RHEL8.

RHEL8-based systems

If you are already running PHP version 7.2 on a RHEL8-based system, the
upgrade process is a bit simpler. Let’s check out how we can upgrade our
lar-book-zbx6 server in this scenario:

1. First, always verify what PHP version we are running with the following command:

php-fpm --version

2. If the version is older than 8.2, we can continue with the next step. We’ll execute the following:

dnf module list php

3. This will show us something like the following screenshot:

Figure 11.6 – RHEL8 DNF module list for PHP

4. Unfortunately, on RHEL8, the latest stable PHP 8.3 version is not included in the DNF modules
from AppStream. This means we will have to find an alternative route for RHEL8-based systems.
If you want to install PHP 8.3 or higher, continue to step 9.

5. Since PHP 8.2 is included in the AppStream list, reset your already available PHP modules:

dnf module reset php

6. Make sure to answer with Y. Then we will enable the latest PHP version with the following

command:

dnf module enable php:8.2

7. Answer with Y again to enable PHP 8.2 and then we can upgrade our PHP version by using the

following command:

dnf update

8. Answer Y again and your PHP version will now be running the latest PHP 8.2 version.

9. If we cannot use the dnf module enable method to reach the version you want to install, we

are going to have to rely on different means of getting PHP, the most popular route being the
REMI repositories.

10. Make sure your system is up to date with the following command:

dnf update

11. REMI depends on the EPEL repository, so we will have to add that first:

dnf install epel-release

12. After installing epel-release, make sure to exclude Zabbix from it. This ensures that Zabbix

is only downloaded and updated from the official Zabbix repositories:

[epel]

excludepkgs=zabbix*

13. .Then we install the REMI repository with the following command:

sudo dnf -y install http://rpms.remirepo.net/enterprise/remi-

release-8.rpm

14. Reset the PHP modules and enable the REMI PHP 8.3 version:

dnf module reset php -y

dnf module install php:remi-8.3

15. Enter Y or Yes everywhere during the installation procedure.

16. Then, verify whether the upgrade was successful:

php-fpm -v

17. Make sure to restart NGINX (or Apache) and php-fpm:

systemctl restart nginx php-fpm

These steps have been tested on a Rocky Linux RHEL system, but they
should work with any RHEL8-based system, be it in Stream or when it’s a
full rebuild as with Alma Linux.

Consider upgrading to RHEL9-based systems for further support for newer
versions of the PHP packages.

Ubuntu systems

Let’s upgrade to the latest version of PHP available on our Ubuntu system:

1. First, start by adding the PPA repository to our host with the following command:

apt install software-properties-common

add-apt-repository ppa:ondrej/php

2. Now update the repositories with the following command:

apt update

3. On some installations, the key for the repository might not be available, in which case we might
see an error reading Key is not available. We can fix this with the following command,

where PUB_KEY_HERE is the key shown in the error:

apt-key adv --keyserver keyserver.ubuntu.com --recv- keys

PUB_KEY_HERE

4. Now we can install PHP version 8.3 with the following command:

apt install -y php8.3

apt upgrade -y php

apt autoremove

5. That’s it, the version of PHP should now be the one we want. Check the version of PHP with the
following command:

php --version

How it works…

Because Zabbix 7 requires us to install PHP version 8.0 or higher, we need to
upgrade the PHP version if we are still using PHP 7.2 for our Zabbix 6
install. It’s a different requirement than for Zabbix 6, making the upgrade
process fairly long in some cases. If you are still running RHEL7, Ubuntu
20.04, or Debian 9 (Stretch), then you will need to upgrade your Linux
system first as well. Zabbix has dropped support for these older Linux
versions in favor of installation simplicity in terms of package management,
security, and support.

Now, it is still possible to run Zabbix on older Linux versions by building
from sources, but it is not recommended.

In this recipe, we did an upgrade from PHP 7.2 to PHP 8.2 or 8.3, which are
some of the latest supported stable versions at the time of writing. Doing this
upgrade will not break our current Zabbix server installation. As mentioned,
this is a mandatory upgrade as PHP versions below 8.0 are too old to run
Zabbix 7. Even if the upgrade was optional, it is always good to consider
running the latest stable release of software to make sure that we are ready for
the future.

Now that we have upgraded PHP, we are ready to move on to upgrading the
Zabbix database engine.

Upgrading a Zabbix database from older
MariaDB versions to MariaDB 11.4
For our Zabbix 7 installation, we are going to need MariaDB 10.5 or a newer
supported version, so, it is a good idea to keep your database version up to
date. MariaDB regularly makes improvements to how it handles certain
aspects of performance.

This recipe details how to upgrade MariaDB to the latest stable LTS version,
which is MariaDB 11.4 at the time of writing.

Getting ready

For this recipe, we will need our server which we called lar-book-zbx6. At
this point, the server is running a RHEL8-based distribution.

Another option is to have a server running a Debian-based distribution such
as Ubuntu 22.04, Debian 12, or a newer version of those Linux distributions.
We will be upgrading the MariaDB instance on this server to version 11.4.

If you’ve followed the Upgrading the Zabbix backend from older PHP
versions to PHP 8.2 or higher recipe, your server will now be running PHP
version 8.2 or higher. If not, it’s a good idea to follow that recipe first.

Also, make sure to take backups of your system and read the release notes for
the new version you’re installing. We covered this in the Backing up your
Zabbix setup recipe.

How to do it…
1. First things first, let’s log in to our Linux host CLI to check out our versions. Issue the following

commands:

For Zabbix server:
zabbix_server --version

For PHP:
php-fpm --version

For MariaDB:
mysql --version

2. After verifying our versions match the versions mentioned in the Getting ready section of this
recipe, let’s move on to upgrade our version of MariaDB.

RHEL-based systems
1. On our RHEL-based server, the first thing we’ll do after checking the versions is to stop our

Zabbix environment:

systemctl stop mariadb nginx zabbix-server

2. Now set up a repository file for MariaDB with the following command:

vim /etc/yum.repos.d/mariadb.repo

3. We will add the following code to this new file. Make sure to add the correct architecture after
baseurl if using anything other than amd64:

[mariadb-main]

name = MariaDB Server

baseurl = https://dlm.mariadb.com/repo/mariadb-

server/11.4/yum/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-Server-GPG-KEY

gpgcheck = 1

enabled = 1

module_hotfixes = 1

[mariadb-maxscale]

To use the latest stable release of MaxScale, use "latest" as

the version

To use the latest beta (or stable if no current beta) release

of MaxScale, use "beta" as the version

name = MariaDB MaxScale

baseurl =

https://dlm.mariadb.com/repo/maxscale/latest/yum/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-MaxScale-GPG-KEY

gpgcheck = 1

enabled = 1

[mariadb-tools]

name = MariaDB Tools

baseurl = https://downloads.mariadb.com/Tools/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-Enterprise-GPG-KEY

gpgcheck = 1

enabled = 1

[mariadb-main]

name = MariaDB Server

baseurl = https://dlm.mariadb.com/repo/mariadb-

server/11.4/yum/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-Server-GPG-KEY

gpgcheck = 1

enabled = 1

module_hotfixes = 1

[mariadb-maxscale]

To use the latest stable release of MaxScale, use "latest" as

the version

To use the latest beta (or stable if no current beta) release

of MaxScale, use "beta" as the version

name = MariaDB MaxScale

baseurl =

https://dlm.mariadb.com/repo/maxscale/latest/yum/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-MaxScale-GPG-KEY

gpgcheck = 1

enabled = 1

[mariadb-tools]

name = MariaDB Tools

baseurl = https://downloads.mariadb.com/Tools/rhel/8/x86_64

gpgkey = file:///etc/pki/rpm-gpg/MariaDB-Enterprise-GPG-KEY

gpgcheck = 1

enabled = 1

4. Alternatively and probably the best method is to use the MariaDB setup script:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup |

sudo bash -s -- --mariadb-server-version="mariadb-11.4"

5. Now upgrade your MariaDB server with the following command:

dnf upgrade MariaDB*

6. Restart the MariaDB service with the following command:

systemctl start mariadb zabbix-server nginx

7. That’s it, MariaDB should now be upgraded to the intended version. Check the version again with
the following command to make sure:

mariadb --version

Ubuntu systems
1. On our Ubuntu server, the first thing we’ll do after checking the versions is to stop our Zabbix

server environment:

systemctl stop mariadb zabbix-server nginx

2. Check for the MariaDB repository file at /etc/apt/sources.list.d/mariadb.list.

To check whether it is on version 11.4, edit it with the following command:

vim /etc/apt/sources.list.d/mariadb.list

3. The file should look like the following code block. If it doesn’t look right, edit it to match. Make
sure to add the correct architecture on the deb lines if using anything other than amd64:

MariaDB Server

To use a different major version of the server, or to pin to

a specific minor version, change URI below.

deb [arch=amd64,arm64] https://dlm.mariadb.com/repo/mariadb-

server/11.4/repo/ubuntu jammy main

deb [arch=amd64,arm64] https://dlm.mariadb.com/repo/mariadb-

server/11.4/repo/ubuntu jammy main/debug

MariaDB MaxScale

To use the latest stable release of MaxScale, use "latest" as

the version

To use the latest beta (or stable if no current beta) release

of MaxScale, use "beta" as the version

deb [arch=amd64,arm64]

https://dlm.mariadb.com/repo/maxscale/latest/apt jammy main

MariaDB Tools

deb [arch=amd64] http://downloads.mariadb.com/Tools/ubuntu

jammy main

4. Alternatively, we can use the MariaDB repository setup script to update to the right repository.
Execute the following command:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup |

sudo bash -s -- --mariadb-server-version="mariadb-11.4"

5. We need to remove our old MariaDB packages with the following command:

apt remove mariadb-server mariadb-client

6. Now upgrade the MariaDB server version with the following command:

apt install mariadb-server mariadb-client

7. Restart MariaDB with the following command:

systemctl restart mariadb

8. Then issue the upgrade command:

mariadb-upgrade

9. Now start Zabbix back up:

systemctl restart zabbix-server nginx

10. That’s it, MariaDB should now be upgraded to the correct version. Check the version again with
the following command:

mariadb --version

How it works…

Now, while it might not always be a requirement, it is a smart idea to upgrade
your database version regularly. New versions of your database engine might
include improvements to stability and performance, both of which could
improve your Zabbix server greatly.

Do keep the release notes and bug reports on your radar though. MariaDB
11.4 is, at the time of writing, the newest LTS version on the market. You
might want to stay behind one or two releases as these are still supported and
have been running in production for a while already. After all, nobody likes
unforeseen issues such as bugs.

For Zabbix 7, we do need to install at least MariaDB 10.5 or a newer
supported version though, so keep that in mind.

There’s more...

If you really cannot upgrade to MariaDB version 10.5 or, if you are running
another database, the supported version for that one, then there’s a new
Zabbix feature. Zabbix 7 allows us to run unsupported database versions.
When we edit the Zabbix server configuration files at
/etc/zabbix/zabbix_server.conf, we can add the following parameter:

AllowUnsupportedDBVersions=1

This will allow you to run an older or newer version of your database that is
not officially tested and supported by Zabbix yet, but keep in mind that it is
not recommended to do so. Check out the current Zabbix LTS installation
requirements here:

https://www.zabbix.com/documentation/current/en/manual/installation/requir
ements

Upgrading your Zabbix setup
As we’ve seen throughout the book already, Zabbix 7 offers a great deal of
cool new features. Zabbix 7.0 is a Long-Term Support (LTS) release, so
just like 5.0 and 6.0, you will receive long-term support for it. Let’s see how
we can upgrade a Zabbix server from version 6.0 to version 7.0.

Getting ready

For this recipe, we will need our server called lar-book-zbx6. At this point,
your server will be running either a RHEL8-based Linux distribution or a
Debian-based distribution like Ubuntu 22.04, Debian 12, or newer versions of
those distributions.

If you followed the Upgrading the Zabbix backend from older PHP versions
to PHP 8.2 or higher recipe, your server will now be running PHP version
8.2 or higher. If not, it’s a good option to follow that recipe first.

If you followed the Upgrading a Zabbix database from older MariaDB
versions to MariaDB 11.4 recipe, it will now be running MariaDB version
11.4. If not, it’s wise to follow that recipe first.

Also, make sure to take backups of your system and read the release notes for
the new version you’re installing. We covered this in the Backing up your
Zabbix setup recipe.

How to do it…

First things first, let’s log in to our Linux host CLI to check out our software
versions:

1. Issue the following commands to check the respective software versions:

For Zabbix server:
zabbix_server --version

For PHP:
php-fpm --version

For MariaDB:
mariadb --version

2. After verifying our versions match the versions mentioned in the Getting ready section of this
recipe, let’s move on to upgrade our Zabbix server.

RHEL-based systems

First, we will start with upgrading the Zabbix server on a RHEL-based
system:

1. Let’s stop our Zabbix server components with the following command:

systemctl stop zabbix-server zabbix-agent2

2. On our server, let’s issue the following command to add the new Zabbix 7.0 repository:

rpm -Uvh https://repo.zabbix.com/zabbix/7.0/rhel/8/

x86_64/zabbix-release-7.0-1.el8noarch.rpm

3. Run the following command to clean the repositories:

dnf clean all

4. Now upgrade the Zabbix setup with the following command:

dnf upgrade zabbix-server-mysql zabbix-web-mysql zabbix-agent2

5. Additionally, install the Zabbix NGINX configuration:

dnf install zabbix-nginx-conf

6. Start the Zabbix components with the following command:

systemctl restart zabbix-server zabbix-agent2

7. When we check if the server is running, it should say Active (running) when we issue the

following command:

systemctl status zabbix-server

8. If not, we check the logs with the following command, so we can see what is happening:

tail -f /var/log/zabbix/zabbix_server.log

9. Check the log file for any notable errors and if you find any, fix them before continuing.

10. If we start the server again, this error should be gone and the Zabbix server should keep running:

systemctl restart zabbix-server

11. Now restart the Zabbix components with the following command:

systemctl restart nginx php-fpm zabbix-server mariadb

12. Now everything should be working as expected and we should see the new Zabbix 7 frontend, as
shown in the following screenshot:

Figure 11.7 – Zabbix 7 frontend after the upgrade on RHEL

Ubuntu systems
1. First, let’s stop our Zabbix server components with the following command:

systemctl stop zabbix-server zabbix-agent2

2. Now add the new repository for Zabbix 7 on Ubuntu with the following commands:

wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

IMPORTANT NOTE
Always check zabbix.com/download to get the right repository for your systems. In the

example, I used the Ubuntu repository. Switch this out for the right repository for your system.

3. Update the repository information with the following command:

apt update

4. Now upgrade the Zabbix server components with the following command:

apt install –-only-upgrade zabbix-server-mysql zabbix-frontend-

php zabbix-agent2

5. Make sure to not overwrite your Zabbix server configuration. If you do overwrite your
configuration file, you can restore it from the backup taken in the Backup up your Zabbix setup
recipe.

6. Then install the new Zabbix NGINX configuration with the following command:

apt install zabbix-nginx-conf

7. Restart the Zabbix server components with the following command and you should be done:

systemctl restart zabbix-server nginx zabbix-agent2

8. We check the logs with the following command so we can see what is happening:

tail -f /var/log/zabbix/zabbix_server.log

9. Check the log file for any notable errors and if you find any, fix them before continuing.

10. If we start the server again, this error should be gone and the Zabbix server should keep running:

systemctl restart zabbix-server

11. This should conclude the upgrade process, and if we go to the frontend, we should see the new
Zabbix 7 frontend:

Figure 11.8 – Zabbix 7 frontend after the Ubuntu upgrade

How it works…

Upgrading Zabbix can be an easy task when we are running the latest version
of Linux. When we are running older versions of software though, we might
run into some issues.

The recipe we’ve just followed shows us the upgrade process for a Zabbix 6
instance resulting in a setup running Zabbix 7, along with the most common
issues we might run into.

IMPORTANT NOTE
While upgrading, make sure to keep an eye on your zabbix_server.log file, as this file will

tell you if something has gone wrong during the upgrade process.

We made sure to upgrade PHP to a version higher than 8.0 as this was the
requirement for Zabbix 7, making the upgrade process from Zabbix 6 a bit
more complicated if we ran an older PHP version. For the database, Zabbix
kept the same requirements between Zabbix 6 and Zabbix 7, requiring
MariaDB 10.5 or a newer supported version for your Zabbix setup.

Now that you’ve upgraded all the components, you should be ready to work
with Zabbix 7 and your setup will be future-proof for a while – of course,
until Zabbix 8 comes out, when we might see some new requirements come
along.

See also

Make sure to check out the Zabbix documentation for the versions you are
upgrading from and to. Zabbix always includes detailed descriptions of the
requirements and processes to make it as easy as possible for you to upgrade.
Check out the right documentation for your version:

https://www.zabbix.com/documentation/current/en/manual/installation/upgra
de

Maintaining Zabbix performance over time
It’s important to make sure that your Zabbix setup keeps performing well
over time. There are several key components that are important to keep your
Zabbix setup performing optimally. Let’s see how to work on some of these
components and keep your Zabbix setup running smoothly.

Getting ready

All we are going to need for this recipe is a Zabbix 7 server.

How to do it…

We will go through three of the main problems people face whilst
maintaining Zabbix server performance. First things first, let’s look at the
Zabbix processes and how to edit them.

Zabbix processes

A regular problem people face is a Zabbix process being too busy. Let’s log
in to our Zabbix frontend and check out how this problem might look.

First, let’s start by logging in to our Zabbix server frontend and check out
some messages:

1. When we navigate to Monitoring | Dashboard and then select the default dashboard Global
view, we might see something like this:

Figure 11.9 – Zabbix problem from our Zabbix server, discoverer processes 75% busy

2. Then we navigate to Monitoring | Hosts and click on Latest data for the Zabbix server host
(which, in my case, is called lar-book-rocky). This will take us to the latest data for our host.

3. For the filters, type discovery in the Name field, then click on Graph for the discovery worker

item. This will show you the following graph:

Figure 11.10 – Zabbix server discoverer graph, Utilization of discoverer data collector in %

This graph is at 100% almost all the time, which explains why we see the
problem shown in Figure 11.9 on our dashboard.

4. Let’s log in to the Linux CLI of our Zabbix server to edit this process.

5. Edit the following file on your Zabbix server:

vim /etc/zabbix/zabbix_server.conf

6. Now, if we want to give our Zabbix server’s discoverer process more room, we need to edit

the correct parameter. Scroll down until you see the following:

Figure 11.11 – Zabbix server configuration file, StartDiscoverers default

7. Now add a new line under this and add the following line:

StartDiscoverers=2

8. If your file now looks like the following screenshot, you can save and exit the file:

Figure 11.12 – Zabbix server configuration file, StartDiscoverers 2

9. For the changes to take effect, we will need to restart the Zabbix server with the following
command:

systemctl restart zabbix-server

10. Now if we go back to our Zabbix frontend, we should still be at our graph where we can see the
following:

Figure 11.13 – Zabbix server discoverer graph

The utilization of our discoverer process has gone down, which means our
utilization problem won’t show up anymore. That’s how we edit Zabbix
server processes.

Zabbix housekeeper

Another very common problem people face is the Zabbix housekeeper
process being too busy. Let’s log in to our Zabbix frontend and check out the
problem:

1. When we navigate to Monitoring | Dashboard and then select the default dashboard Global
view, we might see something like this:

Figure 11.14 – A problem with Zabbix housekeeper

2. Similar to editing any Zabbix process, we can also edit the Zabbix housekeeper process. Let’s log
in to the Linux CLI of our Zabbix server to edit our process.

3. Let’s edit the following file on our Zabbix server:

vim /etc/zabbix/zabbix_server.conf

4. Now, if we want to edit this process, we need to edit the correct parameters. Scroll down until you
see the following:

Figure 11.15 – Zabbix configuration file, HousekeepingFrequency 1

5. This is our first housekeeper parameter. Let’s edit this parameter by adding the following line
under this block:

HousekeepingFrequency=2

IMPORTANT NOTE

Making the interval longer is not going to solve your issue; at most, you are delaying the
inevitable. It is only recommended to change this setting until the next maintenance window,
and it should be avoided as much as possible.

6. Now scroll down until you see the following:

Figure 11.16 – Zabbix configuration file, HousekeepingDelete 5000

7. The preceding screenshot shows our second housekeeper parameter. Let’s edit this parameter by
adding the following line under this code block:

MaxHousekeeperDelete=20000

8. For the changes to take effect, we need to restart the Zabbix server with the following command:

systemctl restart zabbix-server

Tuning a MySQL database
1. Let’s see how we can tune a MySQL database with ease. First off, let’s go to the following link in

our browser: https://github.com/major/MySQLTuner-perl.

2. This link brings us to an open source GitHub project started by Major Hayden. Be sure to follow
the repository and do all you can to help out. Let’s download the script from the GitHub repository
or simply use the following command:

wget https://raw.githubusercontent.com/major/MySQLTuner-

perl/master/mysqltuner.pl

3. Now we can execute this script with the following command:

perl mysqltuner.pl

4. This will bring us to a prompt for our MySQL database credentials. Fill them out and continue:

Figure 11.17 – MySQL tuner script execution

5. Now, the script will output a lot of information that you will need to read carefully, but the most
important part is at the end – everything after Variables to adjust:

Figure 11.18 – MySQL tuner script output

IMPORTANT NOTE
DO NOT simply copy over the output from this script. The script is simply giving us an
indicator of what might be tuned in our MySQL settings. Always look up the settings
suggested and read about the best practices for those settings.

6. We can edit these variables in the MySQL my.cnf file. In my case, I edit it with the following

command:

vim /etc/my.cnf.d/server.cnf

7. Now, you simply edit or add the variables that are suggested in the script and then restart your
MySQL server:

systemctl restart mariadb

How it works…

We’ve just done three of the main performance tweaks we can do for a
Zabbix server, but there’s a lot more to do. Let’s take a look at what we’ve

just edited, consider why we’ve edited it, and find out whether it’s really that
simple.

Zabbix processes

Zabbix processes are a big part of your Zabbix server setup and must be
edited with care. In this recipe, we’ve only just edited the discoverer process
on a small installation. This problem was easy as the server had more than
enough resources to account for another process running.

Now if we look at the following diagram, we can see the situation as it was
before we added a new discoverer process:

Figure 11.19 – Zabbix server single-process setup diagram

We can see our Linux host running our Zabbix server application and we
can see our LLDProcessors 1 process discovering LLD rule 1. LLD rule 2
and LLD rule 3 are queueing up as one LLDProcessor subprocess can only
handle one rule at a time.

As we’ve seen that this is apparently too heavy for our system, we have
added another LLDProcessor:

Figure 11.20 – Zabbix server multiple-process setup diagram

Our new setup will balance the load to a certain extent. It’s only possible for
a discovery rule to be handled by a single discoverer process. This means that
if we have multiple discovery rules, we can add discoverers like this to make
sure there are enough resources available per discovery rule. It works the
same for the other processes – more processes mean better distributions of
tasks.

However, there are several things to be careful of here. First of all, not all
issues can be solved by simply throwing more resources at them. Some
Zabbix setups are configured poorly, where there’s something in the
configuration making our processes unnecessarily busy. If we deal with the
poor configuration aspect, we can take away the high load, thus we need
fewer processes.

The second thing I’d like to stress is that we can keep adding processes to our
Zabbix server configuration – within limits. Before we reach those limits
though, you are definitely going to reach the roof of what our Linux host
hardware is capable of. Make sure you have enough RAM and CPU power to
actually run all these processes or use Zabbix proxies for offloading. Also

keep in mind that adding more processes might require additional database
tuning, for example allowing more connections to the database.

Last but not least, keep in mind that changing the Zabbix server configuration
requires a restart of the zabbix-server process. On large installations, this can
take a long time. The Zabbix server might have to do a lot of database writes
(for example, of the trend data) to get the zabbix-server process to shut
down.

Zabbix housekeeper

Now for Zabbix housekeeper, which is a very important process for Zabbix
administrators who haven’t set up MySQL partitioning or PostgreSQL
TimescaleDB partitioning yet. The Zabbix housekeeper process connects to
our database and then drops information line by line that has expired. You
might think, how do you mean expired? Well, we can set limits in the Zabbix
server for how long an item should be kept in the database.

If we look at Administration | Housekeeping, part of what we will see is
shown in the following screenshot:

Figure 11.21 – Zabbix server history and trends housekeeping setup

These are our global History and Trends housekeeping parameters. This
defines how long an item’s data should be kept in our database. If we look at
an item on a template or host, we can also see these parameters:

Figure 11.22 – Zabbix item history and trends housekeeping parameters

These settings override the global settings so you can tweak the housekeeper
further. That’s how the housekeeper keeps your database in check.

But now, let’s look at the tweaks we made in our Zabbix server configuration
file, the first of which is HousekeepingFrequency. Housekeeping frequency is
how often the housekeeper process is started. We’ve lowered this from every
hour to every two hours. Now you might think that’s worse, but it doesn’t

have to be. A lot of the time, we see that housekeeping is not done after one
hour and then it just keeps going on and on.

We also changed the MaxHousekeeperDelete parameter, which is something
completely different. This determines how many database rows our Zabbix
housekeeper is allowed to delete in each run. The default settings determined
that every hour, we can delete 5,000 database rows. With our new settings,
we can now delete 20,000 database rows every two hours. Each row will
basically just be a single metric we are allowed to delete.

How does this change anything at all? Well, it might not. It completely
depends on your setup. Tweaking the Zabbix housekeeper is different for
every setup, and you will have to determine your optimum settings for
yourself. Try to balance what you see in your graphs with the two settings
we’ve discussed here to see how well you can optimize it.

However, at one point, your Zabbix setup might grow big enough and Zabbix
housekeeping won’t be able to keep up. This is when you’ll need to look at
MySQL partitioning or PostgreSQL TimescaleDB. There’s no predefined
point where the Zabbix housekeeper won’t be able to keep up, so it is smarter
to just start with MySQL partitioning or PostgreSQL TimescaleDB right
from the start. After all, any setup might grow larger than expected, right?
More on this subject is explained in Chapter 12 of this book.

Tuning a MySQL database

Now for tuning your MySQL database with the mysqltuner.pl script. This
script does a lot in the background, but we can summarize it as follows: it

looks at what the current utilization of your MySQL database is, and then
outputs what it thinks the correct tuning variables would be.

Do not take the script output as a given, as with Zabbix housekeeping, there
is no way to give you a definitive setup for your database. Databases are
simply more complicated than just doing some tweaks and being done with it.

The script will definitely help you tweak your MySQL database to an extent,
especially for smaller setups. But make sure to extend your knowledge by
reading blogs, guides, and books about databases regularly.

There’s more…

We went over how to tune a MySQL database, but we didn’t go over how to
tune a PostgreSQL instance. There’s a wide variety of options out there to do
this, so for more on that I recommend checking out the PostgreSQL wiki at
https://wiki.postgresql.org/wiki/Performance_Optimization. There are
different varieties and different preferences at play here. Make sure to check
them all out well and pick the one that works the best for you.

There’s also a new addition in Zabbix 7.0, which is specifically for the
following three pollers:

Agent poller

HTTP agent poller

SNMP poller (for walk[OID] and get[OID] items)

These processes now execute checks asynchronously. What that means is that
they can execute multiple (item) checks at the same time. In older versions of
Zabbix, these pollers could only execute a single check at the time.

It’s still possible to add multiple of these processes with, for example,
StartAgentPollers, but it now functions differently. This will execute a
maximum of 1,000 checks per poller, which is configurable with the
MaxConcurrentChecksPerPoller parameter.

12

Advanced Zabbix Database Management
Whether you’ve been using Zabbix for a while or you are looking toward
setting up your first production instance, database management is important
right from the start. A lot of the time, people set up their Zabbix database and
don’t know yet that it will be a big database. The Zabbix housekeeper just
can’t keep up when your database grows beyond a certain size, and that’s
when we need to look for different options.

In this chapter, we’ll look into keeping our Zabbix database from using up
100% disk space when the Zabbix housekeeper is not keeping up. For
MySQL users, we’ll look into using database partitioning to keep our
database in check. For PostgreSQL users, we’ll look toward the
TimescaleDB support. Last but not least, we’ll also check out how to secure
our connection between the Zabbix server and the database.

We’ll do all this in the following recipes:

Setting up MySQL partitioning for your Zabbix database

Using the PostgreSQL TimescaleDB functionality

Securing your Zabbix MySQL database

Without further ado, let’s get started on these recipes and learn all about
managing our database.

Technical requirements

We are going to need some new servers for these recipes. One Linux server
needs to run Zabbix server 7 with MySQL (MariaDB) set up; we’ll call this
host lar-book-mysql- mgmt. We will also need a Linux server running Zabbix
server 7 with PostgreSQL, which we’ll call lar-book-postgresql-mgmt.

We’ll also need two servers for creating a secure Zabbix database setup. One
server will be running the MySQL (MariaDB) database; let’s call this server
lar-book-secure-db. Then, connecting externally to a Zabbix database, we’ll
have our Zabbix server, which we’ll call lar-book-secure-zbx.

The code files can also be accessed in the GitHub repository here:

https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-Monitoring-
Cookbook/tree/main/chapter12

Setting up MySQL partit ioning for your
Zabbix database
When working with a MySQL database, the biggest issue we face is how
MySQL stores its data by default. There is no real order to the data that we
can use if we want to drop large chunks of data. MySQL partitioning solves
this issue; let’s see how we can configure it to use for our Zabbix database.

IMPORTANT NOTE
Here at Opensource ICT Solutions, we have fixed the script to work with MySQL 8. The script
should work for any MySQL setup once more. Check out the link for more information:
https://github.com/OpensourceICTSolutions/zabbix-mysql-partitioning-perl.

Getting ready

For this recipe, we are going to need a running Zabbix server with a MySQL
database. I’ll be using MariaDB in my example, but any MySQL flavor
should be about the same. The Linux host I’ll be using is called lar-book-

mysql-mgmt, which already meets the requirements.

If you are running these steps in a production environment, make sure to
create your database backups first as things can always go wrong.

How to do it…
1. First things first, let’s log in to our Linux CLI to execute our commands.

2. It’s a good idea to use TMUX because partitioning can take several days for big databases. TMUX
will keep the sessions open in the background, even if we lose the SSH connection. If TMUX is
not installed, install it first before proceeding.

The RHEL-based command is as follows:
dnf install tmux

The Ubuntu command is as follows:
apt install tmux

3. Open a new tmux session by issuing the following command:

tmux

IMPORTANT NOTE
It’s not required to run partitioning in a tmux window, but it’s definitely smart. Partitioning a big

database can take a long time. You could move your database to another machine with ample
resources (CPU, memory, and disk speed) to partition, or if that’s not a possibility stop the
Zabbix server process for the duration of the partitioning process.

4. Now, let’s log in to the MySQL application as the root user with the following command:

mysql -u root -p

5. Now, move to use the Zabbix database with the following command:

USE zabbix;

6. We are going to need to partition some tables here, but to do this, we need to know the UNIX
timestamp on our tables:

SELECT FROM_UNIXTIME(MIN(clock)) FROM history;

You will receive an output like this:

Figure 12.1 – MySQL returning a timestamp on the table history

7. This timestamp should be about the same for every single table we are going to partition. Verify
this by running the same query for the remaining history tables:

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history';

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history_uint';

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history_str';

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history_text';

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history_log';

SELECT FROM_UNIXTIME(MIN(clock)) FROM 'history_bin';

8. A table might return a different value or even no value at all. We need to take this into account
when creating our partitions. A table showing NULL has no data, but an earlier date means we

need an earlier partition:

Figure 12.2 – MySQL returning a timestamp on the history_log table

9. Let’s start with the history table. We are going to partition this table by day, and we are going

to do this up until the date it is today; for me, it is 18-06-2023. Let’s prepare the following

MySQL query (for example, in a notepad):

ALTER TABLE history PARTITION BY RANGE (clock)

(PARTITION p2023_06_11 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-12 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_12 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-13 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_13 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-14 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_14 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-15 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_15 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-16 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_16 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-17 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_17 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-18 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_06_18 VALUES LESS THAN (UNIX_TIMESTAMP("2023-

06-19 00:00:00")) ENGINE = InnoDB);

TIP
If we only have 7 days of history data, creating this list by hand is not that hard. If we want to
do it on a big existing database, it can be a big list to edit by hand. It’s easy to create a big list
using software such as Excel or by creating a small script.

10. Make sure that the oldest partition here matches the timestamp we collected in step 9. In my case,
the oldest data was from June 11, 2023, so this is my oldest partition. Also, make sure that your
newest partition matches the date you are partitioning on.

11. Copy and paste the prepared MySQL query from step 9 and press Enter. This might take a while,
as your table might be quite large. After you’re done, you will see the following:

Figure 12.3 – MySQL returning a successful query result for the history table

12. Do the same partitioning for the remaining history tables; make sure to use the other UNIX
timestamps for the earliest partition:

history_uint

history_str

history_text

history_log

history_bin

13. Once you’ve partitioned all the history tables, let’s partition the trends tables. We have two of

these called trends and trends_uint.

14. We are going to check the timestamps again with the following:

SELECT FROM_UNIXTIME(MIN(clock)) FROM trends;

SELECT FROM_UNIXTIME(MIN(clock)) FROM trends_uint;

15. For these tables, it’s important to focus on what the earliest month is. For my tables, this is month
06 of the year 2023.

16. Now, let’s prepare and execute the partitioning for this table. Let’s do two extra partitions starting
from the earliest date seen in the timestamp in step 14:

ALTER TABLE trends PARTITION BY RANGE (clock)

(PARTITION p2023_06 VALUES LESS THAN (UNIX_TIMESTAMP("2023-07-

01 00:00:00")) ENGINE = InnoDB,

PARTITION p2023_07 VALUES LESS THAN (UNIX_TIMESTAMP("2023-08-01

00:00:00")) ENGINE = InnoDB,

PARTITION p2023_08 VALUES LESS THAN (UNIX_TIMESTAMP("2023-09-01

00:00:00")) ENGINE = InnoDB);

17. Again, we partition from the earliest collected UNIX timestamp, up until the current month. But
there’s no harm in creating some new partitions for future data:

Figure 12.4 – MySQL returning a successful query result for the trends table

18. Do the same thing for the trends_uint table.

19. That concludes the actual partitioning of the database. Let’s make sure our partitions remain
managed. On your Zabbix database Linux host, download the partitioning script with the
following command:

wget

https://raw.githubusercontent.com/OpensourceICTSolutions/zabbix-

mysql-partitioning-perl/main/mysql_zbx_part.pl

20. If you can’t use wget, simply download the script from the following link:

https://github.com/OpensourceICTSolutions/zabbix-mysql-partitioning-
perl/blob/main/mysql_zbx_part.pl.

Alternatively, you can download the partitioning script using the Packt
GitHub here:

https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-
Monitoring-Cookbook/tree/main/chapter12/mysql_zbx_part.pl

21. Now, create the directory and move the script to the /usr/lib/zabbix/ folder with the

following command:

mkdir /usr/lib/zabbix/

mv mysql_zbx_part.pl /usr/lib/zabbix/

22. We are going to customize some details in the script. Edit the script with the following:

vim /usr/lib/zabbix/mysql_zbx_part.pl

We need to edit some text in the following part:

Figure 12.5 – MySQL Zabbix partitioning script user parameters

23. Edit $db_schema to match your Zabbix database name.

24. Edit $db_user_name to match your Zabbix database username.

25. Edit $db_password to match your Zabbix database password.

26. Now, at the $tables variable, we are going to add some of the most important details. This is

where we’ll add how many days of history data we want to keep and how many months of trends
data. Add your values; the default settings keep 30 days of history data and 12 months of trends
data.

27. Also, make sure to edit the my $curr_tz = Etc/UTC; line to match your own time zone. I

will use Europe/Amsterdam, for example.

TIP
If you are using a version of Zabbix before 2.2 or a MySQL version before 5.6 or if you are
running MySQL 8, then there are some extra lines of configuration that need to be
commented and uncommented in the script. If this applies to you, read the comments in the
mysql_zbx_part.pl script file and edit it. Additionally, check out the GitHub repo

mentioned in the introduction of this recipe.

28. Before executing the script, we are going to need to install some Perl dependencies. On RHEL-
based systems, we need additional repositories.

The RHEL8-based commands are as follows:
dnf config-manager --set-enabled powertools

For RHEL9-based systems, use this command:
dnf config-manager --enable crb

29. Install the dependencies with the following commands.

The RHEL-based commands are as follows:
dnf update

dnf install perl-Sys-Syslog

dnf install perl-DateTime

dnf install perl-DBD-mysql

dnf install perl-DBI

The Ubuntu commands are as follows:
apt install liblogger-syslog-perl

apt install libdatetime-perl

30. Make the script executable with the following command:

chmod +x /usr/lib/zabbix/mysql_zbx_part.pl

31. Then, this is the moment where we should be ready to execute the script to see whether it is
working. Let’s execute it:

/usr/lib/zabbix/mysql_zbx_part.pl

32. Once your script has finished running, let’s see whether it was successful with the following
command:

journalctl -t mysql_zbx_part

33. You should see an output like this:

Figure 12.6 – MySQL Zabbix partitioning script results

34. Now, execute the following command:

crontab -e

35. To automate the execution of the script, add the following line to the file:

55 22 * * * /usr/lib/zabbix/mysql_zbx_part.pl

36. The last thing we are going to need to do is to go to the Zabbix frontend. Navigate to
Administration | Housekeeping.

37. As the script will take over database history and trend deletion, the housekeeping for the History
and Trends tables must be disabled. It will look like the following:

Figure 12.7 – Zabbix Administration | General | Housekeeping disabled for History and
Trends

That concludes our Zabbix database partitioning setup.

How it works…

Database partitioning seems like a daring task at first, but once you break it
down into chunks, it is not that hard to do. It is simply the process of
breaking down our most important Zabbix database tables into time-based
partitions. Once these partitions are set up, we simply need to manage these
tables with a script and we’re ready.

Look at the following figure, and let’s say today is 19-06-2023. We have a lot
of partitions managed by the script. All of our history data today is going to
be written to the partition for this day and all of our trends data is going to be
written into the partition for this month:

Figure 12.8 – Zabbix partitioning illustration

The actual script does only two things. It creates new partitions and it deletes
old partitions.

For deleting partitions, once a partition reaches an age older than specified in
the $tables variable, it drops the entire partition.

For creating partitions, every time the script is run, it creates 10 partitions in
the future starting from today, except, of course, when a partition already
exists.

This is better than using the housekeeper for one clear reason. It’s simply
faster! The Zabbix housekeeper goes through our database data line by line to

check the UNIX timestamp and then it deletes that line when it reaches data
older than specified. This takes time and resources. Dropping a partition,
though, is almost instant.

One downside of partitioning a Zabbix database, though, is that we can no
longer use the frontend item history and trend configuration. This means we
can’t specify different history and trends for different items; it’s all global
now.

See also

When I first started using Zabbix, I did not have a book like this one. Instead,
I relied heavily on the resources available online and my own skillset. There
are loads of great guides for partitioning and other stuff available on the
internet. If something isn’t mentioned in this book, make sure to Google it
and see if there’s something available online. You might also want to check
out some amazing books written by our Zabbix peers and, of course, if
you’ve figured out something by yourself, sharing is caring!

Using the PostgreSQL TimescaleDB
functionality
TimescaleDB is an open source relational PostgreSQL database extension for
time-based series data. Using PostgreSQL TimescaleDB is a solid way to
work around using the Zabbix housekeeper to manage your PostgreSQL
database. In this recipe, we will go over the installation of PostgreSQL
TimescaleDB on a new server and how to set it up with Zabbix.

Getting ready

We will need an empty Linux server. I’ll be using my server called lar-book-

postgresql-mgmt.

How to do it…

We have a bit of a different process for RHEL-based and Ubuntu systems,
which is why we have split this How to do it… section in two. We will start
with Ubuntu systems.

Ubuntu installation
1. Let’s log in to our Linux CLI and add the PostgreSQL repo with the following commands:

apt install gnupg postgresql-common apt-transport-https lsb-

release wget

/usr/share/postgresql-common/pgdg/apt.postgresql.org.sh

2. Now, add the TimescaleDB repository:

echo "deb https://packagecloud.io/timescale/timescaledb/ubuntu/

$(lsb_release -c -s) main" | sudo tee

/etc/apt/sources.list.d/timescaledb.list

wget --quiet -O -

https://packagecloud.io/timescale/timescaledb/gpgkey | sudo

apt-key add -

apt update

3. Now, install TimescaleDB with the installation command:

apt install timescaledb-2-postgresql-15

4. Start and enable PostgreSQL 12:

systemctl enable postgresql

systemctl start postgresql

5. Now, continue with the TimescaleDB configuration section of this recipe.

RHEL-based installation

1. Let’s start by logging in to our Linux CLI. We will need PostgreSQL version 11 or higher. Let’s
install version 12; first, disable AppStream:

dnf -qy module disable postgresql

2. Add the correct repository:

dnf install

https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-

x86_64/pgdg-redhat-repo-latest.noarch.rpm

3. Then, install PostgreSQL:

dnf install postgresql15 postgresql15-server

4. Make sure to initialize the database:

/usr/pgsql-15/bin/postgresql-15-setup initdb

5. Now, add the repo information to the file and save it:

tee /etc/yum.repos.d/timescale_timescaledb.repo <<EOL

[timescale_timescaledb]

name=timescale_timescaledb

baseurl=https://packagecloud.io/timescale/timescaledb/el/$(rpm

-E %{rhel})/\$basearch

repo_gpgcheck=1

gpgcheck=0

enabled=1

gpgkey=https://packagecloud.io/timescale/timescaledb/gpgkey

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

metadata_expire=300

EOL

6. Install TimescaleDB with the installation command:

dnf install timescaledb-2-postgresql-15

7. Now, continue with the TimescaleDB configuration section of this recipe.

TimescaleDB configuration

In this section, we’ll go over how to set up TimescaleDB after finishing the
installation process. There’s a lot more to configure, so let’s check it out:

1. Let’s start by running the following command:

timescaledb-tune

2. Sometimes this does not work, and you want to specify the PostgreSQL location like this:

timescaledb-tune --pg-config=/usr/pgsql-15/bin/pg_config

3. Go through the steps and answer the questions with yes or no accordingly. For a first-time setup,

yes for everything is good.

4. Now, restart PostgreSQL:

systemctl restart postgresql-15

5. If you haven’t already, download and install Zabbix with the following.

The RHEL-based commands are as follows:
rpm -Uvh https://repo.zabbix.com/zabbix/7.0/rhel/9/

x86_64/zabbix-release-7.0-1.el8.noarch.rpm

dnf clean all

dnf install zabbix-server-pgsql zabbix-web-pgsql zabbix-apache-

conf zabbix-agent2

The Ubuntu commands are as follows:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

apt install zabbix-server-pgsql zabbix-frontend-phpphp-pgsql

zabbix-apache-conf zabbix-agent2

6. Create the initial database with the following:

sudo -u postgres createuser --pwprompt zabbix

sudo -u postgres createdb -O zabbix zabbix

7. Import the database schema for PostgreSQL:

zcat /usr/share/doc/zabbix-server-pgsql*/create.sql.gz | sudo -

u zabbix psql zabbix

8. Add the database password to the Zabbix configuration file by editing it:

vim /etc/zabbix/zabbix_server.conf

9. Add the following lines, where password is your password as set in step 6 and DBHost is

empty:

DBHost=

DBPassword=password

10. Now, enable the TimescaleDB extension with the following command:

echo "CREATE EXTENSION IF NOT EXISTS timescaledb CASCADE;" |

sudo -u postgres psql zabbix

11. Unpack the timescale.sql script located in your Zabbix share folder:

gunzip /usr/share/doc/zabbix-sql-

scripts/postgresql/timescaledb.sql.gz

12. Now, let’s run timescale.sql:

cat /usr/share/doc/zabbix-sql-

scripts/postgresql/timescaledb.sql| sudo -u zabbix psql zabbix

13. We need to do one more thing before moving to the frontend. We need to edit the pg_hba.conf

file to allow our Zabbix frontend to connect. Edit the following file:

vim /var/lib/pgsql/15/data/pg_hba.conf

14. Make sure the following lines match in your file; they need to end with md5:

"local" is for Unix domain socket connections only

local all all

scram-sha256

IPv4 local connections:

host all all 127.0.0.1/32

md5

IPv6 local connections:

host all all ::1/128

scram-sha256

15. Now, start Zabbix and finish the frontend setup using the following commands:

On RHEL-based systems:
systemctl restart zabbix-server zabbix-agent2 httpd php-fpm

systemctl enable zabbix-server zabbix-agent2 httpd php-fpm

On Ubuntu systems:
systemctl restart zabbix-server zabbix-agent2 apache2 php-fpm

systemctl enable zabbix-server zabbix-agent2 apache2 php-fpm

16. Once we navigate to the frontend and we’ve logged in to our setup, navigate to Administration |
Housekeeping.

17. We can now edit the following parameters to match our preferences, and TimescaleDB will take
care of maintaining the data retention period:

Figure 12.9 – Zabbix Administration | Housekeeping, TimescaleDB-specific options

How it works…

Using the TimescaleDB functionality with your Zabbix setup is a solid
integration with your PostgreSQL database. The extension is supported by
Zabbix, and you can expect it to only get better in the near future.

Now, how TimescaleDB works is by dividing up your PostgreSQL
hypertable into time-based chunks. If we look at the following figure, we can
see how that looks:

Figure 12.10 – TimescaleDB hypertable chunks diagram

These time-based chunks are a lot faster to drop from the database than using
the Zabbix housekeeper. The Zabbix housekeeper goes through our database
data line by line to check the UNIX timestamp, and then it drops the line
when it reaches data that is older than specified. This takes time and
resources. Dropping a chunk, though, is almost instantaneous.

Another great thing about using TimescaleDB with a Zabbix database is that
we can still use the frontend item history and trend configuration. On top of
that, TimescaleDB can compress our data, to keep databases smaller.

The downside is that we can’t specify different history and trends for
different items; it’s all global now.

See also

This recipe details the installation of PostgreSQL TimescaleDB. As this
process is constantly changing, you might need to include some new
information from the official TimescaleDB documentation. Check out their
documentation here:

https://docs.timescale.com/latest/getting-started/installation/rhel-
centos/installation-yum

Securing your Zabbix MySQL database
Another great added feature for the Zabbix server is the ability to encrypt
data between the database and Zabbix components. This is particularly useful
when you are running a split database and the Zabbix server over the
network. A Man-in-the-Middle (MITM) attack or other attacks can be
executed on the network to gain access to your monitoring data.

In this recipe, we’ll set up MySQL encryption between Zabbix components
and the database to add another layer of security.

Getting ready

We are going to need a Zabbix setup that uses an external database. I’ll be
using the Linux lar-book-secure-db and lar-book-secure-zbx hosts.

The new server called lar-book-secure-zbx will be used to connect
externally to the lar-book-secure-db database server. The database servers
won’t run our Zabbix server; this process will run on lar-book-secure-zbx.

Make sure that MariaDB is already installed on the lar-book-secure-db host
and that you are running a recent supported version that is able to use
encryption. If you don’t know how to upgrade your database, check out the
recipe named Upgrading Zabbix database from older MariaDB versions to
MariaDB 10.5 in Chapter 11, Maintaining Your Zabbix Setup, or check the
documentation online.

How to do it…

1. Make sure your host files on both hosts from the Getting ready section contain the hostname and
IP for your Linux hosts and edit the file with the following:

vim /etc/hosts

2. Then, fill in the file with your hostnames and IPs. It will look like this:

10.16.16.170 lar-book-secure-db

10.16.16.171 lar-book-secure-zbx

3. On the lar-book-secure-db MySQL server, if you haven’t already, create the Zabbix

database by logging in to MySQL:

mysql -u root -p

4. Then, issue the following command to create the database:

create database zabbix character set utf8mb4 collate utf8mb4_

bin;

5. Also, make sure to create a user that will be able to access the database securely. Make sure the IP
matches the IP from the Zabbix server (and one for the Zabbix frontend if they are separate):

create user 'zabbix'@'10.16.16.171' identified BY 'password';

grant all privileges on zabbix.* to 'zabbix'@'10.16.16.171';

flush privileges;

6. Quit MySQL and then make sure to run the secure mysql script with the following:

mariadb_secure_installation

7. Log in to lar-book-secure-zbx and install the Zabbix server repo with the following

command:

rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rhel/9/x86_64/zabbix-

release-7.0-1.el8.noarch.rpm

dnf clean all

8. Let’s add the MariaDB repository on our server:

wget https://downloads.mariadb.com/MariaDB/mariadb_repo_setup

chmod +x mariadb_repo_setup

./mariadb_repo_setup

9. Then, install the Zabbix server and its required components.

Use the following RHEL-based command:
dnf install zabbix-server-mysql zabbix-web-mysql zabbix-apache-

conf zabbix-agent2 zabbix-sql-scripts mariadb-client

Use the following Ubuntu command:
apt install zabbix-server-mysql zabbix-frontend-php zabbix-

apache-conf zabbix-agent2 mariadb-client

10. From the Zabbix server, connect to the remote database server and import the database schema
and default data with the following command:

zcat /usr/share/doc/zabbix-sql-scripts/mysql/server.sql.gz |

mysql -h 10.16.16.170 -uzabbix -p zabbix

11. Now we are going to open the file called openssl.cnf and edit it by issuing the following

command:

vim /etc/pki/tls/openssl.cnf

12. In this file, we need to edit the following lines:

countryName_default = XX

stateOrProvinceName_default = Default Province

localityName_default = Default City

0.organizationName_default = Default Company Ltd

organizationalUnitName_default.=

13. It will look like this filled out completely:

Figure 12.11 – OpenSSL config file with our personal defaults

14. We can also see this line:

dir = /etc/pki/CA # Where everything is kept

15. This means the default directory is /etc/pki/CA; if yours is different, act accordingly. Close

the file by saving, and continue.

16. Let’s create a new folder for our private certificates using the following command:

mkdir -p /etc/pki/CA/private

17. Now, let’s create our key pair in the new folder. Issue the following command:

openssl req -new -x509 -keyout /etc/pki/CA/private/cakey.pem -

out /etc/pki/CA/cacert.pem -days 3650 -newkey rsa:4096

18. You will be prompted for a password now:

Figure 12.12 – Certificate generation response asking for a password

19. You might also be prompted to enter some information about your company. It will use the default
we filled in earlier, so you can just press Enter up until Common Name.

20. Fill in Root CA for Common Name and add your email address like this:

Figure 12.13 – Certificate generation response asking for information, Root CA

21. Next up is creating the actual signed certificates that our Zabbix server will use. Let’s make sure
that OpenSSL has the right files to keep track of signed certificates:

touch /etc/pki/CA/index.txt

echo 01 > /etc/pki/CA/serial

22. Then, create the folders to keep our certificates in:

mkdir /etc/pki/CA/unsigned

mkdir /etc/pki/CA/newcerts

mkdir /etc/pki/CA/certs

23. Now, let’s create our certificate signing request for the lar-book-secure-zbx Zabbix server

with the following command:

openssl req -nodes -new -keyout /etc/pki/CA/private/zbx-

srv_key.pem -out /etc/pki/CA/unsigned/zbx-srv_req.pem -newkey

rsa:2048

24. You will be prompted to add a password and your company information again. Use the default up
until Common Name. We will fill out our Common Name, which will be the server hostname,

and we’ll add our email address like this:

Figure 12.14 – Certificate generation response asking for information, lar-book-secure-zbx

25. Let’s do the same for our lar-book-secure-db server:

openssl req -nodes -new -keyout /etc/pki/CA/private/mysql-

srv_key.pem -out /etc/pki/CA/unsigned/mysql-srv_req.pem -newkey

rsa:2048

The response will look like this:

Figure 12.15 – Certificate generation response asking for information, lar-book-secure-db

IMPORTANT NOTE
Our certificates need to be created without a password; otherwise, our MariaDB and Zabbix
applications won’t be able to use them. Make sure to specify the -nodes option.

26. Now, sign the certificate for lar-book-secure-zbx with the following command:

openssl ca -policy policy_anything -days 365 -out

/etc/pki/CA/certs/zbx-srv_crt.pem -infiles

/etc/pki/CA/unsigned/zbx-srv_req.pem

27. You will be prompted with the question Sign the certificate? [y/n]. Answer this and

all the following questions with Y.

28. Now, let’s do the same thing for the lar-book-secure-db certificate:

openssl ca -policy policy_anything -days 365 -out/etc/

pki/CA/certs/mysql-srv_crt.pem -infiles/etc/pki/CA/

unsigned/mysql-srv_req.pem

29. Let’s log in to the lar-book-secure-db MySQL server and create a directory for our newly

created certificates:

mkdir /etc/my.cnf.d/certificates/

30. Add the right permissions to the folder:

chown -R mysql. /etc/my.cnf.d/certificates/

31. Now, back on the new lar-book-secure-zbx Zabbix server, copy over the files to the

database server with the following commands:

scp /etc/pki/CA/private/mysql-srv_key.pem

root@10.16.16.170:/etc/my.cnf.d/certificates/mysql-srv.key

scp /etc/pki/CA/certs/mysql-srv_crt.pem

root@10.16.16.170:/etc/my.cnf.d/certificates/mysql-srv.crt

scp /etc/pki/CA/cacert.pem

root@10.16.16.170:/etc/my.cnf.d/certificates/cacert.crt

32. Now, back on the lar-book-secure-db MySQL server, add the right permissions to the

files:

chown -R mysql:mysql /etc/my.cnf.d/certificates/

chmod 400 /etc/my.cnf.d/certificates/mysql-srv.key

chmod 444 /etc/my.cnf.d/certificates/mysql-srv.crt

chmod 444 /etc/my.cnf.d/certificates/cacert.crt

33. Edit the MariaDB configuration file with the following command:

vim /etc/my.cnf.d/server.cnf

34. Add the following lines to the configuration file under the [mysqld] block:

bind-address=lar-book-secure-db

ssl-ca=/etc/my.cnf.d/certificates/cacert.crt

ssl-cert=/etc/my.cnf.d/certificates/mysql-srv.crt

ssl-key=/etc/my.cnf.d/certificates/mysql-srv.key

35. Log in to MySQL with the following command:

mysql -u root -p

36. Make sure our Zabbix MySQL user requires SSL encryption with the following:

alter user 'zabbix'@'10.16.16.152' require ssl;

flush privileges;

Make sure the IP matches the IP from the Zabbix server (and one for the
Zabbix frontend, if they are separated), just like we did in step 2.

37. Quit out of the MariaDB CLI and then restart MariaDB with the following command:

systemctl restart mariadb

38. Now, back on the lar-book-secure-zbx Zabbix server, create a new folder for our

certificates:

mkdir -p /var/lib/zabbix/ssl/

39. Copy the certificates over to this folder with the following:

cp /etc/pki/CA/cacert.pem /var/lib/zabbix/ssl/

cp /etc/pki/CA/certs/zbx-srv_crt.pem/var/lib/zabbix/ssl/zbx-

srv.crt

cp /etc/pki/CA/private/zbx-srv_key.pem/var/lib/zabbix/ssl/zbx-

srv.key

40. Edit the Zabbix server configuration file to use these certificates:

vim /etc/zabbix/zabbix_server.conf

41. Make sure the following lines match our lar-book-secure-db database server’s setup:

DBHost=lar-book-secure-db

DBName=zabbix

DBUser=zabbix

DBPassword=password

42. Now, make sure our SSL-related configuration matches our new files:

DBTLSConnect=verify_full

DBTLSCAFile=/var/lib/zabbix/ssl/cacert.pem

DBTLSCertFile=/var/lib/zabbix/ssl/zbx-srv.crt

DBTLSKeyFile=/var/lib/zabbix/ssl/zbx-srv.key

43. Also, make sure to add the right permissions to the SSL-related files:

chown -R zabbix:zabbix /var/lib/zabbix/ssl/

chmod 400 /var/lib/zabbix/ssl/zbx-srv.key

chmod 444 /var/lib/zabbix/ssl/zbx-srv.crt

chmod 444 /var/lib/zabbix/ssl/cacert.pem

44. Start and enable the Zabbix server with the following commands:

RHEL-based systems:

systemctl restart zabbix-server zabbix-agent2 httpd php-fpm

systemctl enable zabbix-server zabbix-agent2 httpd php-fpm

Ubuntu systems:

systemctl restart zabbix-server zabbix-agent2 apache2 php-fpm

systemctl enable zabbix-server zabbix-agent2 apache2 php-fpm

45. Then, navigate to the Zabbix frontend and fill in the right information, as shown in the following
screenshot:

Figure 12.16 – Zabbix frontend configuration, database step

46. When we click Next step, we need to fill out some more information:

Figure 12.17 – Zabbix frontend configuration, server details step

47. Then, after clicking Next step, Next step, and Finish, the frontend should now be configured and
working.

How it works…

This was quite a long recipe, so let’s break it down quickly:

In steps 1 through 9, we prepared our servers

In steps 10 through 37, we executed everything needed to create our certificates

In steps 38 through 47, we set up our Zabbix frontend for encryption

Going through all these steps, setting up your Zabbix database securely can
seem like quite a daunting task, and it can be. Certificates, login procedures,
loads of settings, and more can all add up to become very complicated, which
is why I’d always recommend diving deeper into encryption methods before
trying to set this up yourself.

If your setup requires encryption, though, this recipe is a solid starting point
for your first-time setup. It works very well in an internal setting, as we are
using private certificates.

IMPORTANT NOTE
Make sure to renew your SSL certificates, as they are only valid for however long we defined.
In this case, it’s 365 days, so we will renew them every year. It’s also a good plan to monitor
the expiry date of the certificate and create an alert in Zabbix for it.

All Zabbix components, except for communication between the Zabbix
server and Zabbix frontend, can be encrypted, as shown in the following
diagram:

Figure 12.18 – Zabbix encryption scheme possibilities

We’ve set up encryption between the following:

The Zabbix server and MariaDB

The Zabbix frontend and MariaDB

This means that when our Zabbix server or frontend requests or writes data to
our database, it will be encrypted. Because our Zabbix applications are
running on a different server than our Zabbix database, this might be
important. For example, our setup might look like this:

Figure 12.19 – Zabbix setup with an external network diagram

Let’s say the cloud is called Some company in a network that isn’t managed
by us. There are several switches and routers in this network that are used for
numerous clients with their own VLANs. If one of these devices gets
compromised somehow, all of our Zabbix data could be seen by others.

Even if the network equipment is ours, there might still be a compromised
device in the network and our data can be seen. This is why you might want
to add encryption, to add that extra layer of security. Whether it’s breaches in
other companies and their network that you want to secure against or whether
it’s against your own breaches, securing your database as we did in this
recipe might just save you from leaking all that data.

13

Bringing Zabbix to the Cloud with Zabbix
Cloud Integration
For the last chapter, we have prepared something special. As a long-time
Zabbix user, the importance of cloud integration for tools such as Zabbix has
not gone unnoticed. For some people, the cloud can be daunting, and thus
with this chapter, I want to show you just how easy it can be to start working
with the most popular cloud providers and Zabbix.

We are going to start by talking about monitoring the Amazon Web Services
(AWS) cloud with Zabbix. Then we will also see how the same things are
done using Microsoft Azure so we can clearly see the differences.

After going through these cloud products, we’ll also check out container
monitoring with Docker, a very popular product that can also benefit greatly
from setting up Zabbix monitoring. Follow these recipes closely and you will
be able to monitor all of these products easily and work to extend the
products using Zabbix. This chapter comprises the following recipes:

Setting up AWS monitoring

Setting up Microsoft Azure monitoring

Building your Zabbix Docker monitoring

Technical requirements

As this chapter focuses on AWS, Microsoft Azure, and Docker monitoring,
we are going to need a working AWS, Microsoft Azure, or Docker setup. The
recipe does not cover how to set these up, so make sure to have your own
infrastructure at the ready.

Furthermore, we are going to need our Zabbix server running Zabbix 7. We
will call this server lar-book-rocky in this chapter.

You can download the code files for this chapter from the following GitHub
link: https://github.com/PacktPublishing/Zabbix-7-IT-Infrastructure-
Monitoring-Cookbook/tree/main/chapter13.

Setting up AWS monitoring
A lot of infrastructure is moving toward the cloud these days, and it’s
important to keep an eye on this infrastructure as much as you would if it
were your own hardware. In this recipe, we are going to discover how to
monitor EC2 instances, Relational Database Service (RDS) instances, and
S3 buckets with our Zabbix setup.

Getting ready

For this recipe, we are going to need our AWS cloud with at least one of the
following three resources:

EC2 instances

RDS instances

S3 buckets

Of course, we will also need our Zabbix server, which we’ll call lar-book-
rocky in this recipe.

IMPORTANT NOTE
Using Amazon CloudWatch is not free, so you will incur costs. Make sure you check out the
Amazon pricing for AWS CloudWatch before proceeding:
https://aws.amazon.com/cloudwatch/pricing/.

How to do it…

Setting up AWS monitoring might seem like a daunting task at first, but once
we get the hang of the technique, it’s not that difficult. Let’s waste no more
time and check out one of the methods we could use:

1. Let’s start by logging in to our Zabbix server with the hostname lar-book-rocky.

2. Log in to your AWS account by navigating to the following URL in your browser:
https://aws.amazon.com/.

3. On this page, click on Sign In to the Console.

4. Once logged in, we can navigate to My Security Credentials, which should be listed in your user
profile in the top-right corner:

Figure 13.1 – AWS web frontend user profile

5. On the next page, on the left-hand side, click on Users under Access management.

6. Let’s create a new dedicated Zabbix monitoring user by clicking on the Add users button. Add the
user as follows.

Figure 13.2 – AWS new user

7. Click on Next, and at the second step, if you’d like, you can add the user to a group to inherit
some permissions, copy them, or set up a custom policy. I’ll skip this step for now by clicking
Next again.

8. Now click on Create to finish setting up this user.

9. Select the user from the list to edit it:

Figure 13.3 – AWS – edit new Zabbix user

10. In the list, we can see there are no policies assigned to this user yet, so let’s create a new policy
just for Zabbix monitoring.

11. Click on Create inline policy from the drop-down list:

Figure 13.4 – AWS – edit new Zabbix user policies

12. Then click on JSON to define the new policy in the JSON format. It should look like the
following screenshot:

Figure 13.5 – AWS – edit new Zabbix user – add new policy

TIP
Check out Zabbix’s integrations page for the latest required permissions for the AWS template
you’ll be using. Different templates need different permissions, and new permissions might be

added later to incorporate new features or changes on the AWS side:
https://www.zabbix.com/integrations/aws.

13. You can now click on Next and name your policy.

Figure 13.6 – AWS – edit new Zabbix user – add new policy name

14. Then, click on Create policy at the bottom of the page.

With the permissions out of the way, let’s make sure we will be able to
authenticate with this user account.

15. Still on the same page after creating the new policy, scroll down to Access keys (access key ID
and secret access key) for this new user. This will show you the following:

Figure 13.7 – AWS access keys page

16. Click on Create access key to create a new access key. You should see the following:

Figure 13.8 – AWS access key creation

17. Select a reason and click on Next. Make sure you understand the possible security implications.

18. Name your new access key:

Figure 13.9 – AWS access key creation naming

19. Lastly, click on Create access key and store the access key and secret access key somewhere safe
(such as a password vault). After you’ve done that, click on Done:

Figure 13.10 – AWS access key creation – copy keys

20. Now, let’s finally move on to Zabbix. Log in to your Zabbix GUI and navigate to Data collection
| Hosts.

21. Create a new host by clicking on Create host in the top-right corner. We’ll create a new host
called lar-book-aws and add the AWS by HTTP template and a host group such as Cloud.

Figure 13.11 – New AWS host

22. Before adding the host, make sure to go to Macros. We have to fill in a few macros to make this
new template work. Make sure to fill out the keys you saved in step 19 and fill them in as in the
following screenshot. Also, make sure to add the region in which you want to discover your
information.

Figure 13.12 – New AWS host macros

IMPORTANT NOTE
In my case, all of the AWS resources I am running are within the same AWS regions. In a lot
of production environments, this isn’t the case. For those environments, you might want to
create a Zabbix host per region to be able to discover all of your resources. All you have to do
is define the {$AWS.REGION} macro uniquely per host.

23. Now click on Add to add this new host.

24. If done correctly, your AWS resources will be added once the discovery rule has been executed, as
we can see in the following screenshot for some of my EC2 instances:

Figure 13.13 – Discovered EC2 instances

How it works…

Now that we’ve done all the setup work, let’s have a look at what we have
actually done. Zabbix 7.0 contains out-of-the-box cloud monitoring
templates, which we’ve utilized to monitor some of the most common AWS
resources.

The templates provided by Zabbix use a fairly extensive piece of JavaScript
code to execute API calls toward AWS, parse through the received data, and
then put that into a JSON array that Zabbix’s low-level discovery
understands.

Looking at the template at Data collection | Templates and then opening
Discovery for the AWS by HTTP template, we can see three discovery
rules:

Figure 13.14 – AWS by HTTP discovery rules

These three rules discover the EC2 instances, RDS instances, and S3 buckets
in AWS and use Host prototypes to create a new host for each instance or
bucket found. Those created hosts will then in turn use their own templates to
get the actual statistics from those instances or buckets, as we can see in the
template list:

Figure 13.15 – The other three AWS templates in Zabbix 7.0

In my case, only two EC2 instances were discovered, and as such, those two
hosts were added with the AWS EC2 by HTTP template, as seen in Figure
13.13.

All of the information is then collected by Script item types with their own
unique JavaScript code. We can see a piece of the code in the following
screenshot, where we make a call to AWS to a specific URL (underlined)
with headers for things such as authentication:

Figure 13.16 – AWS template call

It is also possible to edit this JavaScript code to create entirely new calls to
retrieve your own data and create different types of monitoring, as well as
simply extending the out-of-the-box templates.

There’s more…

It takes time to start monitoring with AWS CloudWatch as we need a good
understanding of the AWS CLI commands with the use of CloudWatch.

When you use the templates provided by Zabbix as a basis, you have a solid
foundation on which to build.

Make sure to check out the AWS documentation for more information on the
commands that we can use, using the following link:

https://docs.aws.amazon.com/cli/latest/reference/#available-services

Setting up Microsoft Azure monitoring
The Microsoft Azure cloud is a big player in the cloud market these days and
it’s important to keep an eye on this infrastructure as much as you would
your own hardware. In this recipe, we are going to discover how to monitor
Azure instances with our Zabbix setup.

Getting ready

For this recipe, we are going to need our Azure cloud with at least one of the
following resources in it already.

Cosmos DB for MongoDB databases

Microsoft SQL databases

MySQL servers

PostgreSQL servers

Virtual machines

The recipe does not cover how to set up any of these resources, so make sure
to do this in advance. We will also need our Zabbix server, which we’ll call
lar-book-rocky in this recipe.

How to do it…

For Azure monitoring, we face some of the same techniques as we do for
AWS monitoring. It can become a bit daunting if we dive into customization,
but setting up the initial monitoring is a lot easier than it looks. Let’s check it
out:

1. With Azure monitoring, first we are going to need to set up our authentication correctly. To do so,
navigate to portal.azure.com and log in.

2. In the search bar, search for Enterprise applications and select it from the list. Click on

New application:

Figure 13.17 – Azure enterprise application creation

3. Then click on Create your own application:

Figure 13.18 – Azure enterprise application creation – creating your own application

4. This is where we have to name our application. Name it something appropriate, as seen in the
following screenshot:

Figure 13.19 – Azure enterprise application creation – setting the name of your application

5. Then click Create at the bottom of the page to finish creating a new empty application. It will
show you the application ID on this page. Make sure to write it down as we will need it later:

Figure 13.20 – Azure enterprise application overview page

6. With the application created, let’s immediately dive into setting up the credentials for it. To do so,
use the Azure search bar at the top and search for Azure Active Directory, then select it

from the list.

7. In the left-hand sidebar, you should see App registrations. We are going to create a new
registration, so click on New registration:

Figure 13.21 – Azure enterprise application – App registrations

8. Simply give your registration a new name and keep the rest of the settings as the default:

Figure 13.22 – Azure enterprise application – new app registration

9. Click Register to finish this registration. This will redirect you to your newly created registration.

10. Now let’s add the authentication. Go to Certificates & secrets in the left-hand sidebar.

11. We’ll create a new client secret here. To do so, click on New client secret:

Figure 13.23 – Azure enterprise application – app registration secrets

12. All we have to do now is name the secret and set an expiry time period. Keep in mind that a
shorter expiry means more administrative overhead. Faster expiry could mean better security as
there is less time to potentially leak (or use once leaked) the secrets:

Figure 13.24 – Azure enterprise application – app registration secret creation

13. Now click on Add to finish setting up the new secret. It will show you the values once. Make sure
to store them somewhere safe, such as in a password vault:

Figure 13.25 – Azure enterprise application secrets

14. With the authentication out of the way, there is only one thing left to do. We need to provide the
correct permissions to this new enterprise application. To do so, search for Subscriptions in

the Azure search bar at the top of the page.

15. For things such as Azure virtual machine and database instance monitoring, you will need to
assign (read) permissions to your entire subscription. Find the subscription where your resources
are located. Mine is called OICTS Azure:

Figure 13.26 – Azure subscriptions

16. Now is also a great time to write down the subscription ID, as we will need it in a later step!

17. Select your subscription, and then from the list, select Access control (IAM). Then, click on Add
role assignment.

Figure 13.27 – Azure subscription – role assignment

18. On the next page, select the Reader role from the list and then press Next.

19. At the Members part of the creation process, click on + Select members. We’ll add the Zabbix
book monitoring member. It will look as follows:

Figure 13.28 – Azure subscription – role assignment members

20. Now click on Review + assign and the permissions will be added.

21. There’s one more thing to do in the Azure portal. In the search bar at the top of the page, type in
Tenant properties and select it from the list. On this page, make sure to note down the

tenant ID as we will need it shortly.

22. With the application set up, the authentication created, and the permissions assigned, let’s move
on to the Zabbix frontend. Navigate to Data collection | Hosts and create a new host by clicking
on Create host in the top-right corner:

Figure 13.29 – Azure tenant properties

23. Create the following host, with the name lar-book-azure, the Azure by HTTP template, and

a host group such as Cloud:

Figure 13.30 – New Azure monitoring host in Zabbix

24. Before adding the host, switch to the Macros tab:

Figure 13.31– New Azure monitoring host macros in Zabbix

We will have to add at least the following macros here:

For {$AZURE.APP.ID}, fill in the application ID from step 5.

For {$AZURE.PASSWORD}, fill in the value under the Value column from step 13.

For {$AZURE.SUBSCRIPTION.ID}, fill in the subscription ID from step 15.

For {$AZURE.TENANT.ID}, fill in the tenant ID from step 22.

25. That’s it; you can now add the new host by clicking on the Add button.

26. After the discovery rule runs for the first time, your discovered instances will be added as new
hosts, as you can see in the following screenshot:

Figure 13.32 – New Azure-discovered virtual machine

That’s it, your automated Azure monitoring is now working as expected.
Let’s have a look at how it works.

How it works…

If you’ve followed the recipe on AWS monitoring, you might think that
Azure monitoring works in the exact same way. To an extent, that is true; the
monitoring is completely based on API calls made from Zabbix toward the
Azure API.

What is different between AWS and Azure is of course going to be the
JavaScript scripts used in the Zabbix items on the templates.

The templates provided by Zabbix 7.0 out of the box use a fairly extensive
piece of JavaScript code to execute API calls toward Azure, parse through the
received data, and then put that into a JSON array that Zabbix low-level
discovery understands.

Looking at the template found at Data collection | Templates and then
opening Discovery for the Azure by HTTP template, we can see six
discovery rules.

Figure 13.33 – Azure by HTTP discovery rules

These six rules discover the different types of Azure database instances and
virtual machines and use host prototypes to create a new host for each
instance found. The only difference here is that storage accounts won’t use

host prototypes but item prototypes to supply you with information. The
hosts created by host prototypes will then in turn use their own templates to
get the actual statistics from those instances or buckets, as we can see in the
template list:

Figure 13.34 – The other Azure templates in Zabbix 7.0

In my case, only one virtual machine was discovered, and as such, that host
was added with the Azure Virtual Machine by HTTP template, as seen in
Figure 13.32.

All of the information is then collected by Script item types with their own
unique JavaScript code. We can see a piece of the code in the following
screenshot, where we make a call to Azure to a specific URL (underlined):

Figure 13.35 – Azure template call

It is also possible to edit this JavaScript code to create entirely new calls to
retrieve your own data and create different types of monitoring, as well as
simply extending the out-of-the-box templates.

There’s more…

We can discover way more from Azure using the method applied in this
recipe. The JavaScript we employ is used to get metrics from Azure, which
can be edited to gather almost any metric from the Azure API.

Check out the Azure API documentation for more information on the metrics
retrieved using JavaScript:

https://learn.microsoft.com/en-us/rest/api/azure/

Building your Zabbix Docker monitoring
Ever since the release of Zabbix 5, monitoring our Docker containers became
a lot easier with the introduction of Zabbix agent 2 and plugins. Using Zabbix
agent 2 and Zabbix 7, we are able to monitor our Docker containers out of the
box.

In this recipe, we are going to see how to set this up and how it works.

Getting ready

For this recipe, we require some Docker containers. We won’t go over the
setup of Docker containers, so make sure to do this yourself. Furthermore, we
are going to need Zabbix agent 2 installed on the host running these Docker

containers. Zabbix agent does not work in relation to this recipe; Zabbix
agent 2 is required.

We also need our Zabbix server to actually monitor the Docker containers.
We will call our Zabbix server zbx-home.

How to do it…

Let’s waste no more time and dive right into the process of monitoring your
Docker setup with Zabbix:

1. First things first, log in to the Linux CLI of the host running your Docker container(s).

2. Add the repository for installing Zabbix components.

For RHEL-based systems, use the following:
rpm -Uvh

https://repo.zabbix.com/zabbix/7.0/rhel/8x86_64/zabbix-release-

7.0-1.el8.noarch.rpm

dnf clean all

For Ubuntu systems, use the following:
wget

https://repo.zabbix.com/zabbix/7.0/ubuntu/pool/main/z/zabbix-

release/zabbix-release_7.0-1+ubuntu22.04_all.deb

dpkg -i zabbix-release_7.0-1+ubuntu22.04_all.deb

apt update

3. Now, install Zabbix agent 2 with the following command.

For RHEL-based systems, use the following:
dnf install zabbix-agent2

For Ubuntu systems, use the following:
apt install zabbix-agent2

4. Following installation, make sure to edit the configuration file of the newly installed Zabbix agent
2 with the help of the following command:

vim /etc/zabbix/zabbix_agent2.conf

5. Find the line that says Server and add your Zabbix server IP address to the file, as follows:

Server=10.16.16.102

6. Now, we need to add the zabbix user to the Docker group by executing the following command:

gpasswd -a zabbix docker

7. Make sure to save the file and then restart Zabbix agent 2 with the following command:

systemctl restart zabbix-agent2

8. Now, navigate to your Zabbix server frontend. Go to Data collection | Hosts and click on the blue
Create host button.

9. Let’s create a new host called Docker containers and make sure to link the Docker by

Zabbix agent 2 template to the host.

Figure 13.36 – New Docker host configuration

That’s all there is to monitoring Docker containers with the Zabbix server.
Let’s now see how it works.

How it works…

Docker monitoring in Zabbix these days is easy, due to the new Zabbix agent
2 support and default templates. On occasion, though, a default template does

not cut it, so let’s break down the items used.

Almost all the items we can see on our host are dependent items, most of
which are dependent on the master item, Docker: Get info. This master item
is the most important item on our Docker template. It executes the
docker.info item key, which is built into the new Zabbix agent 2. This item
retrieves a list with all kinds of information from our Docker setup. We use
the dependent items and preprocessing to get the values we want from this
master item.

The Docker template also contains two Zabbix discovery rules, one to
discover Docker images and one to discover Docker containers. If we check
out the discovery rule for Docker containers called Containers discovery,
we can see what happens. Our Zabbix Docker host will use the
docker.containers.discovery item key to find every container and put this in
the {#NAME} LLD macro. In the item prototypes, we then use this {#NAME}

LLD macro to discover statistics with another master item, such as
docker.container_info. From this master item, we then use the dependent
items and preprocessing again to include this information in other item
prototypes as well. We are now monitoring a bunch of statistics straight from
our Docker setup.

If you want to get values from Docker that aren’t in the default template,
check out the information collected with the master items on the template.
Use a new dependent item (prototype) and then use preprocessing to get the
correct data from the master item.

There’s more…

If you want to learn more about the Zabbix agent 2 Docker item keys, check
out the supported item key list for Zabbix agent 2 in the Zabbix
documentation:

https://www.zabbix.com/documentation/current/en/manual/config/items/itemt
ypes/zabbix_agent/zabbix_agent2?s[]=docker.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below
are hyperlinked for reference only, based on the printed edition of this book.

A

active agent 87

active agent autoregistration

host creation, automating with 295-300

Active Directory (AD) SAML 62

active Zabbix proxies

working with 334-338

administration category 40, 41

advanced triggers

setting up 160

alerts

customizing 181, 183

setting up 169-176

working 176, 177

alerts category 39

Amazon CloudWatch 484

Amazon pricing, for AWS CloudWatch

reference link 484

API tokens

managing 404-409

setting up 404-409

Atlassian Opsgenie

integrating, with Zabbix 392-401

AWS monitoring

setting up 484-491

Azure AD SAML user authentication 62-71

B

bastion host 414

built-in macros

using 200

working 202

business service monitoring (BSM) 35

configuration, adding 270, 271, 272, 273, 274, 275, 276, 277

items and triggers, setting up 265-270

setting up 265, 277-281

C

calculated items

working with 111, 112, 116

Cloud Hoster 44, 45

command-line interface (CLI) 151, 192, 221, 328

D

dashboards

creating, for Linux-monitored hosts 233-244

templating, to work at host level 244-249

data collection category 38

dependent items

working with 113-118

discovery rules

using, with Zabbix proxy 350-352

Distributed Denial-of-Service (DDoS) 233

E

effective alerts 177-179

working 180, 181

ExtraBackup 433

Extra Packages for Enterprise Linux (EPEL) 2

F

first users

creating 56-62

functionality

extending, with Zabbix API 409-414

G

Global view 26

graphs

creating, to access visual data 218-225

H

high availability (HA) 1, 84, 329

host

disabling, from Zabbix maps 419-424

enabling, from Zabbix maps 419-424

monitoring, with Zabbix proxy 338-341, 347-349

host creation

automating, with active agent autoregistration 295-300

hosts, with custom JSON

creating 319-326

hosts, with LLD

creating 319-326

HTTP agent monitoring

setting up 127-130

I

Intelligent Platform Management Interface (IPMI) 341

inventory category 36

J

Java Management Extensions (JMX) 283, 341

JIT user provisioning 62-71

JMX monitoring

setting up 120-123

JMX objects

discovering 307-311

jumphost

building, with Python 414-419

building, with Zabbix API 414-419

just-in-time (JIT) 40, 62

L

Lightweight Directory Access Protocol (LDAP) 40

Linux host 453

Linux-monitored hosts

dashboards, creating for 233-244

Long-Term Support (LTS) 1, 443

Low-Level Discovery (LLD) 161, 185, 225, 283

using, on templates 202-212

M

macros

built-in macros, using 200

setting up 198

user macro, defining 198, 199

macros types

built-in macros 201

expressions macros 201

LLD macros 201

user macros 201

maintenance periods

setting up 428, 429, 430

managed service provider (MSP) 342

Management Information Base (MIB) 193

Man-in-the-Middle (MITM) attack 472

manual script input 425

execution 425

maps, in Zabbix

creating, to obtain overview of infrastructure 225-233

MariaDB 2

MariaDB replication

reference link 25

MBean 311

Microsoft Azure monitoring

setting up 492-500

Microsoft Teams alerting

setting up, with Zabbix 375-382

monitoring category 35, 36

multi-factor authentication 46

multiple items

using, in triggers 158

MySQL partitioning

setting up, for Zabbix database 458-467

N

new trigger expression syntax

versus old trigger expression syntax 159, 160

New Values Per Second (NVPS) 28, 257

O

object identifier (OID) 193, 291

old trigger expression syntax

versus new trigger expression syntax 159, 160

Open Database Connectivity (ODBC) 124

OpenLDAP

reference link 72

OpenLDAP user authentication 71-77

P

passive agent 87

passive proxy 334

passive Zabbix proxies

working with 331-334

performance, over time

maintaining 447

MySQL database, tuning 451-456

Zabbix housekeeper 450-455

Zabbix processes 448-454

PGBarman 433

PostgreSQL TimescaleDB functionality

configuring 469-471

reference link 472

RHEL-based, installing 468

Ubuntu, installing 467

using 467

working 471, 472

pre-shared keys

used, for encrypting Zabbix proxy connection 342-345

Python

used, for building jumphost 414-419

Q

quality-of-life (QoL) 1

R

Red Hat Enterprise Linux (RHEL) 80

Relational Database Service (RDS) instances 484

reports category 37

RHEL8-based systems

Zabbix backend, upgrading for 435, 436

RHEL-based systems

installing, on PostgreSQL TimescaleDB functionality 468

Zabbix database, upgrading on 439, 440

Zabbix setup, upgrading on 444

S

S3 buckets 484

scheduled PDF reports

setting up 261-265

Secure Shell (SSH) 151

Security Assertion Markup Language (SAML) 40, 62

Security-Enhanced Linux (SELinux) 329

service category 36

service-level agreement (SLA) 35

Simple Mail Transfer Protocol (SMTP) 174

Simple Network Management Protocol (SNMP) 185, 283, 340

single source of truth (SSOT) 24

Slack alerting

setting up, with Zabbix 362-374

Slack API

reference link 375

SNMP monitoring

setting up 94-102

working with 89-93

SNMP OID

reference link 196

source of truth (SOT) 25

SSH service monitoring 150, 151, 155, 156

T

tag prototypes 191

Telegram bots

using, with Zabbix 382-392

template items

creating 192-194

working 195, 196

template-level tags

setting up 189

working 191

template triggers

creating 196

working 197

timeleft function

need for 162-164

working 165, 166

TimescaleDB 467

time shifting 161

time shifting with mathematical function

need for 164

working 166, 167

trendavg function

need for 161, 162

working 165

trigger expression

reference link 160

triggers

multiple items, using 153, 158

setting up 150

SSH service monitoring 150, 151

working 154

Zabbix version 152, 153

U

Ubuntu

installing, on PostgreSQL TimescaleDB functionality 467

Ubuntu systems

Zabbix backend, upgrading for 437

Zabbix database, upgrading on 441, 442

Zabbix setup, upgrading on 445, 446

user groups

creating 44-48

user macros

defining 198, 199

working 201

users category 39

V

virtual machine (VM) 323

virtual private network (VPN) 342

visual data

graphs, creating to access 218-225

W

Windows performance counter discovery

using 300-306

Z

Zabbix

reference link 48

Telegram bots, using with 382-392

used, for integrating Atlassian Opsgenie 392-401

used, for setting up Microsoft Teams alerting 375-382

used, for setting up Slack alerting 362-374

Zabbix 6 tag policy

reference link 191

Zabbix 7 424

Zabbix agent

using, in active mode 84-86

using, in passive mode 81-83

Zabbix Agent 2

installing 80

reference link 88

Zabbix agent 2 Docker item keys

reference link 503

Zabbix agent monitoring

active agent 87

passive agent 87

setting up 80, 87

Zabbix Agent 2, installing 80

Zabbix agent, using in active mode 84-86

Zabbix agent, using in passive mode 81-83

Zabbix agent network discovery

setting up 284-290

Zabbix API

reference link 414

used, for building jumphost 414-419

used, for extending functionality 409-414

Zabbix backend

upgrading, for RHEL8-based systems 435, 436

upgrading, for Ubuntu systems 437

upgrading, from older PHP versions to PHP 8.2 or higher 434, 435

Zabbix browser items

using, to simulate web user 130-141

Zabbix database

upgrading, from older MariaDB versions to MariaDB 11.4 438, 439

upgrading, on RHEL-based systems 439, 440

upgrading, on Ubuntu systems 441, 442

used, for setting up MySQL partitioning 458-467

Zabbix database monitoring

setting up 123-127

Zabbix Docker monitoring

building 501-503

Zabbix encryption

reference link 333

Zabbix external checks

creating 118, 119

working 120

Zabbix frontend

administration category 35

alerts category 35

data collection category 35

inventory category 35

monitoring category 35

navigating 33, 35

parameters 27, 28

reports category 35

service category 35

setting up 6-11

users category 35

using 25-33

working 12

Zabbix Geomap widget

using 251-256

Zabbix housekeeper 450

Zabbix integration list

reference link 177

Zabbix integrations page

reference link 487

Zabbix inventory

setting up 249-251

Zabbix JMX monitoring

reference link 123

Zabbix LLD

reference link 213

Zabbix maps

host, enabling and disabling from 419-424

Zabbix MySQL database

securing 472-480

working 480-482

Zabbix performance

over time, maintaining 447-449

Zabbix preprocessing

using, to alter item values 141-147

Zabbix processes 448, 450

Zabbix proxy

active agent autoregistration 352, 353

active proxy 339, 340

discovery rules, using with 350-352

hosts, monitoring with 338-342

load balancing, setting up 345-349

monitoring, from frontend 358, 359

monitoring, remotely from server 356-359

monitoring with 353, 358, 359

monitoring, with Zabbix proxy 353, 355

setting up 328-331

Zabbix proxy connection

encrypting, with pre-shared keys 342-345

Zabbix reporting

using 256

Zabbix reporting, page

Action log 259, 260

Audit 259

Availability report 258

Notifications 260

System information 256, 257

Trigger top 100 258

Zabbix server 113

installing 2-5

working 5

Zabbix server config files 434

Zabbix server HA

cluster nodes, setting up 16, 17

database, setting up 14, 15

enabling 13

NGINX, setting up 17-21

working 23, 24

Zabbix setup

backing up 430-434

upgrading 443, 444

upgrading, on RHEL-based system 444

upgrading, on Ubuntu systems 445-447

Zabbix simple checks

creating 102-107

working 109

Zabbix SNMP LLD

setting up 312-319

Zabbix SNMP network discovery

working with 290-294

Zabbix template

creating 186, 187

nesting 213-216

working 188, 189

Zabbix trapper

creating 102, 107, 108

working 110

Zabbix trigger expression

constant 156

host 155

item key 155

operator 155

trigger function 155

Zabbix user roles 58

using 49-55

Zabbix version 152, 153, 157

Zabbix webhook 374

Zabbix webhook connector

reference link 382

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000
industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
packtpub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive

discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Network Automation with Nautobot

Jason Edelman, Glenn Matthews, Josh VanDeraa, Ken Celenza, Christian
Adell, Brad Haas, Bryan Culver, John Anderson, Gary Snider

ISBN: 978-1-83763-786-7

Understand network sources of truth and the role they play in network automation architecture

Gain an understanding of Nautobot as a network source and a network automation platform

Convert Python scripts to enable self-service Nautobot Jobs

Understand how YAML files in Git can be easily integrated into Nautobot

Get to grips with the NetDevOps ecosystem around Nautobot and its app ecosystem

Delve into popular Nautobot Apps including Single Source of Truth and Golden Config

Security Monitoring with Wazuh

Rajneesh Gupta

ISBN: 978-1-83763-215-2

Find out how to set up an intrusion detection system with Wazuh

Get to grips with setting up a file integrity monitoring system

Deploy Malware Information Sharing Platform (MISP) for threat intelligence automation to detect
indicators of compromise (IOCs)

Explore ways to integrate Shuffle, TheHive, and Cortex to set up security automation

Apply Wazuh and other open source tools to address your organization’s specific needs

Integrate Osquery with Wazuh to conduct threat hunting

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit
your own idea.

Share Your Thoughts
Now you’ve finished Zabbix 7 IT Infrastructure Monitoring Cookbook, we’d
love to hear your thoughts! If you purchased the book from Amazon, please
click here to go straight to the Amazon review page for this book and share
your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make
sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of
that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from
your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80107-832-0

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

Contents

1. Zabbix 7 IT Infrastructure Monitoring Cookbook
2. Foreword
3. Contributors
4. About the authors
5. About the reviewers
6. Preface

1. Who this book is for
2. What this book covers
3. To get the most out of this book

1. Download the example code files
2. Conventions used

4. Sections
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…
5. See also

5. Get in touch
6. Before we get started
7. Share Your Thoughts
8. Download a free PDF copy of this book

7. Chapter 1: Installing Zabbix and Getting Started Using the Frontend
1. Technical requirements
2. Installing the Zabbix server

1. Getting ready
2. How to do it…
3. How it works…

3. Setting up the Zabbix frontend
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more...

4. Enabling Zabbix server HA
1. Getting ready

2. How to do it…
3. How it works...
4. There’s more...

5. Using the Zabbix frontend
1. Getting ready
2. How to do it…

6. Navigating the Zabbix frontend
1. Getting ready
2. How to do it…

8. Chapter 2: Getting Things Ready with Zabbix User Management
1. Technical requirements
2. Creating user groups

1. Getting ready
2. How to do it…
3. There’s more...

3. Using Zabbix user roles
1. Getting ready
2. How to do it...
3. How it works...
4. There’s more...

4. Creating your first users
1. Getting ready
2. How to do it…

5. Azure AD SAML user authentication and JIT user provisioning
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

6. OpenLDAP user authentication and JIT user provisioning
1. Getting ready
2. How to do it…
3. How it works…

9. Chapter 3: Setting Up Zabbix Monitoring
1. Technical requirements
2. Setting up Zabbix agent monitoring

1. Getting ready
2. How to do it…

3. How it works…
4. See also

3. Working with SNMP monitoring the old way
1. Getting ready
2. How to do it…
3. How it works…

4. Setting up SNMP monitoring the new way
1. Getting ready
2. How to do it…
3. How it works…

5. Creating Zabbix simple checks and the Zabbix trapper
1. Getting ready
2. How to do it…
3. How it works…

6. Working with calculated and dependent items
1. Getting ready
2. How to do it…
3. How it works…

7. Creating external checks
1. Getting ready
2. How to do it…
3. How it works…

8. Setting up JMX monitoring
1. Getting ready
2. How to do it…
3. How it works…
4. See also

9. Setting up database monitoring
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

10. Setting up HTTP agent monitoring
1. Getting ready
2. How to do it…
3. How it works…

11. Using Zabbix browser items to simulate a web user

1. Getting ready
2. How to do it…
3. How it works…

12. Using Zabbix preprocessing to alter item values
1. Getting started
2. How to do it…
3. How it works…
4. See also

10. Chapter 4: Working with Triggers and Alerts
1. Technical requirements
2. Setting up triggers

1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…
5. See also

3. Setting up advanced triggers
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

4. Setting up alerts
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

5. Keeping alerts effective
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

6. Customizing alerts
1. Getting ready
2. How to do it…
3. How it works…

11. Chapter 5: Building Your Own Structured Templates
1. Technical requirements

2. Creating your Zabbix template
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

3. Setting up template-level tags
1. Getting ready
2. How to do it…
3. How it works…
4. See also

4. Creating template items
1. Getting ready
2. How to do it…
3. How it works…
4. See also

5. Creating template triggers
1. Getting ready
2. How to do it…
3. How it works…

6. Setting up different kinds of macros
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

7. Using LLD on templates
1. Getting ready
2. How to do it…
3. How it works…
4. See also

8. Nesting Zabbix templates
1. Getting ready
2. How to do it…
3. How it works…

12. Chapter 6: Visualizing Data, Inventory, and Reporting
1. Technical requirements
2. Creating graphs to access visual data

1. Getting ready

2. How to do it…
3. How it works…

3. Creating maps to keep an eye on infrastructure
1. Getting ready
2. How to do it…
3. How it works…

4. Creating dashboards to get the right overview
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

5. Templating dashboards to work at the host level
1. Getting ready
2. How to do it…
3. How it works…

6. Setting up Zabbix inventory
1. Getting ready
2. How to do it…
3. How it works…

7. Using the Zabbix Geomap widget
1. Getting ready
2. How to do it…
3. How it works…

8. Working through Zabbix reporting
1. Getting ready
2. How to do it…

9. Setting up scheduled PDF reports
1. Getting ready
2. How to do it…
3. How it works…

10. Setting up improved business service monitoring
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more...

13. Chapter 7: Using Discovery for Automatic Creation
1. Technical requirements

2. Setting up Zabbix agent network discovery
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

3. Working with Zabbix SNMP network discovery
1. Getting ready
2. How to do it…
3. How it works…

4. Automating host creation with active agent autoregistration
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

5. Using Windows performance counter discovery
1. Getting ready
2. How to do it…
3. How it works…

6. Discovering JMX objects
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…
5. Setting up Zabbix SNMP LLD the new way
6. Getting ready
7. How to do it…
8. How it works…

7. Creating hosts with LLD and custom JSON
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

14. Chapter 8: Setting Up Zabbix Proxies
1. Technical requirements
2. Setting up a Zabbix proxy

1. Getting ready
2. How to do it…

3. How it works…
4. There’s more…

3. Working with passive Zabbix proxies
1. Getting ready
2. How to do it…
3. How it works…

4. Working with active Zabbix proxies
1. Getting ready
2. How to do it…
3. How it works…

5. Monitoring hosts with Zabbix proxy
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…
5. See also

6. Encrypting your Zabbix proxy connection with pre-shared keys
1. Getting ready
2. How to do it…
3. How it works…

7. Setting up Zabbix proxy load balancing
1. Getting ready
2. How to do it…
3. How it works…

8. Using discovery with Zabbix proxies
1. Getting ready
2. How to do it…
3. How it works…

9. Monitoring your Zabbix proxies
1. Getting ready
2. How to do it…
3. How it works…

15. Chapter 9: Integrating Zabbix with External Services
1. Technical requirements
2. Setting up Slack alerting with Zabbix

1. Getting ready
2. How to do it…

3. How it works…
4. See also

3. Setting up Microsoft Teams alerting with Zabbix
1. Getting ready
2. How to do it…
3. How it works…
4. See also

4. Using Telegram bots with Zabbix
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…
5. See also

5. Integrating Atlassian Opsgenie with Zabbix
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

16. Chapter 10: Extending Zabbix Functionality with Custom Scripts and
the Zabbix API

1. Technical requirements
2. Setting up and managing API tokens

1. Getting ready
2. How to do it…
3. How it works…

3. Using the Zabbix API for extending functionality
1. Getting ready
2. How to do it…
3. How it works…
4. See also

4. Building a jumphost using the Zabbix API and Python
1. Getting ready
2. How to do it…
3. How it works…
4. See also

5. Enabling and disabling a host from Zabbix maps
1. Getting ready

2. How to do it…
3. How it works…
4. There’s more…
5. See also

17. Chapter 11: Maintaining Your Zabbix Setup
1. Technical requirements
2. Setting Zabbix maintenance periods

1. Getting ready
2. How to do it…
3. How it works…

3. Backing up your Zabbix setup
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

4. Upgrading the Zabbix backend from older PHP versions to PHP 8.2
or higher

1. Getting ready
2. How to do it…
3. How it works…

5. Upgrading a Zabbix database from older MariaDB versions to
MariaDB 11.4

1. Getting ready
2. How to do it…
3. How it works…
4. There’s more...

6. Upgrading your Zabbix setup
1. Getting ready
2. How to do it…
3. How it works…
4. See also

7. Maintaining Zabbix performance over time
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

18. Chapter 12: Advanced Zabbix Database Management

1. Technical requirements
2. Setting up MySQL partitioning for your Zabbix database

1. Getting ready
2. How to do it…
3. How it works…
4. See also

3. Using the PostgreSQL TimescaleDB functionality
1. Getting ready
2. How to do it…
3. How it works…
4. See also

4. Securing your Zabbix MySQL database
1. Getting ready
2. How to do it…
3. How it works…

19. Chapter 13: Bringing Zabbix to the Cloud with Zabbix Cloud
Integration

1. Technical requirements
2. Setting up AWS monitoring

1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

3. Setting up Microsoft Azure monitoring
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

4. Building your Zabbix Docker monitoring
1. Getting ready
2. How to do it…
3. How it works…
4. There’s more…

20. Index
1. Why subscribe?

21. Other Books You May Enjoy
1. Packt is searching for authors like you

2. Share Your Thoughts
3. Download a free PDF copy of this book

Landmarks

1. Cover
2. Table of Contents
3. Index

